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High-energy two-electron capture with emission of a single photon

E. G. Drukarev,1,2 A. I. Mikhailov,1,2 I. A. Mikhailov,1,3 and W. Scheid2

1Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300, Russia
2Justus-Liebig-Universität Giessen, Giessen 35392, Germany
3University of Central Florida, Orlando, Florida 32816, USA

�Received 5 July 2007; published 6 December 2007�

We investigate the two-electron capture with emission of a single photon to the ground state in the Coulomb
field of a heavy nucleus in its collision with a light atom. Describing electron-electron interactions in the bound
state perturbatively, we obtained an analytical formula for the high-energy limit of the cross section. In
combination with previous results obtained in the same approach we calculated the cross section in a broad
interval of energies of the collision. We show that the amplitude of the process at high energy depends on the
behavior of the bound state wave function near the triple coalescence point. We analyze the properties of the
approximate wave functions which are necessary for the description of the high-energy limit.

DOI: 10.1103/PhysRevA.76.062701 PACS number�s�: 34.80.Lx, 32.80.Fb, 31.25.�v

I. INTRODUCTION

Since the first attempts to detect the double electron cap-
ture process followed by the emission of a single photon �1�,
the process became the subject of further experimental
�2�,�3� and theoretical �4–7� investigations as well. In this
case a heavy nucleus is scattered on a light atom, and the two
electrons are captured from the atom to the ground state of
the heavy nucleus. The process is followed by emission of
the photons. The channel in which the two electrons are cap-
tured independently and thus two photons are emitted is the
most probable one. However, the correlated electrons can be
captured also with the emission of a single photon. Such a
process is a challenge for the theoretical views on the charge-
transfer reactions and on correlation effects in atomic sys-
tems.

The calculations require certain model assumptions. In the
pioneering work �4�, the process was considered in the rest
frame of the heavy nucleus. Interactions of the electrons in-
side the target were neglected. The authors considered the
reaction as the capture of two electrons from the continuum
state of the Coulomb field of the heavy nucleus to its ground
state, followed by the emission of a single photon. The elec-
trons in the initial state were assumed to move with the same
velocities, being equal to that of the light atom in the rest
system of the heavy nucleus. Another calculation in the
framework of the same model was carried out in �5�. In �6�
the authors went beyond this picture, taking into account the
internal motion of the electrons inside the light target. The
papers �4–6� gave controversial results. This stimulates fur-
ther investigations.

In the present paper we consider the high-energy nonrel-
ativistic limit �HENL� of the process. Although this limit was
among the subjects of earlier theoretical studies �4,6,7�, there
was no consistent analysis until now. However, in the high-
energy limit one can carry out analytical estimations and
calculations, and can study the interplay of various mecha-
nisms of the process. One can also find the necessary prop-
erties of approximate bound state wave functions which are
needed for an adequate description of the essential physics of
the HENL. These properties are thus needed for tracing the
energy dependence of the process.

We consider the case of a heavy projectile nucleus with
the charge Z�1 and a light target atom with the nuclear
charge Z1�Z. We consider the process in the rest system of
the projectile nucleus. The HENL means that the velocity of
the target v in the projectile system is large compared to the
velocities of the electron in the ground state of the heavy
nucleus, i.e., v /c��Z, with �=1 /137 being the fine struc-
ture constant. To simplify the calculations we consider the
nonrelativistic energies of colliding systems, thus setting
v�c. We assume also ��Z�2�1. This enables us to describe
the bound electrons by nonrelativistic functions.

We employ the system of units with �=c=1. In these
units the condition v /c��Z can be written as

� � 1, �1�

with �=� / p, while p=mv, and

� = m�Z . �2�

We shall carry out calculations in the lowest order of the
parameter �. The velocities of the relative motion of the tar-
get electrons are of the order of their velocities with respect
to the target nucleus v1��Z1, leading thus to effects of the
order v1 /v�m�Z1 / p=�Z1 /Z�1. They can be neglected in
the leading terms. Thus, the initial state electrons can be
considered, following �4�, as free electrons in the continuum
spectrum of the heavy nucleus, having the same asymptotic
momentum p=mv and energy �= p2 /2m. The process is
characterized usually by the kinetic energy “per nucleon” EN
�MeV/u�. The corresponding electron kinetic energy is �
=ENm /mN, with mN standing for the nucleon mass.

In our approach the photon energy of the two-electron
capture is fixed by the condition

� = 2� + I − IT, �3�

with I and IT being the two-electron binding energies in the
heavy ion and in the light target. Condition �1� means that
the electron energies � j� I. In this process both electrons
should lose their large momenta p��, transferring the large
momentum
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q = 2p − k �4�

�q= �q���� to the heavy nucleus with k standing for the
photon momentum. Note that k= �k�=� in units employed in
the paper. For the nonrelativistic energies ��m considered
in the present paper k�p and we shall use q�2p for esti-
mations. Two mechanisms of the process correspond to two
different ways for transferring large momentum q to the
nucleus. It can be transferred by continuum or bound elec-
trons with each act of transfer leading to a small factor in the
amplitude. In the latter case the electron should approach the
nucleus at distances of the order 1 /q��−1, which are much
smaller than the size of the Bohr orbits. This leads to the
quenching of the contribution. On the other hand, each inter-
action between the continuum electron and the nucleus pro-
vides a small factor � �8�. However, the bound electron par-
ticipates in the process at distances of the order �−1 from the
nucleus, where its density reaches the largest values. As a
result, the two mechanisms provide terms of the same order
of magnitude with the partial cancellation of the contribu-
tions.

First we make some estimations to feel the size of the
amplitude, which can be represented as

F = ���r1,r2��ei�k·r1�	1 + ei�k·r2�	2�
�p1,p2;r1,r2��

= 2���r1,r2��ei�k·r1�	�
�p1,p2;r1,r2�� . �5�

Here r1 ,r2 are the distances between nucleus and the elec-
trons, � and 
 stand for the true �unknown� two-electron
wave functions of the ground state and of the continuum
state, with asymptotic momenta p1=p2 �we will not write the
arguments p1,2 of the function 
 in most of the cases�. Also
in Eq. �5� 	 j, j=1,2 is the operator of interaction between
photon and electron. We employ the velocity form 	 j =
−i�e ·� j� /m, with e standing for the photon polarization vec-
tor. The vertex factor �4���1/2 / �2��1/2 is included in the
cross section. Further we label the electron, which emits the
photon by j=1, and set 	1=	. In capture and ionization pro-
cesses, involving one electron, the photon momentum k is
related to the electron momentum p and thus the amplitudes
can be expanded in terms of k / p��� /m�1/2. As we shall see
below, in our process k is related to the averaged binding
momentum � in some of the contributions to the amplitude.
We shall keep a nonzero value of k for these cases using thus
Eq. �5� for the amplitude. In other cases we set k=0 assum-
ing thus

F = 2���r1,r2��	�
�p1,p2;r1,r2�� . �6�

We describe the initial and final electronic states by per-
turbative wave functions 
p and �p obtained by an iteration
of the Lippmann-Schwinger equation �LSE� �9� which can
be written as

F = F�0� + G�0�V1F , �7�

for F=� and F=
, with F�0� and G�0� being the undisturbed
wave function and the Green function, respectively. In the
two-electron ion the total interaction is V=VeN�1�+VeN�2�
+Vee�1,2�, with VeN and Vee standing for interactions be-
tween the electrons and the nucleus and between the elec-

trons correspondingly. Here and further �j� denotes the vari-
ables corresponding to the jth electron. We employ Eq. �7�
with F�0� and G�0� being the functions for the systems of two
noninteracting electrons in the Coulomb field of the nucleus,
while V1=Vee. Since Vee�VeN /Z, only the first iteration of
Eq. �7� will be needed for the calculations in the lowest order
of a 1 /Z expansion. Thus, we use the perturbative wave
functions


p = 
C + GC�2��Vee
C �8�

for the initial state, and

�p = �C + GC�2�1s�Vee�C �9�

for the final state. In Eqs. �8� and �9� GC is the Green
function �the reduced one in Eq. �9�� of two noninteracting
electrons in the Coulomb field of the nucleus, with 2�
and 2�1s standing for the energies of the two-electron
states; �C�r1 ,r2�=�C�r1��C�r2�, and 
C�r1 ,r2�
=
C�p ,r1�
C�p ,r2�, where �C and 
C are the single particle
wave functions for the ground and for continuum states in
the Coulomb field, respectively. In Eq. �9�, �1s�0 is the
single-particle energy of the 1s electron in the Coulomb field
of the heavy nucleus. We shall also present the amplitudes in
terms of the single-particle Green functions.

We shall carry out an expansion of the initial state wave
functions and the Green functions in powers of the interac-
tion VeN �8�. The lowest terms of this expansions are sup-
pressed, since they require large momentum to be transferred
to the nucleus by the bound electron. Thus, the next-to-
leading orders in the expansion of the initial state wave func-
tions and the Green functions should be included. These ex-
pansions manifest themselves as power series in �. Each
order of such series also depends on the ratio �2 / p2=�2,
requiring an additional expansion to obtain the � series for
the amplitude.

To estimate the factor connected with the transfer of large
momenta to the nucleus one can describe the wave functions
by the first terms on the right-hand sides of Eqs. �8� and �9�.
Replacing the Coulomb functions 
C by plane waves


0�p,r� = ei�p·r�, �10�

we find the contribution caused by transfer of a large mo-
mentum 2p to the nucleus by the bound electrons. The con-
tribution to the amplitude is F0=2��C�	�
0�p����C �
0�p��
with each matrix element describing the transfer of a large
momentum p to the nucleus by the bound electron. Using
�C�r�=NC exp�−�r� with NC=�3/2 /�1/2, we obtain

��C�
0�p�� =
8��NC

�p2 + �2�2 . �11�

�Note that this is just the single-particle wave function in
momentum space.� Thus, transferring the large momentum
p�� to the nucleus results in a factor �NC / p4. Similar es-
timation of the matrix element ��C�	�
0� provides the contri-

bution of the order F0�
�e·p�

m

�2NC
2

p8 to the amplitude. Hence
such contributions depend on Z as Z5.

However, this overestimates the magnitude of the ampli-
tude by a large factor of the order of Z since, as we shall see
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below, such contributions cancel. Thus, one should include
the interaction between the electrons which is Z times
smaller than their interactions with the nucleus. One of the
electrons transfers a large momentum q=2p to the nucleus
absorbing also momentum p of another electron. This leads
to the estimation

F �
�4�

mp7 �12�

with

� = m� . �13�

Thus, the amplitude depends on Z as Z4.
This estimation is obtained by assuming that both elec-

trons approach the nucleus at small distances of the order
1 / p. However, there is an alternative mechanism in which
one of the continuum electrons transfers the large momentum
q=2p being at the distance 1 /2p from the nucleus, while the
electrons exchange the momentum p, being at distances of
the order 1 /� from the nucleus, where the electronic density
is large. In this case the process can be viewed as consisting
of two steps. One often meets such a situation in 2→3 and
3→2 reactions �in which there are two particles in the initial
state and three particles in the final state, and vice versa� in
high-energy atomic physics �10�. In the first step the con-
tinuum electron scatters on the nucleus, changing its momen-
tum from p to −p. In the second step the system of two
electrons with momenta p and −p is captured by the nucleus
with the emission of a single photon. The latter process does
not require large momentum to be transferred to the nucleus.
This corresponds to the much studied quasifree mechanism
in the inverse process of the double photoionization �11�.
The amplitude corresponding to this mechanism is thus pre-
sented in terms of those of electron-nucleus scattering and of
the double photoionization. The former drops as p−2, being
thus enhanced compared to that describing transfer of a large
momentum by the bound electron. However, the amplitude
of double photoionization is still proportional to p−4. It con-
tains additional small factors since it is forbidden in the di-
pole approximation �11�. The two-step mechanism leads to
the dependence of the amplitude on the additional parameter
� /� �the ratio of the photon momentum to that of the bound
electron�. Finally, the estimation provided by Eq. �12� is true
for ���. For ��� the amplitude obtains an additional
factor of the order � /� unless the angle between the direc-
tions of the photon and electron momenta is close to � /2.
Thus, for this case we find F��5� / p9.

We also carried out the calculation in which initial state
interactions are treated perturbatively, while the final state is
assumed to be described by the exact wave function �solution
of the Schrödinger equation� �. We show that the amplitude
contains the contributions which depend on the properties of
the bound state in terms of the value of the wave function at
the origin ��r1=r2=0�. There are also contributions, which
depend on the behavior of the wave function near the triple
coalescence point r1=r2=0. Such contributions cannot be,
however expressed in terms of a Taylor expansion for the
wave function, since the wave function is singular at the

triple coalescence point, with its r expansion containing
logarithmic terms �12,13�. As far as we know, dynamical
processes with amplitudes being sensitive to the triple coa-
lescence point have not been considered until now.

Proceeding in terms of the exact wave function � we find
several cancellations between the constituents of the ampli-
tude. These cancellations are based on the local properties of
the solutions of Schrödinger equation, known as Kato cusp
conditions �14�. The most important one is the cancellation
of the terms proportional to Z5, which is based on the first
Kato condition. Such cancellations take place for the exact
wave function, but do not necessary occur for the approxi-
mate wave function employed in the calculations. In the
present paper we discuss also necessary properties of the
approximate wave functions which are needed for the proper
description of the process.

We obtained equations for the angular distribution and the
total cross section in the HENL �Born approximation� in the
energy interval I���m. The domination of photon emis-
sion in the direction orthogonal to that of the electron mo-
menta increases for ���. At these energies the total cross
section obtains an additional small factor at ���. We also
analyzed the structure of corrections to the HENL and ob-
tained a simple equation, which presents the cross section for
all ��1.

We calculate the amplitude by LSE technique in Sec. II.
We analyze the amplitude with the exact function � in Sec.
III. In Sec. IV we discuss the necessary properties of ap-
proximate functions. In Sec. V we calculate the cross section.
We summarize in Sec. VI.

II. CALCULATION OF THE AMPLITUDE

A. Expression for the amplitude, mechanisms of the process

Since we consider the nonrelativistic energies of the in-
coming electrons the space and spin variables can be sepa-
rated. The final state of the electrons has a total spin S=0,
and thus the electron wave functions are space symmetric.
Using Eqs. �8� and �9� we present the amplitude as

F = 2�F�0� + Fa + Fb�, F�0� = ��C�	�
C� ,

Fa = ��CVeeGC�	�k��
C�, Fb = ��C�	�k��GCVee
C� ,

�14�

with the energies of the propagators shown in Eqs. �8� and
�9�. Here we define 	�k�=	ei�k·r1�. We find immediately

F�0� = ��C�	�
C���C�
C� = 0, �15�

vanishing due to the orthogonality of the states �C and 
C.
We mentioned this cancellation in the Introduction.

The amplitudes Fa and Fb are illustrated by the Feynman
diagrams of Fig. 1.

Now, following �15� we present Eq. �14� in terms of the
single-particle Coulomb Green functions. Presenting

GC�E� = �E − H�1,2��−1, �16�

with H�1,2�=H�1�+H�2� standing for the Hamiltonian of
two noninteracting electrons in the Coulomb field of the
nucleus, we can write
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GC�E�
C�2� = �E − �2 − H�1��−1
C�2� , �17�

for the amplitude Fa, and

�C�2�GC�E� = �C�2��E − �2 − H�1��−1, �18�

for the amplitude Fb, with �2 being the eigenvalues of the
single-particle wave equations with the Hamiltonian H�2�,
i.e., �2=� for Eq. �17� and �2=�1s for Eq. �18�. Since the first
factor on the right-hand side �RHS� of Eq. �17� and the sec-
ond factor on the RHS of Eq. �18� are just the single-particle
Coulomb Green functions

gC�1;�� = �� − H�1��−1, �19�

we can write

Fa = ��C�1,2�VeegC�1;�a��	�k��
C�1,2�� ,

Fb = ��C�1,2��	�k��gC�1;�b�Vee
C�1,2�� , �20�

with �a=2�1s−�, �b=2�−�1s.
Since the energies of the incoming electrons are large, we

can expand the wave functions as well as the Green functions
in powers of the eN interaction. As it was explained in the
Introduction, the two lowest terms should be included to ob-
tain the lowest term for the expansion of the amplitude in
powers of �,

gC�1;�� = g�1;�� + g�1;��VeN�1�g�1,�� ,


C�i� = 
0�i� + g�i;��VeN�i�
0�i� , �21�

with i=1,2, 
0�i�
0�pi ,ri�=ei�pi·ri�, while g stands for the
Green function of free motion. In this approximation we can
set also

�a = − �, �b = 2� . �22�

Now we can present

F�0� = F0
�0� + F1

�0�, Fa = Fa1 + Fa2 + Fa3,

Fb = Fb1 + Fb2 + Fb3, �23�

with

F0
�0� = ��C�	�
0�, Fa1 = ��CVeeg�1;�a��	�
0� ,

Fa2 = ��CVeeg�1;�a�VeN�1�g�1;�a��	�
0� ,

Fa3 = ��CVeeg�1;�a��	�k��g�1;��VeN�1�
0�

+ ��CVeeg�1;�a��	�k��g�2;��VeN�2�
0� �24�

and

F1
�0� = ��C�	�
1�, Fb1 = ��C�	�g�1;�b�Vee
0� ,

Fb2 = ��C�	�g�1;�b�VeN�1�g�1;�b�Vee
0� ,

Fb3 = ��C�	�k��g�1;�b�Veeg�1;��VeN�1�
0�

+ ��C�	�k��g�1;�b�Veeg�2;��VeN�2�
0� , �25�

with 
0=
0�1�
0�2� , 
1=g�2;��VeN�2�
0. As we shall see
further, the finite values of k will be important only for the
amplitudes Fa3 and Fb3. The contributions to the amplitude
determined by Eqs. �24� and �25� are illustrated by the Feyn-
man diagrams of Figs. 2 and 3 correspondingly.

In the lowest order of expansion in powers of � the can-
cellation expressed by Eq. �15� manifests itself as the can-
cellation of the amplitudes F0 and F1. Note that in the former
one the second electron is described by the plane wave 
0,
while in the latter one it is described by the lowest order
Coulomb correction 
1. Hence,

F0
�0� + F1

�0� = ��C�	�
0����C�
0� + ��C�
1�� .

Note that the corresponding correction to the wave function
of the first electron contributes only beyond the HENL due to
the factor 	. Since VeN�ZVee each of these two terms is Z

p

p

p

p

1s

1s

1s

1s

a b

FIG. 1. Feynman diagrams corresponding to the amplitudes Fa

�a� and Fb �b� determined by Eq. �14�. The solid lines stand for the
electrons, wavy line denotes the photon. The dashed line is for the
Coulomb interaction between the electrons. The dark circles show
that the electrons are moving in the Coulomb field of the nucleus.

p

p

p

p

p

p

p

p

1s

1s

1s

1s

1s

1s

1s

1s

a1 a2

a3

FIG. 2. Feynman diagrams corresponding to the amplitude Fa

determined by Eq. �24�. The labels of the figures correspond to the
lower indices of the amplitudes. The dashed line with the cross
denotes the Coulomb field of the nucleus. Other notations are the
same as in Fig. 1.

p

p

p

p

p

p

p

p

1s

1s

1s

1s

1s

1s

1s

1s

b1 b2

b3

FIG. 3. Feynman diagrams corresponding to the amplitude Fb,
determined by Eq. �25�. Notations are the same as in Fig. 2.
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times larger than the other contributions to the amplitude.
Employing the expression for the lowest order Coulomb cor-
rection to the plane wave


1�p,r� = −	 d3f

�2��3

8��

p2 − f2

ei�f·r�

�p − f�2 , �26�

we find that ��C �
0�+ ��C �
1�=0 in the lowest order of p−1

expansion, and thus

F0
�0� + F1

�0� = 0. �27�

Note that the matrix element ��C �
0� �Eq. �11�� describes
the transfer of the large momentum p to the nucleus by the
bound electron, with the distance between them being of the
order 1 / p. On the other hand, the matrix element ��C �
1� is
determined by r��−1, f ��. Thus the bound electron re-
mains at distances of the order of the size of the ion, while
the continuum electron approaches the nucleus, transferring
the large momentum �p. Interplay of these mechanisms
manifests itself in other contributions to the amplitude.

It is instructive to present the amplitude also in another
way

F = 2�F�1� + F�2��, F�1� = Fa1 + Fb1 + Fa2 + Fb2,

F�2� = Fa3 + Fb3. �28�

The amplitude F�1� describes the mechanism of the process
in which both electrons approach the nucleus on small dis-
tances of the order 1 / p. Large momentum is transferred to
the nucleus by one of the electrons and also large momentum
is exchanged between the electrons. This is a unique process
in which one cannot single out intermediate steps.

The mechanism described by the amplitude F�2� is quite
different. One can write for the Green function of free mo-
tion

g��� =	 d3p�

�2��3

�
0�p����
0�p���

� − p�2

2m

. �29�

Using this presentation for the functions g�1;�� and g�2;��
in expressions �24� and �25� for the amplitudes Fa3 and Fb3
we can write

F�2� =	 d3p�

�2��3

F	�k,p,p���
0�p���VeN�
0�p��

� − p�2

2m

. �30�

Here,

F	�k,p,p�� = ��CVeeg�1;�a��	�k��
0�p,p���

+ ��C�	�k��g�1;�b�Vee
0�p,p��� + �p ↔ p�� ,

�31�

with


0�p,p�� = 
0�p,r1�
0�p�,r2� , �32�

describing the radiative capture of two free electrons with
momenta p, p�. F	 is known to be peaked at p+p�=0, cor-
responding to a small momentum transferred to the nucleus
�11�. Thus, in the amplitude F	 large momentum p is ex-

changed between the electrons which thus approach each
other at distances of the order 1 / p. However, this takes place
at large distances 1 /� from the nucleus, where the electron
density is large.

Hence the integral on the RHS of Eq. �30� is dominated
by p� close to −p, i.e., by p�=−p+ f with f �p. Presenting

F	�k ,p ,p��= F̃	�k ,p , f� we can write Eq. �30� as

F�2� =	 d3f

�2��3 F̃	�k,p,f�
2m

2�p · f� − f2

− 4��Z

q2 , �33�

with the last factor corresponding to the second one of the
numerator on the RHS of Eq. �30�. Hence, the process can be
viewed as the electron-nucleus scattering in which the elec-
tron changes the direction of its momentum to the opposite
one, expressed by the last factor on the RHS of Eq. �33�,
followed by radiative capture of both electrons with emission
of a single photon. The former process takes place at the
distances of the order 1 / p from the nucleus, the latter one
takes place at large distances 1 /� from the nucleus. The
second factor of the integrand is of the order �−1m / p. It is
just the time during which the electron with velocity p /m
passes the distance 1 /� from the nucleus, i.e., this is the time
interval between the two steps of the process. Note that the

amplitude F̃	 depends on f in terms of the ratio f / p�1 and
of the ratio of f /�b�1, with �b standing for the character-
istic momentum of the bound state. Due to certain internal
cancellations �11,16�, the leading terms of the expansion of

F̃	 in powers of k / p and f / p vanish, and one should include
the next terms of the corresponding expansions. More de-
tailed description of the two-step mechanism will be pre-
sented in Sec. II C.

B. One-step mechanism

In this section we neglect the photon momentum, using
Eq. �6� for the amplitude, setting thus 	�k�=	�0�=	. We
start with the contribution of the electron interactions in the
final state provided by the amplitude Fa1 and illustrated by
the Feynman diagram of Fig. 2.

Using Eq. �29� for the function g�1,�a�, we obtain

Fa1 =	 d3p�

�2��3

��C�Vee�
0�p�,p���
0�p���	�
0�p��
− � − p�2/2m

.

�34�

Calculating

�
0�p���	�
0�p�� =
�e · p�

m
�2��3��p� − p� , �35�

and presenting

Vee =
�

�r1 − r2�
=	 d3s

�2��3

4��ei�s·r1�−i�s·r2�

s2 , �36�

we obtain
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Fa1 = −
�e · p�

p2 	 d3s

�2��3d3r1d3r2�C�r1,r2�

�
4��

s2 ei�p+s�·r1ei�p−s�·r2, �37�

which can be presented as

Fa1 = −
�e · p�

p2 	 d3s

�2��3

4��

s2 �CF�p + s,p − s� . �38�

The function �CF�a ,b�=�CF�a��CF�b� is the Fourier trans-
form of the function �C, while the Fourier transforms �CF of
the single particle Coulomb wave functions for 1s states are
actually presented by Eq. �11�. One can see that the integral
on the RHS of Eq. �38� is determined by the regions �p−s�
���p and �p+s����p. This means that only one of the
bound electron transfers large momentum q to the nucleus.
The other one exchanges momenta of the order � with the
nucleus, thus remaining on distances of the order of the Bohr
orbit. Thus we obtain

Fa1 = −
�e · p�

p4 4��AC�q� , �39�

with

AC�q� =	 d3f

�2��3�CF�q − f,f� =
16��NC

2

�q2 + 4�2�2 ,

NC
2 = �C�0,0� = ��C�0��2 =

�3

�
. �40�

In the leading terms of the expansion in powers of p−1 we
can neglect the binding energies in Eq. �3�, setting

� = �/2, p2 = m� . �41�

Introducing

�C =
4�2��NC

2

p8 �e · p� =
4���4

p7 �e · n� , �42�

with n=p / p, we obtain

Fa1 = − �C. �43�

Now we calculate the amplitude Fb1 which includes the
lowest order electron interactions in the initial state. Using
Eq. �25� with presentation �29� for the function g�1;�b� and
inserting 1=
 d3f

�2��3 �
0�f���
0�f��, we write

Fb1 =	 d3p�

�2��3

d3f

�2��3

�
��C�	1�
0�p�,f���
0�p�,f��Vee�
0�p,p��

2� − p�2/2m
. �44�

Using Eq. �36� we calculate

�
0�p�,f��Vee�
0�p,p�� =
4��

�p − f�2 �2��3��q − p� − f� .

�45�

Thus,

Fb1 =	 d3f

�2��3�CF�q − f,f�
4��

�p − f�2

�e · q� − �e · f�
2� − �q − f�2/2m

.

�46�

The integral over f is determined by small values of f ��.
Further evaluation provides

Fb1 = −
4��

p4 �e · p�NC�CF�q� , �47�

i.e.,

Fb1 = − �C, �48�

with �C defined by Eq. �42�.
Proceeding in the same way we find

Fa2 = − �C, �49�

while Fb2 can be shown to be parametrically smaller �see
Sec. II C�. Hence, we set Fb2=0, thus coming to

F�1� = − 3�C. �50�

C. Two-step mechanism

In the preceding section we could set k=0 in the photon
wave function. Now we keep the finite value of the photon
momentum k. For the amplitude Fa3 which includes
electron-electron interactions in the final state we write

Fa3 = X1 + X2,

with X1 describing the scattering by the nucleus and emission
of the photon by the same electron, while X2 corresponds to
the case when different electrons undergo these processes.
The amplitudes X1 and X2 are just the first and second terms
on the RHS of expression �24� for Fa3. These contributions
are illustrated by the Feynman diagrams of Fig. 3. Using Eq.
�45� we obtain

Xi =	 d3s

�2��3

d3s1

�2��3�CF�s − s1��CF�s1�Mi�p,s,s1�

�g��,− p + s + k�
− 4��Z

�q − s�2 �51�

for i=1,2 with

M1 =
�e · s� − �e · p�

m
h1, h1 = −

4��

�p − s1�2

1

� + �p − s�2/2m
,

�52�
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M2 =
�e · p�

m
h2, h2 = −

4��

�p − s1 − k�2

1

� + �p − k�2/2m
.

�53�

The amplitude Fb3 which includes interactions between elec-
trons in the initial state can be presented in a similar way,
i.e., Fb3=Y1+Y2, with

Yi =	 d3s

�2��3

d3s1

�2��3�CF�s − s1��CF�s1�Li�p,s,s1�

�g��,− p + s + k�
− 4��Z

�q − s�2 �54�

for i=1,2 with

L1 =
�e · s� − �e · s1�

m
t1, t1 =

4��

�p − s1�2

1

� − �s − s1 + k�2/2m
,

�55�

L2 =
�e · s1�

m
t2, t2 =

4��

�p − s1 − k�2

1

� − �s1 + k�2/2m
.

�56�

The integrals over s and s1 in Eqs. �51� and �54� are
dominated by s, s1���p. Thus, the leading contributions
to the functions Mi in Eqs. �52� and �53� are those propor-
tional to �e ·p�. However, these terms cancel, and thus one
should expand the functions hi�p ,s ,s1 ,k� in powers of s1 / p,
s / p, and k / p, taking into account linear terms.

Thus, we can present

Fa3 = S1 + S2 + S3 �57�

with S1 corresponding to s1=s=k=0 in the functions hi, S2
coming from expansion of hi in powers of s / p and s1 / p,
while S3 originates from that in k / p. The higher order terms
contribute beyond the HENL. Direct calculation provides

Si = 32�2�2Z
m

p4q2	 d3s

�2��3AC�s�
1

p2 − �p − k − s�2Qi,

�58�

with AC�q� defined by Eq. �40�, i=1,2 ,3 and

Q1 = �e · s�, Q2 = −
�e · p��p · s�

p2 , Q3 =
3�e · p��p · k�

p2 .

�59�

The functions Li in Eqs. �55� and �56� are proportional to
s and s1 and thus one can set s1=s=k=0 in the functions ti.
Hence

Fb3 = − 32�2�2Z
m

p4q2	 d3s

�2��3AC�s�
�e · s�

p2 − �p − k − s�2 .

�60�

One can see that the contribution S1 to Fa3 is cancelled by
the amplitude Fb3, i.e.,

S1 + Fb3 = 0. �61�

Note that Eq. �54� was transformed to Eq. �60� without
touching the function AC�s�. Such transformation can be
done for the function � with AC�s� replaced by

A�s� =	 d3s1

�2��3�F�s − s1,s1� =	 d3r1��r1,r1�e−i�s·r1�.

�62�

This will be employed in the next section.
Thus, the two-step amplitude can be written as

F�2� =	 d3s

�2��3

2m

p2 − �p − k − s�2 �B0�s� + B1�s��
− 4��Z

q2 .

�63�

Here,

B0�s� = − AC�s�
4��

p4 �e · n��n · s�, n = p/p �64�

and

B1�s� = AC�s�
4��

p4 3�e · n��n · k� �65�

compose the amplitude for electron capture with momentum
s transferred to the nucleus. Since the last factor on the RHS
of Eq. �63� is the amplitude of eN scattering, Eq. �63� corre-
sponds to Eq. �33�. Note that the leading terms in the de-
nominator of the first factor of the integrand on the RHS of
Eq. �63� cancel, and thus this factor is of the order 1 / p�.
Note that such a cancellation does not occur in the similar
expression for the amplitudes Fb2. Hence, the latter is sup-
pressed by the additional factor of the order ��1 and thus
can be neglected.

Calculating the integrals

	 d3s

�2��3

2mAC�s�
p2 − �p − k − s�2 =

mNC
2

p
W , �66�

with

W =
1

�n · k� + 2i�
�67�

and

	 d3s

�2��3

2m�s · n�AC�s�
p2 − �p − k − s�2 = 2i�

mNC
2

p
W , �68�

we obtain

F�2� = �C�− 2i� + 3�n · k��W . �69�

For ��n ·k����, e.g., for all ���, we find thus F�2�=−�C.

D. The total Born approximation amplitude

Combining Eqs. �50� and �69� we can now write the
HENL for the amplitude, defined by Eq. �28�,
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F = − 8�C
2i�

�k · n� + 2i�
= −

32���4

p7

�e · n�
1 − i�k · n�/2�

.

�70�

Thus, the dipole approximation k=0 is valid only for ���.
In this case the second term in the denominator can be ne-
glected, and the amplitude is real,

F = − 8�C.

For larger � both terms in the denominator should be in-
cluded. If the angle between the directions of the photon and
electron momenta is not too close to � /2 the amplitude is
mostly imaginary for ���. In this limiting case the ampli-
tude is proportional to Z5.

III. AMPLITUDE IN TERMS OF THE EXACT BOUND
STATE WAVE FUNCTION

A. Expressions for the one-step and two-step amplitudes

In this section we describe the bound state by the exact
wave function � �solution of the Schrödinger equation�. The
initial state will be still described by the perturbative func-
tion 
p, determined by Eq. �8�. The amplitude can be pre-
sented in the form similar to Eq. �14�,

F = 2�Ta + Tb�, Ta = ���	�k��
C� ,

Tb = ���	�k��GC�2��Vee
C� , �71�

with the amplitudes Ta,b being the analogs of the amplitudes
Fa,b of Sec. II.

Let us start with the analysis of the amplitude Ta. Using
expansion �21� we can present Ta=Ta0+Ta3, with

Ta0 = ���	�
0� ,

Ta3 = ���	�k��g�1;��VeN�1�
0� + ���	�k��g�2;��VeN�2�
0� .

�72�

�Analogs of the amplitudes Fa1 and Fa2 are absorbed in Ta0.�
In the amplitude Ta0 the continuum electrons are described
by plane waves, while in the amplitude Ta3 the lowest order
Coulomb correction is included. Using Eq. �29� for the free
Green functions g, we obtain

Ta3 =	 d3p�

�2��3

R�p�,p��
0�p���VeN�
0�p��

� − p�2

2m

, �73�

with

R�p�,p� = ���	�k��
0�1,p��
0�2,p��

+ ���	�k��
0�1,p�
0�2,p��� . �74�

As we discussed above, the integral over p� is dominated by
the regions, in which only one of the bound electrons trans-
fers large momentum to the nucleus. These are the regions
p��p and �p+p���p, with the contributions Ta3

�1� and Ta3
�2� to

the amplitude correspondingly. Thus we can present

Ta3 = Ta3
�1� + Ta3

�2�

with both terms contributing to the two terms on the RHS of
the expression �72� for Ta3. One can see that Ta3

�1� contributes
to the one-step mechanism, while Ta3

�2� contributes to the two-
step mechanism.

The expression for the amplitude Tb can be simplified by
expanding Eq. �16� for the Green function in powers of

H�2� /E, which becomes possible for E� I since �
H�2�

E

��
I
E ��. This enables us to write the amplitude Tb in a

form similar to �25�, i.e.,

Tb = Tb1 + Tb2 + Tb3,

Tb1 = ���	�g�1;2��Vee
0� ,

Tb2 = ���	�g�1;�b�VeN�1�g�1;�b�Vee
0� ,

Tb3 = ���	�k��g�1;2��Veeg�1;��VeN�1�
0� + ���	�k�

��g�1;2��Veeg�2;��VeN�2�
0� . �75�

One can see that setting �=�C, we would obtain Tbi=Fbi
�i=1,2 ,3�. As we saw in Sec. II, it is important to keep
nonzero values of k in the amplitude Fb3. That is why we do
not set k=0 in the amplitude Tb3. The amplitude Tb2 can be
neglected since it contributes beyond the HENL, as well as
the amplitude Fb2 in Sec. II.

Thus, we find expressions for the one-step amplitude

F�1� = Ta0 + Tb1 + Ta3
�1� �76�

and for the two-step amplitude

F�2� = Ta3
�2� + Tb3. �77�

B. One-step mechanism

First we show the cancellation of the terms proportional
to Z5, which in the perturbative approach is given by Eq.
�15�. We can present

Ta0 =	 d3r1d3r2��r1,r2�	ei�p·r1�+i�p·r2�. �78�

Here r1 denotes the variables of the electron which emits the
photon. The integral on the RHS of Eq. �78� is determined by
small values of rj �1 / p. Keeping r1 to be finite we can ex-
pand the function ��r1 ,r2� near the point r2=0,

���r1,r2� = ��r1,0� + �r2 · �2���r1,r2��r2=0 + ¯ ,

�79�

with the gradient calculated at r2=0, while dots present the
nonlinear terms of expansion, not all of them are presented
as Taylor series. The wave function can be presented rather
as a generalized power series, which includes the logarithmic
terms �12,13�. Introducing

�̃�r1,r2,�� = ��r1,r2� �80�

with rj = �r j�, �=r1−r2, �= ��� we can write Eq. �79� as
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��r1,r2� = �1 + r2
�

�r2
−

�r1 · r2�
r1

�

��
��̃�r1,r2,�� + ¯ .

�81�

The linear terms provide �see Appendix A for details�

Ta0
lin = −

�e · p�
m

8�

p4 	 d3r1�̃r2
� �r1,0,r1�ei�p·r1� �82�

with �̃r2
� denoting the partial derivative of the function �̃

with respect to r2 at r2=0.
Now we calculate the amplitude Ta3

�1� which includes inter-
actions of continuum electrons with the nucleus. As we dis-
cussed in the preceding section, this corresponds to the con-
tribution of p��p on the RHS of Eq. �73�. Due to the vertex
operator 	, only the second term on the RHS of Eq. �74�
contributes in the leading order of the � expansion. Expand-
ing in powers of p� / p, i.e., keeping p� only in the wave
function 
0�2,p��, we find

Ta3
�1� = −

8��

p4 	 d3r1d3r2
d3p�

�2��3��r1,r2�	ei�p·r1�+i�p�·r2�.

�83�

Since

	 d3p�

�2��3ei�p�·r2� = ��r2� , �84�

we find

Ta3
�1� = −

8��

p4 �e · p�J�p�, J�p� =	 d3r1�̃�r1,0,r1�ei�p·r1�.

�85�

The integrand on the RHS of Eq. �82� for Ta0
lin can be

evaluated by using the first Kato cusp condition �14�

�̃r2
� �r1,0,r1� = − ��̃�r1,0,r1� , �86�

which can be viewed as the cancellation of singularities in
the Schrödinger equation for the ground state of a two-
electron ion at r2=0. We obtain immediately

Ta0
lin + Ta3

�1� = 0. �87�

The leading contributions of the 1 /Z expansion of both
terms on the left-hand side of Eq. �87� are proportional to Z5.
This can be obtained by evaluating �see Appendix A�

J�p� =
8��ZN2

p4 �1 −
1

2Z
� , �88�

with

N2 = ��0,0� = �̃�0,0,0� . �89�

Introducing

� =
4�2��N2

p7 �e · n� , �90�

which turns to �C defined by Eq. �42� if the parameter N2 of
the exact function � is replaced by its Coulomb value NC

2 ,
we can write for the leading contribution to Ta3

�1�,

Ta3
�1� = − 16Z� . �91�

For the properly normalized wave function one has N2�Z3,
and thus the leading contribution to the amplitude Ta3

�1� is
indeed proportional to Z5.

Note that the cancellation of the terms proportional to Z5

�and of some of the terms, proportional to Z4� was from the
linear terms of the expansion of the solution of the
Schrödinger equation near the origin. The contributions of
the order Z4, to the amplitude Ta0 come from the higher order
terms of expansion in powers of r �r=r1 ,r2 ,��. However,
these contributions cannot be presented in terms of the
higher order derivatives of the function �. This happens be-
cause the exact wave function � is singular at r1=r2=0, and
cannot be presented as a Taylor series.

The other contributions to the amplitude can be expressed
in terms of the wave function �. Considering the contribu-
tion caused by the inclusion of the ee interaction between the
continuum electrons, we use Eq. �75� and proceed in the
same way as in the calculation of the amplitude Fb1 in Sec.
II. Employing Eq. �45� we can write the following for the
corresponding term of the amplitude:

Tb1 = −
8��

p4 	 d3r1d3r2
d3f

�2��3��r1,r2�	e−i�q·r1�+if·�r1−r2�,

�92�

with � defined by Eq. �13�. Using Eq. �84� we obtain

Tb1 = −
8��

p4 �e · q�J1�q�, J1 =	 d3r1��r1,r1�e−i�q·r1�.

�93�

One can see that Eqs. �92� and �93� can be obtained from
Eqs. �46� and �47� for Fb1 by replacing �C with �. Thus, we
obtain

Tb1 = − � , �94�

with � defined by Eq. �90�.

C. Two-step mechanism

The amplitude is given by Eq. �71�. As we noted in Sec.
II C, the amplitude Tb3 which includes interaction between
continuum electrons can be written in terms of the exact
function �,

Tb3 = − 32�2�2Z
m

p4q2	 d3r1
d3s

�2��3��r1,r1�e−i�s·r1�

�
�e · s�

p2 − �p − k − s�2 . �95�

The amplitude Ta3
�2� which does not include interactions

between continuum electrons can be written as
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Ta3
�2� = U1 + U2 + U3,

with

Ui = −
8��Z

q2 	 d3r1d3�
d3s

�2��3��r1,r2�e−i�s·r1�−i�p·��Qi,

�96�

where Qi is defined by Eq. �59�. Setting �=�C one finds
Ui=Si for i=1,2 ,3 with Si determined by Eq. �58�.

In perturbative approach we had the cancellation ex-
pressed by Eq. �61�. Similar cancellation

U1 + Tb3 = 0 �97�

takes place for the exact wave function �. To prove the
statement we calculate the integral over � on the RHS of Eq.
�96�

	 d3�e−i�p·����r1,r2� = −
8�

p4 �̃���r1,r1,0� , �98�

�see Appendix A�, with �̃ defined by Eq. �80�. Using the
second Kato condition �14�

�̃���r,r,0� =
�

2
�̃�r,r,0�, � = m� , �99�

we come to Eq. �97�. Hence, the cancellations in the ampli-
tude of the two-step mechanism are also based on the prop-
erties of the Schrödinger equation.

Thus we must calculate

F�2� = U2 + U3. �100�

Carrying out the calculations, presented in detail in Appendix
B we find

U2 = − �, U3 = i
3��

2N2 �n · k� , �101�

with N2 and � defined by Eqs. �89� and �90�,

� =	 dr��r�eikpr, ��r� = ��r,r� , �102�

while kp denotes the projection of the photon momentum on
the direction of the initial electron momentum p. For ���
the contribution U3 leads to the small correction of the order
�2 /�2 to the cross section.

D. Total amplitude

Now we can write the total expression for the amplitude
in terms of the exact bound state wave function �. For
��� it takes the form

F = 2�	 d3r1d3r2��r1,r2�	ei�p·r1�+i�p·r2� − 16Z� − 2�� .

�103�

Here, the first term includes all interactions in the initial
state. Its leading contribution, which is proportional to Z5 is

canceled by the second term �see Eq. �87��. The third term is
the sum of the amplitudes Tb1 given by Eq. �94� and U2
presented by the first equality of Eq. �101�.

The first term is determined by behavior of the wave func-
tion at small values of r1�r2�1 / p. However, since the
wave function is not analytical at the point r1=r2=0, it can-
not be expanded in a Taylor series, and thus cannot be pre-
sented in terms of local characteristics of the function �. The
two other terms on the RHS of Eq. �103� are presented in
terms of the value of the function � at r1=r2=0.

Replacing the exact function � by the perturbative func-
tion �p defined by Eq. �9�, with the perturbative expansion
for the Coulomb Green function �21�, we obtain

	 d3r1d3r2�p�r1,r2�	ei�p·r1�+i�p·r2� − 16Z�C = − 2�C,

in agreement with the results of Sec. II D.

IV. NECESSARY PROPERTIES
OF APPROXIMATE FUNCTIONS

Actual calculations are often carried out in the standard
formalism of quantum mechanics. This means that the calcu-
lations are carried out by a straightforward application of
Eqs. �5� and �6� for all values of the electron energies. The
initial and final states are described by approximate wave
functions 
a and �a. The approximate functions are usually
either given numerically or are determined by certain explicit
expressions.

In order to be able to reproduce the HENL of the consid-
ered process the approximate functions should have certain
properties of the exact wave functions, i.e., of solutions of
the Schrödinger equation. Start with the initial state wave
functions 
a. As we have seen in Sec. II, describing the
initial state by plane waves, we overestimate the value of the
amplitude by a large factor Z�1. The spurious term is
eliminated by taking into account the interactions between
the initial state electrons and the heavy nucleus. Hence, the
latter should be included into the initial state wave function.
Otherwise, we obtain the wrong Z dependence of the ampli-
tude.

Also, as we have seen in Sec. II, the amplitude Fb which
includes the electron interactions in the initial state provides
contributions of the same order of magnitude as the ampli-
tude Fa which includes such interactions in the bound state.
Thus, the approximate wave function 
a should contain such
interactions as well.

Turning to the description of the bound state, note first
that the cancellation of the terms of the order Z5 in the am-
plitude takes place due to the first Kato condition �86�.
Hence the approximate function �a should satisfy Eq. �86�.
Otherwise, we would obtain a wrong Z dependence of the
amplitude. Another cancellation of the contributions, ex-
pressed by Eq. �97� takes place due to the second Kato con-
dition �99�. Hence, to avoid spurious contributions of the
same order as those composing the amplitude, we must re-
quire that the function �a satisfies the first and the second
Kato conditions.
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The last, but not the least, is the behavior of the wave
function near the triple coalescence point r1=r2=0. This be-
havior is much more complicated than that of the standard
explicit expressions used for approximate wave functions.
Hence, during the computations one should separate the re-
gion near the point r1=r2=0, and use the r expansion of the
exact wave function �12,13�, improved to satisfy the Kato
conditions �17�.

V. TOTAL CROSS SECTION

Now we calculate the angular distribution of the photons
and the total cross section. We can write �5�

d� =
��

v
N1

2�F�2
d�

2�
. �104�

Here v= p /m stands for velocity of the incoming electrons,
� is the solid angle of the emitted photon. Following �5� we
assume that the cross section is determined by the contribu-
tion of the K-shell electrons of the target. Hence, N1

2

= �m�Z1�3 /� with the charge Z1 of the nucleus of the target
atom is the density of the target electrons. The amplitude F is
given by Eq. �70�, and summation over polarization of the
emitted photons is assumed. Thus the Born approximation
cross section �B, i.e., the one calculated in the lowest non-
vanishing order of expansion in powers of � is

d�B

dt
= �0

210�Z1
3

Z5 �13 1 − t2

1 + �2t2 . �105�

Here �0=�3a0
2, a0 is the Bohr radius, t= �p ·k� / pk, �

=� /2�.
The angular distribution obtains its largest values at small

t2. This becomes increasingly true with increasing values of
�. At ���, ��1 the total cross section is determined by
small values of t2�1 /�2.

In the whole region m��� I the cross section can be
described by the formula

�B = �0
212�Z1

3

3Z5 �13f��� , �106�

with

f��� =
3

2�3 ��1 + �2�arctan � − �� . �107�

One can see that f���→1 for ���, while f���=3� /4�
+O��−2� for ���.

Equations �105� and �106� provide the leading terms for
expansions of the angular distribution and the cross section
in powers of � at �→0. At finite values of � these equations
overestimate the true values. The amplitude of a process in
the Coulomb field of the nucleus connected with transfer of
large momentum p�� to the latter contains a characteristic
factor �−1�i�=e−�� �18,19�. Also, considering the lowest
terms of the interactions between the continuum electrons
and the nucleus we employed an additional expansion in
powers of �2, neglecting the average binding momentum �
with respect to the momenta p or q—see, e.g., Eq. �40�.

Since the experiments were carried out for �
0.8 �1–3�,
it is desirable to have an approximate formula for the cross
section in a broad interval of the values of �. The cross
section of the process for ��0.1 was computated in �5�.
Here, we present a formula for the cross section, which has a
proper high-energy limit �106�, approximating also the cross
section ��2e,	� obtained in �5�. Following the arguments pre-
sented in the previous paragraph we write for the cross sec-
tion

��2e,	���� =
�B���e−2��

�1 + ��6 �1 + a1� + a2�2� . �108�

The coefficients ai�i=1,2� are found by best fitting with the
cross section obtained within the perturbative model �5�

a1 = − 6.0, a2 = 65, �109�

The relative difference between cross section �108� and that
obtained in �5� does not exceed 10% for ��1.

Of course, single electron capture with emission of a
single photon has the largest cross section ��e,	� among the
capture processes. In the experiments �1–3�, carried out at
fixed values of EN, the projectiles which captured two elec-
trons were registered in coincidence with the photons carry-
ing the energy determined by Eq. �3�. This enables us to
distinguish our process from the single electron capture pro-
cesses since they correspond to singly charged projectiles
and from the double electron capture with emission of two
photons, in which the energy determined by Eq. �3� is shared
by two photons. The cross section of our process ��2e,	� �ap-
proximated by the cross section � at small values of �—Eq.
�106�� is much smaller than ��e,	� �20�. In Table I we present
the values of these cross sections and those of the cross sec-
tion for double electron capture with emission of two pho-
tons ��2e,2	� �21� for two values of Z and several values of �.
We show the results for Z=18 which were actually employed
in experiment �1�. Since at fixed values of kinetic energy per
nucleon EN and � the cross section � drops with increasing
Z, we present also the results for a smaller value of Z=12. In
the case of Z=92 �2,3� the cross section ��2e,	� is much
smaller at the same values of �. The results for �=0.84 are
shown since this value corresponds to the conditions of the
experiments �1–3�. One can see that there are more chances
to detect the process at small values of Z.

VI. SUMMARY

We considered the nonrelativistic high-energy limit for
the double electron capture from a light atom to the K shell
of a heavy nucleus, followed by the emission of a single
photon. High energy means that in the rest frame of the
heavy nucleus momenta of the captured electrons p are much
larger than the average momentum � of the electrons bound
by the heavy nucleus.

We show that one can separate two main mechanisms of
the process. In the first one both electrons approach the
heavy nucleus at small distances �1 / p, which are much
smaller than the Bohr radius of the K shell. In the second
mechanism one of the continuum electrons scatters backward
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on the heavy nucleus and transfers the total momentum of
the system �2p to it. Then, a further exchange of the large
momentum p occurs between the bound electrons, being on
the distances of the order of the size of the K shell. The two
mechanisms provide contributions of the same order. The
description of the second mechanism requires analysis be-
yond the dipole approximation for ���.

In our analysis we employ a perturbative treatment of
interactions between the continuum electrons and the nucleus
and between themselves. We show that the contribution cor-
responding to VeN=0 is additionally suppressed, since it re-
quires a large momentum to be transferred to the nucleus by
the bound electron. This contribution is cancelled to a large
extent by the inclusion of the next order term of the expan-
sion in VeN. The cancellation takes place due to the first Kato
cusp condition, being thus a feature of the exact solution for
the Schrödinger equation. Calculations with VeN=0 would
overshoot the value of the amplitude by a factor of Z�1.
This manifested itself in computations carried out in �6�.
There are some other cancellations between the contributions
to the amplitude, based on the second Kato condition. We
note that similar cancellations took place in the amplitude of
the double photoionization �16,22�.

We found the expression for the amplitude for the case
when the bound state is described by the exact wave function
�Eq. �103��. We can separate two contributions. One of them
is determined by the value of the wave function at the origin.
The other one depends on behavior of the wave function near
the triple coalescence point r1=r2=0. Thus we consider the
dynamical process requiring the treatment of the triple coa-
lescence singularity, which to the best of our knowledge has
not been considered previously in the literature. For Z=18
�1� the value �=0.1 corresponds to the energies EN
�800 MeV /u. Such energies are available for nowadays ex-
perimental facilities. Unfortunately the cross sections are too
small to be detected.

We have analyzed the properties of approximate functions
which are necessary to reproduce the proper high-energy
limit. The initial state functions should include interactions
with the nucleus. The bound state functions should satisfy
the Kato cusp conditions and should be corrected for a
proper behavior near the triple coalescence point �12,13,17�.

Particular calculations were carried out with a perturba-
tive treatment of interactions between the continuum elec-

trons and the nucleus and of the interaction between the elec-
trons. The bound state function was built by using the
Lippmann-Schwinger equation technique. We show that the
interactions between the electrons are of the same impor-
tance in initial and final states. Internal motion of the target
electrons was neglected. We obtained the angular distribution
and the total cross section in the Born approximation for all
I���m. We investigated the structure of the corrections to
the Born approximation and found a simple formula which
enables us to calculate the cross section in a broad interval of
energies, corresponding to ��1 �Eq. �108��.
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APPENDIX A

We evaluate the integral over r2 on the RHS of Eq. �78�,
following Ref. �21�. Using the expansion �81� we obtain

	 d3r2��r1,r2�ei�p·r2�

=	 d3r2�1 + r2
�

�r2
−

�r1 · r2�
r1

�

��
�

��̃�r1,r2,��ei�p·r2�e−�r2, � → 0. �A1�

Since

	 d3rei�p·r�e−�r =
8��

�p2 + �2�2 , �A2�

only the second term in parentheses on the RHS of Eq. �A1�
provides a nonzero value

	 d3r2��r1,r2�ei�p·r2� = −
8�

p4 � ��̃�r1,r2,r1�
�r2

�
r2=0

.

�A3�

TABLE I. Cross sections of the double electron capture with emission of a single photon ��2e,	�, of the
single electron capture with emission of a single photon ��e,	�, and of the double electron capture with
emission of two photons ��2e,2	�. The values of the projectile nuclear charge Z=18 and of the target nuclear
charge Z1=6 as well as that of �=0.84 correspond to conditions of the experiment �1�. Numbers in paren-
theses brackets denote powers of 10.

Z � EN �MeV/u� Z1 ��e,	� �kb� ��2e,2	� �mb� ��2e,	� �mb� ��2e,	� /��e,	� ��2e,	� /��2e,2	�

0.84 11.4 0.36 1.5 3.2 8.9�−6� 2.1

18 0.20 646 6 1.5�−3� 2.6�−5� 1.0�−6� 6.7�−10� 3.8�−2�
0.10 804 6.4�−5� 4.7�−8� 1.6�−10� 4.0�−12� 3.4�−3�
0.84 5.1 0.36 1.5 24 6.7�−5� 16

12 0.20 287 6 1.5�−3� 2.6�−5� 7.6�−6� 5.1�−9� 0.29

0.10 357 6.4�−5� 4.7�−8� 1.2�−9� 1.9�−11� 2.6�−2�
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Similar calculations enable us to obtain Eq. �98�. To ob-
tain Eq. �88� we use the expansion �12,13�

�̃�r1,r2,�� = 1 − �r1 − �r2 +
�

2
� + ¯ �A4�

�with the dots denoting nonlinear terms� and apply it to the

function �̃�r1 ,0 ,r1�.

APPENDIX B

Here we calculate the amplitudes U2 and U3 defined by
Eq. �96�. Integrating over � �see Eq. �98�� and using the first
Kato condition expressed by Eq. �86�, we obtain

U2 = −
8�2�Z�

p6 �e · n�V2, U3 =
8�2�Z�

p6 3�e · n��n · k�V3,

�B1�

with

V2 =	 d3r
d3s

�2��3e−i�s·r� ��r��n · s�
p2 − �p − s�2 ,

V3 =	 d3r
d3s

�2��3e−i�s·r� ��r�
p2 − �P − s�2 , �B2�

with ��r�=��r ,r�=�̃�r ,r ,0�. In the expression for V3 the
photon momentum k is not neglected, P=p−k. Following

the discussion in the main text, we set P=p in the expression
for V2.

For the calculation of V2 we present se−i�s·r�= i�e−i�s·r�

and integrate by parts. We find

V2 =
i8�2

p
	 d3r�p · r�e−i�p·r�+ipr���r�

r2 , ���r� =
d��r�

dr
.

�B3�

Introducing z= �p ·r� / p and integrating over z we obtain

V2 = −
1

2p
	

0

�

dr���r� =
��0�
2p

=
N2

2p
, �B4�

with N2 defined by Eq. �89�.
One can see also that

V3 = −
1

4�
	 d3re−i�P·r�+ipr��r�

r
. �B5�

In the lowest order of expansion in powers of 1 / p this yields

V3 =
− i

2p
� , �B6�

with �=
dr��r�eikpr, where kp denotes the projection of the
photon momentum on the direction of initial electron mo-
mentum p. Since the integral �B6� is saturated by r�1 /�,
we find �=
dr��r� for �kp��� �e.g., for all ����.

Using Eqs. �B4� and �B6� we obtain Eq. �101� for the
ingredients of the amplitude F�2�.
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