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Lattice solitons in Bose-Einstein condensates

Nikolaos K. Efremidis and Demetrios N. Christodoulides
Center for Research and Education in Optics and Lasers/School of Optics, University of Central Florida, Orlando, Florida 32816, USA

~Received 17 January 2003; published 20 June 2003!

We systematically study the properties of lattice solitons in Bose-Einstein condensates with either attractive
or repulsive atom interactions. This is done, by exactly solving the mean-field Gross-Pitaevskii equation in the
presence of a periodic potential. We find new families of lattice soliton solutions that are characterized by the
position of the energy eigenvalue within the associated band structure. These include lattice solitons in con-
densates with either attractive or repulsive atom interactions that exist in finite or semi-infinite gaps, as well as
nonlinear modes that exhibit atomic population cutoffs.

DOI: 10.1103/PhysRevA.67.063608 PACS number~s!: 03.75.Lm, 05.45.Yv

I. INTRODUCTION

In recent experiments Bose-Einstein condensates~BEC!
have been successfully loaded in optical lattices@1,2# and,
ever since, this field has attracted considerable attention.
Subsequently, lattice effects, such as squeezed states@3#,
Bloch oscillations@4#, Josephson-junction arrays@5#, super-
fluid and dissipative dynamics@6#, dispersion@7,8#, Talbot
effects@9#, and Landau-Zener tunneling@10# have been ex-
perimentally demonstrated. In addition to that, several theo-
retical works have investigated the linear properties of such
lattices@11,12#.

In these experiments, carried out at ultralow temperatures,
the wave function of the condensed atoms obeys a Gross-
Pitaevskii equation which is mathematically equivalent to the
so-called nonlinear Schro¨dinger equation. The optical lattice
involved is created by the interference of laser beams, and
the properties of the atoms are characterized by the depth and
period of this optically induced potential. When the periodic
potential wells are deep enough, the atom density tends to
increase at the potential minima, thus creating, essentially, an
array of optical traps. Because of proximity, atoms can tun-
nel between adjacent traps and, as a result, they become
quantum mechanically coupled. In principle, if the BEC at-
oms are loaded on one site, the condensate is expected to
disperse in time to all the other sites.

In the regime where the atomic density is high, the con-
densate behaves nonlinearly, giving rise to a host of different
phenomena@13–19#. An interesting manifestation of the
nonlinearity is the existence of self-localized BEC states or
lattice solitons@13,14#. These entities are possible when the
nonlinearity compensates for atom dispersion caused by in-
tersite tunneling. These lattice solitons are characterized by
the position of their eigenvalue within theE2k band struc-
ture. In the case where only the first band is considered and
the potentials happen to be deep enough, these self-localized
states are better known as discrete solitons simply because
they can be described by the tight-binding approximation.
On the other hand, when the eigenenergy is located in the
gap between two successive bands, these self-localized states
are known as gap solitons@20,21# and, for relatively shallow
potentials, are described by coupled-mode equations@22#.
Here, we will use the termlattice soliton to generally de-
scribe all the families of self-localized solutions that exist

inside a periodic potential~or lattice!. Experimentally, dis-
crete solitons have been first demonstrated in self-focusing
arrays of nonlinear waveguides@23# etched onto an
Al xGa12xAs substrate in one dimension@24#. Recently, using
optical induction techniques@25#, both self-focusing and
self-defocusing discrete solitons have been observed in one-
dimension@26,27# and, subsequently, for the first time, in
two-dimensions@28#.

In general, the validity of the approximate descriptions
used to describe lattice solitons depends heavily on the na-
ture of the underlying problem. For example, the tight-
binding approximation is only accurate when the wave func-
tion is highly confined into the potential minima, i.e., when
the potentials are deep and well separated. In addition, it
cannot account for a second band, thus, limiting its accuracy
close to the edge of the first Brillouin zone. Similarly, the
coupled-mode theory used to describe gap solitons is valid
when the energies are close to the gap and for shallow po-
tentials. Strictly speaking, an accurate solution can only be
obtained by exactly solving the full nonlinear Schro¨dinger
equation with a periodic potential. In Ref.@25#, such lattice
solitons that exist at the base and edge of the first Brillouin
zone were found for both one- and two-dimensional crystals
by numerically solving a saturable nonlinear Schro¨dinger
equation. In the same work, it was also shown that the dis-
crete model fails to predict the transport properties of lattice
~gap! solitons at the edge of the first Brillouin zone. In an
interesting work, Mandeliket al. @29# demonstrated the ex-
istence of nonlinear Floquet-Bloch modes in nonlinear wave-
guide arrays. Finally, Louiset al. @30# predicted the existence
of families of spatially localized matter-wave gap solitons
and analyzed their stability.

Here, we use a general approach to identify lattice soli-
tons in BEC with both attractive and repulsive atomic inter-
actions. Our analysis is based on the solution of the mean-
field nonlinear Schro¨dinger equation with a periodic
potential. Such a model was first used in Ref.@25# to identify
lattice soliton solutions in saturable media. Two types of lat-
tice solitons were found in that paper: self-focusing discrete
solitons, residing on the semi-infinite band gap as well as
self-defocusing lattice solitons with eigenvalues in the first
band gap. In Ref.@30# the families of these lattice solitons
~i.e., gap modes for repulsive condensates and lattice soliton
on the semi-infinite band gap for attractive condensates!
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were obtained and characterized according to their position
inside the band structure.

In this paper we systematically study lattice solitons in
Bose-Einstein condensates. New families of lattice solitons
are found and classified according to their position inside the
band structure. More specifically, when the eigenvalue is lo-
cated in the semi-infinite gap, we show that, except from the
so-called discrete solitons, other classes of nonlinear modes
that exhibit atomic population cutoffs and cannot be pre-
dicted by the tight-binding approximation, can exist. When
the eigenvalue lies inside a band gap, gap lattice solitons are
found for repulsive as well as for attractive condensates. It is
shown that close to the first band the gap modes become
relatively broad and their wave function can be approxi-
mated by the Floquet-Bloch mode of the corresponding
band. On the other hand, when the eigenvalue is close to the
second band, these modes become highly confined inside the
lattice ~exhibiting a cusplike behavior!. Finally, we compare
the results found here with those obtained from approximate
procedures based on the tight-binding approximation or the
coupled-mode theory.

II. BOSE-EINSTEIN CONDENSATES INSIDE A LATTICE

The evolution of the mean-field wave functionC of a
Bose-Einstein condensate in an optical trap obeys the Gross-
Pitaevskii equation@31,32#

i\
]C

]t
52

\2

2m
¹2C1V~r !C1guCu2C, ~1!

where \ is Planck’s constant,m is the atomic mass,g
54pas\

2/m is the nonlinear coefficient that takes into ac-
count the mean field produced by the other bosons, andas is
the s-wave scattering length. In Eq.~1!,

V~r !5E0 sin2S px

L D1
1

2
m@vx

2x21v'
2 ~y21z2!# ~2!

describes both the trap potential and that arising from the
periodic, optically induced, interference pattern. In Eq.~2!,
vx andv' are the trap frequencies,L is the lattice period,m
is the mass of the atoms, andE0 is the potential depth~usu-
ally measured with respect to the recoil energy!. The trap is
elongated along thex direction~i.e., v'@vx). If we express
the wave function asC(x,y,z;t)5U(y,z)c(x,t), and de-
compose the potential asV(x,y,z)5Vx(x)1V'(y,z) then,
due to the high confinement in they-z plane, U approxi-
mately satisfies

2
\2

2m
¹'

2 U1
1

2
mv'

2 r2U5E'U. ~3!

Equation~3! can be solved analytically and its first~zero-
node! eigenfunction is given by

U5Amv'

p\
expF2

mv'

2\
~y21z2!G , ~4!

with an eigenvalueE'5\v' . By integrating in they-z
plane, applying the transformationc→c exp(2iv't), and
assuming that the frequency of the trap (vx) is much bigger
than the lattice frequency 2p/L, one can obtain

i\
]c

]t
52

\2

2m
cxx1E0 sin2~px/L !c12\v'asucu2c.

~5!

It is more convenient to use dimensionless quantities by
normalizing T5t/T0 , X5x/(L/2), c5u/L1

1/2, and V0

5E0 /Er , and chooseT05mL2/4\, L15v'uasumL2/2\,
andEr54\2/mL2. After these transformations,

i
]u

]T
52

1

2

]2u

]X2
1V0 sin2S px

2 Du1suuu2u, ~6!

where s5sgn(as). In recent BEC experiments in lattices,
87Rb atoms were used to produce the condensate. For87Rb
atoms,m51.4310225 kg, while thes-scattering lengthas
55.77 nm is positive, resulting in repulsive interactions.
Typical values of the lattice spacing can vary between 0.4
and 1.6mm, whereas the lattice depth~normalized toEr)
can beV0&22. Here, we assume a lattice spacing of 1mm
and a normalized potential depthV0510, unless stated oth-
erwise. Attractive nonlinearities are also possible, for
example, for 7Li atoms (m50.115310225 kg, as
521.457 nm). We would like to mention that Eq.~6! pos-
sesses an integral of motion,

N5E
2`

`

uuu2dX, ~7!

which, physically, accounts for the conservation of the num-
ber of atoms in the condensate.

III. BAND STRUCTURE

TheE2k band structure of the lattice interacting with the
condensate plays an important role, since it determines basic
properties of the matter waves under linear conditions. To
find the band structure we assume that the linear part of Eq.
~6! admits solutions of the formu5v exp(2iET), thus ob-
taining the following eigenvalue problem:

Ev52
1

2

]2v

]X2
1V0 sin2S pX

2 D v. ~8!

Over the years several methods have been developed to solve
such eigenvalue problems. Here, we use the plane-wave
method that provides a generic algorithm for periodic poten-
tials @33# ~see the Appendix!. A typical band structure of Eq.
~8! for V0510 andL51 mm is shown in Fig. 1. For values
of E inside the energy bands, Eq.~8! possesses periodic so-
lutions, better know as Floquet-Bloch~FB! modes. Accord-
ing to Bloch’s theorem, the Floquet-Bloch modes, i.e., the
eigenfunctions of Eq.~8!, are characterized by their momen-
tum k inside the lattice. More specifically, a FB mode with
momentumk can be expressed asvk(X)5Vk(X)exp(ikX),
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where Vk(X) is a periodic function with the period of the
lattice. Notice that at the base and the edge of each band
(k50,p/2) the eigenfunctionsvk(X) are always real. In Fig.
2 such modes located at the base and the edge of the Bril-
louin zone are depicted for the first four bands. At the base of
the Brillouin zone, and since exp(ikX)5exp@ik(X12)#, vk
will have the period of the lattice. At the edge of the zone,
exp(ikX)52exp@ik(X12)#, and thus,vk will have period 4
~i.e., twice the period of the lattice!. Particular nonlinear FB
modes have been recently demonstrated in both one and two
dimensions@15–17#. According to their momentum, these
modes can be modulationally stable or unstable.

Inside the band gaps, exponentially decaying modes also
exist. These modes can be obtained by using, for example,
the plane-wave method, where now the lattice momentum is
allowed to be complex. Approximate expressions for these
modes and their rate of decay inside the first band gap can be
found by keeping only the first-order resonant terms in the
plane-wave expansion~see the Appendix for details! as long
as the potentials are not very deep. Along these lines, one
finds that the energy at the edge of the first band isp2/8
1V0/4, whereas at the edge of the second isp2/813V0/4,
and thus the energy band gap isV0/2. Furthermore, the decay
rate of these modes inside the band gap is given by

ki
2522E2

p2

4
1V01pA2E2V01~V0 /p!2. ~9!

As we will see later, Eq.~9! also describes the rate of decay
of the soliton tails at eigenvalueE. This should have been
anticipated since the low-amplitude tails can be accurately
described in the linear regime. From Eq.~9! it is easy to see
that whenE is close to one of the bands,ki becomes very
small and the soliton tails decay very slowly at6`. The
fastest decay is achieved close to the center of the band gap
~when V0 is small!, and more specifically forE5p2/8
1V0/22V0

2/8p2. The decaying modes inside the band gap
are then given by

v5Fcos
f

2
cos

pX

2
1sin

f

2
sin

pX

2 Ge2kix, ~10!

where f5arctan(b/a) and a5p2/81V0/22ki
2/22E, b

5kip/2. Similar expressions can also be obtained for eigen-
values below the first band~semi-infinite gap!. At the edges
of the first band gap, i.e., inside the first and the second band
when k5p/2, the Floquet-Bloch mode are approximately
given by cos(pX/2) and sin(pX/2), respectively. Equation
~10! is a product of an exponentially decaying function with
a periodic function inX. The periodic part is a linear super-
position of the Floquet-Bloch modes at the edges of the two
bands. The closer the eigenvalue is to one band, the more
this periodic function will look like the corresponding
Floquet-Bloch mode~see the Appendix!.

IV. LATTICE SOLITONS

Immobile lattice solitons can only be found within the
gaps as nonlinear defect modes. To find such self-localized
states, we assume that Eq.~6! admits solitons of the form
u(x)exp(2iET), and thus,

FIG. 1. A typical band structure forV0510 and L51 mm.
Curves I–V correspond to the first five bands, respectively. For this
example, the band gap between bands III and IV, and IV and V is
very small.

FIG. 2. The linear Floquet-Bloch modes forV0510 and L
51 mm. The left~right! column corresponds to the base~edge! of
the Brillouin zone. The four rows~from top to bottom! correspond
to the first four bands, respectively.
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Eu52
1

2

]2u

]X2
1V0 sin2S px

2 Du1su3. ~11!

Equation ~11! is then solved numerically. These self-
localized states are characterized by the position of their
eigenenergies inside the gaps. Physically, the nonlinearity
provides the potential necessary to ‘‘connect’’ the two
exponentially decaying modes to a homoclinic orbit. We
found that lattice solitons exist for both attractive and repul-
sive atom interactions.

A. Repulsive interactions

When the nonlinearity is repulsive, lattice solitons do not
exist below the first band shown in Fig. 1. This is because the
effective dispersion at the base of the first Brillouin zone is
positive or normal. On the other hand, in the same regime
~repulsive! lattice solitons can exist inside the band gaps of
Eq. ~8!. We have isolated the first two families of these lat-
tice solitons. In Fig. 3, the normalized atom numberN of
these solutions is depicted as a function of the eigenvalue.
WhenE approaches the left edgeEL, j of the j th band gap~of
Fig. 3!, N goes to zero, whereas close to the right edgeER, j
of the band gaps, the solutions become highly nonlinear.
Qualitatively, this can be explained by looking at the effec-
tive dispersion inside the band structure. WhenE approaches
EL, j , the dispersion is anomalous and, thus, broad~low-
amplitude! lattice solitons can be supported even for small
values of the nonlinearity. On the other hand, since the dis-
persion on the right side of each band gap is normal, a large
amount of nonlinearity is required to form a lattice soliton.
Considering that close toER, j , the tails of the solution will
decay slowly, the envelope of the lattice soliton will exhibit a
cusplikebehavior.

In Fig. 4 typical lattice solitons in repulsive condensates
are depicted. Close to the edge of the first Brillouin zone
@Fig. 4~a!#, the maximum atomic densityuuu2, as well asN,
are very small. As we can see, the form of the soliton can be
approximated by the corresponding Floquet-Bloch mode@see
Fig. 2~b!# multiplied by an envelope function. This envelope

is broad~occupying many lattice sites! and decay slowly at
6` according to Eq.~9!. Going deeper inside the band gap,
the solitons become more and more localized inside the lat-
tice, and their tails can be expressed as a superposition of the
Floquet-Bloch modes at the edges of the first band gap. As it
can be seen in Fig. 4~b!, when the eigenvalue gets close to
the edge of the second Brillouin zone, the form of the soliton
tails can be described by the corresponding Floquet-Bloch
mode. This becomes obvious by comparing the tails of the
soliton solution of Fig. 4~b! with Fig. 2~d!. Furthermore,
since from Eq.~9! ki→0 when E→ER, j , the soliton tails
decay very slowly. The behavior of the oscillations of the
lattice soliton at its peak atom density is very much different
from that at its tails, and cannot be described by the corre-
sponding Floquet-Bloch mode. Physically, this happens be-
cause close to the edge of the second band the effective
diffraction is mainly affected by the second band~and much
less by the first band!. As a result, a high degree of nonlin-
earity is required to support a lattice soliton~that will now
have a cusplike envelope!. Using similar arguments, one can
describe the lattice solitons in the second band gap@Figs.
4~c! and 4~d!# ~between the edge of the second and the third
Brillouin zones!. Similar solutions can be found inside the
nth band gap, although the width of each band gap decreases
with increasingn.

B. Attractive interactions

In the case of condensates with attractive interactions, we
have also found the first three families of lattice solitons. In
Fig. 5 the number of atoms vs the eigenvalue is depicted
whenV0510 andL51 mm. The first family of lattice soli-
tons exists in the semi-infinite gap that can be found below
the first band. Such solitons can exist as a result of the nor-
mal effective dispersion at the base of the first band. In this
case, the band gap is semi-infinite, and thus, the form of the
soliton tails can always be approximated by the FB mode at
the base of the first zone multiplied by an exponentially de-
caying exp(2kix) amplitude, whereki increases by going

FIG. 3. Number of atoms,N, as a function of the eigenvalueE,
for repulsive condensates withV0510 andL51 mm. Regions I,
III, and V correspond to the semiinfinite gap and the first two band
gaps, whereas, the shaded regions II and IV depict the first two
bands, respectively. FIG. 4. Lattice solitons in repulsive condensates. The first and

the second row depict solitons in the first and second band gaps,
respectively. The left~right! column shows typical soliton solutions
with energies close toEL, j (ER, j ) for j 51,2.
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deeper into the gap. Thus, the solutions become narrower as
the eigenvalueE decreases. In Fig. 6 such a lattice soliton is
depicted. In this case~i.e., V0510 andL51 mm), there is
clearly a local maximum in the atom density at each poten-
tial minimum.

Lattice solitons in attractive condensates can also exist
inside the band gaps. In Fig. 7 such self-localized solutions
are depicted. The properties of these solutions can be quali-
tatively described by using similar arguments. In contrast to
the repulsive case, nowN becomes small on the right side of
each band gap of Fig. 5, whereas, the lattice solitons become
highly nonlinear on the left side of each gap. Close to the
edge of the second Brillouin zone the effective lattice disper-
sion is normal; the solutions become broad occupying many
lattice sites, and can be approximated by the FB mode at the
edge of the second Brillouin zone shown in Fig. 2~d!. As the
eigenvalue decreases inside the first band gap, the Floquet-
Bloch modes become mixed and the lattice soliton becomes
more localized inside the lattice. Finally, close to the edge of
the first band, the effective diffraction becomes anomalous
and a highly nonlinear, cusplike mode is required to support
a lattice soliton@Fig. 7~a!#. Figures 7~c! and 7~d! show typi-
cal lattice solitons in the second band gap with eigenvalues
close to the base of the second and the third bands, respec-
tively.

C. Nonlinear modes with a cutoff

The families of lattice solitons previously described have
a common property. In one limit~close to one band! the
number of atoms~N! approaches zero, whereas in the other
limit ~close to the second band or for very small values ofE
when the gap is semi-infinite!, these solitons become highly
nonlinear. Except these families, we were able to isolate ad-
ditional families that represent new types of nonlinear modes
with atomic population cutoffs, i.e., the number of atoms~N!
never goes to zero, but, instead, exhibits a threshold value
N0. These modes can either exist in the semi-infinite gap or
inside finite band gaps. The existence of this type of lattice
solitons can be qualitatively understood as follows. The non-
linearity is responsible for an effective potentialuuu2 that
modifies the lattice potential that the atoms experience. After
a certain threshold additional bound modes form, which, in
turn, allow additional higher order lattice solitons in the ar-
ray. In Fig. 8 theN-E diagram of the three first nonlinear odd
modes with eigenvalues inside the semi-infinite band gap is

FIG. 5. Number of atoms,N, as a function of the eigenvalueE,
for attractive atom interactions. Regions I, III, and V correspond to
the semi-infinite gap and the first two band gaps, whereas the
shaded regions II and IV depict the first two bands, respectively.

FIG. 6. A typical form of a lattice soliton~solid curve! in attrac-
tive condensates with eigenvalue in the gap below the first band for
v0510 and L51 mm. The dotted curve represents the periodic
lattice potentialV.

FIG. 7. Lattice solitons~solid curves! for attractive atom inter-
actions whenV0510 andL51 mm. The first~second! row depicts
lattice solitons in the first~second! band, whereas the left~right!
column corresponds to the left~right! edge of each band gap in Fig.
5. The dotted curves represent the periodic lattice potentialV.

FIG. 8. Number of atoms,N, as a function of the eigenvalueE
for the first three even lattice solitons with a cutoff. The vertical
shaded area shows the width of the first Brillouin zone. Branches
I–III correspond to the first three modes, respectively.
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shown. Typical odd soliton profiles are depicted in Fig. 9.
Note that in these solutions the eigenfunction goes to zero
and has two peaks at the center site—a behavior that cannot
be accounted within the tight-binding approximation. Even
nonlinear modes with a cutoff are also shown in Fig. 10. We
would like to mention that this type of nonlinear lattice soli-
tons with a cutoff cannot be predicted by the tight-binding
approximation because the original expansion is not com-
plete, accounting only for solutions localized in the lattice
minima.

D. Stability

We have performed a series of numerical simulations to
test the stability of these solutions. A random perturbation
was added to the exact solution atT50 to make sure that all
the linear perturbation eigenmodes are exited. Using a split-
step Fourier method, we numerically solve Eq.~6! and moni-
tor the time evolution of the BEC lattice soliton. We have
found that the lattice soliton that resides below the first band
is always stable~i.e., the atom densityuuu2 does not change
with T). The solitons that reside in the band gaps can be
either stable or unstable depending on their eigenenergies. In
general, we found that the lattice solitons are stable in a
region close to the band, which allows broad lattice soliton
solutions. Going deeper into the band gap, the solutions be-
come narrower, and after a certain threshold they become
unstable. In Fig. 11 typical evolution of lattice solitons with
eigenenergies in the second band gap are depicted for87Rb
atoms. The eigenenergy of the lattice soliton of Fig. 11~a! is
close to the edge of the second band,E59.55, and propa-
gates without any change for over 3 sec. On the other hand,
the soliton of Fig. 11~b! with eigenvalueE510 turns out to
be is unstable.

V. COMPARISON WITH THE RESULTS
OF THE TIGHT-BINDING APPROXIMATION

AND COUPLED-MODE THEORY

To complete our discussion, it may be useful to discuss
our results within the context of approximate theories. Sev-

eral approximate procedures have been developed to ap-
proximate the solutions of a nonlinear Schro¨dinger equation
with a periodic potential. Two of these models are exten-
sively used in the literature: the tight-binding approximation
and the coupled-mode theory@34#. We will illustrate how
these models are obtained and discuss about the regimes of
their validity. In both cases the starting point is the nonlinear
Schrödinger equation with a periodic potential,

i
]u

]T
52

1

2

]2u

]X2
1F~x!u1suuu2u, ~12!

where, for the description of optically induced lattices in
Bose-Einstein condensates,F(x)5V0 sin2(pX/2D), andD is
the period of the lattice.

A. Tight-binding approximation

The tight-binding approximation@34# is extensively used
to describe solitons in periodic lattices. It provides a simpli-
fied model that can provide accurate results when the origi-
nal assumptions are valid. Here, we compare this model with
the mean-field equation and present necessary conditions for
the regimes of its validity.

We first assume that the Floquet-Bloch modesv are
highly confined into the lattice. This basic assumption in the
tight-binding approximation implies that only the first band
of the complete band structure is considered and allows the
decomposition of the wave functionu into a sum of local
modes,fn . Each of these local modes corresponds to the
lowest order linear eigenfunction of each potential in isola-
tion, which is located at the minimum of thenth potential
well. Thus,f satisfies the linear eigenvalue problem,

FIG. 9. Typical field profiles of the first two odd lattice solitons
with a cutoff in attractive condensates.

FIG. 10. Typical field profiles of even lattice solitons with a
cutoff in attractive condensates.

FIG. 11. Evolution~a! of a stable lattice soliton withE59.55
and ~b! of an unstable lattice soliton withE510, for V0510, L
51 mm in 87Rb condensates. Both eigenenergies reside in the sec-
ond band gap of the dispesion curve.
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Ef52
1

2

]2f

]X2
1F0~x!f, ~13!

where F0(X) is given by F0(X)5V0 sin2(pX/2D) when
uXu,1, F0(X)5V0 for uXu.1, andE is the corresponding
eigenvalue. An alternative base can be that of a Wannier
function @35#. Usingf as the building element of the expan-
sion, one can write

u~x,t !5(
n

cn~T!fn~X!exp~2 iET!, ~14!

wherefn(X)5f(X2nD). We substitute Eq.~14! into Eq.
~12!, multiply with fm , and integrate overx. The resulting
equation reads

i(
n

^fmufn& ċn1E (
nÞm

^fmufn&cn

52
1

2 (
nÞm

^fmufnXX&cn1s(
n

^fmufn
3&ucnu2cn

1^fmuDFm~X!fm&cm1 (
nÞm

^fmuF~X!fn&cn ,

~15!

where we made use of the Dirac notation,^fmufn&
5*fm* fndX, DFm5F(X)2F0(X2Dm), and fmX

5]fm /]X. Each eigenfunction of Eq.~13!, which belongs
in the discrete spectrum, decays exponentially outside the
potential with a rate of decay equal toki

252(V02E). Thus,
the coupling between second neighbors will be much smaller
compared to the first-order coupling. Notice that the tight-
binding approximation is valid whenki

2@1, and so

^fmuf (m61)XX&'ki
2^fmufm61&@^fmufm61&. ~16!

Then, normalizingfn such that^fnufn&51, Eq. ~15! be-
comes

i ċn5Vcn2k~cn111cn21!1gucnu2cn , ~17!

which is the usual form of the tight-binding approximation.
Equation ~17! is in agreement with the results obtained
in Ref. @13#. In Eq. ~17!, V5(1/2)^fmufmXX&
1^fmuDFm(X)fm& is a shift in the eigenvalue
due to the perturbation in the original potential,k
5(1/2)^fmuf (m61)XX&1^fmuF(X)fm61& is the coupling
coefficient between adjacent wells, andg5s^fmufm

3 & is the
effective nonlinearity. Equation~17! is known as the discrete
nonlinear Schro¨dinger equation~DNLS!. It is instructive to
discuss the regime where the approximation applies.

In the tight-binding model it is assumed that the atom
density is highly confined into each potential minimum that,
in turn, implies that the potentials have to be deep enough. It
is in this regime that the Floquet-Bloch modes of the first
band can be described by the discrete model. On the other
hand, if the potentials are deep, they might also have more

modes~discrete eigenfunctions! that are not accounted~only
the zero-node mode is considered!.

Nonlinear corrections are not considered in the form of
the eigenmodes of Eq.~13!. These corrections become sig-
nificant in the case of a high-density condensate.

Higher order bands are not taken into account. As a result,
in the tight-binding description, the in-phase lattice solitons
in attractive condensates and thep out-of-phase lattice soli-
tons in repulsive condensates share exactly the same proper-
ties in the DNLS lattice @using the transformationcn
→(21)ncn along withT→2T, thep out-of-phase solution
transforms into the in-phase mode#, such that, for example,
they both exist in a semi-infinite band gap. In the focusing
regime~when the condensate is attractive!, lattice solitons do
exist in a semi-infinite band gap. However, in the defocusing
regime ~i.e., when the condensate is repulsive! lattice soli-
tons can be found in the finite band gap between the first and
the second band, and thus, the eigenvalue is located in a
bounded domain. This has several implications. As the eigen-
value increases inside the band gap, the Floquet-Bloch
modes become mixed, and thus Eq.~14! fails to describe the
form of the solution. This is why the rate of decay of the
soliton tails, E52k cosh(ki), does not globally agree with
Eq. ~9!.

In expansion~14!, fn is always in phase~with zero phase
difference alongx). On the other hand, in a periodic lattice
the phase varies continuously alongx. As a consequence, it
was shown in Ref.@25# that the lattice solitons exhibit trans-
port anomalies that depend on their initial momentum within
the Brillouin zone as compared with the tight-binding model.

Finally, different types of solutions@such as those shown
in Figs. 9 and 10#, do not have equivalence in the tight-
binding description, due to the constraints of the original
expansion~14!.

B. Coupled-mode theory

Wave propagation close to a gap resonance of a periodi-
cally modulated lattice has been studied extensively using
coupled-mode theory. According to the coupled-mode de-
scription, the wave functionu is expanded in Fourier modes
as

u5(
n

un exp@2 iET1 iknX#, ~18!

where k5p/2D. Assuming that the potential is relatively
shallow, only then561 terms of Eq.~18! are important,
and thus,u can be expanded into a forward and a backward
wave,

u5uf exp@2 i ~ET2kX!#1ub exp@2 i ~ET1kX!#.
~19!

Substituting Eq.~19! into Eq. ~12!, keeping the terms that
resonate at the edge of first Brillouin zone~first band gap!,
and assuming that the material dispersion is small~broad
solutions!, results into the coupled-mode equations@22#,
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i S ]uf

]T
1c

]uf

]X D1kub1s~ uuf u212uubu2!uf50, ~20!

i S ]ub

]T
2c

]ub

]X D1kuf1s~ uubu212uuf u2!ub50, ~21!

where E5V0/21(p/2D)2, c5p/D, and k5V0/4. We
would like to mention that, due to that the sinusoidal form of
the potential of the optically induced lattice and the expan-
sion into one forward and one backward wave, coupled-
mode theory can only be applied in the first band gap. The
dispersion relation of Eqs.~20! and ~21! can be obtained by
assuming plane-wave solutions of the formuf ,b}exp(ilX
2ivT), and is given byl25(v22k2)/c2. Notice that gap
solitons that reside outside the edge of the Brillouin zone can
also be considered by Eqs.~20! and ~21! by assuming an
additional phase tilt between the forward and the backward
wave.

Clearly, the original expansion~19! in the coupled-mode
equation is accurate as long as higher order terms excluded
from Eq. ~18! are not very important. This is true when the
potentials are relatively shallow, and thus, Eq.~19! repre-
sents the Floquet-Bloch modes inside the band gap~see the
Appendix!. On the other hand, when the potential is deep,
higher order terms of expansion~18! become important and
can no longer be ignored. Higher order corrections to the
coupled-mode equation have also been studied in the litera-
ture @36#. However, the resulting equations become rather
cumbersome even by considering first-order corrections.

Finally, the linear dispersion relation of Eqs.~20! and~21!
is hyperbolic and centered at the edge of the first Brillouin
zone, whereas, the dispersion curve of Eq.~12! ~outside the
band gaps! is periodic ink. As a result, the coupled-mode
equations can be applied in the regime where this hyperbolic
approximation is accurate.

VI. CONCLUSIONS

We have systematically studied the properties of lattice
solitons in Bose-Einstein condensates with either attractive
or repulsive atom interactions. This was done by exactly
solving the mean-field Gross-Pitaevskii equation in the pres-
ence of a periodic potential. We have found other families of
lattice soliton solutions, which are characterized by the posi-
tion of the energy eigenvalue within the associated band
structure. These include lattice solitons in attractive and re-
pulsive condensates that exist in finite or semi-infinite gaps
as well as nonlinear modes that exhibit atomic population
cutoffs.

APPENDIX: PLANE-WAVE METHODS

The eigenvalue problem of Eq.~8! can be written as

Ev52
1

2

]2v

]X2
1F~X!v, ~A1!

whereF(x) is a periodic potential with periodD. To solve
Eq. ~A1!, we make use of the periodicity of the potential and
expand it as

F~X!5(
n

UGn
exp~ iGnX!, ~A2!

whereGn52pn/D are the reciprocal lattice vectors. Assum-
ing that the lattice is finite, and using periodic boundary con-
ditions, we can expand the solutionF(X) as

v5(
n

Ckn
exp~ iknX!, ~A3!

wherekn52pn/a, and a is the length of the lattice. After
these substitutions, Eq.~A1! reduces to

S k2

2
2EDCk1(

G
Ck2GUG50. ~A4!

Solving Eq.~A4! the band structure and the corresponding
Floquet-Bloch modes can be computed. The accuracy of the
method depends on the number of plane waves considered in
the expansion, as well as on the form and the depth of the
potential. In Bose-Einstein condensates, the potential~cre-
ated by the interference of laser beams, is given byF(X)
5V0 sin2(pX/D). In this case, only three coefficients of Eq.
~A2! will be nonzero, namely,U05V0/2 and UG1

5U2G1

52V0/4. Thus, when the potential is relatively shallow, the
defect modes between the first and the second bands can be
accurately described by keeping only two terms of the ex-
pansion,

Fk2

2
1U02EGCk1UG1

Ck2G1
50, ~A5!

F ~k2G1!2

2
1U02EGCk2G1

1U0Ck50. ~A6!

Inside the first band gap, the lattice momentum will, in gen-
eral, be complex,k5p/D1 ik i . The resulting compatibility
condition of Eqs.~A5! and ~A6! reads

F1

2 S p

D D 2

1
V0

2
2

ki
2

2
2EG2

1S kip

D D 2

5S V0

4 D 2

. ~A7!

By solving Eq.~A7!, one can find the rate of the decay of the
soliton tails,

ki
2522E2

p2

D2
1V01

2p

D
A2E2V01~DV0/2p!2.

~A8!

The value ofE inside the band gap where the fastest de-
cay of the defect mode is achieved can be found by
setting ]ki /]E50 and is given by E5p2/2D21V0/2
2D2V0

2/32p2. Furthermore, the form of a defect eigenmode
inside the band gap is
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v5Fcos
f

2
cos

pX

D
1sin

f

2
sin

pX

D Ge2kiX, ~A9!

where

f5arctan~b/a! ~A10!

and a5p2/2D21V0/22ki
2/22E, b5kip/D. The Floquet-

Bloch modes at the edge of the first and the beginning of the
second Brillouin zone~denoted byv7) can be found by set-
ting E→p2/2D21V0/4 or E→p2/2D213V0/4, ki

2→0, and
taking into account thatf is a continuous function. In
these two limits,f→0,p, and the Floquet-Bloch mode are
given by

v25cos~pX/D !, v15sin~pX/D !. ~A11!

Equation~A9! can then be written as a linear superposition
of the Floquet-Bloch modev7(X),

v5Fv2~X!cos
f

2
1v1~X!sin

f

2 Ge2kiX. ~A12!

As E increases inside the band gap,f also increases from 0
to p, and the form of the corresponding defect mode is di-
rectly affected by the position of the eigenvalue inside the
band gap. More specifically, when the eigenvalue is close to
the first~second! band, the periodic modulations will have a
cosinusoidal~sinusoidal! form, whereas, in between they will
be mixed with coefficients that are determined by the posi-
tion of the eigenvalue inside the band gap.
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