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Discrete Ginzburg-Landau solitons

Nikolaos K. Efremidis and Demetrios N. Christodoulides
School of Optics/CREOL, University of Central Florida, Orlando, Florida 32816-2700

~Received 2 August 2002; published 12 February 2003!

We demonstrate that discrete solitons are possible in Ginzburg-Landau lattices. As a result of discreteness,
we find that this system exhibits a host of features that have no counterpart whatsoever in either the continuous
limit or in other conservative discrete models.

DOI: 10.1103/PhysRevE.67.026606 PACS number~s!: 42.65.Tg, 05.45.Yv

The complex Ginzburg-Landau~GL! equation is known
to play a ubiquitous role in science. This equation is encoun-
tered in several diverse branches of physics, such as, for
example, in superconductivity and superfluidity, nonequilib-
rium fluid dynamics and chemical systems, nonlinear optics,
Bose-Einstein condensates, and in quantum field theories
@1–5#. In general, the very nature of the GL system is such
that can lead to extraordinary rich behavior ranging from
chaos and pattern formation to self-localized solutions or
solitons. In the latter regime, GL dissipative solitons~or au-
tosolitons! are possible as a result of the interplay between
linear and nonlinear gain, nonlinearity, and complex disper-
sion @6–9#. Over the years, the soliton solutions of the
Ginzburg-Landau equation and their underlying dynamics
have been the subject of intense investigation. Such pulselike
soliton states were first identified with in the context of the
cubic GL model@6,7# and subsequently in the generalized
quintic regime@4,8,9# and, typically, they represent chirped
coherent structures~or one-dimensional defects! that are ob-
tained through heteroclinic trajectories in the phase space of
the stationary GL equation. Several types of solitary wave
solutions of the continuous GL equation have been identified
over the last years. These include flat-top solutions in one
and two dimensions@10,11#, erupting and creeping solitons
@11,12#, and spiraling solitons carrying topological charge
@13,14#.

In addition to the well-studied continuous GL equation,
discrete Ginzburg-Landau~DGL! models have also been
considered in the literature@15–18#. These DGL lattices are
quite often used to describe a number of physical systems
such as Taylor and frustrated vortices in hydrodynamics@15#
and semiconductor laser arrays in optics@16,17#. In these
latter studies, the DGL model has been predominantly used
in connection with spatio-temporal chaos, instabilities, and
turbulence@18#. Nevertheless, in spite of previous research
activity, no coherent structures such as self-localized solu-
tions or solitons have been identified in the DGL system. It is
therefore natural for someone to ask whether such discrete
Ginzburg-Landau or DGL solitons indeed exist. And, if that
is the case, what are their underlying properties and how do
they differ from their continuous counterparts?

In this paper, we demonstrate that discrete solitons~DS!
are possible in Ginzburg-Landau lattices. More specifically,
we show that this system exhibits unique complex dispersion
properties associated with a Brillouin zone. As a result, the
discrete dispersion~diffraction! behavior of a GL lattice dif-
fers substantially from that encountered in conservative ar-

rays@19,20#. In general, two new types of DGL solitons can
exist under the same conditions. These solutions are located
either at the base or at the edge of the Brillouin zone and
bifurcate at different values of the linear gain. As a result of
discreteness, we find that this system exhibits features that
have no counterpart whatsoever in either the continuous GL
limit or in other conservative discrete models@19,20# @as in
discrete nonlinear Schro¨dinger ~DNLS! chains#. These in-
clude, for example, on-site and intrasite bright DGL solitons
that can both be stable as well as new bifurcation types that
cannot be identified in the continuous case.

In general, the cubic-quintic DGL equation is given by

i u̇n2 i eun1a~un111un21!1puunu2un1quunu4un50,
~1!

wherep5pr1 ipi , q5qr1 iqi , a5a r1 ia i , e is a real pa-
rameter, andu̇n5dun /dz. Physically, the discretization in
Eq. ~1! occurs by applying the tight binding approximation
~or coupled mode theory! @17,21#. The original, periodic in
space, continuous system is expanded in local modes, whose
amplitudes are described by the corresponding discrete
model. In Eq.~1! a r accounts for the energy tunneling be-
tween adjacent elements of the lattice, while its imaginary
part stands for gain~losses! due to coupling. The real parts of
p andq represent the strength of the cubic and quintic non-
linearity of the system, whilee, pi , qi are the linear and
nonlinear gain~loss! coefficients.

Within the context of nonlinear optics, the DGL equation
arises in the description of semiconductor laser arrays@17#,
where the quintic term can account for the gain and nonlin-
earity saturation of the lasing medium. The DGL equation
can also describe the dynamics of an open Bose-Einstein
condensate. In this case, the lattice potential is created by the
interference of two optical standing waves@22# and, thus,
solitons of the discrete nonlinear Schro¨dinger type are
known to exist@23#. The dissipation of the Bose-Einstein
condensate naturally occurs in an open condensate while
gain can result from the interaction between the condensed
and the uncondensed atoms@24,25#. Notice, than in all of
these cases, it is a common practice to write the original
saturable nonlinearity of the system in terms of a cubic-
quintic expansion that, in turn, conveys the fundamental
properties of the original model@17,25#.

We begin our analysis by considering the linear dispersion
properties of the DGL equation. To do so, we writeun
}exp(ikz2iun), wherek5kr1 ik i is the complex propaga-
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tion wave number andu is the wave momentum inside the
lattice. The real and imaginary parts of Eq.~1! are then found
to satisfy

kr52a rcosu, ki52e12a icosu. ~2!

In Fig. 1,kr andki are depicted as a function ofu. Equa-
tion ~2! describes the dispersive properties of the lattice
within the Brillouin zone as defined in the regionuuu<p.
When uuu,p/2 anda r.0, the curvature of the dispersion
relation @Eq. ~2!# implies that the effective diffraction of the
array is normal. On the other hand, whenp/2,uuu,p ~and
a r.0) the effective diffraction of the array becomes anoma-
lous and of course these regimes are reversed fora r,0.

The imaginary part of the propagation wave number@Eq.
~2!#, is directly related with the growth rate of the perturba-
tions of the zero solution. In particular, any perturbation fre-
quencyu that satisfies the conditionki,0, will grow expo-
nentially with a growth rategd(u)5e22a icosu. We
emphasize that this growth rate is a periodic function ofu
with period 2p, i.e., gd(u12pn)5gd(u), where n is an
integer. From all the possible frequenciesu within the Bril-
louin zone, only those that satisfy the inequalitye
.2a icosu will eventually develop instabilities. Therefore,
the zero solution is absolutely stable fore,22ua i u. On the
other hand, whene.2ua i u every frequency is amplified, and
the maximum growth rate~that occurs either at the base or at
the edge of the Brillouin zone! is given bye12ua i u. In the
regime between the two aforementioned cases, i.e., when
22ua i u,e,2ua i u, only a subset of the frequencies~those
satisfying e.2a icosu) will be amplified while the rest of
them will decay. Note that the instability behavior of the zero
solution of the DGL is fundamentally different from that
arising in the continuous GL limit where it is described by
gc(u)5e81a iu

2 @26#. Apparently, in the continuous limit,
the stability properties are strongly affected by the sign of the
‘‘diffusion’’ term, a i , i.e., for a i.0 the zero solution will
always be unstable, regardless of the value ofe. Thus, in
order to stabilize the background of a self-localized state, it
is essential to havea i,0. On the other hand, the DGL
model has the interesting property that the background can
be stabilized for both signs ofa i by appropriately choosing
the linear gaine of the system. We would like to mention
that, in the linear regime, Eq.~1! can be solved analytically.
When only one lattice element is initially excited~say n
50 at z50), the field profile atz is given by

un~z!5u0Jn~2az!eipn/2eez, ~3!

whereJn(x) ~with complex argument! is a Bessel function of
the first kind and of integer ordern. The evolution of more
involved initial field patterns can be readily obtained by
simple superposition of this impulse response. In Figs. 2~a!–
2~d! the impulse response of the lattice atz53 is depicted
for a51, 11 i , i, 2 i , respectively. In Fig. 2~c! the out-of-
phase mode is preferentially amplified, while in Fig. 2~d! the
mode is in phase at the output.

We will now investigate the structure as well as some of
the basic properties of DS states existing in the GL lattice. To
do so, we look for stationary localized modesun
5exp(ilz)vn of Eq. ~1! and the resulting algebraic system is
solved numerically using the Newton iteration method. Note
that Eq.~1! is subject to certain symmetries that can be used
to reduce the parameter space of the system in study. We
notice that, by employing the phase transformationun
→unexp(ipn) along witha→2a, Eq.~1! remains invariant.
This, in turn, allows the one-to-one mappinga↔2a. Here,
without any loss of generality, we assume thata r.0. A
second symmetry also exists, i.e.,z→2z, and un
→exp(ipn)un , p→2p, q→2q, which is used by applying
the additional constraintpr.0 to the system. In doing so, we
consider immobile GL discrete solitons that reside either at
the base (u50), or at the edge (u5p) of the Brillouin zone
@27#. For u50, the DS bifurcates from the zero solution at
e52a i , while in the caseu5p the DS bifurcates ate5
22a i . It is important to note that the existence of these two
bifurcation points is a result of the periodicity introduced by
the lattice model and is in clear contradistinction to the con-
tinuous GL equation, where only one bifurcation occurs
when the linear gain is zero. The connection between the DS
states and the solitons of the continuous GL equation is es-
tablished for broad enough solutions. In this regime one can
apply a Taylor series expansion and, as a result, Eq.~1! can
be approximated by the continuous GL equation~see Ref.
@26#!. Then, in the linear case, the periodic diffraction rela-
tion of the discrete model can be approximated by a para-
bolic in the continuous case. Close to the bifurcation points

FIG. 1. ~a! The dispersion curve of the array whena r51 and
~b! ki ~associated with the instability growth rate! as a function ofu
for a i51 ande522,0,2.

FIG. 2. Field profile of a linear impulse response of the lattice at
z53. In ~a! e50, while in ~b!–~d! e521.
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the solutions become very broad and, therefore, can be ap-
proximated by the soliton states of the continuous GL equa-
tion @6,9,26#. For example, for the continuous cubic GL sys-
tem ~see Ref. @26#! the maximum intensity of a broad
discrete soliton is related toe8 in a linear fashion

u0
25

23m~a r
21a i

2!e8

a@2ma r1a i~12m2!#
, ~4!

wherem5(3b6A9b218a2)/2a, a5pra i2pia r , b5pra r
2pia i . On the other hand, when the solution is highly con-
fined inside the lattice (uu61u/uu0u!1), one can accurately
estimate its maximum amplitude to be

u0
25SA e

pi
2Api

e

2pra ra i1pi~a i
22a r

2!

e~pr
21pi

2!
D 2

, ~5!

while similar expressions are obtained for the soliton propa-
gation numberl as well as foru61 for both the cubic and
the quintic models. Again, for asymptotically large values of
the maximum intensity,uu0u2 is linearly related toe. In gen-
eral, these highly confined modes are accurately described by

u5u0exp~2sunu1 ilz!, ~6!

where the parameters of the solution satisfyl1 i e
52a coshs and sinhs5u0

2(p1qu0
2)/(2a). In addition, one can

obtain valuable information from the DS tails since locally
un}exp(ilz2sunu) is satified. In this case, the relations~con-
straints! l52@a rcosh(sr)cos(si)2aisinh(sr)sin(si)# and e
52@a rsinh(sr)sin(si)1aicosh(sr)cos(si)# hold true.

In Fig. 3, typical codimension one bifurcation diagrams of
the cubic DGL model are depicted. Figures 3~a! and 3~c!
show bifurcations for DS located at the base of the Brillouin
zone whereas the curves of Fig. 3~b! and ~d! correspond to
the edge of the zone. As in the continuous GL case, these
bifurcations are supercritical whenpi.0 and subcritical
whenpi,0. In all bifurcation figures, solid and dash-dotted
curves represent stable and unstable branches, respectively.

Close to the bifurcation point, the DS are quite broad,
and, as a result, the numerically found curves shown in Fig.
3 ~with eitheru50 or u5p) are well approximated by Eq.
~4!. Also, when the maximum intensity becomes relatively
high, the solutions residing in the normal diffraction regime
become highly localized inside the lattice. Fig. 4~a! depicts
such a highly confined DS~at the base of the Brillouin zone!,
which is in excellent agreement with the analytical results of
Eq. ~6!. On the other hand, in the anomalous discrete diffrac-
tion regime~at the edge of the Brillouin zone!, a rather pe-
culiar feature arises; the amplitude profile becomes broader
and flatter with stronger chirp. We attribute this property to
the rather involved energy flow within the GL DS under
anomalous diffraction conditions. As an example, Fig. 4~b!
shows the field of a high-intensity DS in the anomalous dif-
fraction regime that extends over seven lattice points. Similar
types of solutions~flat top! can also be found in the continu-
ous Ginzburg-Landau model@10,11#. On the other hand,
these discrete flat-top solutions exist when the maximum in-
tensity of the solutions is above a certain threshold, and their
stability properties may be relevant to the modulational in-
stability of the corresponding continuous-wave solution.
However, the possible bifurcation of these solutions is an
issue that merits further investigation.

FIG. 3. Typical codimension one bifurcation diagrams of the
cubic DGL model. In all bifurcation figures, solid and dash-dotted
curves represent stable and unstable branches, respectively.

FIG. 4. ~a! A highly confined DS solution in the normal diffrac-
tion regime and~b! the corresponding DS that resides at the edge of
the Brillouin zone, when a50.120.2i , p512 i0.8, q50.1
10.1i , u052.1.

FIG. 5. Bifurcation diagrams of the quintic DGL equation~a! at
the base and~b! at the edge of the Brillouin zone.

FIG. 6. A cusplike DS solution fora50.422i , p50.120.4i ,
q50.43i ande520.4.
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In general, the stability properties of the cubic DGL soli-
tons can be identified from the corresponding bifurcation
diagrams. A subcritical DS will be unstable, whereas an un-
stable background can destabilize a supercritical DS. The
properties of the bifurcation diagrams can be modified when
the quintic term in Eq.~1! is nonzero. In fact, a saddle-node
bifurcation emerges if the conditionpiqi,0 is satisfied. It is
then of interest to determine the parameter space where ab-
solutely stable DS exist. To realize this, it is necessary that
the zero background on which these discrete modes reside is
stable for any perturbation frequency, i.e.,e,22ua i u. By
taking this into account and knowing from standard bifurca-
tion theorems that stable and unstable manifolds alternate,
one can then conclude that necessary conditions for DS sta-
bility are pi,0 andqi.0. In Fig. 5 such bifurcation dia-
grams of the quintic model satisfying the necessary stability
conditions are depicted. The curves shown in Figs. 5~a! and
5~b! correspond to the base and the edge of the Brillouin
zone, respectively. The stability of these solutions was then
investigated by performing numerical simulations. The DS
shown in Fig. 4~a! lies on the upper branch of the bifurcation
diagram and was also verified numerically to be stable. On
the other hand, the solution shown in Fig. 4~b! happens to be
unstable.

We would also like to mention that in certain range of
parameters the DS solutions of the DGL equation can exhibit
interesting behavior; the tails of the DS become very broad
~occupying many lattice sites!, whereas the central part of it
is confined and displays a cusplike feature as shown in Fig.
6. Note that no such cusp soliton structures are possible in
either the continuous GL regime or in DNLS lattices. To
understand this behavior one may use the relationl1 i e
52a coshs, from where the rate of decay,sr , of the soliton
tails in Eq. ~6! can be determined. In the case of Fig. 6,sr
50.2 which indeed justifies the slow field decay at the tails.

More complicated bifurcation diagrams that have no ana-
log in the continuous GL case also appear in the discrete
model. For example, in Fig. 7~normal diffraction regime! we

can observe a subcritical bifurcation that is followed from
three successive saddle-node bifurcations. As a result, four
different branches of nonzero solutions exist allowing up to
two stable DS for the same value ofe.

Except from the DS that are centered on a single lattice
point ~on site!, two different types of DS that are centered
between two lattice points~intrasite! exist. These are charac-
terized by the phase difference between the two central lat-
tice points that can be either 0 orp when the solutions are
highly confined. In the DNLS regime, thep-out-of-phase
intrasite DS are known to be stable@28# for relatively strong
nonlinearities, whereas, the in-phase intrasite DS are always
unstable because of oscillatory instabilities. Yet, in the DGL
lattice system, we have identified regimes where both types
of DS solutions are stable. In Fig. 8 such a stable intrasite
in-phase state is depicted. For these values of the parameters
both the in-phase and the out-of-phase DS are stable. Their
intensity profiles are almost identical, and their main differ-
ence is in the relative phase between the high-intensity lattice
sites, which is 0 orp. The stability of these DS was checked
dynamically against symmetry breaking perturbations. A
more detailed stability analysis of these DS will be presented
elsewhere.

In conclusion, we have demonstrated that discrete solitons
are possible in Ginzburg-Landau lattices. As a result of dis-
creteness, this system exhibits several features that have no
counterpart whatsoever in either the continuous limit or in
other conservative discrete models. Before closing, we
would like to mention that there are still several issues that
may merit further investigation. These include, for example,
the existence of other DGL coherent structures, such as,
fronts, sources, as well as sinks. Finally, we mention that it
may also be of interest to investigate the effect of higher-
order discrete diffraction effects that can appear, for ex-
ample, in a discretized version of the complex Swift-
Hohenberg equation. Physically, this is possible by using the
zigzag configuration suggested in Ref.@29#.

This work was supported by an ARO MURI and by the
Pittsburgh Supercomputer Center.
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