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Calculation of loosely bound levels for three-body quantum systems using hyperspherical
coordinates with a mapping procedure

Viatcheslav Kokoouline1,2 and Françoise Masnou-Seeuws2

1Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
2Laboratoire Aimé Cotton, CNRS, Bât. 505, Campus d’Orsay, 91405 Orsay Cedex, France

�Received 6 September 2005; published 10 January 2006�

In view of modelization of experiments involving cold atoms and molecules, we develop a method that
allows us to calculate weakly bound levels of triatomic molecules. The method combines �1� the hyperspheri-
cal coordinates to describe interparticle motion in the three-body system, �2� the solution of the Schrödinger
equation in two steps: determination of adiabatic states for a fixed hyper-radius and then solution of a set of
coupled hyper-radial equations using the slow variable representation of Tolstikhin et al. �J. Phys. B: At. Mol.
Opt. Phys. 29, L389 �1996��, �3� and a mapping procedure that reduces considerably the number of basis
functions needed to represent wave functions of weakly bound levels. We apply the method to the three
different systems: the helium trimer 4He3, isotopomers of the H3

+ ion, and finally a model three-body problem
involving three nucleons. For all these systems, we show that the suggested method provides accurate results.

DOI: 10.1103/PhysRevA.73.012702 PACS number�s�: 31.15.Ja, 02.70.Jn, 33.20.Tp

I. INTRODUCTION

The field of cold and ultracold molecules, which started
less than ten years ago, is progressing rapidly �1�. Recent
experiments on the formation of diatomic molecules in cold
quantum gases �2–14�, or in traps where a large atomic den-
sity is present �15–19�, create physical situations where
atom-dimer collisions play an important role. Accurate deter-
mination of atom-diatom collision data at ultracold tempera-
tures is, therefore, a major problem and calculations are be-
ing developed by various groups in order to evaluate
scattering lengths and vibrational quenching cross sections
with sufficient accuracy �1,20–26�. Moreover, recent results
�19� on Feshbach resonances for Cs2 molecules stored in a
CO2 laser trap indicate the presence of bound Cs4 molecules,
opening the way to the synthesis of complex molecules and
the control of chemical reactions.

In particular, since both magnetic and optical Feshbach
resonances have proved to be very efficient creating diatomic
molecules out of two colliding ultracold atoms, it is expected
that similar reactions could yield triatomic molecules starting
from an atom-diatom colliding pair. Such molecules would
be formed in loosely bound vibrational levels. Thus, there is
a need for reliable methods to calculate the energies and
wave functions of bound levels of triatomic systems, close to
the dissociation limit. Like for the atom-diatom collision
problem at ultralow energies, theoretical methods have to
describe both an inner region where standard methods for
triatomic molecules are applicable and an outer region ex-
tending up to hundreds of Bohr radii. In the asymptotic re-
gion of the potential surface, the vibrational motion is very
slow, and hence the local de Broglie wavelength becomes
very large, typically more than one order of magnitude larger
than in the inner region. It is then convenient to perform
numerical calculations using grid methods with a mapping
procedure �27–33�. For loosely bound diatomic molecules,
and for ultracold atom-atom collisions, the use of an adaptive
coordinate following the variation of the local de Broglie

wavelength has given very accurate results �28,29,33�.
Therefore, the generalization to triatomic molecules and to
atom-diatom collisions seems very timely.

Hyperspherical coordinates �HS�, which were initially de-
veloped for nuclear reactions, are often used for the treat-
ment of triatomic systems. They are well adapted to reactions
where an insertion channel is present. For instance, the hy-
perspherical diabatic-by-sector method of Launay and co-
workers �34� has been recently successful in predicting scat-
tering lengths or vibrational quenching cross sections for
ultracold Na+Na2 �23� or Li+Li2 �25,26� collisions, in situ-
ations where the spins of the three atoms are aligned. An-
other example is the determination of tightly bound vibra-
tional levels of van der Waals molecules, such as Ar3 �35�,
where hyperspherical coordinates and hyperspherical adia-
batic approximation were employed. The problem is then to
generalize such methods to loosely bound triatomic mol-
ecules, where the vibrational motion extends to large dis-
tances. The aim of the present paper is to propose such a
generalization, with a first application to the loosely bound
level of 4He3, and several vibrational levels of the four iso-
potomers of the H3

+ ion. Two aspects will therefore be con-
sidered.

�1� First, the implementation of a mapping procedure
within the hyperspherical adiabatic approximation is de-
scribed. The hyperspherical radius � is changed to a new
variable x adapted to the local variation of the wave func-
tions. This allows us to perform one-dimensional calcula-
tions up to large values of the hyper-radius.

�2� Second, in order to solve the system of one-
dimensional equations coupled by nonadiabatic couplings,
we propose a method which is a modified version of the slow
variable discretization introduced by Tolstikhin et al. �36�.

The paper is organized as follows. In Sec. II we present
the hyperspherical coordinates used in the present work. In
Sec. III we describe the mapping procedure and the choice of
the adaptive coordinate x. Section IV describes the slow vari-
able discretization method. In Sec. V we report calculations
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for the 4He3 trimer. In Sec. VI we report calculations for the
four isotopomers of the H3

+ ion and discuss the accuracy of
the adiabatic hyperspherical approach. Finally, in Sec. VII
we discuss the similar problem of three nucleons. Section
VIII is the Conclusion.

II. HYPERSPHERICAL COORDINATES: ADIABATIC
HYPERSPHERICAL APPROACH

A. Hyperspherical coordinates for three-body systems

In the present treatment, we use the Smith-Whitten hyper-
spherical coordinates of Ref. �37�. Since several definitions
exist in the literature �see, for example, Refs. �34,37–39��,
we start by recalling the definition chosen here. Let mi with
i=1, 2, 3 be masses of the three particles and x��i� their radius
vectors in the laboratory coordinate system. The following
quantities are introduced first �37�:

M = m1 + m2 + m3,

� =�m1m2m3

M
,

di =�mi

�
�1 −

mi

M
� ,

r��k� =
1

dk
�x��j� − x��i��; i, j,k are different,

R� �k� = dk�x��k� − �mjx�
�j� + mix�

�i��/�mj + mi��;

i, j,k are different,

�2 = 2 arctan�m3

�
� ,

�3 = 2 arctan�m2

�
� . �1�

Then, using the above quantities, the three hyperspherical
coordinates �, �, and � are defined as

�2 = �r��k��2 + �R� �k��2,

�r��1�� =
�d1

�2
�1 + sin � sin��� ,

�r��2�� =
�d2

�2
�1 + sin � sin�� − �2� ,

�r��3�� =
�d3

�2
�1 + sin � sin�� + �3� . �2�

Although the hyper-radius � is defined through r��k� and R� �k�,
it does not depend on the choice of the index k=1,2,3. In the
present treatment � can vary in the interval �0,��, the hyper-

angle � varies over �0,2��, and � varies in the interval
�0,� /2�. The three coordinates can be used to describe the
motion of three identical particles as well as nonidentical
ones. Notice that the variation interval of � is substantially
different from a previous study, Ref. �39�, where the helium
trimer is also treated using the hyperspherical coordinates.
Reference �39� uses �b, which is related to our � as �
=� /2−2�b and is adapted to a system of three identical
particles, with a variation range �−3� /4 ,� /4�. Moreover, in
�39� the variation range of �b is restricted to the interval
�0,� /6���� �� /6 ,� /2��, which allows us to represent only
a restricted set of possible eigenstates. Namely, with an ap-
propriate choice of boundary conditions for �b one can only
represent vibrational eigenfunctions of the A1 and A2 irreduc-
ible representations of the C3v vibrational group of three
identical particles. Wave functions of the doubly degenerate
irreducible E representation cannot be obtained within the
restricted interval for �b. Whereas this restriction has no con-
sequence for the problem considered in Ref. �39�, on the
contrary, in the present work, we would like to calculate also
the E eigenstates. Moreover, in order to obtain vibrational
eigenfunctions for three nonidentical particles, we have to
use the whole range of the variation for �. As for the two
other coordinates, � is the same in Ref. �39�, and the present
study, while �b in Ref. �39� is related to our � by �=� /
−2�b. In Refs. �23,25,26� democratic hyperspherical adia-
batic coordinates are used, which are slightly modified
Smith-Whitten hyperspherical coordinates.

Figure 1 shows schematically all of the possible configu-
rations of three particles as a function of the two hyperangles
� and �, for a fixed hyper-radius �. In the chosen example,

FIG. 1. The figure demonstrates how a two-dimensional space
of the hyperangles � and � reproduces all possible shapes of a
system like H2D+. Black circles symbolize D, two white circles
symbolize two hydrogen nuclei. This figure can be compared with
Fig. �6� of Ref. �40�, where all three nuclei are identical.
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masses are identical for two of the three particles, while the
third mass is twice as large as the two others �H2D molecule,
for example�.

B. The adiabatic hyperspherical approximation

In this work we consider only rotationless states of the
three-body systems. Thus, the total angular momentum is
zero.

The Schrödinger equation

�T��,�,�� + V��,�,���	n��,�,�� = En
vib	n��,�,�� �3�

for three particles interacting through the potential V�� ,� ,��
in the hyperspherical coordinates is often solved in a two-
step procedure. First, the adiabatic hyperspherical curves
Ua��� and the corresponding hyperangular eigenstates
�a��i ;� ,�� are obtained by a diagonalization in the two-
dimensional space of the hyperangles � and �, � being fixed
at the value �i:

H�i

ad�a��i;�,�� = Ua��i��a��i;�,�� . �4�

In the above equation the adiabatic Hamiltonian H�i

ad is the
sum of the two terms: the grand angular momentum squared

0

2 for zero angular momentum and the potential energy
V��i ;� ,��,

H�i

ad��,�� = �2

0

2 + 15
4

2��i
2 + V��i;�,�� . �5�

The explicit form of the operator of the grand angular mo-
mentum squared is �41� �the total angular momentum is zero�


0
2 = − 4	 1

sin�2��
�

��
sin�2��

�

��
+

1

sin2 �

�2

��2
 . �6�

The solution of Eq. �4� yields adiabatic curves Ua��� and
eigenfunctions �a�� ;� ,��, defining a set of adiabatic chan-
nels a.

The second step of the procedure is to solve a set of
multichannel hyper-radial coupled Schrödinger equations.
The three-dimensional eigenfunction 	n�� ,� ,�� is repre-
sented as a vector with components ��1,n, �2,n, …�, corre-
sponding to different adiabatic channels a=1, 2; the equation
reads

�K��� + Ua�����a,n��� + �
a�

�Wa,a��a�,n����

= En
vib�a,n���, �n = 1,2,…� , �7�

where K��� represents the kinetic energy term associated
with hyper-radial motion

K��� = −
�2

2�

d2

d�2 , �8�

and Wa,a� is the familiar nonadiabatic coupling element in-
volving derivatives of �a��� ,� ,�� with respect to � �exact
form can be found, for example, in Ref. �39��.

A numerical solution of the system of the coupled equa-
tions �7� provides exact solutions of the initial Schrödinger

equation, Eq. �3�. The grid method or the discrete variable
representation �DVR� �29,42–45�, is an efficient tool in ob-
taining eigenenergies and the eigenfunctions of the
Schrödinger equation. However, it is well known that Eq. �7�
is difficult to solve due to the spiky dependence of the
nonadiabatic couplings Wa,a� on the hyper-radius �. In order
to obtain an accurate description of the spiky coupling terms,
a very tight grid mesh along the � axis has to be imple-
mented. Because of this difficulty, one often uses the adia-
batic approach, namely, one neglects the nonadiabatic cou-
plings Wa,a�.

The key idea of the adiabatic approach is to view the
hyper-radial coordinate as a slowly varying coordinate in
contrast to the rapidly changing hyperangular coordinates.
This assumption is justified only if the couplings Wa,a� are
small. Nevertheless, this assumption allows us to determine
the adiabatic vibrational eigenenergies Ea,v and the corre-
sponding three-dimensional adiabatic vibrational wave func-
tions 	a,v�� ,� ,�� by solving Eq. �7� for each potential Ua���
separately:

�K��� + Ua��� − Ea,v��a,v��� = 0. �9�

Correspondingly, assuming that all levels n can be numbered
by a pair of numbers �a ,v�, where a is the channel number
and v a vibrational number in this channel, the total three-
dimensional vibrational wave function and the eigenenergy
in the adiabatic approximation are approximated as

	n��,�,�� � 	a,v��,�,�� = �a,v����a��;�,�� ,

En
vib � Ea,v. �10�

For numerical calculations, the hyper-radial wave func-
tions �a,v��� are represented as an expansion

�a,v��� = �
j=1

N

cj,a,v� j��� , �11�

on a set of N basis functions � j���. We have used two types
of expansions, a DVR basis and a B-spline basis set. The
solution of the Schrödinger equation Eq. �9� is then obtained
by the diagonalization of a N
N matrix. In case of the DVR
representation, N is the number of grid points.

III. MAPPING PROCEDURE

A. Change of the variable associated with the hyper-radius.

When the energy of a bound level is close to the con-
tinuum �a weakly bound level�, the corresponding wave
function often extends to large interparticle distances.
Weakly bound levels can be formed, for example, through
Feshbach resonances in ultracold gases. Another example is
the ground state of the He3 trimer, with a three-body bound
level lying just 0.1 K below the continuum �38,46�, while the
corresponding wave function becomes sufficiently small
only at large interparticle distances.

In the numerical calculations, large distances between par-
ticles should be included into the treatment, leading to a
large number N of basis functions in the expansion of Eq.
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�11� and to diagonalization of a large N
N Hamiltonian
matrix. In order to keep the size of the matrix reasonable, we
use a mapping procedure to define a new set of basis func-
tions that are better adapted to a given potential. We suggest
to change not the basis functions � j��� but the coordinate �
to a new one x, i.e., perform a mapping �→x���. The map-
ping is made in such a way that in the new coordinate only a
relatively small number of basis functions � j�x� is needed to
represent the required eigenfunctions of the Hamiltonian.

One example where the mapping was particularly advan-
tageous is the calculation of excited levels in diatomic sys-
tems �29,33,47,48� using the DVR basis. For vibrational
eigenfunctions ��R� �R is the internuclear distance for the
diatomic molecule� of weakly bound levels, the local de Bro-
glie wavelength increases by more than one order of magni-
tude from short internuclear distances to the asymptotic re-
gion. This means that in the momentum representation
eigenfunctions are not localized in a small region. In the
coordinate representation, a very fine grid is required at short
internuclear distances, but such a grid is superfluous at large
distances. As a result, when a constant grid step is used, the
DVR basis employed to represent accurately the eigenfunc-
tions is unnecessarily large. Therefore a change of variable
R→x is made in such a way that, in the new coordinate x,
��x� has a local de Broglie wavelength that is approximately
constant. The eigenfunction � in the conjugated momentum
px representation is much better localized �29�, leading to a
smaller size of the basis of � j�x� functions that is needed to
accurately represent the eigenfunctions. In the coordinate R
representation, this procedure produces a nonuniform DVR
grid along R, which is more dense in the inner region where
the weakly bound wave functions display many oscillations.
In practice, the mapping R�x� is estimated from the local
de Broglie wavelength, which is obtained from the
asymptotic kinetic energy and the potential V�R� at given R.
The mapping can be either analytical or numerical �29�.

In the same way, the mapping can be performed, in the
B-spline representation: the basis B-spline functions are not
changed, but a new coordinate x is introduced.

In this work we apply the mapping only along the hyper-
radial coordinate: we change the hyper-radius � to the new
coordinate x : �=��x�. The grid steps �� and �x in � and x
are linked by

�� = J�x��x, with J�x� =
d�

dx
.

In the coordinate x the Schrödinger equation, Eq. �9�, has the
following form:

�K̃�x� + Ua„��x�…��a,v�x� = Ea,v�a,v�x� , �12�

where we introduce a new wave function �a,v�x�

�a,v�x� = �J�x��a,v„��x�… , �13�

which is normalized to 1 in the coordinate x


 ��a�,v�x��2dx =
 J�x���a�,v����2
d�

J�x�
=
 ��a�,v����2d� = 1.

�14�

The kinetic energy term K̃�x� in the coordinate x is

K̃�x� = K���x�� =
�2

4�
	−

1

J2

d2

dx2 −
d2

dx2

1

J2 +
7

2

�J��2

J4 −
J�

J3
 .

�15�

In the above equation, the derivatives J� and J� are taken
with respect to x.

B. Numerical procedure

The step �x is constant. For simplicity it can be chosen to
be 1. The step �� is variable and should be chosen according
to the desirable grid density at a given region of �. Since for
�x=1, J�x�=���x�, it is sufficient to determine the variable
step �� for the whole interval of interest in order to obtain
the functions J�x� and ��x�. In practice, we perform the map-
ping procedure in the following way. We start with the small-
est value �1 of � and determine the grid step ��1 according
to a criterion that is appropriate to the required accuracy. The
next point in the grid, �2, is given by the sum �1+��1. Ap-
plying the accuracy criterion at �2, we obtain ��2, then �3
=�2+��2, and so on, until we reach the end of the interval of
interest in �. The corresponding values of xi will be just xi
= i.

The actual step �� at a given � should be determined
from the consideration of how dense the grid must be in that
particular region. For example, if the wave function �(��x�)
in the vicinity of � can be effectively represented by a few
basis functions ��x�, the grid step ��=J�x� can be relatively
large. As discussed above in Sec. III A, the wave functions
for excited levels, which have many nodes, are well repre-
sented using the mapped DVR basis with the grid step linked
to the local de Broglie wavelength

�� = �
�

�2�Ekin���
. �16�

Ekin��� in the above equation is the local kinetic energy cal-
culated from the semiclassical consideration: at a given point
�, Ekin���=Emax−Ua��� is the difference between the maxi-
mum energy Emax considered in the calculation and the po-
tential curve Ua���. The constant ��1 is introduced for a
uniform control of the accuracy: the smaller the �, the more
accurate the calculated eigenenergies and wave functions.

When several channels a are involved �in the coupled-
channel case�, the same grid is used for all channels. The
grid step can then be defined by considering the lowest po-
tential curve at each � value: Ekin���=Emax−min(Ua���). A
more convenient trick, especially when, in a diabatic repre-
sentation, the potential curves Ua��� may cross, is to intro-
duce an “enveloping potential”: We define a smooth function
Uenv��� that “envelopes” all the potential curves Ua��� from
below, lying at each � below all of them. Then Ekin���
=Emax−Uenv���.

V. KOKOOULINE AND F. MASNOU-SEEUWS PHYSICAL REVIEW A 73, 012702 �2006�

012702-4



By choosing the grid step in the way described above, we
were able to calculate accurately hundreds of eigenstates of
different diatomic molecules �29,48� using a very modest
DVR basis: the size of the basis was only a factor of 2 larger
than the number of converged eigenenergies and wave func-
tions �29,48�.

The procedure of determination of �� using Ekin��� is
efficient only for excited states having many nodes. If only
the ground state or/and a few weakly excited states are
needed, �� should be adapted to the local variation of the
states.

In two recent studies, Refs. �49,50�, there were attempts
to optimize DVR bases for the three-body problem in order
to reduce the number of grid points. In Ref. �49� the authors
have used reduced one-dimensional classical Hamiltonians
to construct an optimal grid. In Ref. �50� only boundaries of
the grid in the three dimensions were optimized, not the grid
sampling. In the present study, we optimize the grid in the �
dimension. The first step in the two-step diagonalization pro-
cedure can also be regarded as an optimization: from the
complete basis of states �a��i ;� ,�� with a=1,… ,�, we
chose only a few lowest states, which are then used to ap-
proximate the three-dimensional Hamiltonian.

IV. THE SLOW VARIABLE DISCRETIZATION METHOD:
BEYOND THE ADIABATIC APPROXIMATION

For many applications, the adiabatic hyperspherical ap-
proach is inaccurate, and one must include into consideration
the nonadiabatic couplings Wa,a� between channels a ,a�. In
the coordinate x the Schrödinger equation, Eq. �7�, has the
following form:

�K̃�x� + Ua„��x�…��a,v�x� + �
a�

�Wa,a��x��a�,v�x�� = En�a,v�x� .

�17�

Because of the spiky character of the couplings Wa,a��x�, it is
hard to represent them. At the same time, it is often desirable
to keep the adiabatic coordinate � and the two-step procedure
for the solution of the Schrödinger equation described above.
For example, in the theoretical study of the dissociative re-
combination of the H3

+ ion �40,51,52� the hyper-radius natu-
rally represents the dissociation coordinate. The slow vari-
able discretization �SVD� method by Tolstikhin et al. �36�
offers an opportunity to keep the hyper-radius as the disso-
ciation coordinate and, at the same time, obtain essentially
exact vibrational eigenfunctions.

The original detailed description of the SVD method is
given in Ref. �36�, where the method was applied to bound
state calculations for a number of systems: eep�H−�, dt�, and
ppe �H2

+�. In our treatment, as described below, we have
slightly modified the SVD method to be able to employ the
basis �� j���� of B splines.

First, the adiabatic eigenenergies Ua��i� and eigenfunc-
tions �a��i ;� ,�� at a fixed hyper-radius �i are obtained by
solving the same eigenvalue equation, Eq. �4�, as in the adia-
batic approach. In a second step, the exact vibrational eigen-
state 	vib�Q� is represented as an expansion in the basis of

the functions �a��i ;� ,��. The expansion coefficients �a��i�
depend upon the hyper-radius �i:

	vib�Q� = �
a

�a��i��a��i;�,�� . �18�

In Ref. �36� the hyper-radial wave functions �a��i� are then
expanded in the DVR basis � j���

�a��� = �
j

cj,a� j��� . �19�

In the present treatment, for one application we use the origi-
nal version of SVD with the DVR basis. However, for other
applications discussed below, B-splines basis is more prefer-
able. In fact, in the SVD method any space-localized basis
can be used. Both, B-spline and DVR, basis functions are
indeed localized in space. Inserting the two above expan-
sions into the initial eigenvalue problem H	vib�Q�
=E	vib�Q�, we obtain

�
i�,a�

���i��K�����i�Oi�a�,ia + ��i��Ua�����i��a�a�ci�a�

= E �
i�,a�

��i���i�Oi�a�,iaci�a� �20�

with

Oi�a�,ia = ��a���i�;�,����a��i;�,��� . �21�

In Eq. �20�, on the right-hand side the overlap matrix ele-
ment ��i� ��i� appears because the B-spline representation
basis is not orthogonal. For the DVR basis, Eq. �20� is re-
duced to

�
i�,a�

���i��K�����i�Oi�a�,ia + Ua��i��i�,i�a�a�ci�a�

= E�
a�

Oia�,iacia�. �22�

The kinetic energy operator K��� contains second and, pos-
sibly, first derivatives with respect to �. In the above equa-
tion, the matrix elements ��i��K�����i� can usually be calcu-
lated analytically �see, for example, �29,53�, and references
therein�.

Equation �20� is written in the form of a generalized ei-
genvalue problem with the eigenvalue E and the eigenvector
c�. It can be solved using standard numerical procedures. The
size of the matrices H and O is N
M 
N
M, where M is
the number of adiabatic states a in the expansion Eq. �18�.

The advantage of the SVD method lies in a more efficient
representation of the nonadiabatic coupling terms. The cou-
plings Wa,a���� in the standard approach of Eq. �17� are re-
placed with the overlap matrix elements Oi�a�,ia between hy-
perangular adiabatic states �a��i ;� ,�� at different values of
the hyper-radius. Using such representation of nonadiabatic
couplings, the solution of the Schrödinger equation becomes
easier to implement on the computer, since there is no need
to calculate the first and second derivatives of the adiabatic
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states �a��i ;� ,��. However, for an infinite number of grid
points, the present method is equivalent to traditional meth-
ods using derivative nonadiabatic coupling.

The SVD method is similar in spirit to the diabatic-by-
sector method by Launay and co-workers �23,25,26,34�: In
both methods, for each hyper-radius, a separate �-adapted
adiabatic �a��i ;� ,�� basis is calculated. However, in our
opinion, such a �-adapted basis is utilized more efficiently in
SVD. In the diabatic-by-sector method, a Numerov-type
propagation procedure is implemented along each � sector
using the locally adapted adiabatic basis. In SVD, instead of
the propagation, the locally adapted adiabatic bases are di-
rectly used to construct the global Hamiltonian matrix, which
is then diagonalized. The result is that the locally adapted
adiabatic hyperangular basis allows us to deal with a rela-
tively small-sized Hamiltonian matrix.

V. BOUND STATES CALCULATIONS FOR 4He3

A good system to test the method discussed above is the
trimer 4He3. The ground vibrational level is just about 0.1 K
below the dissociation limit and, therefore, the corresponding
vibrational wave function reaches out internuclear distances
larger than 100 a.u. The energy of the level has been previ-
ously calculated �38,39,46�.

The previous calculations �38,39,46� are based on the two
potentials determined by Aziz and co-workers �54,55�. In the
two references, the potentials, hereafter labeled as V79 �54�
and V91 �55�, are only slightly different. In the present work,
we determine the bound vibrational states for both potentials
and compare with the other calculations �38,39,46�.

We consider the 4He isotope. The calculation is accom-
plished in two steps as discussed in the previous sections. In
the first step, the adiabatic hyperspherical curves are calcu-
lated using Eq. �4�. Several adiabatic curves are shown in
Fig. 2. For the helium trimer involving identical isotopes, the

vibrational levels are characterized according to one of the
three irreducible representations, A1, A2, or E of the C3v sym-
metry group. Since the value of the hyper-radius does not
influence the symmetry, the adiabatic hyperspherical curves
can be characterized according to the same irreducible rep-
resentations: the curves in Fig. 2 are classified accordingly.

In the second step, we obtain the actual energy of the
vibrational levels by solving the Schrödinger equation in the
one-dimensional hyper-radial space. We consider both, Eq.
�7� that includes the nonadiabatic coupling terms Wa,a�, and
the adiabatic one, Eq. �9�. For the numerical solution, we
employ the DVR basis.

To test the mapping procedure, we use two types of grid
along the � coordinate: one with a constant grid step �� �no
mapping�, the second one with a variable step �� �with map-
ping�. In the latter case, we use the enveloping potential
shown in Fig. 3 to define the new coordinate x and a grid
step, which is relatively small for ��60 a.u. and larger for
��60 a.u.. We have to stress that in the calculation of the
few lowest vibrational states, the optimal local grid step
����� cannot be easily determined from considerations of
the local de Broglie wavelength. Looking at the adiabatic
potential curves of Fig. 2 one could expect that the grid step
should be increased starting from �=30 a.u., where no at-
tractive potential is present any longer: however, our tests
have shown that the dense grid must be kept until 60 a.u.
This is explained by a strong nonadiabatic coupling between
the lowest and the first excited adiabatic curves of the A1
symmetry, displayed in Fig. 2 by the two lowest black solid
curves. The lowest A1 curve varies until 40 a.u., but the first
excited A1 curve varies significantly until 60 a.u.

Table I summarizes the results obtained for 4He3 using the
two available He dimer potentials �54,55� and comparing
with the previous calculations �38,39,46�. Cornelius and
Glöckle �46� and Blume and Greene �39� calculated the en-
ergy only for one potential, while Esry et al. �38� computed
the bound energies for both potentials.

In agreement with the work of Blume and Greene �39�,
we found that the nonadiabatic couplings play a considerable
role: their inclusion increases the binding energy by 20%.

FIG. 2. �Color online� Several first adiabatic hyperspherical
curves Ua��� of 4He3. Every curve is classified according to one of
the three irreducible representations of the C3v vibrational group of
He3. The E representation is doubly degenerate; therefore, the
curves for Ea and Eb coincide.

FIG. 3. Enveloping potential used for the mapping in the 4He3
calculation.
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Table II illustrates in more detail the convergence of the
eigenenergy with respect to the number of included A1 states.
Calculating the eigenenergy in the adiabatic representation,
we have found the same result as Esry et al. �38� for the
ground state. This was expected since Esry et al. �38� have
used the same adiabatic approximation. The full calculation
including the nonadiabatic couplings agrees better with the
work by Cornelius and Glöckle �46� who used an alternative
method. Blume and Greene �39� have included the nonadia-
batic couplings using the familiar approach that involves de-
rivatives d /d� and d2 /d�2 of the adiabatic states. Our result
is in very good agreement with this calculation.

VI. VIBRATIONAL EIGENSTATES OF H3
+ AND ITS

ISOTOPOMERS

H3
+ is an important ion in interstellar clouds and atmo-

spheres of large planets. It is also the simplest polyatomic
molecule. A large number of theoretical articles are devoted
to the ion. For our study it is important that vibrational en-
ergies of the ion are known with a great accuracy from ex-
periments �57–59� and ab initio calculations �60–63�. The
potential surface of the lowest molecular state A1� of H3

+ was
also determined with a great precision �64,65� and can be
used to calculate the vibrational energies of all four isoto-
pomers of H3

+: H3
+, D3

+, H2D+, and D2H+. In contrast to the
two other three-body systems that we consider in this study,
the H3

+ potential cannot be represented as a sum of three
contributions from pair two-body interactions.

Similarly to He3, first, we have calculated the adiabatic
hyperspherical curves. Figure 4 shows several such curves
Ua��� for two isotopomers, H3

+ and H2D+. Curves for the
other two isotopomers look similar. For comparison, we also
give in Fig. 5 several H3

+ and H2D+ hyperangular wave
functions �a�� ;� ,�� obtained solving the eigenvalues prob-
lem of Eq. �4�. The vibrational wave functions of H3

+ belong
to one of the three irreducible representations of the C3v

group: A1, A2, or E �E is doubly degenerate�. The wave func-
tions of H2D+ are classified according to A or B irreducible
representations of the group C2v.

In the second step, we solve the hyper-radial Schrödinger
equation using the SVD method. However, we did not use
the DVR basis but the B-spline basis along �. Since we are
interested only in the lowest vibrational states of the ions, we
use a uniform grid: For the H3

+ isotopomers the mapping
cannot be very effective because the wave functions are lo-
calized at small hyper-radii.

We calculated the vibrational energies for all four isoto-
pomers. Table III compares vibrational energies obtained in
the adiabatic hyperspherical approach with results obtained
in the full three-dimensional calculation for four isotopomers
of H3

+. One can see that the adiabatic approach produces
relatively accurate vibrational energies for H3

+ and D3
+ ions,

but not for H2D+ and D2H+. Adiabatic energies obtained for
H3

+ are generally closer to the exact energies. The accuracy
for H2D+ and D2H+ is worse because the symmetry of these
ions is lower than in H3

+ and D3
+. As a result, the adiabatic

hyperspherical states interact stronger in H2D+ and D2H+,
and the adiabatic energies are less accurate.

Table IV compares the results of our SVD calculations
�third column� for H2D+ with a previous theoretical calcula-
tion �60� �fourth column�. As one can see, agreement be-
tween the results is 0.2–0.7 cm−1. The second column in the
table gives our result obtained using the adiabatic approxi-
mation and therefore neglecting the nonadiabatic coupling.
The energies differ significantly from the results of the SVD
calculation or previous study �60�. We attribute the poor ac-
curacy of the adiabatic approximation for heteronuclear ions
to the fact that the neglected nonadiabatic effects are stronger
because the symmetry of the vibrational wave functions is
lower. It means that more adiabatic states are mixed together
and can contribute to a given vibrational level. This is illus-
trated in Fig. 6, which demonstrates the effect of the nona-
diabatic couplings on a multichannel vibrational wave func-
tion of H2D+, corresponding to the first excited vibrational

TABLE I. Vibrational binding energies of the 4He3 trimer. Comparison between results from different
calculations. Our calculation as well as the calculation of Ref. �38� is performed for the two available
potentials �54,55�. Calculations of Refs. �46� and �39� were made using only one He2 potential.

He2

potential Ref. �46� Ref. �38� Ref. �56� Ref. �39�
Present calc.,
adiabatic approx.

Present Calc.,
SVD

Ref. �54� 110 mK 98.11 mK 98 mK 115.5±0.5 mK

Ref. �55� 106.1 mK 125 mK 125 mK 105 mK 123.8±0.5 mK

TABLE II. Dependence of the binding energy �in mK� of the 4He3 ground vibrational level as a function
of the number of adiabatic states Ua included into the SVD calculation. For this calculation, the grid in the
hyper-radius is equidistant and extended until 100 a.u. The number of hyper-radial grid points is 64. For the
comparison, we give also the results from Ref. �39�, which also accounted for the nonadiabatic couplings.

Number of included adiabatic
states 1 2 3 4 5 6

Results from Ref. �39� 106 119 122 124 124 125

Our results 105 119 121.0 123.0 123.4 123.8
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level vA=1, �v1v2v3�= �010�, E=2205.2 cm−1 of the A sym-
metry. The figure shows components of the first three adia-
batic channels of the A irreducible representation. Clearly,
the three components contribute significantly to the total
wave function. Since in the adiabatic approximation the con-
tribution from only one component is accounted for, it leads
to a very poor accuracy of wave functions and eigenenergies.

VII. BENCHMARK THREE-BODY SYSTEM OF THREE
NUCLEONS

The third three-body problem that we consider in this
study is the model benchmark system of three identical
bosons �see Ref. �66� and references therein�. The mass of

the bosons is m1=m2=m3=1837.5773 a.u. or equally 939
MeV. Similarly to He3, the three-body potential
V�r12,r23,r31� is constructed as a sum of two-body pair po-
tentials: V�r12,r23,r31�=V2�r12�+V2�r23�+V2�r31�, where
V2�r� is in units of MeV has the following form:

V2�r� = − 55e−0.2r2
+ 1.5e−0.01�r − 5�2

, �23�

the distance r is in fm. �in atomic units, 1 a.u. of length is
5.291 772
10−11 m, 1 a.u. of energy is 27.721 138 eV�.

Since the two-body potential is constant at small dis-
tances, �0.1 fm, the three-body potential for a fixed small
hyper-radius, ��0.1 fm, does not depend on the two hyper-
angles. The solutions of the hyperangular equation �Eq. �4��
for such small � are just eigenstates of the grand angular
momentum squared 
0

2, Eq. �6�. These are hyperspherical
harmonics with eigenvalues ���+4� �67�. To be able to com-
pare with the analytic solution of Eq. �4�, we demonstrate in
Fig. 7 the adiabatic hyperspherical curves scaled in the way
that gives eigenvalues of 
0

2 at small �, i.e., Fig 7 shows not
the curves Ua��� themselves, but ua���=2��2Ua���− 15

4 . At
small hyper-radii, each curve Ua��� correlates with one ei-
genvalue ���+4� of 
0

2. � can have only even values, �=0,
2, 4, … . In the present study we have only even � because
we are considering a half of the hyperangular sphere, the
second half can be represented by an extension of the hyper-
angle � interval to 4� �41�. The state with eigenvalue ���
+4� has degeneracy � /2+1 at small �. At larger � the sym-
metry is lower and each manifold with a given � splits into
the states that are classified according to one of the three
irreducible representations of the C3v vibrational group: A1,
A2, and E. The E states are still doubly degenerate even at
large �. The use of the � interval from 0 to 2� allows us to
represent the three possible irreducible representations of the
C3v group. In contrast to the present study, in several previ-
ous studies �38,39,66�, the interval of � is smaller and the
boundary condition at the ends of the interval are chosen in
such a way that only A1 states are represented. As a result, in
these studies the eigenvalue with �=2 does not exist. Since
the ground vibrational state, that we are interested in, is an
A1 state, such a reduced interval in � in Refs. �38,39,66�
should give the same result as the present treatment. Vibra-
tional states of other irreducible representations would be
needed if some excited vibrational states have to be found.

FIG. 4. �Color online� The figure shows several first adiabatic
hyperspherical potential curves for the H3

+ and H2D+ ions. The
curves for H3

+ are classified according to one of the three, A1, E, or
A2, irreducible representations of the vibrational symmetry group
C3v of H3

+; H2D+ curves are classified according to one of the two,
A or B, representations of the C2v group. Arrows in the two panels
show how an E doubly degenerate state in H3

+ splits into two dif-
ferent states in H2D+.

FIG. 5. �Color online� The figure shows wave
functions of several hyperangular adiabatic states
�a�� ;� ,�� for a fixed hyper-radius �=2.2 a.u.
The four left panels give the wave functions ob-
tained for the H3

+ ion; other panels represent the
H2D+ wave functions. All the wave functions are
classified according to the irreducible representa-
tions of the corresponding vibrational symmetry
group: For H3

+ the group is C3v, for H2D+ it is
C2v. The Ea and Eb irreducible representations of
H3

+ are degenerate; any linear combination of
them is also an eigenfunction of Eq. �4�.
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We calculated the energy of the only bound A1 state of the
3n system using the B-spline basis along �. With the use of a
uniform 256 point grid and the largest �=160 fm, we ob-
tained the energy −37.216 MeV. This is in good agreement
with the result of Ref. �66�, −37.221. We also tried to use the
DVR basis along with the mapping. We employed a mapped
grid with 64 points, while the largest � was also 160 fm. The
obtained bound energy is −37.20 MeV. In these calculations,
with and without the mapping, we used five adiabatic hyper-
spherical channels of the A1 irreducible representation.

VIII. SUMMARY AND CONCLUSIONS

The main goal of the present study was to develop an
accurate method that is general enough to be applied to a
variety of three-body systems. In particular, the method can
be used for loosely bound states of triatomic molecules, rel-
evant to experiments with ultracold molecules.

We use the hyperspherical coordinates. The wave func-
tions are expanded on a basis set, using either DVR or
B-spline representation. Special attention in this study was
paid to the problem of weakly bound states with wave func-
tions reaching large interparticle separations. In order to keep
the representation basis along the hyper-radius as small as
possible, we suggested using the mapping procedure. The
mapping procedure is very similar to the mapping for di-
atomic molecules �29,47,48�, where the variable change for
the mapping was deduced from the local de Broglie wave-

length. The actual solution of the Schrödinger equation for
the three-body is made in two steps: �1� the adiabatic hyper-
spherical states and energies are calculated, �2� and a system
of coupled one-dimensional hyper-radial equations is solved.
To overcome the adiabatic approximation and avoid using
derivatives of the adiabatic eigenstates with respect to the
hyper-radius, we use the SVD method by Tolstikhin �36�,
using one of the two representation bases: DVR and
B-splines. The calculation of derivatives is then replaced by
overlap integrals, which is easier to implement numerically.

We consider two problems, where the use of the mapping
was helpful: bound states of 4He3 and a model problem of
three nucleons. In both problems the ground bound state is
just below the dissociation limit such that the corresponding
wave functions are extended to large interparticle distances.
We obtained the same result with and without the mapping
for the two three-body systems. In the third application, iso-
topomers of H3

+, the mapping was not employed because the
wave functions of interest are localized at small hyper-radii.

For all the three three-body systems, we have found that
the inclusion of the nonadiabatic hyperspherical couplings is
important for the accuracy of the calculation. This is espe-
cially important where the three particles are not identical,
because the symmetry of such a system is lower, the cou-
plings are stronger, and the accuracy of the adiabatic ap-
proximation becomes worse. We have shown that such situ-
ation occurs for the isotopomers of H3

+: the accuracy of the
adiabatic approximation in H3

+ and D3
+ is much better than

in H2D+ and D2H+. For the helium trimer 4He3, the inclusion

TABLE III. Several vibrational energies of the four isotopomers of the H3
+ ion: H3

+, H2D+, D2H+, and
D3

+. The first number in each cell of the table gives the energy obtained in the present study using the
adiabatic approximation, the second number in each cell gives the energy of the state calculated in previous
calculations. Accuracy of calculations in Refs. �60,61,65� is better than 0.1 cm−1. All energies are given in
cm−1 and are related to the ground vibrational level of the corresponding isotopomer.

�v1v2
l2�, D3h H3

+ D3
+ �v1v2v3�, C2v H2D+ D2H+

�100� 3188 2306 �100� 2781 2431

3178.5a 2301.36b 2992.51c 2736.98c

�011� 2516 1833 �010� 2382 2210

2521.20a 1834.67b 2205.87c 1968.17c

�022� 5001 3650.8 �001� 2328 2086

4997.73a 3650.55b 2335.45c 2078.43c

aReference �65�.
bReference �61�.
cReference �60�.

TABLE IV. Several vibrational energies of H2D+ calculated using the adiabatic hyperspherical approxi-
mation and SVD method. For a comparison, the energies from the accurate calculation of Ref. �60� are also
given.

Symmetry, �v1v2v3� Adiabatic energies SVD energies Previous calc.

A, �000� 0 0 0

A, �100� 2781 2993.8 2992.51

A, �010� 2382 2205.2 2205.87

B, �001� 2328 2335.2 2335.45
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of the nonadiabatic effects reduces the error from 20% to, at
least, 1%.

We have shown on the example of the isotopomers of H3
+

that the hyperspherical coordinates allow us to treat properly
all possible irreducible representations of the corresponding
symmetry group. This can be useful in the problems where
one has to select wave functions of a particular irreducible
representation, not necessarily the ground state one, which is
totally symmetric. An example is the three-body recombina-
tion processes in an ultracold gas of fermions: The ground
rovibrational state of three identical fermions cannot be to-
tally symmetric state. One has to consider states of other
irreducible representations.

As discussed in the previous study by Fedorov et al. �66�,
the model three-boson system has a resonance. Currently, our
present approach does not allow direct calculation of ener-
gies and widths of resonances. However, in the future we
would like to adapt the approach for such calculations. A
possible solution could be to use a complex absorbing poten-

tial along � or to use a complex scaling potential similar to
the one employed in Ref. �66�.

Future work should compare the accuracy of the present
method with the diabatic-by-sector method developed by
Launay and co-workers �23,34� for collision calculations and
adapted by Willner �68� to loosely bound levels.

In conclusion, we have shown that the weakly bound
states of different three-body systems can be effectively and
uniformly treated using the hyperspherical coordinates and
the mapping procedure employed along the hyper-radius.
The advantage of the present method is that it can easily be
implemented for calculation of vibrational wave functions,
relevant to dynamics of cold molecules. The nonadiabatic
hyperspherical effects seem to be always important and
should be included into consideration.
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