View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

S —'-— RS University of Central Florida
/ k STARS

Faculty Bibliography 2000s Faculty Bibliography

1-1-2002

"Macroscopic" quantum superpositions: Atom-field entangled and
steady states by two-photon processes

Moorad Alexanian

Subir K. Bose
University of Central Florida

Find similar works at: https://stars.library.ucf.edu/facultybib2000
University of Central Florida Libraries http://library.ucf.edu

This Article is brought to you for free and open access by the Faculty Bibliography at STARS. It has been accepted for
inclusion in Faculty Bibliography 2000s by an authorized administrator of STARS. For more information, please

contact STARS@ucf.edu.

Recommended Citation

Alexanian, Moorad and Bose, Subir K., ""Macroscopic" quantum superpositions: Atom-field entangled and
steady states by two-photon processes" (2002). Faculty Bibliography 2000s. 3041.
https://stars.library.ucf.edu/facultybib2000/3041

. + . +

] ‘¢,,:* . *. * = * ) +

@ e + * : * ’ X :
- + *

Py e o ¥ L% L sTARS

Florida . + . + Showcase of Text, Archives, Research & Scholarship *


https://core.ac.uk/display/236314983?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/facultybib2000
https://stars.library.ucf.edu/facultybib
https://stars.library.ucf.edu/facultybib2000
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/facultybib2000/3041?utm_source=stars.library.ucf.edu%2Ffacultybib2000%2F3041&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

PHYSICAL REVIEW A, VOLUME 65, 033819

“Macroscopic” quantum superpositions: Atom-field entangled and steady states
by two-photon processes

Moorad Alexaniafi
Department of Physics and Physical Oceanography, University of North Carolina at Wilmington, Wilmington, North Carolina 28403

Subir K. Bosé
Department of Physics, University of Central Florida, Orlando, Florida 32816
(Received 25 October 2001; published 20 February 2002

The dynamics of an exact two-photon Hamiltonian is used to study the time evolution of an initially
disentangled pure state of the atom-field system as it goes through cycles of entanglement separated by
instances of disentanglement. For specific initial states of the electromagnetic field, the output state is a pure
guantum superposition of a squeezed vacuum state and an orthogonal, odd-photon-number state. The odd-
photon-number state, which is not a squeezed state, exhibits both nonclassical sub-Poissonian and classical
super-Poissonian photon statistics. In the latter case the quantum superposition resembles a macroscopic
superposition state. Conditions are obtained on the atom-cavity interaction time for such states to represent the
steady states in the injection in a higheavity of a monoenergetic, low-density beam of three-level atoms in
a coherent state.

DOI: 10.1103/PhysRevA.65.033819 PACS nuntber42.50.Dv, 42.50.Ar, 03.65.Ud

[. INTRODUCTION [6]. Approximate disentanglement occurs during the collapse
region[6] and the atom-field system becomes asymptotically
The Jaynes-Cummings mod@ICM), applied to the mi- disentangled at precisely half the revival tifid. Also, in a

cromaser, has demonstrated the existence of squeezed ape-photon micromaser the field may evolve to pure states
sub-Poissonian photon fields, examples of nonclassical stateégder appropriate conditions even for mixed-state initial con-
of the electromagnetic field, as well as macroscopic quanturdlitions [2].
superpositions, the Schiimger-cat states. In a micromaser, a  In the present paper, an exact two-photon Hamiltonian for
monoenergetic low-density beam of two-level atoms in a co@n atom-field systerf8] is used to study the time evolution
herent superposition of their upper and lowers states is inof pure states and the question of entanglement and disen-
jected inside a single-mode high cavity. Conditions on the tanglemen.t. For particular initially disentangled pure states,
interaction timer, time atoms spend in the cavity, lead to tNe atom-field system goes through cycles of entanglement

trapping states whereby the field inside the cavity evolves téeptarated by tlnst')[anlgets QI dl_sint;aréglenlent f‘t dWht'Cth tlrl?etr':he
pure tangentand cotangentstates[1]. The trapping condi- system reverts back 1o Its initial disentangied state. i the
. g ) Lo . time of disentanglement is chosen to correspond to the inter-
tions, which restrict the Fock space, give rise to normalizable .~ ™ . . ; )
e*ctlon timer of an atom traversing a higQ-cavity, then the

sFea.dy ;tates of the h.armomc os'cl|llator n thg absenc_;e S’nitially disentangled pure states are the steady states reached
dissipation. Macroscopic superposition persists in the Microz ¢ many atoms traverse the cavity

maser even in the presence of dissipafidh
Generation of pure states, the so-calleden and odd
states, have also been investigated for two-photon microma-
sers[ 3], in the limit of high detuning of the middle level of a
three-level atom and trapping conditions, thus selecting spe- The two-photon Hamiltonian obtained by an exact unitary
cial values of the interaction time. For finite detuning and notransformatior{8] is
trapping condition, only arevenphoton number state was
shown to exist for the two-photon micromaser. Téeen
state leads to the squeezed vacuum gilte H=%hoN+Ey+Auossthinoy+in(oga+oa?),
The question of entanglement is important for quantum (2.1
information processing and its study in the JCM for mixed
states has led to the conjecture that entanglement is present
at all times for a system that was initially in a disentangledwhere a and a' are photon operatorsr;;=1i)(j| are the
state[5]. This is to be contrasted to results for the time-atomic transition operators, and the operdib a'a+og;
evolution of an initially disentangled pure state in the JCM— o;+ 1 is a constant of the motion. The various parameters
that yields an explicit form of the entangled atom-field stateEy, x, 7, and\ have been obtained in R€8] and their
explicit forms are not needed in the present paper.
The eigenvalue€,, and eigenfunctions¥ ;) of H are
*Email address: alexanian@uncwil.edu best given in terms of the dressed-atom representation. One
TEmail address: skb@physics.ucf.edu has[8] that

II. TWO-PHOTON HAMILTONIAN
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|¥y=sin6,|3, n)+cosh,|l, n+2) A=as, and B=as,,
|W.)=cosh,|3, n)—sing,|1, n+2), (2.2 An=pBSinfnsp+ a C0SH,Sn+ 2, 3.3

. B,= —asin .
where|1) and |3) are the lower and upper atomic states, n= B COSOSy = aSINOrSn--

respectively|n) is the photon number eigenstate and The time development of|¥) is given by |¥(t))
=U(t)|¥) and so
6 r(n+2)™ |W(t))=A]1, 0y+Be '“-1Y1
cosf,= , =Al1, g lo-1t|q,
" In(r2+1)+2r2+1]42
. (n+1)%2 D+ Aje e[+ > B W), (3.4
sing,= , (2.3 n=0 n=0
[n(r?+1)+2r2+1]"2
whereiw,=E; —E, . In general,|¥(t)) is an entangled
with r=g,/9,. state. However, we seek conditions under wHi¢t{t)) can
The respective eigenvalues are given by become disentangled &t 7, and be of the form
E;+E; A 1 _ S ,
Ey =ho(n+1)+—5—— o+ {A%+48°[gi(n+2) (W (7)) ngo spin)(al1)+BI3)), (3.5
+g3(n+ 1)}, wheres;=s,(7). The atomic state is also required to be the
same as that of the initial staf#). Disentanglement would
E,+E; occur if the following conditions are satisfied:
E,=fio(n+1)+ ——, (2.4) _
A=asy, Be '°-1"=as],
whereg;’s are the atom-photon coupling constariis,is the Ane—iwnT:B(Sinan)SH a(cos6,)s, ., (3.6)

energy of the lower stat&; is the energy of the upper state,
andA=(E;—E,)+Aw=(E3—E,) —fw is the detuning pa- B,,= B(c0s6,)s,— a(sind,)s, 5 -
rameter of the midlevel of the three-level atom.
Using EQq.(3.3), one has,
IIl. DISENTANGLED AND STEADY STATES , , o
S¢=So, S;=€ '“-17s, 3.7
The time evolution of an arbitrary state of the atom-field

system is determined in the interaction picture by the unitaryand
operator U(t)=exg 'H~Hl - where Hy=fAw(a'a+ o33 e
—o11) +(E1+E)/2. The eigenstatd®’ ;) are simultaneous sp=[e'“n7sir? g, + cosfy s,
eigenstates ofl with eigenvalue€,, and ofH, with eigen-
valueE, . The set of eigenstaté® ), with n=0,1,2. . ., + 3
together with the stateld,0)=—|¥_,) and |1,)=|¥",),
where the first index refers to the lower atomic state and the The disentanglement conditiori8.3) and (3.6) give for
second to the photon-number occupation, form a complete>Q that
basis. Consider the initial disentangled state of the atom-field

o .
—sing,cosf[e ' “"—1]S,4>. (3.9

system at=0, B cost, (e 'n-1)
" An+2= a sin On+2 (e_i“’n+27— 1) Ans 3.9
(W)= 2, sin)(al1)+£13)). (3D ang
. - . B sind,
In terms of the atom-field dressed states, the initial state is Bio=———
given by a €osbh.»
cosd, (e '“n+27—g7ien7
” ” E 0 . ( —iw T )An; (31@
[W)=Al1, 0+B|L, L+ Al¥i)+ X Bl¥,), @ C0SOnr2 - (e7¥m2T—1)
n=0 n=0
(32 forn=0,1,2.... For giveny,3, and 7, the set of initial
coefficientsAy,A;,Bg, and B; determines the rest of the
where the coefficients in Eq3.2) are determined by, 3, initial coefficientsA, andB, for n=2,3,4 . ... Notice that
and the sef{s,} and so the set{s,} for the initial state(3.1) are in turn determined

033819-2
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uniquely by (3.3), (3.9), and (3.10 from the initial coeffi- Both state§W¥,.n and| ¥4y are normalizable. The recur-
cients sy,S1,S,, and s;. Hence, disentanglement occurs atsion relation(3.13 was obtained earlier for a two-photon
particular timesr only for specially prepared initial states. micromaser3,4]. However, important differences with the
Steady states can be achieved in a cavity by the injectiopresent paper should be noted. In the high detuning limit
of single atoms, in a coherent superposition of their uppeconsidered in Ref[3], trapping conditions limit the Fock
and lower states, into a hig-cavity. One assumes that the space into isolated blocks. In contrast, disentanglement con-
state of the outgoing atom is not measured by taking a tracditions considered in the present paper do not impose such
over the atomic statd4,2]. The successive iteration give the restrictions and the sum over photon states is unrestricted.
following reduced field density matriy, after| such atoms For finite detuning and no trappirig], only |¥¢,..) occurs,

have singly traversed the cavity: while | ,4q) is identically zero. It should be remarked that
. the even and the odd states considered here are not the so-
p1=tra[U(7)p-1paU " (7)], (3.1)  called even and odd coherent stafi@k

To summarize, if the initial state contains only even pho-
ton number states, then the unique disentangled steady state
is given by|W¢,c.). However, ife”'“-17=1, then there ex-
ists two possible disentangled steady states, Wz, and
|P,qq), and every disentangled steady state is a linear super-
position of these two vectors. Note that the normalization
conditions on the state$Wq,en), [Voaa)» and |Ve,en)
s'=s (3.12 +|W,qq) give rise to different values for the constargs

n n- .
ands;.
Note that for such cases, representing the evolution of pho- A patrticularly mterestmg case occurs in the high detuning

tonic steady states in a cavity as more and more identicalljmit when w,=7(g7+g3)n/A+7(2g7+g3)/A and where,
prepared atoms traverse the cavity and the states of the oftontrary to the case of finite detuning, one can hAye 0

where the trace is over the atomic statpg=(a|l)

+ BI3)) ({1|a* +(3|B*), which is the state of the injected
atoms. If the limit of the iterations exists, then the resulting
state is called a steady stdtk?2], which is a fixed point of
the map(3.11). Note that our disentangled statg.5) is a
fixed point of this map provided (7)|¥)=|¥), that is,

going atoms are not measurklj2], we obtain the following for N=0,1,2 ... for the steady states by requiring'“n”
recurrence relation from Eq3.8): =1 for n=O,1,2 Thelatter is accomplished for al
provided bothh(g§+ g%) 71A and%(2g%+g3) /A are mul-
B ,8 tiples of 27, which restrictsr?=(g,/g,)? to the set of ra-
Sn+2= ~  (1an0h)s,=—— n+23n (n=012...),  tional numbers. If, in addition, one requires'®-1"=1, then

(3.13 every initially disentangled state will go through periods of
entanglement and instances of disentanglement.
where the second equality follows with the aid(@f3). The The dynamical system also possesses nonseparable mixed
recursion relation3.13 corresponds to the cagg,=0 for statesp of the form
n=0,1,2.... For thecases;#0(B+0), result(3.12, to-
gether with Eq.(3.7), places the following condition on the

interaction timer that atoms spend in the cavity p=2 Ixiveii(xil. (3.19
]
A
—5+—VA2+4ﬁ291 T_2ml (1=123..). where U(7)pUT(1)=p with pf=p; and |x))=(Perer

(3.14 +|Woqq)) (a|1)+ B|3)). The indexi={sy,s;,a,B} runs
over all values ofsy,s;,a, and 8 such that|«|?+|8|?=1
According to Egs(3.4) and(3.14), as the atom traverses the ands, ands; satisfy the normalization conditiof6.2) (be-
cavity for times G<t<r, the atom-field system undergoes low). If e™'“-17#1, then only the even state appears in
cycles of entanglement separated by instances of disert3.15; however, both even and odd states appear when

tanglement at times=kr/l, wherek=0,1,2 .. .1. The atom e '-1"=1. The completely disentangled pure steady state
finally emerges from the cavity &t 7 leaving the atom-field corresponds to the case when the sum in BdL5 reduces
system in the same initially disentangled state. to a single diagonal term, vinij =6k Ok Separable

It should be remarked that our condition on the cavitymixed states occurs when; is diagonal and so of the form
interaction timer is not a trapping condition, as is the case p=3;p;ip"p{®, where p(lf)_(|‘1’even>+|‘I’0dd>)(<\l’euen|
for one-photon micromaséi,2] and other two-photon mi-  + (W ,4) andp{® = (a|1)+ B|3)) ((1|a* +(3|B*).
cromaser models3,4], but a requirement for the existence of ~ The disentangled statg8.5) are the states of the com-
disentangled states. For the one-photon micromaser, the trapined atom and electromagnetic field that occur when the
ping conditions are needed, in addition, since otherwise thatom entering the cavity exits the cavity in the same precise
steady states asymptotically reached by the cavity modestate and so the composite atom-field system disentangles as
viz., thetangentand cotangentstates, would not be normal- the atom exits the cavity. Note that this behavior cannot oc-
izable[1,2]. cur in the one-photon micromasgt,2] since the outgoing
The coefficients, generates the even series in photonatom can never exit the cavity in the same precise state it had
numbers|Wq,en)=2n_oS2n|2N); Whereass; generates the before it entered the cavity. However, the field in the cavity
odd photon number serie$¥ qq) =21 _oSons1/2n+1).  does evolve to pure, disentangled stdteg] . This result is

033819-3
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to be contrasted with a recent conject[B¢that for an origi- s,al r1 du 1

nally disentangled mixed state in the JCM, entanglement is W oqq) = 1), (4.7
present at all times except &t 0. Note that in Ref[5] the 2 Jo1-uya Bul?

initial field is in a thermal state and what is needed for the 1- o

system to evolve to a disentangled pure state is for both atom

and field to be in an arbitrary initial state. ,
where{=co€'? with ¢=arg(Bu/ar)=arg(8/ar) sinceu is

IV. EVEN AND ODD PHOTON STATES real ando=tanh Y|Bu/ar|. The state|¥,qq) has an extra
photon added to a continuum of squeezed vacuum states that
As is evident from the recurrence relati@®13), the dis- have constant argument and variable moduli.
entangled pure steady state gives rise to two mutually or-
thogonal states. The general expression for the even and the

. L= V. PHOTON STATISTICS AND QUADRATURE
odd expansion coefficients are

OF THE ODD STATE

[ B\"(2n)! The photonic stategV ,4¢) and|W¥,e,) form a complete
20 T ar 2nn1 So basis for the space of pure disentangled and steady states
governed by the dynamics of the two-photon Hamiltonian
and (2.1). The even photon number sta¥ ., is equal to the
squeezed vacuum state, which exhibits the classical feature
( B)n 20Nt of super-Poissonian statistics and the quantum feature of
Soni1=|——] ———— 51 (n=1,23...). guadrature squeezirfd0,11. The odd photon number state
ar/ y(2n+1)! |Woqq), On the other hand, exhibits nonclassical sub-

(4.1) Poissonian, as well as the classical super-Poissonian statis-
tics. It is interesting that¥ .44 cannot be squeezed and, in
fact, its quadrature variance is always greater than one. A
feature that makes the stateB,, .y and|¥,44 analogous

The even photon number staté.,., is equal to the
squeezed vacuum stdt®) since

o 0zt to the zero- and the one-photon states, respectively, in a
W per)= 2 ( — ﬁ) (2n)t so|2n)=é(§)|0>, quantum bit(qubit) and thus interesting for quantum compu-
! n=0 arj 2"l tation and quantum information are the following results:

4.2

. _ [a+a'e'“tanha]| ¥ gpen) =0, (5.2

whereS(¢) is the squeeze operatfit0,11], {=c€'?, and
and

Sp= ! and £=ei‘Ptanhcr 4.3

" Jcosho ar ' ' [a+a'e'“tanha ]| W oqq) =$41]0), (5.2

Consider next the odd photon number stalg qq). Now where/ ar=e'“tanhg. One refers t¢W,,.,) as a squeezed

vacuum owing to Eq(5.1). However,| V44 does not rep-

v >EE _ ﬁ " 2'n! sy2n+1) resent a squeezed one-photon state since the quadratures of
od ™ & ar| Jen+1) |W,qq) cannot be squeezddee below.
_ - B\"_2"n! ty2n+1 A. Photon statistics
—; <_E (ZnT)!sl(a ) |O> (4.4)

The state|¥,qq) of the electromagnetic field has an in-
definite number of photons and its statistical description is
based on the photon number probability amplitude given in
Eq. (4.4). The photon number probability distributid®(n)

Using the relationf5u"du/\1—u=22""1(n!)?/(2n+1)!,
one obtains fron(4.4) that

s;al (1 du pua’ 'S

|q’0dd>:T Oﬁe _27|0> (45) P(Zn):O
The vacuum squeezed stdi® with /=o€'¢ is given by and
Ref. [11]:

2n n! 2
1 aTZe“Ptanho- P(2n+1):4n ﬁ ( ) ] |Sl|2 (n:0,1,2 . .),
|0-ei‘P>: F{_— |0>, (46) ar (2n+1)
Jcosho 2 (5.3

hence, where(W .44 W oqq) =1 gives that

033819-4
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| B Now (W 5 44l%:| ¥ oaq) =0 and so the variance of E¢5.9)
=222 | g |2 Sin =, for | W49 is given by
|se| 2= ———|—| =
=0 (2n+1)! 2 xf'(x)+2f(x
n=0 (2n+1)t{ar B B Ax?=—tanhoc cog2\—¢) X0 +2Hx)
ar ar o0
2xf'(x)+3f(x)
=f i . (5.4) i f(x) ’ ©-19
ar
with bounds
Now
~ X' (xX)+f(x) ,  3xF(x)+5f(x)
= = - << =
L xF 00+ : 1=(m ) NS T i
(n _f(—x)’ (5.9 (5.1)
and Accordingly, the electromagnetic fieldV,4q) can possess

either sub-Poissonian or super-Poissonian statistics but does
2en , not represent a squeezed state since the uncertainty associ-
(n?)= X0+ 3x1() + F(x) ' (5.6)  ated with each quadrature exceeds the valug a$sociated
f(x) with the vacuum and the coherent states. This is to be con-
trasted with the vacuum squeezed stabg,.) whose sta-
where f(x) is defined in Eq.5.4), the number operatan tistics is always super-Poissonian.
=a'a, f(W(x)=d"f(x)/dx", and x=|B/ar|. The variance
of n is given by C. Quadrature representation

The quadrature representati@rfx,) =(X,|¥,qq Of the

OO0 +xFOO T (%) = xP(F (x))? odd state, wherfx, ) is eigenstate of the quadrature operator

An’® + (57 (5.9 satisfies the differential equation given by E§.2
[f(x)]? (5.9), satisfies the differential equation given by E§.2)
. L di(x
and the Mandel parameté by (e'*—e Ne'“tanho) lg(xs)
T () —xA(F (%)) 2= [(x)]? 58 + (e + e~ Me¢tanha) X, (X, )
FOO (X () + (%)) ' '
a2 g (5.12
The Q parameter assumes negative values for nonclassical, mt ’

sub-Poissonian statistics and positive for super-Poissonian ) ) ) ) s
fields having a classical description. Resufis5)—(5.8) can ~ Where #(x,) is normalized to unity provided|s,|
all be expressed in terms of elementary functions. A numeri= f(IB8/ar). The solution of Eq(5.12) is
cal evaluation of Eq(5.8) gives a monotonically increasing Ua
function for Q vs |B/ar| assuming negative values for 0 _ msia(X)) . 1 D N 0
<|plar|=0.547 with Q=—1 at |glar|=0. For @  /OWT 5 eMXNz 7 7] a0,
=—1,|¥)=(so|0)+5s1]1))|1) with the atom in its ground (5.13
state |1) and the radiation field in the qubit statg|0)
+5;]1) with |so|*+[sy|*=1. The latter state is the only \here erfx) is the error functiona(x,)=e" 2% is the
lo\gwr)disentangled photon steady state besiiese) and  solution of the vacuum quadrature equatigni),

odd/-

D 1—isinh 2o sin(2\ — @)
B. Quadrature squeezing ~ cosh2r—sinh 20 cog2\—¢)’

(5.19

The quantization of the electromagnetic field gives sub-

. ! s . nd
Poissonian photon statistics and nonclassical squeezed stafes
that are used to improve accuracy measurements by limiting C=2 tanho e'[e~ 2 ei¢tanho— 1]. (5.19
quantum noise. The statgV,qq) exhibits quantum sub-

Poissonian statistics but is not a squeezed state. Consider the
phase-sensitive field operator VI. PHOTON STATISTICS AND QUADRATURE

OF THE STEADY STATE

xx=i[aef”+aTe‘”]. (5.9) The photonic part of the disentangled steady state is given
2 b

%

033819-5
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|l7[j>:nzo Sn|n>: |\Peuen>+ |\I’odd>v (6.9)
with the normalization condition
|Sol? o
1= ———+|sy|*f| |—| |, (6.2
ar

ﬂ 2

1_ -

ar
by using[1—y] Y2=37_,(2n)!y"/2?"(n!)2 . The dynam-
ics governed by the two-photon Hamiltonig1) does not

PHYSICAL REVIEW A 65 033819

Poissonian and in the latter super-Poissonian. A numerical
evaluation of the variancAx? versus|g/ar| also gives a
monotonically increasing function that assumes the value of
2 for | B/ar|=0. Accordingly, the staté), with equal ad-
mixtures of the even and the odd states, is not a squeezed
state. Therefore, folj3/ ar|=0.547 the photonic state)) is

not a squeezed state, its statistics is super-Poissonian, and is
given by a linear superposition of two super-Poissonian
states.

VIl. SUMMARY AND CONCLUSIONS

mix the space of even photon numbers with those with odd The time evolution of initially pure disentangled atom-
photon numbers. Accordingly, if the cavity field initially, field states are studied under the action of two-photon pro-
prior to the entrance of the first atom in the cavity, had probcesses. If the photonic part of the disentangled state is a
abilities Py and P, to be in the even and the odd photon syperposition of a squeezed vacuum and dHd photonic
states respectively, then those probabilities will remain thestate, then the composite system undergoes cycles of en-
same owing to the probabilities being separately constants @hnglement with instances of disentanglement. The period of

the motion. Therefore,|sy|?=V1—|B/ar[?P, and |s;|?
=f(|B/ar|)P, for the steady state.

The variance ofi in the state ) is given by
ANZ=(W g, e N?| W ey ep) + (W ogel % W ogq)
~(Yeuer N Weren +(¥oad N[ Woud))® (6.3
and the variance af, by
AXF=(W apenl X3 W aper) + (W oadXE| W oaq)

- (<\I,euen|;(>\|q’odd> + <\Podd|§()\|q’even>)21
(6.4

where| Vg, 0 and|¥,qq are given by Eqsi4.2) and(4.4),
respectively. All the quantities that appear in E¢3) and
(6.4) are expressible in terms of elementary functions.
Consider the stat¢y) for which initially Po=P;=3,
Viz., |Wepen) and|W 44 are equally probable and $ey|?
=\J1—[Blar?/2 and |s,|?=f(|B/ar|)/2. A numerical
evaluation of the MandeD parameter versug/ ar| for | i)
gives a monotonically increasing function g8/ ar|, which
assumes negative values fo=(B/ar|<0.36 and positive
values for|B/ar|=0.36. In the former caséy) is sub-

such cycles is given by/l in Eq. (3.14). These disentangled
composite states are the steady states that would evolve in a
lossless cavity and the atom-field interaction time is given by
7. For appropriate coherent superpositions, the field radiation
evolves into a pure state that is a macroscopic quantum su-
perposition of two super-Poissonian photonic states, a
Schralinger-cat state.

The odd states have both classical and quantum features
since they can possess both super-Poissonian and sub-
Poissonian statistics, albeit the state is not a squeezed state.
Accordingly, the steady state is a linear superposition of a
squeezed, super-Poissonian state plus a state that can possess
either super-Poissonian or sub-Poissonian statistics, but is
not a squeezed state. The nature of the initial state of the
electromagnetic field in the cavity determines the properties
of the overall photonic steady state. One can produce steady
states composed of a continuous admixture of a squeezed
vacuum and amdd photonic states by the proper initial ad-
mixture in the cavity of even- and odd-photon-number states.

It is shown that the squeezed vacuum anddbd states
are analogous to the zero-phot@he vacuum and the one-
photon states, respectively. This correspondence suggests the
use of the squeezed vacuum and dldel states as basic con-
stituents for qubits for quantum computation and quantum
information.
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