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PHYSICAL REVIEW E 71, 055602R) (2005

Wave dynamics in optically modulated waveguide arrays

Mark J. Ablowitz! Keith Julien® Ziad H. Musslimanf: and Michael I. Weinstefh
lDepartment of Applied Mathematics, University of Colorado, Campus Box 526, Boulder, Colorado 80309-0526, USA
Department of Mathematics, University of Central Florida, Orlando, Florida 32816, USA
3Department of Applied Physics and Applied Mathematics, Columbia University, 200 S.W. Mudd - MC4701 New York,
New York 10027, USA
(Received 20 January 2005; published 11 May 2005

A model describing wave propagation in optically modulated waveguide arrays is proposed. In the weakly
guided regime, a two-dimensional semidiscrete nonlinear Schrédinger equation with the addition of a bulk
diffraction term and an external “optical trap” is derived from first principles, i.e., Maxwell equations. When
the nonlinearity is of the defocusing type, a family wfstaggeredocalized modes are numerically con-
structed. It is shown that the equation with an induced potential is well-posed and gives rise to localized
dynamically stable nonlinear modes. The derived model is of the Gross-Pitaevskii type, a nonlinear
Schrédinger equation with a linear optical potential, which also models Bose-Einstein condensates in a mag-
netic trap.

DOI: 10.1103/PhysRevE.71.055602 PACS nuni®)erd2.65.Wi

Wave propagation in nonlinear periodic structures diS'Here,V:ﬁxf+ayf+&ZI2, E=E(X; w,) denotes theomplexen-

plays unique phenomena that are absent in homogeneoyg|ope of the electric fieldP=P(E(x); w,) denotes the po-
media. The interplay between periodicity and nonlinearity, ., tion field, containing both linear and nonlinear re-

can lead to the formaﬂqn of d'|screte or lattice SOI't.OnS’ WhIChsponses; we further assume the nonlinear polarization to be
were predicted theoretically in the context of optical wave-

guide arrayg[1] and then experimentally observed [i2]. .Of tK.err'typg (5] gvhere the second component of the polar-
Until recently, discrete solitons were considered experimen'—za lon IS given by

tally in one-dimensional geomet{®]. However, by making p - g . SIIEN2 + (1 + WIE2 + |E-DE, + W(E2 + E2E):
use of the photorefractive screening nonlinearity one can 2 X 2 (B + (1 + PIEL + B + (B + BB
“write” either one- or higher-dimensional optical waveguide (2

arrays by interfering pairs of plane waveg. Indeed, such wherey is a constantg is proportional to the nonlinear index

localized structures were experimentally observed in two- ) : ; )
dimensional geometries]. change of refraction, angis a function ofx andy; the other

- P - larization components are found by cyclically changing
In this paper we study wave propagation in opucallypo - . o
modulated waveguide arrays, starting from the full time-the indices(1—2—3—1). We consider propagation in tize

harmonic three-dimensional Maxwell's equations. For thedirection through a photonic structufivariant inz) having
case where the periodic modulation along thdirection is ~ nontrivial spatial variations in thex,y) plane due toy. A
much larger than the periodic modulation along sheirec-  schematic of the kind of transverse structure we consider is
tion we derive, using multiscale asymptotic analysis, a semigiven in Fig. 1. This structure has a rapid periodic variation
discrete nonlinear Schrodinger equation with the addition ofn x and a slow modulation iry. In nondimensional terms,
bulk diffraction term and an external “optical trap.” When this corresponds to the assumed fogmy(x,e'?y), wheres

the nonlinearity is of the defocusing tygehere in the ab- is a small dimensionless parameter. The perio iis of
sence of modulation no finite energy solitons are knpwn order 1 whereas a typical distanceyjiris of orders™2 We
unstaggerediocalized modes are numerically constructed.further assume that the nondimensional nonlinear index of
The fundamental properties such as the well-posedness @éfraction is small in size[O(e)]. Then, analysis of

the equation, existence, and the dynamical stability assocjyaxwell’'s equations (1) shows that E5/E,=O(¢) and
ated with a special class of localized wave solutions, 1e.£ /E,=0(s32) and to leading order

stationary wave, or ground state, are discussed. The semidis-=

crete model is derived from the scalar nonlinear Helmholtz B3 = — OyEp. (3)

equation. Below we briefly outline the justification for ne-

glecting vectorial effects under certain physical assumptionsThen the second component of Maxwell's equatidis

A more general and detailed study of scalar and vector semleads to the following nonlinear Helmholtz equation

discrete nonlinear SchrédingélLS) type models will be , 5 )

given elsewhere. VA + f2(x,y)¥ + g7 V[P =0, (4)
We begin by considering the three-dimensional Maxwell

equations governing time-harmonic solutions of frequenc

Wo

where ¥ is the envelope wave function, which is propor-
Yional to the optical fieldE, (sza§+&§+§§). f2(x,y)=1+y

is the linear refractive index of the waveguide structuyés

2= _ ) 2 - _ % proportional tod and sgm=+1 and sgm=-1 correspond to,
VE-VI-B+k(E+P)=0, k c’ @ respectively, the cases of self-focusing and self-defocusing
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A that the corrections t(6) are small provided the projections
of
M IA PA
) ; 2 | Aep o+ Pn(FEO) = F0DAR+ 25
m=—c
+oo
@ — + a'sf'z)(x!Y) bPmten E Ymiboy l/fmfAmAm’Am'/:|
a X m’,m”——oc
=0, )
g § onto all ; are of ordere?, 5> 1. This yields(see alsd6])
A P z
= = TN T s v (VA + kA A= 0
T 4:,5 I&Z (Ans1 n—1)+7(9Y2+a h(Y) n+K| n| n= Y,
E 8 9
where  eC=1/co [ (FH(X) ~Fau(0)dhaathyd%  Vi(Y)
(b) IFNNNNNEN, =1icof Fox Nlynl?dx,  k=nicof|ypf*dx  and ¢,

=2uf||?dx, y=1/(2,). Note that we are considering the
regime where only nearest neighbor waveguides contribute
to ordere. Equation(9) governs the slow evolution @&, in
nonlinearity. We assume that the linear refractive index apg weakly modulated optically induced waveguide array. Next
pearing in(4) takes the form we examine linear propagation and then highlight some
physical nonlinear phenomena that are predicted by the
f2xy) = F2(x) + & aFp(x.e'%), ®)  model (9). For the ideal one-dimensional waveguide array
wherea=+1. F(x) is the refractive index of a grating struc- L¥=%=Va(Y)=0], the propagating field experiences discrete
ture in thex longitudinal coordinate, which may be viewed diffraction due to optical tunneling to adjacent sites and ex-
as a superposition of spatial translates of a basic waveguiddPits @ typical discrete diffraction pattern with the intensity
with index profile F3(x), which we assume to be single mainly concentrated_m the outer lobgs. However, in the_
moded. Thus,72(x) ~SnF2(X), Fn(X)=Fo(x-mD). Here, ~Presence of mo‘lj“'at]'c.of‘”“? a“ﬁ'\’niog "’I‘”‘?' n t?e quasi-
e F5(x,s*%y) is a weak modulation of refractive indéslow two-dimensional configuratiofwhen modulating along thy

iny and fast in). One can create a photonic structure of th.Sdirectior'), the waveguide action prevents the beam from dif-
ny fast Inx). P : ucture ot i fracting. It should also be noted that a similar derivation in
type by_ |IIum|nat|.ng a photorefractlve crystal with a pair of he case when two fields are initially present, i.e., nontrivial
interfering o_ne—d.|men'5|onal plane waves weakly modulate E, leads to a vector system whose first component
along they direction with a wavelength larger than the wave-

FIG. 1. A typical modulated waveguide array.

length along thex direction. We now analyze wave propaga- satisfies,

tion in a nonlinear optical two-dimensional array and discuss ) 2AD

the physical phenomena that result. . i—— +CAY, + A + y o+ aVy(Y)AY
We exploit the weak nonlinearitgsmall £) in (4) and (5) JaZ Y

to construct a multiple scale expansion of the envelope, 1 2 1 12, (2% _

V. We seekV¥ as a superposition aof- translates of the L+ AT+ IAPPIAT + AT AR =0,

isolated single mode wave function with slowly varying am- (10

plitudes[6]

and the second equation is obtained by cyclically changing

- the indices(1—2—1). In a future publication we will give
V= 2 AZY) (e, (6) the derivation in detail. We now discuss the results obtained

e for the model(9) which are depicted in Figs. 2—4. First, in
whereZ=¢z andY=¢?y are slow propagation and modula- both self-focusing and self-defocusing cases, propagating

tion scales, respectively. Herg(x) is the single waveguide beams of any finite power do not collapse or filament. This is
mode andu its corresponding eigenvalue in contrast to the continuum analog, the two-dimensional

cubic-focusing NLS equation, whose solutions with suffi-
d?y 9 N cient initial power are well known to develop singularities at
&“L(Fo(x) ~p)Y=0, @) a finite distance into a bulk Kerr propagation medi(i&j.

That the semidiscrete character inhibits collajgsee Fig. 4,
and ¥m(x) =¢(x—mD). Substituting the expansio(6) into  can be understood by an argument based on the conserved
the Helmholtz equatiori4) and making use of7), we find  integrals of(9)

+o0
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FIG. 2. Localized semidiscrete, two-dimensional soliton solu-
tion to Eqg.(12) in the presence of a semidiscrete two-dimensional
trap (a«=pB=1/2) for the defocusing nonlinearity. The parameters  FIG. 3. Localized semidiscrete, two-dimensional soliton solu-
areC=2, v=4, y=1, andx=-1. tion to Eq.(12) in the presence of a one-dimensional “discrete trap”

(w=1/2; p=0.1) for the defocusing nonlinearity. The parameters
areC=2, v=4, y=1, andk=-1.
N:E J|An|2dY
n ergy. For simplicity, in our numerics we consider a perturbed
index, which is locally paraboliéwhich can be induced by a
H=CD f Aey = A2+ |A 2 — aVi A2 = =|AdY. weak sinusoidal refractive indgx75(x,Y)=ax?+BY? lead-
n 2 ing to the induced potential

That no singularity can form as the wave form propagates
through increasing@ is a direct consequence of tde inde-
pendence of ' and H and the semidiscrete Sobelev- ) )
Gagliardo-Nirenberg inequalitgdSNG for functions f(Y) To nume_rlcally gonstruct the_ bound states so_luupns to Eq.
defined on the integer lattice times the real continuum(l? we first define the Fourier transfori and its inverse

[9-11): Let f=(fo(V)), 7f=(fna(Y)) and [fB=2,/f /Y.
Then, there is a universal constadt> 0 such that for alff

V,(Y) = an®+ BY2. (13

400

+00
N B(k,g) =F[ByV)]= X | B(V)ei@™Vgy, (14)
N llIf = 7] (11 " =) "

In particular, theZ independence ofV' and H and the in-
equality (11) together imply upper bounds cHﬂﬁ(Z)HZ and
[f(Z,Y)| in terms of H and N (which are independent af

and Y). These bounds break down when passing to the
continuum limit. It should be remarked that in the de- (19
focusing caseyx <0, whenV,,(Y) =0, there are no localized . )

nonlinear modes. In this case, a finite energy concentratiohN€ idea of the methotsee also Refi14]) is to make the
diffractively spreads and attenuates in amplitude. Howevergchange of variables:B,(Y)=6Q.(Y), B(k,q)=60Q(k,q),

the optical trapping potential/,(Y), introduces the possibil- where §#0 is a constant to be determined from a consis-
ity of stable bright solitonlike states. Indeed, the existencdency condition. Taking the Fourier transform on Ej2)
and importance of suchonlinear defect modebas been and using the above change of variables we get

studied in the context of a plasma modé&P] and in the

trapping of nonlinear pulses in fiber gratings with localized 3
defects[13]. Such nonlinear defect modes are solutions to

Eq. (9) of the formA,,=B,e"** and satisfy 2

Ifle<cC.

1
(2m)?

Ba(Y) = F{B(k,q)] = f ’ f ﬁé(k,q)e“(q”*mdkdq

#B, 5
VB, + C(Bpi1 + Bpog) + ')’W = Vy(Y)B, + K| Bn| B,=0,

(12) 20

where v>0 is the propagation constant. In the above, we
took a=-1 and»=-1. The existence and stability of these -20 -20 n

states follows from their variational characterization as local

minima of the energy functionagH subject to fixed total FIG. 4. Localized semidiscrete, two-dimensional soliton solu-
power, N. Here too, the inequalityll) plays a role in that it tion to Eq.(12) without a trap[V,(Y)=0] for the focusing nonlin-
implies the boundedness from below of the constrained erearity. The parameters a@=2, v=1, y=1, andx=+1.

055602-3
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~ _ —_ 2 andY and the mode is localizegfjuallyin both directions. In
(k@) Q(k.0) = FIVA(Y)Qu(¥)] = = #FLc|Qnl*Qul. Fig. 3, we depict a trap witlw=1/2 andB=0.1, which is

(16)  much longer in theY direction than the discrete. We also

_ 2 _ note that when the trap is only a function 0{8=0), the
where Q(k,q)=»+2C codq) ~»k’. Multiplying Eq. (16) by corresponding mode is only localized in thme direction;

Q'(k,q) and integrating over thé,q) space, we find similarly it turns out that when the trap is localized in the
direction(e.g.,a=0) then the mode is only localized in the
- f Q' (k, ){Qk, ) Q(k, q) — F[V,(Y)Q,(Y)]}dkdg direction. Finally we find that when the trap is “turned off”
_ V,=0—then we find a new localized mode in the focusing

&

o, ' nonlinear case whepx=1 (see Fig. 4

fQ (k, o) F[ «|Qn|*Qn]dkdq In conclusion, a model describing wave propagation in

optically modulated waveguide arrays is derived from Max-

(17)  well's equations. In the weakly guided regime, a discrete

. : _ > nonlinear Schrédinger equation with the addition of a bulk

Since(}(k,q) vap|shes 'forv——ZC cos(q)+yk. » We ad‘?' and diffraction term and an external “optical trapping potential”
subtract(r+2C)Q(k,q) in Eq. (16) wherer is an arbitrary  js derived. In the defocusing regime, where in the absence of
positive number. Then the iteration will take the following modulation no finite energy solitons are known, the induced

form: optical trap prevents the beam from defocusing, resulting in
i 4420 A a stable unstaggered localized mode. These results also es-
QmMD = 2Q<m)(k,q) tablish a connection to the modeling of Bose-Einstein con-
r+2C[1-cogqg)] + 7k densation where discrete optical lattices with a potential in-
FIVA(Y)QM(Y)] - (6™) 2] x|Q™[2Q(™] duced by a magnetic trap have been studid[15]).

r+2C[1 - cogq)] + yk? ' M.J.A. was partially supported by the Air Force Office of
(19) Scientific Research under Grant No. F-49620-03-1-0250 and
by the NSF under Grant No. DMS-0303756 M.I.W. was par-
where 6™ is defined by the right-hand side ¢f7) with Q tially supported by the NSF under Grant No. DMS-0412305.
set equal taQ'™. Typical examples of self-localized beams K.J. acknowledges partial support from the University of

are shown in Figs. 2-4. In Fig. 2 we have a trap in both Colorado.
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