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‘‘Macroscopic’’ quantum superpositions: Atom-field entangled and steady states
by two-photon processes

Moorad Alexanian*
Department of Physics and Physical Oceanography, University of North Carolina at Wilmington, Wilmington, North Carolina 28403

Subir K. Bose†

Department of Physics, University of Central Florida, Orlando, Florida 32816
~Received 25 October 2001; published 20 February 2002!

The dynamics of an exact two-photon Hamiltonian is used to study the time evolution of an initially
disentangled pure state of the atom-field system as it goes through cycles of entanglement separated by
instances of disentanglement. For specific initial states of the electromagnetic field, the output state is a pure
quantum superposition of a squeezed vacuum state and an orthogonal, odd-photon-number state. The odd-
photon-number state, which is not a squeezed state, exhibits both nonclassical sub-Poissonian and classical
super-Poissonian photon statistics. In the latter case the quantum superposition resembles a macroscopic
superposition state. Conditions are obtained on the atom-cavity interaction time for such states to represent the
steady states in the injection in a high-Q cavity of a monoenergetic, low-density beam of three-level atoms in
a coherent state.

DOI: 10.1103/PhysRevA.65.033819 PACS number~s!: 42.50.Dv, 42.50.Ar, 03.65.Ud

I. INTRODUCTION

The Jaynes-Cummings model~JCM!, applied to the mi-
cromaser, has demonstrated the existence of squeezed and
sub-Poissonian photon fields, examples of nonclassical states
of the electromagnetic field, as well as macroscopic quantum
superpositions, the Schro¨dinger-cat states. In a micromaser, a
monoenergetic low-density beam of two-level atoms in a co-
herent superposition of their upper and lowers states is in-
jected inside a single-mode highQ cavity. Conditions on the
interaction timet, time atoms spend in the cavity, lead to
trapping states whereby the field inside the cavity evolves to
pure tangentand cotangentstates@1#. The trapping condi-
tions, which restrict the Fock space, give rise to normalizable
steady states of the harmonic oscillator in the absence of
dissipation. Macroscopic superposition persists in the micro-
maser even in the presence of dissipation@2#.

Generation of pure states, the so-calledeven and odd
states, have also been investigated for two-photon microma-
sers@3#, in the limit of high detuning of the middle level of a
three-level atom and trapping conditions, thus selecting spe-
cial values of the interaction time. For finite detuning and no
trapping condition, only anevenphoton number state was
shown to exist for the two-photon micromaser. Theeven
state leads to the squeezed vacuum state@4#.

The question of entanglement is important for quantum
information processing and its study in the JCM for mixed
states has led to the conjecture that entanglement is present
at all times for a system that was initially in a disentangled
state @5#. This is to be contrasted to results for the time-
evolution of an initially disentangled pure state in the JCM
that yields an explicit form of the entangled atom-field state

@6#. Approximate disentanglement occurs during the collapse
region@6# and the atom-field system becomes asymptotically
disentangled at precisely half the revival time@7#. Also, in a
one-photon micromaser the field may evolve to pure states
under appropriate conditions even for mixed-state initial con-
ditions @2#.

In the present paper, an exact two-photon Hamiltonian for
an atom-field system@8# is used to study the time evolution
of pure states and the question of entanglement and disen-
tanglement. For particular initially disentangled pure states,
the atom-field system goes through cycles of entanglement
separated by instances of disentanglement at which time the
system reverts back to its initial disentangled state. If the
time of disentanglement is chosen to correspond to the inter-
action timet of an atom traversing a high-Q cavity, then the
initially disentangled pure states are the steady states reached
after many atoms traverse the cavity.

II. TWO-PHOTON HAMILTONIAN

The two-photon Hamiltonian obtained by an exact unitary
transformation@8# is

H5\vN1E01\ms331\hs111\l~s31a
21s13a

†2!,
~2.1!

where a and a† are photon operators,s i j 5u i &^ j u are the
atomic transition operators, and the operatorN5a†a1s33
2s1111 is a constant of the motion. The various parameters
E0 , m, h, and l have been obtained in Ref.@8# and their
explicit forms are not needed in the present paper.

The eigenvaluesEn
6 and eigenfunctionsuCn

6& of H are
best given in terms of the dressed-atom representation. One
has@8# that

*Email address: alexanian@uncwil.edu
†Email address: skb@physics.ucf.edu

PHYSICAL REVIEW A, VOLUME 65, 033819

1050-2947/2002/65~3!/033819~6!/$20.00 ©2002 The American Physical Society65 033819-1



uCn
1&5sinunu3, n&1cosunu1, n12&

uCn
2&5cosunu3, n&2sinunu1, n12&, ~2.2!

where u1& and u3& are the lower and upper atomic states,
respectively,un& is the photon number eigenstate and

cosun5
r ~n12!1/2

@n~r 211!12r 211#1/2
,

sinun5
~n11!1/2

@n~r 211!12r 211#1/2
, ~2.3!

with r[g1 /g2.
The respective eigenvalues are given by

En
15\v~n11!1

E11E3

2
2

D

2
1

1

2
$D214\2@g1

2~n12!

1g2
2~n11!#%1/2,

En
25\v~n11!1

E11E3

2
, ~2.4!

wheregi ’s are the atom-photon coupling constants,E1 is the
energy of the lower state,E3 is the energy of the upper state,
andD5(E12E2)1\v5(E32E2)2\v is the detuning pa-
rameter of the midlevel of the three-level atom.

III. DISENTANGLED AND STEADY STATES

The time evolution of an arbitrary state of the atom-field
system is determined in the interaction picture by the unitary
operator U(t)5exp[2i(H2H0)t/\], where H05\v(a†a1s33

2s11)1(E11E3)/2. The eigenstatesuCn
6& are simultaneous

eigenstates ofH with eigenvaluesEn
6 and ofH0 with eigen-

valueEn
2 . The set of eigenstatesuCn

6&, with n50,1,2. . . ,
together with the statesu1,0&52uC22

2 & and u1,1&5uC21
1 &,

where the first index refers to the lower atomic state and the
second to the photon-number occupation, form a complete
basis. Consider the initial disentangled state of the atom-field
system att50,

uC&5 (
n50

`

snun&~au1&1bu3&). ~3.1!

In terms of the atom-field dressed states, the initial state is
given by

uC&5Au1, 0&1Bu1, 1&1 (
n50

`

AnuCn
1&1 (

n50

`

BnuCn
2&,

~3.2!

where the coefficients in Eq.~3.2! are determined bya,b,
and the set$sn% and so

A5as0 and B5as1 ,

An5b sinunsn1a cosunsn12 , ~3.3!

Bn5b cosunsn2a sinunsn12 .

The time development ofuC& is given by uC(t)&
5U(t)uC& and so

uC~ t !&5Au1, 0&1Be2 iv21tu1,

1&1 (
n50

`

Ane2 ivntuCn
1&1 (

n50

`

BnuCn
2&, ~3.4!

where \vn[En
12En

2 . In general,uC(t)& is an entangled
state. However, we seek conditions under whichuC(t)& can
become disentangled att5t, and be of the form

uC~t!&5 (
n50

`

sn8un&~au1&1bu3&), ~3.5!

wheresn8[sn(t). The atomic state is also required to be the
same as that of the initial stateuC&. Disentanglement would
occur if the following conditions are satisfied:

A5as08 , Be2 iv21t5as18 ,

Ane2 ivnt5b~sinun!sn81a~cosun!sn128 , ~3.6!

Bn5b~cosun!sn82a~sinun!sn128 .

Using Eq.~3.3!, one has,

s085s0 , s185e2 iv21ts1 , ~3.7!

and

sn85@e2 ivntsin2un1cos2un#sn

1
a

b
sinuncosun@e2 ivnt21#sn12 . ~3.8!

The disentanglement conditions~3.3! and ~3.6! give for
t.0 that

An125
b

a

cosun

sinun12

~e2 ivnt21!

~e2 ivn12t21!
An , ~3.9!

and

Bn1252
b

a

sinun

cosun12
Bn

1
b

a

cosun

cosun12

~e2 ivn12t2e2 ivnt!

~e2 ivn12t21!
An , ~3.10!

for n50,1,2 . . . . For givena,b, and t, the set of initial
coefficientsA0 ,A1 ,B0, and B1 determines the rest of the
initial coefficientsAn and Bn for n52,3,4, . . . . Notice that
the set$sn% for the initial state~3.1! are in turn determined
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uniquely by ~3.3!, ~3.9!, and ~3.10! from the initial coeffi-
cients s0 ,s1 ,s2, and s3. Hence, disentanglement occurs at
particular timest only for specially prepared initial states.

Steady states can be achieved in a cavity by the injection
of single atoms, in a coherent superposition of their upper
and lower states, into a high-Q cavity. One assumes that the
state of the outgoing atom is not measured by taking a trace
over the atomic states@1,2#. The successive iteration give the
following reduced field density matrixr l after l such atoms
have singly traversed the cavity:

r l5tra@U~t!r l 21raU†~t!#, ~3.11!

where the trace is over the atomic statesra5(au1&
1bu3&)(^1ua* 1^3ub* ), which is the state of the injected
atoms. If the limit of the iterations exists, then the resulting
state is called a steady state@1,2#, which is a fixed point of
the map~3.11!. Note that our disentangled state~3.5! is a
fixed point of this map providedU(t)uC&5uC&, that is,

sn85sn . ~3.12!

Note that for such cases, representing the evolution of pho-
tonic steady states in a cavity as more and more identically
prepared atoms traverse the cavity and the states of the out-
going atoms are not measured@1,2#, we obtain the following
recurrence relation from Eq.~3.8!:

sn1252
b

a
~ tanun!sn52

b

ar
An11

n12
sn ~n50,1,2, . . . !,

~3.13!

where the second equality follows with the aid of~2.3!. The
recursion relation~3.13! corresponds to the caseAn50 for
n50,1,2, . . . . For thecases1Þ0(BÞ0), result ~3.12!, to-
gether with Eq.~3.7!, places the following condition on the
interaction timet that atoms spend in the cavity

F2
D

2
1

1

2
AD214\2g1

2G t

\
52p l ~ l 51,2,3 . . .!.

~3.14!

According to Eqs.~3.4! and~3.14!, as the atom traverses the
cavity for times 0<t<t, the atom-field system undergoes
cycles of entanglement separated by instances of disen-
tanglement at timest5kt/ l , wherek50,1,2, . . . l . The atom
finally emerges from the cavity att5t leaving the atom-field
system in the same initially disentangled state.

It should be remarked that our condition on the cavity
interaction timet is not a trapping condition, as is the case
for one-photon micromaser@1,2# and other two-photon mi-
cromaser models@3,4#, but a requirement for the existence of
disentangled states. For the one-photon micromaser, the trap-
ping conditions are needed, in addition, since otherwise the
steady states asymptotically reached by the cavity mode,
viz., the tangentandcotangentstates, would not be normal-
izable @1,2#.

The coefficients0 generates the even series in photon
numbersuCeven&5(n50

` s2nu2n&; whereass1 generates the
odd photon number seriesuCodd&5(n50

` s2n11u2n11&.

Both statesuCeven& anduCodd& are normalizable. The recur-
sion relation~3.13! was obtained earlier for a two-photon
micromaser@3,4#. However, important differences with the
present paper should be noted. In the high detuning limit
considered in Ref.@3#, trapping conditions limit the Fock
space into isolated blocks. In contrast, disentanglement con-
ditions considered in the present paper do not impose such
restrictions and the sum over photon states is unrestricted.
For finite detuning and no trapping@4#, only uCeven& occurs,
while uCodd& is identically zero. It should be remarked that
the even and the odd states considered here are not the so-
called even and odd coherent states@9#.

To summarize, if the initial state contains only even pho-
ton number states, then the unique disentangled steady state
is given byuCeven&. However, ife2 iv21t51, then there ex-
ists two possible disentangled steady states, viz.,uCeven& and
uCodd&, and every disentangled steady state is a linear super-
position of these two vectors. Note that the normalization
conditions on the statesuCeven&, uCodd&, and uCeven&
1uCodd& give rise to different values for the constantss0
ands1.

A particularly interesting case occurs in the high detuning
limit when vn5\(g1

21g2
2)n/D1\(2g1

21g2
2)/D and where,

contrary to the case of finite detuning, one can haveAnÞ0
for n50,1,2, . . . for the steady states by requiringe2 ivnt

51 for n50,1,2, . . . . Thelatter is accomplished for alln
provided both\(g1

21g2
2)t/D and\(2g1

21g2
2)t/D are mul-

tiples of 2p, which restrictsr 25(g1 /g2)2 to the set of ra-
tional numbers. If, in addition, one requirese2 iv21t51, then
every initially disentangled state will go through periods of
entanglement and instances of disentanglement.

The dynamical system also possesses nonseparable mixed
statesr of the form

r5(
i , j

ux i&r i j ^x j u, ~3.15!

where U(t)rU†(t)5r with r i j* 5r j i and ux i&5(uCeven&
1uCodd&)(au1&1bu3&). The index i 5$s0 ,s1 ,a,b% runs
over all values ofs0 ,s1 ,a, and b such thatuau21ubu251
and s0 and s1 satisfy the normalization condition~6.2! ~be-
low!. If e2 iv21tÞ1, then only the even state appears in
~3.15!; however, both even and odd states appear when
e2 iv21t51. The completely disentangled pure steady state
corresponds to the case when the sum in Eq.~3.15! reduces
to a single diagonal term, viz.,r i j 5d i ,k d j ,k . Separable
mixed states occurs whenr i j is diagonal and so of the form
r5( ir i i r i

( f )r i
(a) , where r i

( f )5(uCeven&1uCodd&)(^Cevenu
1^Coddu) andr i

(a)5(au1&1bu3&)(^1ua* 1^3ub* ).
The disentangled states~3.5! are the states of the com-

bined atom and electromagnetic field that occur when the
atom entering the cavity exits the cavity in the same precise
state and so the composite atom-field system disentangles as
the atom exits the cavity. Note that this behavior cannot oc-
cur in the one-photon micromaser@1,2# since the outgoing
atom can never exit the cavity in the same precise state it had
before it entered the cavity. However, the field in the cavity
does evolve to pure, disentangled states@1,2# . This result is
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to be contrasted with a recent conjecture@5# that for an origi-
nally disentangled mixed state in the JCM, entanglement is
present at all times except att50. Note that in Ref.@5# the
initial field is in a thermal state and what is needed for the
system to evolve to a disentangled pure state is for both atom
and field to be in an arbitrary initial state.

IV. EVEN AND ODD PHOTON STATES

As is evident from the recurrence relation~3.13!, the dis-
entangled pure steady state gives rise to two mutually or-
thogonal states. The general expression for the even and the
odd expansion coefficients are

s2n5S 2
b

ar D
nA~2n!!

2nn!
s0

and

s2n115S 2
b

ar D
n 2nn!

A~2n11!!
s1 ~n51,2,3, . . . !.

~4.1!

The even photon number stateuCeven& is equal to the
squeezed vacuum stateuz& since

uCeven&[ (
n50

` S 2
b

ar D
nA~2n!!

2nn!
s0u2n&5Ŝ~z!u0&,

~4.2!

whereŜ(z) is the squeeze operator@10,11#, z5seiw, and

s05
1

Acoshs
and

b

ar
5eiwtanhs. ~4.3!

Consider next the odd photon number stateuCodd&. Now

uCodd&[(
0

` S 2
b

ar D
n 2nn!

A~2n11!!
s1u2n11&

5(
0

` S 2
b

ar D
n 2nn!

~2n11!!
s1~a†!2n11u0&. ~4.4!

Using the relation*0
1undu/A12u522n11(n!) 2/(2n11)!,

one obtains from~4.4! that

uCodd&5
s1a†

2 E
0

1 du

A12u
e2

bua†2

2ar u0&. ~4.5!

The vacuum squeezed stateuz& with z5seiw is given by
Ref. @11#:

useiw&5
1

Acoshs
expF2

a†2eiwtanhs

2 G u0&, ~4.6!

hence,

uCodd&5
s1a†

2
E

0

1 du

A12u

1

A4 12Ubu

ar
U2

uz&, ~4.7!

wherez5seiw with w5arg(bu/ar )5arg(b/ar ) sinceu is
real ands5tanh21ubu/aru. The stateuCodd& has an extra
photon added to a continuum of squeezed vacuum states that
have constant argument and variable moduli.

V. PHOTON STATISTICS AND QUADRATURE
OF THE ODD STATE

The photonic statesuCodd& and uCeven& form a complete
basis for the space of pure disentangled and steady states
governed by the dynamics of the two-photon Hamiltonian
~2.1!. The even photon number stateuCeven& is equal to the
squeezed vacuum state, which exhibits the classical feature
of super-Poissonian statistics and the quantum feature of
quadrature squeezing@10,11#. The odd photon number state
uCodd&, on the other hand, exhibits nonclassical sub-
Poissonian, as well as the classical super-Poissonian statis-
tics. It is interesting thatuCodd& cannot be squeezed and, in
fact, its quadrature variance is always greater than one. A
feature that makes the statesuCeven& and uCodd& analogous
to the zero- and the one-photon states, respectively, in a
quantum bit~qubit! and thus interesting for quantum compu-
tation and quantum information are the following results:

@a1a†eiwtanhs#uCeven&50, ~5.1!

and

@a1a†eiwtanhs#uCodd&5s1u0&, ~5.2!

whereb/ar[eiwtanhs. One refers touCeven& as a squeezed
vacuum owing to Eq.~5.1!. However,uCodd& does not rep-
resent a squeezed one-photon state since the quadratures of
uCodd& cannot be squeezed~see below!.

A. Photon statistics

The stateuCodd& of the electromagnetic field has an in-
definite number of photons and its statistical description is
based on the photon number probability amplitude given in
Eq. ~4.4!. The photon number probability distributionP(n)
is

P~2n!50

and

P~2n11!54nU b

arU
2n ~n! !2

~2n11!!
us1u2 ~n50,1,2 . . .!,

~5.3!

where^CodduCodd&51 gives that
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us1u225 (
n50

` 22n~n! !2

~2n11!!
U b

ar
U2n

5

sin21U b

ar
U

U b

ar
UA12U b

ar
U2

[ f S U b

ar
U D . ~5.4!

Now

^n̂&5
x f8~x!1 f ~x!

f ~x!
, ~5.5!

and

^n̂2&5
x2f 9~x!13x f8~x!1 f ~x!

f ~x!
, ~5.6!

where f (x) is defined in Eq.~5.4!, the number operatorn̂
5a†a, f (n)(x)5dnf (x)/dxn, and x[ub/ar u. The variance
of n̂ is given by

Dn25
x2f ~x! f 9~x!1x f~x! f 8~x!2x2~ f 8~x!!2

@ f ~x!#2
, ~5.7!

and the Mandel parameterQ by

Q5
x2f ~x! f 9~x!2x2~ f 8~x!!22@ f ~x!#2

f ~x!~x f8~x!1 f ~x!!
. ~5.8!

The Q parameter assumes negative values for nonclassical,
sub-Poissonian statistics and positive for super-Poissonian
fields having a classical description. Results~5.5!–~5.8! can
all be expressed in terms of elementary functions. A numeri-
cal evaluation of Eq.~5.8! gives a monotonically increasing
function for Q vs ub/ar u assuming negative values for 0
<ub/ar u&0.547 with Q521 at ub/ar u50. For Q
521, uC&5(s0u0&1s1u1&)u1& with the atom in its ground
state u1& and the radiation field in the qubit states0u0&
1s1u1& with us0u21us1u251. The latter state is the only
other disentangled photon steady state besidesuCeven& and
uCodd&.

B. Quadrature squeezing

The quantization of the electromagnetic field gives sub-
Poissonian photon statistics and nonclassical squeezed states
that are used to improve accuracy measurements by limiting
quantum noise. The stateuCodd& exhibits quantum sub-
Poissonian statistics but is not a squeezed state. Consider the
phase-sensitive field operator

x̂l5
1

A2
@ae2 il1a†eil#. ~5.9!

Now ^Coddux̂luCodd&50 and so the variance of Eq.~5.9!
for uCodd& is given by

Dxl
252tanhs cos~2l2w!Fx f8~x!12 f ~x!

f ~x! G
1

2x f8~x!13 f ~x!

f ~x!
, ~5.10!

with bounds

1<^n̂&5
x f8~x!1 f ~x!

f ~x!
<Dxl

2<
3x f8~x!15 f ~x!

f ~x!
.

~5.11!

Accordingly, the electromagnetic fielduCodd& can possess
either sub-Poissonian or super-Poissonian statistics but does
not represent a squeezed state since the uncertainty associ-
ated with each quadrature exceeds the value of1

2 associated
with the vacuum and the coherent states. This is to be con-
trasted with the vacuum squeezed stateuCeven& whose sta-
tistics is always super-Poissonian.

C. Quadrature representation

The quadrature representationc(xl)5^xluCodd& of the
odd state, whereuxl& is eigenstate of the quadrature operator
~5.9!, satisfies the differential equation given by Eq.~5.2!

~eil2e2 ileiwtanhs!
dc~xl!

dxl

1~eil1e2 ileiwtanhs!xlc~xl!

5
s1A2

p1/4
e2xl

2/2, ~5.12!

where c(xl) is normalized to unity providedus1u22

5 f (ub/ar u). The solution of Eq.~5.12! is

c~xl!5
p1/4s1a~xl!

AC
erfS xlA1

2
2

D

2 D 1a~xl!c~0!,

~5.13!

where erf~x! is the error function,a(xl)5e2(D/2)xl
2

is the
solution of the vacuum quadrature equation~5.1!,

D5
12 i sinh 2s sin~2l2w!

cosh 2s2sinh 2s cos~2l2w!
, ~5.14!

and

C52 tanhs eiw@e22ileiwtanhs21#. ~5.15!

VI. PHOTON STATISTICS AND QUADRATURE
OF THE STEADY STATE

The photonic part of the disentangled steady state is given
by
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uc&5 (
n50

`

snun&5uCeven&1uCodd&, ~6.1!

with the normalization condition

15
us0u2

A12U b

ar
U2

1us1u2f S U b

ar
U D , ~6.2!

by using@12y#21/25(n50
` (2n)! yn/22n(n!) 2 . The dynam-

ics governed by the two-photon Hamiltonian~2.1! does not
mix the space of even photon numbers with those with odd
photon numbers. Accordingly, if the cavity field initially,
prior to the entrance of the first atom in the cavity, had prob-
abilities P0 and P1 to be in the even and the odd photon
states respectively, then those probabilities will remain the
same owing to the probabilities being separately constants of
the motion. Therefore,us0u25A12ub/ar u2P0 and us1u2
5 f (ub/ar u)P1 for the steady state.

The variance ofn̂ in the stateuc& is given by

Dn25^Cevenun̂2uCeven&1^Coddun̂2uCodd&

2~^Cevenun̂uCeven&1^Coddun̂uCodd&!2 ~6.3!

and the variance ofx̂l by

Dxl
25^Cevenux̂l

2uCeven&1^Coddux̂l
2uCodd&

2~^Cevenux̂luCodd&1^Coddux̂luCeven&!2,

~6.4!

whereuCeven& anduCodd& are given by Eqs.~4.2! and~4.4!,
respectively. All the quantities that appear in Eqs.~6.3! and
~6.4! are expressible in terms of elementary functions.

Consider the stateuc& for which initially P05P15 1
2 ,

viz., uCeven& and uCodd& are equally probable and sous0u2

5A12ub/ar u2/2 and us1u25 f (ub/ar u)/2. A numerical
evaluation of the MandelQ parameter versusub/ar u for uc&
gives a monotonically increasing function ofub/ar u, which
assumes negative values for 0<ub/ar u&0.36 and positive
values for ub/ar u*0.36. In the former caseuc& is sub-

Poissonian and in the latter super-Poissonian. A numerical
evaluation of the varianceDxl

2 versusub/ar u also gives a
monotonically increasing function that assumes the value of
3
4 for ub/ar u50. Accordingly, the stateuc&, with equal ad-
mixtures of the even and the odd states, is not a squeezed
state. Therefore, forub/ar u*0.547 the photonic stateuc& is
not a squeezed state, its statistics is super-Poissonian, and is
given by a linear superposition of two super-Poissonian
states.

VII. SUMMARY AND CONCLUSIONS

The time evolution of initially pure disentangled atom-
field states are studied under the action of two-photon pro-
cesses. If the photonic part of the disentangled state is a
superposition of a squeezed vacuum and theodd photonic
state, then the composite system undergoes cycles of en-
tanglement with instances of disentanglement. The period of
such cycles is given byt/ l in Eq. ~3.14!. These disentangled
composite states are the steady states that would evolve in a
lossless cavity and the atom-field interaction time is given by
t. For appropriate coherent superpositions, the field radiation
evolves into a pure state that is a macroscopic quantum su-
perposition of two super-Poissonian photonic states, a
Schrödinger-cat state.

The odd states have both classical and quantum features
since they can possess both super-Poissonian and sub-
Poissonian statistics, albeit the state is not a squeezed state.
Accordingly, the steady state is a linear superposition of a
squeezed, super-Poissonian state plus a state that can possess
either super-Poissonian or sub-Poissonian statistics, but is
not a squeezed state. The nature of the initial state of the
electromagnetic field in the cavity determines the properties
of the overall photonic steady state. One can produce steady
states composed of a continuous admixture of a squeezed
vacuum and anodd photonic states by the proper initial ad-
mixture in the cavity of even- and odd-photon-number states.

It is shown that the squeezed vacuum and theodd states
are analogous to the zero-photon~the vacuum! and the one-
photon states, respectively. This correspondence suggests the
use of the squeezed vacuum and theoddstates as basic con-
stituents for qubits for quantum computation and quantum
information.
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