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Wave dynamics in optically modulated waveguide arrays

Mark J. Ablowitz,1 Keith Julien,1 Ziad H. Musslimani,2 and Michael I. Weinstein3
1Department of Applied Mathematics, University of Colorado, Campus Box 526, Boulder, Colorado 80309-0526, USA

2Department of Mathematics, University of Central Florida, Orlando, Florida 32816, USA
3Department of Applied Physics and Applied Mathematics, Columbia University, 200 S.W. Mudd - MC4701 New York,

New York 10027, USA
sReceived 20 January 2005; published 11 May 2005d

A model describing wave propagation in optically modulated waveguide arrays is proposed. In the weakly
guided regime, a two-dimensional semidiscrete nonlinear Schrödinger equation with the addition of a bulk
diffraction term and an external “optical trap” is derived from first principles, i.e., Maxwell equations. When
the nonlinearity is of the defocusing type, a family ofunstaggeredlocalized modes are numerically con-
structed. It is shown that the equation with an induced potential is well-posed and gives rise to localized
dynamically stable nonlinear modes. The derived model is of the Gross-Pitaevskii type, a nonlinear
Schrödinger equation with a linear optical potential, which also models Bose-Einstein condensates in a mag-
netic trap.

DOI: 10.1103/PhysRevE.71.055602 PACS numberssd: 42.65.Wi

Wave propagation in nonlinear periodic structures dis-
plays unique phenomena that are absent in homogeneous
media. The interplay between periodicity and nonlinearity
can lead to the formation of discrete or lattice solitons, which
were predicted theoretically in the context of optical wave-
guide arraysf1g and then experimentally observed inf2g.
Until recently, discrete solitons were considered experimen-
tally in one-dimensional geometryf2g. However, by making
use of the photorefractive screening nonlinearity one can
“write” either one- or higher-dimensional optical waveguide
arrays by interfering pairs of plane wavesf3g. Indeed, such
localized structures were experimentally observed in two-
dimensional geometriesf4g.

In this paper we study wave propagation in optically
modulated waveguide arrays, starting from the full time-
harmonic three-dimensional Maxwell’s equations. For the
case where the periodic modulation along they direction is
much larger than the periodic modulation along thex direc-
tion we derive, using multiscale asymptotic analysis, a semi-
discrete nonlinear Schrödinger equation with the addition of
bulk diffraction term and an external “optical trap.” When
the nonlinearity is of the defocusing typeswhere in the ab-
sence of modulation no finite energy solitons are knownd
unstaggeredlocalized modes are numerically constructed.
The fundamental properties such as the well-posedness of
the equation, existence, and the dynamical stability associ-
ated with a special class of localized wave solutions, i.e.,
stationary wave, or ground state, are discussed. The semidis-
crete model is derived from the scalar nonlinear Helmholtz
equation. Below we briefly outline the justification for ne-
glecting vectorial effects under certain physical assumptions.
A more general and detailed study of scalar and vector semi-
discrete nonlinear SchrödingersNLSd type models will be
given elsewhere.

We begin by considering the three-dimensional Maxwell
equations governing time-harmonic solutions of frequency
v0

¹2E − = s= ·Ed + k0
2sE + Pd = 0, k0 =

v0

c
. s1d

Here,==]xî +]yĵ +]zk̂, E=Esx ;v0d denotes thecomplexen-
velope of the electric field,P=PsEsxd ;v0d denotes the po-
larization field, containing both linear and nonlinear re-
sponses; we further assume the nonlinear polarization to be
of Kerr type f5g where the second component of the polar-
ization is given by

P2 = xE2 + dssuE1u2 + s1 + gduE2u2 + uE3u2dE2 + gsE1
2 + E3

2dE2
*d;
s2d

whereg is a constant,d is proportional to the nonlinear index
change of refraction, andx is a function ofx andy; the other
polarization components are found by cyclically changing
the indicess1→2→3→1d. We consider propagation in thez
direction through a photonic structuresinvariant inzd having
nontrivial spatial variations in thesx,yd plane due tox. A
schematic of the kind of transverse structure we consider is
given in Fig. 1. This structure has a rapid periodic variation
in x and a slow modulation iny. In nondimensional terms,
this corresponds to the assumed formx=xsx,«1/2yd, where«
is a small dimensionless parameter. The period inx is of
order 1 whereas a typical distance iny is of order«−1/2. We
further assume that the nondimensional nonlinear index of
refraction is small in sizefOs«dg. Then, analysis of
Maxwell’s equations s1d shows that E3/E2=Os«d and
E1/E2=Os«3/2d and to leading order

]zE3 = − ]yE2. s3d

Then the second component of Maxwell’s equationss1d
leads to the following nonlinear Helmholtz equation

¹2C + f2sx,ydC + «huCu2C = 0, s4d

where C is the envelope wave function, which is propor-
tional to the optical fieldE2 s¹2=]x

2+]y
2+]z

2d. f2sx,yd=1+x
is the linear refractive index of the waveguide structure,h is
proportional tod and sgnh= +1 and sgnh=−1 correspond to,
respectively, the cases of self-focusing and self-defocusing
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nonlinearity. We assume that the linear refractive index ap-
pearing ins4d takes the form

f2sx,yd = F2sxd + « aFp
2sx,«1/2yd, s5d

wherea= ±1. F2sxd is the refractive index of a grating struc-
ture in thex longitudinal coordinate, which may be viewed
as a superposition of spatial translates of a basic waveguide
with index profile F0

2sxd, which we assume to be single
moded. Thus,F2sxd,omFm

2 sxd, Fmsxd=F0sx−mDd. Here,
«Fp

2sx,«1/2yd is a weak modulation of refractive indexsslow
in y and fast inxd. One can create a photonic structure of this
type by illuminating a photorefractive crystal with a pair of
interfering one-dimensional plane waves weakly modulated
along they direction with a wavelength larger than the wave-
length along thex direction. We now analyze wave propaga-
tion in a nonlinear optical two-dimensional array and discuss
the physical phenomena that result.

We exploit the weak nonlinearityssmall «d in s4d and s5d
to construct a multiple scale expansion of the envelope,
C. We seekC as a superposition ofx− translates of the
isolated single mode wave function with slowly varying am-
plitudesf6g

C < o
m=−`

+`

AmsZ,Ydcmsxdeimz, s6d

whereZ=«z andY=«1/2y are slow propagation and modula-
tion scales, respectively. Here,csxd is the single waveguide
mode andm its corresponding eigenvalue

d2c

dx2 + sF0
2sxd − m2dc = 0, s7d

and cmsxd=csx−mDd. Substituting the expansions6d into
the Helmholtz equations4d and making use ofs7d, we find

that the corrections tos6d are small provided the projections
of

o
m=−`

+` F2i«mcm
]Am

]Z
+ cm„F2sxd − Fm

2 sxd…Am + «cm
]2Am

]Y2

+ a«Fp
2sx,YdcmAm + «h o

m8,m9=−`

+`

cmcm8cm9
* AmAm8Am9

* G
= 0, s8d

onto all c j are of order«d ,d.1. This yieldsssee alsof6gd

i
]An

]Z
+ CsAn+1 + An−1d + g

]2An

]Y2 + aVnsYdAn + kuAnu2An = 0,

s9d

where «C=1/c0e (F2sxd−Fn±1
2 sxd)cn±1cn

*dx, VnsYd
=1/c0eFp

2sx,Yducnu2dx, k=h /c0e ucnu4dx, and c0

=2me ucnu2dx; g=1/s2md. Note that we are considering the
regime where only nearest neighbor waveguides contribute
to order«. Equations9d governs the slow evolution ofAn in
a weakly modulated optically induced waveguide array. Next
we examine linear propagation and then highlight some
physical nonlinear phenomena that are predicted by the
model s9d. For the ideal one-dimensional waveguide array
fg=k=VnsYd;0g, the propagating field experiences discrete
diffraction due to optical tunneling to adjacent sites and ex-
hibits a typical discrete diffraction pattern with the intensity
mainly concentrated in the outer lobesf7g. However, in the
presence of modulationsgÞ0 andVnÞ0d, and in the quasi-
two-dimensional configurationswhen modulating along they
directiond, the waveguide action prevents the beam from dif-
fracting. It should also be noted that a similar derivation in
the case when two fields are initially present, i.e., nontrivial
E1,E2 leads to a vector system whose first component
satisfies,

i
]An

s1d

]Z
+ CsAn+1

s1d + An−1
s1d d + g

]2An
s1d

]Y2 + aVnsYdAn
s1d

+ kfs1 + gduAn
s1du2 + uAn

s2du2gAn
s1d + gAn

s1d2An
s2d* = 0,

s10d

and the second equation is obtained by cyclically changing
the indicess1→2→1d. In a future publication we will give
the derivation in detail. We now discuss the results obtained
for the models9d which are depicted in Figs. 2–4. First, in
both self-focusing and self-defocusing cases, propagating
beams of any finite power do not collapse or filament. This is
in contrast to the continuum analog, the two-dimensional
cubic-focusing NLS equation, whose solutions with suffi-
cient initial power are well known to develop singularities at
a finite distance into a bulk Kerr propagation mediumf8g.
That the semidiscrete character inhibits collapse,ssee Fig. 4d,
can be understood by an argument based on the conserved
integrals ofs9d

FIG. 1. A typical modulated waveguide array.
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N = o
n
E uAnu2dY

H = Co
n
E uAn+1 − Anu2 + u]YAnu2 − aVnuAnu2 −

k

2
uAnu4dY.

That no singularity can form as the wave form propagates
through increasingZ is a direct consequence of theZ− inde-
pendence ofN and H and the semidiscrete Sobelev-
Gagliardo-Nirenberg inequalitysdSNGd for functions fnsYd
defined on the integer lattice times the real continuum

f9–11g: Let fW=(fnsYd), tfW=(fn+1sYd) and ifWip
p=one ufnupdY.

Then, there is a universal constantC* .0 such that for allfW

ifWi4
4 ø C*i]YfWi2ifW − tfWi2ifWi2

2. s11d

In particular, theZ independence ofN and H and the in-

equality s11d together imply upper bounds oni]YfWsZdi2 and

ufWsZ,Ydu in terms ofH andN swhich are independent ofZ
and Yd. These bounds break down when passing to the
continuum limit. It should be remarked that in the de-
focusing case,gk,0, whenVnsYd;0, there are no localized
nonlinear modes. In this case, a finite energy concentration
diffractively spreads and attenuates in amplitude. However,
the optical trapping potential,VnsYd, introduces the possibil-
ity of stable bright solitonlike states. Indeed, the existence
and importance of suchnonlinear defect modeshas been
studied in the context of a plasma modelf12g and in the
trapping of nonlinear pulses in fiber gratings with localized
defectsf13g. Such nonlinear defect modes are solutions to
Eq. s9d of the formAn=Bne

−inZ and satisfy

nBn + CsBn+1 + Bn−1d + g
]2Bn

]Y2 − VnsYdBn + kuBnu2Bn = 0,

s12d

where n.0 is the propagation constant. In the above, we
took a=−1 andh=−1. The existence and stability of these
states follows from their variational characterization as local
minima of the energy functionalH subject to fixed total
power,N. Here too, the inequalitys11d plays a role in that it
implies the boundedness from below of the constrained en-

ergy. For simplicity, in our numerics we consider a perturbed
index, which is locally parabolicswhich can be induced by a

weak sinusoidal refractive indexd, Fp
2sx,Yd=ãx2+b̃Y2 lead-

ing to the induced potential

VnsYd = an2 + bY2. s13d

To numerically construct the bound states solutions to Eq.
s12d we first define the Fourier transformF and its inverse
F−1

B̂sk,qd = FfBnsYdg = o
n=−`

+` E
−`

+`

BnsYde−isqn+kYddY, s14d

BnsYd = F−1fB̂sk,qdg =
1

s2pd2E
−`

+` E
−p

+p

B̂sk,qde+isqn+kYddkdq.

s15d

The idea of the methodssee also Ref.f14gd is to make the

change of variables:BnsYd=uQnsYd, B̂sk,qd=uQ̂sk,qd,
where uÞ0 is a constant to be determined from a consis-
tency condition. Taking the Fourier transform on Eq.s12d
and using the above change of variables we get

FIG. 3. Localized semidiscrete, two-dimensional soliton solu-
tion to Eq.s12d in the presence of a one-dimensional “discrete trap”
sa=1/2; b=0.1d for the defocusing nonlinearity. The parameters
areC=2, n=4, g=1, andk=−1.

FIG. 4. Localized semidiscrete, two-dimensional soliton solu-
tion to Eq.s12d without a trapfVnsYd;0g for the focusing nonlin-
earity. The parameters areC=2, n=1, g=1, andk= +1.

FIG. 2. Localized semidiscrete, two-dimensional soliton solu-
tion to Eq.s12d in the presence of a semidiscrete two-dimensional
trap sa=b=1/2d for the defocusing nonlinearity. The parameters
areC=2, n=4, g=1, andk=−1.
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Vsk,qdQ̂sk,qd − FfVnsYdQnsYdg = − u2FfkuQnu2Qng,

s16d

whereVsk,qd=n+2C cossqd−gk2. Multiplying Eq. s16d by

Q̂*sk,qd and integrating over thesk,qd space, we find

u2 =

−E Q̂*sk,qdhVsk,qdQ̂sk,qd − FfVnsYdQnsYdgjdkdq

E Q̂*sk,qdFfkuQnu2Qngdkdq

.

s17d

SinceVsk,qd vanishes forn=−2C cossqd+gk2, we add and

subtractsr +2CdQ̂sk,qd in Eq. s16d where r is an arbitrary
positive number. Then the iteration will take the following
form:

Q̂sm+1d =
r + n + 2C

r + 2Cf1 − cossqdg + gk2Q̂smdsk,qd

−
FfVnsYdQn

smdsYdg − susmdd2FfkuQn
smdu2Qn

smdg
r + 2Cf1 − cossqdg + gk2 ,

s18d

whereusmd is defined by the right-hand side ofs17d with Q
set equal toQsmd. Typical examples of self-localized beams
are shown in Figs. 2–4. In Fig. 2 we have a trap in bothn

andY and the mode is localizedequallyin both directions. In
Fig. 3, we depict a trap witha=1/2 andb=0.1, which is
much longer in theY direction than the discreten. We also
note that when the trap is only a function ofn sb=0d, the
corresponding mode is only localized in then direction;
similarly it turns out that when the trap is localized in they
directionse.g.,a=0d then the mode is only localized in theY
direction. Finally we find that when the trap is “turned off”
Vn=0—then we find a new localized mode in the focusing
nonlinear case whengk=1 ssee Fig. 4d.

In conclusion, a model describing wave propagation in
optically modulated waveguide arrays is derived from Max-
well’s equations. In the weakly guided regime, a discrete
nonlinear Schrödinger equation with the addition of a bulk
diffraction term and an external “optical trapping potential”
is derived. In the defocusing regime, where in the absence of
modulation no finite energy solitons are known, the induced
optical trap prevents the beam from defocusing, resulting in
a stable unstaggered localized mode. These results also es-
tablish a connection to the modeling of Bose-Einstein con-
densation where discrete optical lattices with a potential in-
duced by a magnetic trap have been studiedscf. f15gd.
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