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Theoretical study of dissociative recombination of C2v triatomic ions:
Application to H2D+ and D2H+

Viatcheslav Kokoouline
Department of Physics, University of Central Florida, Orlando, Florida 32816, USA

Chris H. Greene
Department of Physics and JILA, University of Colorado, Boulder, Colorado 80309-0440, USA

�Received 16 March 2005; published 17 August 2005�

We develop a theoretical treatment of the dissociative recombination of triatomic molecular ions of the C2v
molecular symmetry group. Using the method, we study the dissociative recombination of the H2D+ and D2H+

ions. The theoretical rates obtained for the H2D+ and D2H+ dissociative recombination are in general agree-
ment with storage-ring experiments although there are some potentially informative discrepancies.

DOI: 10.1103/PhysRevA.72.022712 PACS number�s�: 34.80.Ht, 34.80.Kw, 34.80.Lx

I. INTRODUCTION

The dissociative recombination �DR� of small polyatomic
ions is an important process in chemistry of interstellar
clouds, planetary atmospheres, and many laboratory experi-
ments. Driven by its importance, significant headway has
been achieved in experimental study of the process. Results
of astrophysical observations �1–7� and laboratory experi-
ments �8–14� require theoretical interpretation. Such a theo-
retical description of DR has previously been successful in
diatomic ions �15–22�. Some of the principal techniques that
have contributed to these successes are multichannel quan-
tum defect theory and the theory of the rovibrational frame
transformation �23–26�.

In contrast to DR in diatomics, DR in triatomic ions re-
mains a difficult problem for theory. A well-known example
is the dissociative recombination of the H3

+ ion with the
electron,

H3
+ + e− → H2 + H or H + H + H.

It has been viewed as a particularly important process be-
cause H3

+ is the simplest triatomic ion. But despite its sim-
plicity, DR of H3

+ has remained an unsolved theoretical
problem throughout the past two decades. Important theoret-
ical progress was achieved by Orel and Kulander �27�, who
developed an understanding of the H3

+ DR rate at high �6–20
eV� electron-ion collision energy. Later, Schneider et al. �28�
tried to explain the low-energy range �10−3–6 eV�. While
this study was crucial in demonstrating the role of indirect
Rydberg pathways, the theoretical rate calculated in that
study was still orders of magnitude smaller than the mea-
sured rate �8�.

Recently, we have developed a first-principles theoretical
method �29,30� that successfully described the total rate for
dissociative recombination of the H3

+ ion by electron impact,
as observed in low-energy storage-ring experiments
�8,12,13,31�. The method explains the relatively high DR
rate in H3

+ at low energies �10−3–2 eV�, but it involves a
number of different and sometimes complicated techniques
that accurately represent all degrees of freedom present in
the system. However, the key ingredient that proved vital in

explaining the unexpectedly high DR rate at these energies is
probably not the method itself. We have found that the Jahn-
Teller effect �32�, which couples electronic and vibrational
degrees of freedom, generates the large DR rate in H3

+. This
effect was not incorporated in previous theoretical work
�28,33�, which is presumably the main reason why previous
studies obtained a very low rate.

As a first step in the development of a theoretical ap-
proach to the DR process and before we had formulated our
most complete quantitative method �29,30�, we first devised
a simplified approach �32� that successfully accounts for the
average enhancement produced by the Jahn-Teller effect.
Following our first application of the simplified approach, we
also obtained a smaller DR rate �by about a factor of 10�.
However, it later became clear that the DR rate presented in
that work required a correction by a factor of approximately
�2 �34�. With this correction, the theoretical DR rate ob-
tained in that simplified method comes very close to the
average experimental rate. Therefore, while the second, more
complicated method allows for a more detailed prediction of
energy dependences at the resonance-by-resonance level, it is
primarily the inclusion of Jahn-Teller coupling physics that
plays a crucial role in successfully understanding the high
H3

+ DR rate.
However, the method that we have developed �29,30� is

quite general and can be used for the theoretical treatment of
other triatomic ions. The second target ion that we consid-
ered was D3

+. It has the same molecular symmetry group D3h
and, therefore, can be treated in a similar way: To adapt the
method to the D3

+ ion, only minimal changes had to be in-
troduced. The principal change was to account for the differ-
ent nuclear spin statistics of deuterium �30�. The theoretical
DR rate obtained for D3

+ is a factor of 2–4 smaller than that
for H3

+, which is in reasonably good agreement with storage-
ring experiments �10,35�.

The existence of two other isotopomers of H3
+—i.e.,

H2D+ and D2H+—and the corresponding experimental data
�8,10� suggests that a further, nontrivial test of the theory is
to adapt it to describe ions belonging to the C2v molecular
symmetry group. Fortunately, we can use the same ionic
Born-Oppenheimer potential surface for all four isoto-

PHYSICAL REVIEW A 72, 022712 �2005�

1050-2947/2005/72�2�/022712�12�/$23.00 ©2005 The American Physical Society022712-1

http://dx.doi.org/10.1103/PhysRevA.72.022712


pomers, since the surface is calculated in the approximation
of infinite masses of the three nuclei. In addition, the mo-
lecular potential is very well known for H3

+ �36,37�, which is
not the case for many other triatomic ions of interest. In the
experiments, the DR rate for the four isotopomers is differ-
ent. �For example, the 300 K H3

+ DR rate is 4 times larger
than the D3

+ DR rate.� Therefore, the different H3
+ isoto-

pomers provide a unique opportunity to develop and test the
method, which after refinement can hopefully be applied to
other triatomic ions.

The goal of the present study is to adapt our method to
treat triatomic ions of the C2v symmetry group and apply it
to a first test case of dissociative recombination for the H2D+

and D2H+ ions.
The article is organized as following. In the next section

we describe our theoretical method. Since the method was
already presented in a previous publication �30�, we discuss
here only the part of the method that is different for C2v ions.
Section III presents a test of the accuracy of the adiabatic
hyperspherical approach employed earlier for H3

+ and D3
+.

Since the adiabatic approximation did not reproduce the vi-
brational spectrum of H2D+ and D2H+ sufficiently well, we
have developed an improved treatment of those degrees of
freedom. Section III describes that improved treatment. Sec-
tion IV presents results for the H2D+ and D2H+ DR rates and
a comparison with the experiment. Finally, Sec. V concludes
the article. In the Appendix we discuss how experimental
conditions must be accounted for in order to directly com-
pare the theoretical DR rate with measured values.

II. THEORY OF THE DISSOCIATIVE RECOMBINATION
OF C2v TRIATOMIC IONS

A. Overall symmetry of H2D+ and D2H+ wave functions

The overall symmetry of H2D+ and D2H+ was discussed
in detail in our earlier study �38�. Here we present only a
brief overview of the key aspects.

The molecular symmetry group of the H2D+ and D2H+

ions in their ground electronic state is C2v. There are four
elements in this group �E, �12�, E*, and �12�*� generated by
two operations: inversion E* and permutation �12� of two
identical particles �H↔H or D↔D�.

As in our treatment of the H3
+ ion, we construct the total

wave function of the ion-electron complex as a product of
four factors corresponding to rotational, vibrational, elec-
tronic, and nuclear spin degrees of freedom,

�total = �rot�vib�el�ns. �1�

We utilize two full sets �bases� of functions �total. One basis
�total

�l� is adapted for a description of the system at large sepa-
rations between the electron and ion: it diagonalizes the total
Hamiltonian when the electron is far from the ion. The sec-
ond basis �total

�s� corresponds to small electron-ion separa-
tions: the short-range Hamiltonian is almost diagonal in this
basis.

The allowed symmetries of the total wave function �total
of H2D+ are limited to the B1 and B2 irreducible representa-
tions of C2v because �total must be antisymmetric with re-

spect to �12�. For the same reason, the total symmetry of
�total of D2H+ can be A1 or A2.

B. Symmetry of vibrational, rotational, nuclear-spin, and
electronic wave functions

1. Rotational wave functions

The rotational part �rot
�l� and �rot

�s� of the total wave function
is constructed in the ��l� and ��s� bases in a similar way.

The ions H2D+ and D2H+ are asymmetric tops. Therefore,
the rotational wave functions are obtained by a diagonaliza-
tion of the well-known rotational Hamiltonian of the asym-
metric top:

Hrot = B�1�N̂1
2 + B�2�N̂2

2 + B�3�N̂3
2. �2�

In the above equation, N̂i are the three angular momentum
operators projected onto the principal axes of inertia of the
molecule and B�i� are rotational constants related to the three
principal moments of inertia. Since the three nuclei lie in a
plane, one axis of inertia is perpendicular to that plane and
the corresponding moment of inertia is the sum of the two
other moments. The constants B�i� depend on the vibrational
state.

Matrix elements of Hrot of different terms in Eq. �2� are
reasonably simple in the basis of symmetric top rotational
wave functions

Rk+m+
N+

��,�,�� = �2N+ + 1

8�2 �1/2

�Dm+,K+
N+

��,�,���* �3�

and given, for example, in �39� �see also our article �38��.
Eigenstates of the matrix Hrot, asymmetric top rotational

functions, are classified by four quantum numbers. These are
the total angular momentum N, its projection on a
laboratory-fixed axis, m, the parity p1

�rot�= ±1, and the eigen-
value p2

�rot� with respect to �12�, p2
�rot�= ±1. We will reference

to the resulting eigenstates of the asymmetric top as
�N ,m , p1

�rot� , p2
�rot��.

The symmetry properties of �N ,m , p1
�rot� , p2

�rot�� are dis-
cussed in more detail in Ref. �38�.

2. Electronic wave functions

As in our previous study of H3
+ DR, we consider here

only the np-electron states, because these are the states pre-
dominantly relevant to the dissociative recombination ex-
periments. The electronic states are constructed in a different
way for �total

�s� and �total
�l� �29,30,40–44�. The electronic wave

function �el
�s� is given by a spherical harmonic Y1,��� ,��,

where � is the projection of the electronic orbital momentum
l=1 on the molecular axis of symmetry and the angles � and
� are spherical coordinates of the electron with respect to the
molecule-fixed coordinate system. The electronic wave func-
tion �el

�l� is also a spherical harmonic Y1,	��� ,���, where 	 is
now the projection on the laboratory z axis and the angles ��
and �� refer to the laboratory coordinate system.

The spherical harmonics Y1,��� ,�� and Y1,	��� ,��� do
not transform according to a definite irreducible representa-
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tion of the C2v symmetry group. In order to obtain electronic
functions belonging to a definite irreducible representation,
we form appropriate linear combinations of the spherical har-
monics: Using their symmetry properties, we obtain �38�
electronic wave functions �el

�s�:


 = A1:Y1,X��,�� =
1
	2

�Y1,1��,�� + �− 1�1Y1,−1��,��� ,


 = B1:Y1,Z��,�� = Y1,0��,�� ,


 = B2:Y1,Y��,�� =
1

i	2
�Y1,1��,�� − �− 1�1Y1,−1��,��� .

�4�

For �el
�l�, the operator �12� is not diagonal because

Y1,	��� ,��� is a mixture of the three different Y1,��� ,��. The
inversion of �el

�l� is defined by the familiar formula

E*Y1,	���,��� = �− 1�1Y1,	���,��� .

3. Vibrational wave functions

Since the molecular XY plane is fixed by the plane of the
three nuclei, vibrational motion occurs only in that plane,
and therefore, the possible irreducible representations of vi-
brational motion are A1 and B2.

The ionic vibrational basis �vib
�s� is chosen to be the set of

position eigenstates of the vibrational coordinates Q : �vib
�s�

= �Q�, where Q denotes three hyperspherical coordinates.
The vibrational state �vib

�l� is given by the vibrational quan-
tum number V of the ion: �vib

�l� = �V�. The transformation co-
efficients connecting the two vibrational bases are given by


�vib
�l� ��vib

�s� � = 
V�Q� = �V�Q� , �5�

which coincide with ionic vibrational eigenfunctions.

4. Nuclear spin wave functions

The spin eigenfunctions �ns are unchanged by the opera-
tor E* of the coordinate inversion. Therefore, the allowable
irreducible representations for �ns are A1 and B2. The
nuclear states of two identical nuclei are specified by their
spins i and spin projections mi, with i=1/2 for H2D+ and i
=1 for D2H+. The nuclear spin irreducible representation—
i.e., A1 or B2—is determined by the factor �−1�i1+i2−I. For A1

it is +1; for B2 it is −1 �38�. The nuclear spin wave functions
�ns are the same in the short- and long-range bases.

C. Jahn-Teller coupling in H2D+

As in our treatment of H3
+ DR, we introduce the physics

of Jahn-Teller coupling using the reaction matrix Ks,s� �see
Refs. �43–47��. Since the reaction matrix for H3

+ �30� is
obtained in the Born-Oppenheimer approximation, it can
also be used in other isotopomers of H3

+. However, the ma-
trix in Ref. �30� must be slightly modified to be used in the
basis of electronic states Y1j �i=X , Y, or Z� since the initial

K matrix is defined in the basis of Y1�. The resulting reaction
matrix is

Ki,i��Q�

= �tan����=0�Q�� 0 0

0 
�2 − 	� cos��� − 	� sin���
0 − 	� sin��� 
�2 + 	� cos���

� .

�6�

D. Hyperspherical coordinates for C2v molecules: Principal
moments of inertia

For the H2D+ and D2H+ ions, the hyperspherical coordi-
nates adopted are defined differently than in H3

+, because the
three nuclear masses are unequal. The three hyperspherical
coordinates R, ��h�, and ��h� can be defined through the three
internuclear distances �r�12�, �r�23�, and �r�31� as �48�

�r�23� =
Rd1

	2
	1 + sin ��h�sin ��h�,

�r�31� =
Rd2

	2
	1 + sin ��h�sin���h� − �2� ,

�r�12� =
Rd2

	2
	1 + sin ��h�sin���h� + �3� , �7�

where

�2 = 2 arctan�m3/�� ,

�3 = 2 arctan�m2/�� ,

di = 	�mi/���1 − mi/M� ,

M = m1 + m2 + m3,

� = 	m1m2m3/M . �8�

m1, m2, and m3 are masses of the three nuclei in the ion. For
the H2D+ and D2H+ ions, two masses of the three are the
same. The hyperradius R can vary in the interval �0,��, the
hyperangle ��h� varies over �0,2��, and ��h� varies over the
interval �0,� /2�.

Since each of these ions is an asymmetric top molecule,
we also need expressions for the rotational constants BV

�i� in
Eq. �2�. These are given by �48�

BV
�i� = 
V�1/�2Ii��V� , �9�

where Ii are principal moments of inertia. In hyperspherical
coordinates the expressions are

I1 =
1

2
�R2�1 − sin ��h�� ,

I2 =
1

2
�R2�1 + sin ��h�� ,
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I3 = IZ = I1 + I2 = �R2. �10�

The integration 

� in Eq. �9� is made over all three hyper-
spherical coordinates.

E. Frame transformation

The final scattering matrix for electron-ion collisions is
obtained using a frame transformation between wave func-
tions �total

�l� describing the system at large electron distances r
and wave functions �total

�s� describing the system at small r.
The final scattering matrix has a form similar to the one
derived for H3 �Eq. �42� of Ref. �30��,

S�l� = US�s�U†, �11�

where the matrix elements Ul,s of the rovibrational frame
transformation are given by inner products:

Ul,s = 
�total
�l� ��total

�s� � .

A difference from the H3
+ treatment is in the rotational

coefficients 
�rot
�l� �el

�l� ��rot
�s��el

�s��. In the present study, they are

not just Clebsch-Gordan coefficients Cl,−�;N,k
N+,k+

as was the case
for H3

+ �30�, because the rotational functions for H2D+ and
D2H+ are not symmetric top eigenstates and the electronic
functions Y1,X and Y1,Y are not pure spherical harmonics.
The rotational frame transformation coefficients

�rot

�l� �el
�l� ��rot

�s��el
�s�� can be obtained using a sequence of uni-

tary transformations: �i� The coefficients linking asymmetric

top functions ��rot
�l� � with symmetric top functions Rk+m+

N+
are

obtained from a diagonalization of the rotational Hamil-
tonian of Eq. �2�. �ii� The electronic functions Y1,X and Y1,Y
are linked to spherical harmonics by Eq. �4�. �iii� The unitary
transformation between ionic and neutral-molecule symmet-
ric top functions is performed using Clebsch-Gordan coeffi-

cients Cl,−�;N,k
N+,k+

�Eq. �41� of Ref. �30��. �iv� Finally, the trans-
formation from symmetric top functions Rkm

N to asymmetric
top functions ��rot

�s�� is carried out in a manner very similar to
�i�.

F. Scattering matrix and the DR cross section and rate

To obtain the matrix S
l�,l
�l� , where subscripts l and l� refer

to possible channels ��l� of S�l�, we use Eq. �11�. For this, we
first calculate the scattering matrix S�s� in the short-
separation states ��s�. The matrix S�s� is obtained using the
short-separation reaction matrix of Eq. �6�. The transforma-
tion Kii�→S

l�,l
�s� is performed using the standard quantum de-

fect procedure �for example, see Eq. �2.43� in �25��.
The vibrational state �vib�Q� can be either a bound or

continuum wave function. The scattering matrix S�l� obtained
is not unitary because it contains information about the dis-
sociation: Not all the incoming electron flux eventually ends
up in the outgoing flux. A fraction of the flux goes into dis-
sociative channels.

The calculated energy-independent scattering matrix S�l�

is then used to obtain the physical scattering matrix Sphys�E�.
The DR cross section and rate are then calculated using the

defect from unitarity of the relevant columns of the matrix
Sphys�E�. This aspect of the DR calculation for H2D+ and
D2H+ is the same as for H3

+ and D3
+, which was already

described in a previous publication �see Sec. VII of Ref.
�30��.

III. ACCURACY OF THE VIBRATIONAL
EIGENFUNCTIONS

A. Adiabatic hyperspherical approximation and its accuracy

The key idea of the adiabatic hyperspherical approach
�49� is to view the hyperradius as a slowly varying coordi-
nate, in contrast to fast-changing hyperangular coordinates.
This assumption allowed us to obtain the vibrational
eigenenergies Evib, and the corresponding three-dimensional
vibrational wave functions �vib�R ,��h� ,��h�� is the two-step
procedure �29,30�: First, adiabatic hyperspherical curves
Ua�R� are obtained by a diagonalization of the fixed-R
Hamiltonian, in the two-dimensional hyperangle space,

Had�a�Ri;�
�h�,��h�� = Ua�Ri��a�Ri;�

�h�,��h�� . �12�

Then, for each adiabatic curve Ua�R�, the one-dimensional
Schrödinger equation is solved,

�K�R� + Ua�R� − Ea,v��a,v�R� = 0, �13�

where Had is the vibrational Hamiltonian assuming that the
hyperradius R is fixed and K�R� represents the kinetic energy
term associated with the hyperradial motion. Correspond-
ingly, the total three-dimensional vibrational wave functions
are given in the form

�vib�R,��h�,��h�� = �a,v�R��a�R;��h�,��h�� �14�

in the adiabatic approximation.
Figure 1 shows several adiabatic hyperspherical potential

curves Ua�R� of the H2D+ and D2H+ ions. As one can see the
curves for the two ions look very similar.

As we discussed earlier, the adiabatic hyperspherical ap-
proximation was good enough to be used in the theoretical
treatment of DR in H3

+. Because of the success we found
with this approach for H3

+ and D3
+, we initially attempted to

use the adiabatic approximation for the two other asymmet-
ric isotopomers of H3

+. However, test cases showed that the
vibrational eigenenergies Ea,v calculated for H2D+ and D2H+

using this approximation are far less accurate than for H3
+

and D3
+. The results of the vibrational level calculation for

all the four H3
+ isotopomers using the adiabatic hyperspheri-

cal approximation are given in Table I. However, since at
that time we did not have a better way to represent the vi-
brational eigenstates, we decided to keep the approach and
carry out a complete calculation of the DR rate. The resulting
DR rate for H2D+ was about a factor of 3 larger than the
experimental one from the CRYRING storage ring �35�. The
theoretical and experimental rates are shown in Fig. 3, below.
Such a big difference between calculation and the experi-
ment could potentially mean that the quality of the vibra-
tional eigenfunctions is not satisfactory. This difficulty has
led us to improve the vibrational energy level calculation and
to go beyond the adiabatic hyperspherical approximation for
DR in H2D+ and D2H+.

V. KOKOOULINE AND C. H. GREENE PHYSICAL REVIEW A 72, 022712 �2005�

022712-4



B. Slow variable representation

Although the adiabatic hyperspherical approach failed,
the hyperspherical coordinates are still attractive for the DR
treatment, because the hyperradius naturally represents the
dissociation coordinate. The slow variable discretization
�SVD� method proposed by Tolstikhin et al. �52� suggests
that we might be able to retain the hyperradius as the disso-
ciation coordinate and, simultaneously, to calculate and uti-
lize essentially exact vibrational eigenfunctions.

The original detailed description of the SVD method was
presented in Ref. �52�. Our treatment slightly modifies the
method, as is briefly described below. In the first step,

the adiabatic eigenenergies Ua�Ri� and eigenfunctions
�a�Ri ;��h� ,��h�� at a fixed hyperradius Ri are obtained on a
grid of Ri values by solving the same eigenvalue equation
�12� as in the adiabatic approach.

In the second step, the exact vibrational eigenstate
�vib�Q� is represented as an expansion in the basis of the
functions �a�Ri ;��h� ,��h��. The coefficients of expansion
�a�Ri� depend on the hyperradius Ri:

�vib�Q� = �
a

�a�Ri��a�Ri;�
�h�,��h�� . �15�

The hyperradial wave functions �a�Ri� in their turn are ex-
panded in the discrete variable representation �DVR� basis
� j�R� �52�:

�a�R� = �
j

cj,a� j�R� . �16�

In our version of the treatment, we use B splines instead
of the DVR basis. After inserting the two above expansions
into the original vibrational eigenvalue problem H�vib�Q�
=E�vib�Q�, we obtain

�
i�,a�

�
�i��K�R���i�Oi�a�,ia + 
�i��Ua�R���i�
a�a�ci�a�

= E �
i�,a�


�i���i�Oi�a�,iaci�a�, �17�

with Oi�a�,ia

Oi�a�,ia = 
�a��Ri�;��h�,��h����a�Ri;�
�h�,��h��� . �18�

In Eq. �17�, on the right-hand side, the overlap matrix ele-
ment 
�i� ��i� appears because the B-spline representation
basis is not orthogonal.

Equation �17� is a generalized eigenvalue problem for the
eigenvalues E and corresponding eigenvectors c�, and it can
be solved using standard numerical procedures.

Table II compares eigenenergies obtained using the SVD
method with the exact energies obtained in Ref. �51�. Figure
2 demonstrates the multichannel wave function for the
first exited vibrational level vA=1, �v1v2v3�= �010� , E
=2205.2 cm−1 of the A symmetry. As one can clearly see,

TABLE I. Several vibrational energies of the H2D+ and D2H+ ions in cm−1. The first number in each cell
of the table gives the energy obtained in the present study using the adiabatic hyperspherical approximation;
the second number in a cell gives the actual energy of the state.

�v1v2
l2� , D3h H3

+ D3
+ �v1v2v3� , C2v H2D+ D2H+

�100� 3188 2306 �100� 2781 2431

3178.5a 2301.36b 2992.51c 2736.98c

�011� 2516 1833 �010� 2382 2210

2521.20a 1834.67c 2205.87c 1968.17c

�022� 5001 3650.8 �001� 2328 2086

4997.73a 3650.55b 2335.45c 2078.43c

aReference �37�.
bReference �50�.
cReference �51�.

FIG. 1. �Color online� Several first adiabatic hyperspherical po-
tential curves for the H2D+ ion �upper panel� and for the D2H+ ion
�lower panel�. The curves can be classified according to one of the
two A or B irreducible representations of the vibrational symmetry
group.
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contributions from the first two channels a=1,2 are compa-
rable. The contribution from the third channel is also not
negligible. The non-negligible contribution from several
adiabatic channels a explains why the accuracy of the adia-
batic approximation is so poor.

Therefore, in the current DR treatment of H2D+ and D2H+

we use the hyperspherical coordinates and the SVD method
to represent and calculate the vibrational eigenfunctions and
eigenenergies.

C. Vibrational eigenfunction of the continuum spectrum
and the complex absorbing potential

As in the DR treatment of H3
+ and D3

+ we need not only
the bound vibrational eigenfunctions but also the continuum
eigenfunctions. Using the adiabatic approximation we ob-
tained the continuum wave functions applying another
method suggested by Tolstikhin et al. �53,54�: namely, the
Siegert state method. However, it appears as though the
method cannot be used in a general multichannel problem
until or unless it is generalized further. For this reason, we
decided to use another approach to determine the continuum
eigenfunctions: namely, the complex absorbing potential
method. Out of the different versions of this method that are

available, we have chosen the one described by Vibok and
Balint-Kurti �55,56�. To keep the hyperradial grid of modest
extent, we have chosen a quadratic complex absorbing po-
tential that is placed at the end of the grid. The parameters of
the absorbing potential were chosen according to the instruc-
tions of Ref. �55�.

IV. RESULTS FOR THE DR RATES OF H2D+ AND D2H+

The theoretical DR rate ��E� calculated has hundreds of
sharp resonances associated with autoionizing states of the
neutral H2D+ or D2H+ molecule. The data from storage ring
experiments do not exhibit such resonances for collision en-
ergies below 5 eV. We attribute the absence of resonances in
the experimental data to a wide experimental spread in the
collision energy. However, we do note that a recent experi-
ment with better resolution �13� does exhibit some reso-
nances for the H3

+ ion. Thus, to compare our theoretical
results with the experimental date we have to average the
theoretical DR rate ��raw��E� over the experimental energy
distribution.

There are three distributions that must be considered: �1�
the collision energy distribution, �2� the target ion rotational
energy distribution, and �3� the toroidal correction. The ac-
tual averaging procedure was briefly discussed in a previous
publication �34�. Since the procedure was found to be impor-
tant in order to discern a proper theory-experiment compari-
son, we give in the Appendix a detailed description of all
three averaging procedures.

Figures 3 and 4 present the theoretical DR rate obtained
for H2D+ and D2H+. The first figure �Fig. 3� compares the
theoretical H2D+ DR rate �solid thick curve� with the experi-
mental data from the CRYRING storage ring experiment of
Ref. �35�. The theoretical DR rate shown in the figure in-
cludes all averagings described above. The overall agreement

TABLE II. Several vibrational energies of the H2D+ calculated
using the adiabatic hyperspherical approximation and SVD method.
For a comparison, the exact energies �51� are also given.

Symmetry �v1v2v3� Adiabatic energies SVD energies Exact calc.

A �000� 0 0 0

A �100� 2781 2993.8 2992.51

A �010� 2328 2205.2 2205.87

B �001� 2382 2335.2 2335.45

FIG. 2. �Color online� Hyper-
radial dependence �a�R� of the
first excited �v=1� A vibrational
wave function of H2D+ calculated
using the SVD method. In the
SVD method, vibrational eigen-
functions are multichannel �see
Eq. �15��. The upper left panel
shows the norm of the function
summed over all channels; the
three other panels show contribu-
tions �a�R� of the first three adia-
batic channels �a=1,2,3� to the to-
tal eigenfunction.
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between theory and experiment is good. The theoretical and
experimental curves disagree in two energy regions, at 0.01–
0.09 eV and 0.3–2 eV, where the theoretical DR is smaller
than the experimental one by a factor of 2–5. The reason for
the discrepancy in the first region is not yet clear to us. We
would like to note that a similar discrepancy is present in the
H3

+ rate �see Fig. 6, below�. The second region of discrep-
ancy is probably associated with the toroidal correction. We
do not have the exact parameters for the toroidal effect in the
experiment of Ref. �35�, which would be needed to accu-

rately simulate the toroidal correction to the theoretical DR
curve; accordingly, we use the same parameters that we used
previously to estimate this effect for H3

+ �13�. As far as we
know, the experimental conditions in Refs. �13,35� may be
different. Comparing the two theoretical curves in Fig. 6,
below, one can see that the DR rate in the 0.3–2 eV energy
region depends sensitively on the actual parameters of toroi-
dal correction. For this reason, we do not believe that the
second discrepancy region is a significant concern, as it does
not provide unambiguous evidence for problems in our the-
oretical description of the DR process.

Figure 3 shows also one other theoretical DR rate, calcu-
lated using the adiabatic hyperspherical description of the
ionic vibrations. We ascribe the considerable difference be-
tween the two theoretical curves to the poor accuracy of the
vibrational eigenfunctions of H2D+ in the adiabatic approxi-
mation.

The second figure �Fig. 4� compares our theoretical re-
sults �thick solid curve� with the data from two measure-
ments �10,57� �thin dashed and solid curves� of the DR rates
for D2H+. As in Fig. 3, the theoretical curve includes all
averagings discussed above. One experimental curve �the
dashed one� is from the TARN II storage ring experiment of
Tanabe et al. �10�, two other experimental curves �thin solid
lines� are from the TSR storage ring experiment of Lammich
et al. �57�. In the experiment of Tanabe et al. �10� the mea-
sured DR rate is given only in relative units. Thus, we have
to scale it by a suitably chosen factor. The scaling we have
chosen was based on the assumption that the DR rate at the
high-energy peak at 10 eV is roughly the same in the experi-
ment of Lammich et al. �57�: At 10 eV, Lammich et al. have
measured the DR rate to be 1.6±0.5�10−8 cm3/s. Experi-
mental data for the averaging parameters are given for the
experiment of Lammich et al. but unknown for the experi-
ment of Tanabe et al. Therefore, the theoretical DR rate was
averaged using the parameters from Ref. �57�. The agree-
ment between theory and experiment is reasonably encour-
aging in the energy range 0.06–2 eV, but at energies below
0.06 eV theory predicts a DR rate that is 2–4 times smaller
than the experiment. The reason for this disagreement is not
clear.

In Fig. 4 we included two experimental curves from the
experiment of Lammich et al. �57�. The difference between
the curves is in the time during which the D2H+ ions were
precooled and stored before colliding with electrons. For the
lowest curve the precooling time tp is 30 s and the storage
time t is 61 s, while for the upper curve two shorter times
were used, tp=5 s and t=11 s, respectively �57�. It is not
quite clear what experimental curve should be viewed as the
one corresponding to the thermal equilibrium. This question
merits a separate detailed consideration, which is beyond the
scope of the present paper, but we would like to briefly com-
ment on this issue here. The longer precooling time helps to
decrease the rotational temperature of the D2H+ ions. The
rotational temperature is expected to decrease initially, be-
cause at the beginning it is known to be much higher than
300 K. The longer storage time t helps to establish a thermal
equilibrium of the D2H+ ions with the blackbody radiation.
In the absence of further, detailed tests, one should not dis-
count the possibility that passage of the ions through the

FIG. 3. �Color online� Experimental �35� �dashed curve� and
theoretical �thick solid curve� H2D+ DR rates. The final theoretical
DR rate �thick curve� is averaged according to Eq. �A4�. The thin
solid line represents the DR rate calculated using the adiabatic vi-
brational eigenfunctions.

FIG. 4. �Color online� Comparison between theoretical and ex-
perimental results for DR rate in D2H+. The experimental rates are
from Lammich et al. �57� and Tanabe et al. �10�. The experimental
curve from the experiment of Tanabe et al. �10� is scaled to obtain
the agreement with the experiment of Lammich et al. �57� at large
�10 eV� collision energy, where Lammich et al. measured the DR
rate equal to 1.6±0.5�10−8 cm3/s. When the averaging was per-
formed on the theoretical curve, we used the three energy distribu-
tion widths from Ref. �57�: namely, �E
 =0.07 meV, �E�

=12 meV, and Trot=300 K.
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toroidal region might produce some rotational heating, which
would tend to counter the cooling effect of waiting for longer
times. Nevertheless, we tend to think that the lower experi-
mental curve better represents the equilibrium with black-
body radiation at 300 K. However, since this issue is not yet
completely clear, we have included both experimental curves
in the figure.

We note that the higher-resolution experimental curves by
Lammich et al. show several weak resonances in the region
0.08–0.2 eV. The positions and approximate widths of the
resonances appear to be in general agreement with the analo-
gous features in our theoretical curve. These resonances are
due to Rydberg states of the neutral molecule D2H, which
belong primarily to the two Rydberg series converging to
�010� and �001� vibrational states of the D2H+ ion. A similar
Rydberg series is visible in the experimental and theoretical
DR rate for the H3

+ ion �Fig. 6, below�. In H3 the Rydberg
series are converging to the doubly degenerate E�011� vibra-
tional level of the ion. �Any doubly degenerate E vibrational
state in H3

+ corresponds to two vibrational levels in D2H+ or
H2D+; one level is of the A irreducible representation, the
other one B.�

V. SUMMARY AND CONCLUSIONS

In the present study we have discussed several issues and
developments in the dissociative recombination of triatomic
ions.

�i� Theoretical method for DR in C2v ions. In this study
we have developed an approach to calculate the DR rate for
triatomic molecular ions of the C2v molecular symmetry
group. The approach is similar to the one developed earlier
for ions of the D3h symmetry group but it has a number of
important differences.

�ii� Main differences in the DR treatment of D3h and C2v
ions. One principal difference in the theoretical treatments of
the C2v and D3h ions is a different way to construct total
wave functions. All four factors—vibrational, rotational,
electronic, and nuclear spin—in the total wave function of
the ions are constructed differently. This is because the wave
functions of the C2v and D3h ions are transforming according
to different sets of irreducible representations of the corre-
sponding molecular symmetry group. The second principal
difference is in the calculation of the vibrational eigenfunc-
tions of the ions. The adiabatic hyperspherical approach em-
ployed for H3

+ and D3
+ in our previous study �29,30� is not

sufficiently accurate for H2D+ and D2H+. To improve the
accuracy we used the slow variable discretization technique
�52�. The resulting vibrational eigenenergies are in excellent
agreement with “exact” three-dimensional calculations. Us-
ing the SVD technique we had to abandon the Siegert state
method that was used for H3

+ and D3
+ because it cannot be

adapted to multichannel eigenvalue problem. Instead, we
have used the method of complex absorbing potential
�55,56�.

�iii� Accounting for experimental conditions. In the
present study we have accounted for several experimental
effects present in the storage ring experiment. Not all these
effects were not accounted for in our initial studies �29,30� of

DR in H3
+ and D3

+. Once they have been included, the
agreement between theory and experiment for H3

+ is signifi-
cantly improved �Fig. 6, below�.

�iv� Results for the H2D+ and D2H+ ions. The theoretical
DR rate obtained for H2D+ and D2H+ in the present study is
in a good agreement with the three different storage-ring
experiments: CRYRING �35�, TARN II �10�, and TSR �57�.
The main disagreement to mention is that the theoretical DR
rate shows few dips at that are not presented in the experi-
mental DR rate. The second important disagreement is in the
low-energy region for D2H+, where theory DR is below the
experiment by a factor of 3–4. The reason for these disagree-
ments is unknown.

In conclusion, we have developed a theoretical method
for treatment of the dissociative recombination in triatomic
C2v molecular ions. We applied the method to interpretation
of DR experiments with the H2D+ and D2H+. The theoretical
rate obtained is in reasonably good agreement with the ex-
periments, overall, but with some notable discrepancies that
may eventually prove to be informative for theory, and pos-
sibly for the experiments as well.
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APPENDIX

There are three distributions that must be considered: �1�
the collision energy distribution, �2� the rotational energy
distribution, and �3� the toroidal correction.

1. Convolution over the distribution of collision energies

One distribution f�Ex ,Ey ,Ez� is over the relative energy of
colliding H3

+ and e−. In the storage-ring experiments
�11,13,31,57�, f�Ex ,Ey ,Ez� is not isotropic: the width of the
distribution along one spatial direction �let it be the x com-
ponent Ex=E
� differs from the widths along the other two
directions �Ey and Ez�. The widths along y and z are the
same. For the sum Ey +Ez we will use the symbol E�. Let the
corresponding widths be �E
 and �E�. We need to consider
velocities vi as well as energies Ei , i=x ,y ,z. The total veloc-
ity of the electron relative to the ion is v� =v� 
 +u� , where v
 is
the velocity measured in the experiment. This velocity is the
center of the velocity distribution. u� is the velocity that de-
scribes the distribution; it represents the deviation of the total
velocity from the center of the distribution. We also represent
u� as a sum of two contributions u� =u��+u� 
, assuming that
u� 
 and v� 
 are collinear. Then, the averaging over the noniso-
tropic distribution f�Ex ,Ey ,Ez� is carried out through the
integral
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��v
�� =
1

C
� d3u exp�−

u�
2

2�E�

�
�exp�−

u

2

2�E


����v� 
 + u�� + u� 
�� , �A1�

where C is the normalization constant:

C =� d3u exp�−
u�

2

2�E�

�exp�−
u


2

2�E


� = �2��3/2E�
	�E
 .

�A2�

Switching from velocity u� to energy E� in Eq. �A1�, we
have


��v
�� =
1

�2��1/2E�
	�E


�
−�

�

du
exp�−
u


2

2�E


�
��

0

�

dE�exp�−
E�

�E�

����v
 + u
�2/2 + E�� .

�A3�

2. Rotational energy averaging

In addition to the relative velocity distribution, in the ex-
periment there is a non-negligible population of different
rotational energy levels associated with the rotation of the
ion. It is reasonable to assume that such a distribution obeys
Boltzmann statistics. Therefore, the DR rate calculated for
different initial rotational states of H3

+ should be weighted
with the factor exp�−�Erot−E0� /kTrot�, where Erot is the en-
ergy of a given rotational level contributing to the total DR
rate and E0 is the lowest rotational states among all rotational
states. The additional averaging takes the form

1

Crot
�
rot

�2I + 1��2N+ + 1�exp�−
Erot − E0

kTrot
��rot,

with the normalization constant Crot:

Crot = �
rot

�2I + 1��2N+ + 1�exp�−
Erot − E0

kTrot
� .

In the above formula we include the statistical factor �2I
+1��2N++1� that accounts for the �2I+1� degenerate projec-
tions of the nuclear spin �I=1/2 or 3 /2 for H3

+� and the
�2N++1� projections of the ionic angular momentum on a

space-fixed axis. Therefore, the full averaging procedure is
given by the following formula:


��v�� =
1

�2��1/2E�
	�E
Crot

�
rot

�2I + 1��2N+ + 1�

�exp�−
Erot − E0

kTrot
��

−�

�

du
exp�−
u


2

2�E


��
0

�

dE�

�exp�−
E�

�E�

��rot��v
 + u
�2/2 + E�� . �A4�

3. Toroidal correction

There is one more experimental factor that has not yet
been described in the theoretical description presented
above: the so-called toroidal correction. �The toroidal correc-
tion was not included in our previous work �29,30�, but it
was addressed briefly in Ref. �34�.�

The electron-ion interaction region in a storage ring ex-
periment actually consists of two different regions �see Fig.
5�: the region p of length L, where the electron and ion
beams are parallel, and two symmetric regions of length lbend
each, where the electrons are bent into and out of the ion
beam �region b�.

Experimentally, the dissociative recombination rate
�meas�E� is determined from the measured number of disso-
ciative recombination events KDR that occur per unit time
interval,

KDR = �meas�E�neniAL . �A5�

Here ni and ne are, respectively, the ion and electron densi-
ties, L is the length of the interaction region, and A is the
cross-section area of the ion beam �assumed here to be
smaller than the electron beam cross-sectional area�. In the
formula above, �meas�E�ne represents a probability per sec-
ond for one ion to dissociate and the value niAL gives the
total number of ions in the interaction region. In the analysis
of experimental data, L is taken as the length of the parallel
portion of the interaction region. Since the relative velocity
of electrons with respect to ions is not exactly uniform along
the interaction region, especially at its edges, �meas�E� repre-
sents an average of the actual DR rate ��E� over a range of
relative electron-ion energies E. The relation between ��E�
and �meas�E� can be found by first writing down the rate of
DR events dKDR that occur within a small portion dx of the
interaction region:

FIG. 5. �Color online� From
Ref. �34�. Geometry of the toroi-
dal effect in storage-ring experi-
ments, showing how the ion and
electron beams are not parallel at
the interaction region edges.
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dKDR = �„Ẽ�x�…neniAdx . �A6�

Consequently, for the rate KDR we obtain

KDR = �
int.region

�„Ẽ�x�…neniAdx , �A7�

where the notation Ẽ�x� reflects the fact that the relative ki-

netic energy Ẽ depends on the position x in the bending
region b. This gives the following expression for �meas�E�:

�meas�E� =
1

L
�

int.region

�„Ẽ�x�…dx . �A8�

Since in the central region the ion and electron beams are
parallel, the integral can be written as

�meas�E� = ��E� +
2

L
�

0

lbend

�„Ẽ�x�…dx . �A9�

The last integral needs to be evaluated only for one of the
two symmetric regions, where the beams are not parallel.
The energy E on the left-hand side of Eq. �A9� refers to the

relative energy in the region p. The relative energy Ẽ�x� can
be calculated from E and from the known dependence of the
angle ��x� between ionic and electron velocities as a function
of x. The angle ��x� in the bending region has been measured
experimentally. Using the vector addition rule we find �in
atomic units�

Ẽ�x� = Ẽ„x���… = E + mionvive�1 − cos �� . �A10�

The ion velocity vi is determined from the frequency f of the
storage ring revolution and the length S of the ion path
within the storage ring: vi= fS. The electron velocity is ob-
tained from vi and any given relative kinetic energy E in the
region p:

ve = vi ± 	2E . �A11�

The sign ± means that the electron velocity can be larger or
smaller than the ion velocity.

Evaluating the integral �A9� for H3
+, we have used the

following parameters, taken from Ref. �58�:

f = 539730 s−1,

S = 51.6 m,

��x� = A2�1 −
1

1 + �x/x0�p� ,

p = 2.35271, A2 = 0.75638 rad, x0 = 313.776 mm,

lbend = 255 mm,

L = 850 mm. �A12�

To combine the toroidal correction effect with the theoret-
ical DR rate, to simulate the experimental conditions, we

took our calculated DR rate, convolved it with the experi-
mental rotational Erot, transverse E�, and parallel E
 energy
distributions. In order to include the toroidal correction prop-
erly, we need the higher-energy DR rate above 2 eV, where
we have not performed calculations. To this end, we have
smoothly joined our theoretical curve below 2 eV with the
experimental data above 3.8 eV. We use this dependence as
��Ẽ� in Eqs. �A8� and �A9�. The result of this calculation is
the effective experimental DR rate coefficient. For H3

+, it is
shown in Fig. 6.

The inclusion of the toroidal effect significantly changes
the measured DR rate in a storage ring experiment, particu-
larly in energy regions where the DR rate is small. One ex-
ample is the 0.4–2 eV region in Fig. 6, where the DR rate
with the toroidal effect is much higher than the rate without
it. In some storage-ring experiments there were attempts to
make an iterative deconvolution—i.e., an inversion of the
integral in Eq. �A9�. Such a deconvolution may produce re-
sults with large error bars in energy regions where the DR
rate is small, if the full, energy-dependent DR rate is not
known in advance. For this reason, we believe that a better
test of the theory is achieved by directly comparing the mea-
sured rates with a theoretical simulation that incorporates the
experimental details.

When we published our initial theoretical work �29,30� on
H3

+, we were not familiar with all of these experimental
conditions and the relevant averaging procedures needed to
fully describe the measured recombination rates. For com-
pleteness we provide here in Fig. 6 the theoretical H3

+ DR
rate that includes all such averaging aspects. This figure
shows that the averaging significantly improves the agree-
ment between theory and experiment. For example, the tor-
oidal correction gives almost perfect agreement at the higher

FIG. 6. �Color online� Experimental �13� �triangles� and theo-
retical �two solid lines� H3

+ DR rates. The thick line represents the
theoretical rate averaged according to Eqs. �A3�, �A4�, and �A9�.
The thin line represents the result published in our previous work
�29,30�, where the averaging over �E
 and the toroidal averaging
were not performed. Clearly, the �E
 averaging and the toroidal
correction are both very important.
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end of the energy range that we have calculated �0.4–2 eV�,
although the measured DR events in this region are predomi-
nantly sampling the energies above 2 eV through the toroidal
effect. The averaging over �E
 smears out many deep reso-

nances in the theoretical rate, which are not visible in the
experimental DR rate at the present day experimental reso-
lution but which could in principle be measured in the future
as experimental capabilities improve.

�1� T. R. Geballe and T. Oka, Nature �London� 384, 334 �1996�.
�2� T. R. Geballe, B. J. McCall, K. H. Hinkle, and T. Oka, Astro-

phys. J. 510, 251 �1999�.
�3� B. J. McCall and T. Oka, Science 287, 1941 �2000�.
�4� T. R. Geballe, Philos. Trans. R. Soc. London, Ser. A 358, 2503

�2000�.
�5� F. Scappini, C. Cecchi-Pestellini, C. Codella, and A. Dalgarno,

Mon. Not. R. Astron. Soc. 317, L6 �2000�.
�6� T. Oka, Philos. Trans. R. Soc. London, Ser. A 358, 2363

�2000�.
�7� B. J. McCall, Ph.D. thesis, University of Chicago, 2001.
�8� M. Larsson, H. Danared, J. R. Mowat, P. Sigray, G. Sund-

ström, L. Broström, A. Filevich, A. Källberg, S. Mannervik, K.
G. Rensfelt, and S. Datz, Phys. Rev. Lett. 70, 430 �1993�.

�9� G. Sundström, J. R. Mowat, H. Danared, S. Datz, L. Broström,
A. Filevich, A. Källberg, S. Mannervik, K. G. Rensfelt, P.
Sigray, M. af Ugllas, and M. Larsson, Science 263, 785
�1994�.

�10� T. Tanabe, I. Katayama, H. Kamegaya, K. Chida, Y. Arakaki,
T. Watanabe, M. Yoshizawa, M. Saito, Y. Haruyama, K.
Hosono, K. Hatanaka, T. Honma, K. Noda, S. Ohtani, and H.
Takagi, in Dissociative Recombination: Theory, Experiment
and Applications III, edited by D. Zaifman, J. B. A. Mitchell,
D. Schwalm, and B. R. Rowe �World Scientific, Singapore,
1996�, p. 84.

�11� M. Larsson, Philos. Trans. R. Soc. London, Ser. A 358, 2433
�2000�.

�12� T. Tanabe, K. Chida, T. Watanabe, Y. Arakaki, H. Takagi, I.
Katayama, Y. Haruyama, M. Saito, I. Nomura, T. Honma, K.
Noda, and K. Hoson, in Dissociative Recombination: Theory,
Experiment and Applications IV, edited by M. Larsson, J. B.
A. Mitchell, and I. F. Schneider �World Scientific, Singapore,
2000�, p. 170.

�13� B. J. McCall, A. J. Huneycutt, R. J. Saykally, T. R. Geballe, N.
Djuric, G. H. Dunn, J. Semaniak, O. Novotny, A. Al-Khalili,
A. Ehlerding, F. Hellberg, S. Kalhori, A. Neau, R. Thomas, F.
Österdahl, and M. Larsson, Nature �London� 422, 500 �2003�.

�14� L. Lammich, D. Strasser, H. Kreckel, M. Lange, H. B. Peder-
sen, S. Altevogt, V. Andrianarijaona, H. Buhr, O. Heber, P.
Witte, D. Schwalm, A. Wolf, and D. Zajfman, Phys. Rev. Lett.
91, 143201 �2003�.

�15� A. P. Hickman, J. Phys. B 20, 2091 �1987�.
�16� A. Giusti, J. Phys. B 13, 3867 �1980�.
�17� A. Giusti-Suzor, J. N. Bardsley, and C. Derkits, Phys. Rev. A

28, 682 �1983�.
�18� A. Giusti-Suzor and Ch. Jungen, J. Chem. Phys. 80, 986

�1984�.
�19� K. Nakashima, H. Takagi, and H. Nakamura, J. Chem. Phys.

86, 726 �1987�.
�20� Ch. Jungen and S. C. Ross, Phys. Rev. A 55, R2503 �1997�.
�21� M. G. Golubkov, G. V. Golubkov, and G. K. Ivanov, J. Phys. B

30, 5511 �1997�.
�22� I. F. Schneider, C. Stromholm, L. Carata, X. Urbain, M. Lars-

son, and A. Suzor-Weiner, J. Phys. B 30, 2687 �1997�.
�23� E. S. Chang and U. Fano, Phys. Rev. A 6, 173 �1972�.
�24� C. H. Greene and Ch. Jungen, Adv. At. Mol. Phys. 21, 51

�1985�.
�25� M. Aymar, C. H. Greene, and E. Luc-Koenig, Rev. Mod. Phys.

68, 1015 �1996�.
�26� Ch. Jungen, Molecular Applications of Quantum Defect

Theory �Institute of Physics, Bristol, 1996�.
�27� A. E. Orel and K. C. Kulander, Phys. Rev. Lett. 71, 4315

�1993�.
�28� I. F. Schneider, A. E. Orel, and A. Suzor-Weiner, Phys. Rev.

Lett. 85, 3785 �2000�.
�29� V. Kokoouline and C. H. Greene, Phys. Rev. Lett. 90, 133201

�2003�.
�30� V. Kokoouline and C. H. Greene, Phys. Rev. A 68, 012703

�2003�.
�31� M. J. Jensen, H. B. Pedersen, C. P. Safvan, K. Seiersen, X.

Urbain, and L. H. Andersen, Phys. Rev. A 63, 052701 �2001�.
�32� V. Kokoouline, C. H. Greene, and B. D. Esry, Nature �London�

412, 891 �2001�.
�33� A. E. Orel, I. F. Schneider, and A. Suzor-Weiner, Philos. Trans.

R. Soc. London, Ser. A 358, 2445 �2000�.
�34� V. Kokoouline and C. H. Greene, J. Phys.: Confer. Ser. 4, 74

�2005�.
�35� M. Larsson, H. Danared, A. Larson, A. Le Padellec, J. R.

Peterson, S. Rosen, J. Semaniak, and C. Strömholm, Phys.
Rev. Lett. 79, 395 �1997�.

�36� W. Cencek, J. Rychlewski, R. Jaquet, and W. Kutzelnigg, J.
Chem. Phys. 108, 2831 �1998�.

�37� R. Jaquet, W. Cencek, W. Kutzelnigg, and J. Rychlewski, J.
Chem. Phys. 108, 2837 �1998�.

�38� V. Kokoouline and C. H. Greene, Faraday Discuss. 127, 413
�2004�.

�39� P. Bunker and P. Jensen, Molecular Symmetry and Spectros-
copy �NRC Research Press, Ottawa, 1998�.

�40� U. Fano, Phys. Rev. A 2, 353 �1970�.
�41� U. Fano and K. T. Lu, Can. J. Phys. 62, 1264 �1984�.
�42� S. H. Pan and K. T. Lu, Phys. Rev. A 37, 299 �1988�.
�43� J. A. Stephens and C. H. Greene, Phys. Rev. Lett. 72, 1624

�1994�.
�44� J. A. Stephens and C. H. Greene, J. Chem. Phys. 102, 1579

�1995�.
�45� H. C. Longuet-Higgins, Advances in Spectroscopy �Inter-

science, New York, 1961�, Vol. II, p. 429.
�46� A. Staib, W. Domcke, and A. Sobolewski, Z. Phys. D: At.,

Mol. Clusters 16, 49 �1990�.
�47� A. Staib and W. Domcke, Z. Phys. D: At., Mol. Clusters 16,

275 �1990�.
�48� B. R. Johnson, J. Chem. Phys. 73, 5051 �1980�.

THEORETICAL STUDY OF DISSOCIATIVE … PHYSICAL REVIEW A 72, 022712 �2005�

022712-11



�49� J. H. Macek, J. Phys. B 1, 831 �1968�.
�50� E. Cuervo-Reyes, J. Rubayo-Soneira, A. Aguado, M. Pa-

niagua, C. Tablero, C. Sanz, and O. Roncero, Phys. Chem.
Chem. Phys. 4, 6012 �2002�.

�51� O. L. Polyansky and J. Tennyson, J. Chem. Phys. 110, 5056
�1999�.

�52� O. I. Tolstikhin, S. Watanabe, and M. Matsuzawa, J. Phys. B
29, L389 �1996�.

�53� O. I. Tolstikhin, V. N. Ostrovsky, and H. Nakamura, Phys.
Rev. Lett. 79, 2026 �1997�.

�54� O. I. Tolstikhin, V. N. Ostrovsky, and H. Nakamura, Phys.

Rev. A 58, 2077 �1998�.
�55� A. Vibok and G. G. Balint-Kurti, J. Chem. Phys. 96, 8712

�1992�.
�56� A. Vibok and G. G. Balint-Kurti, J. Phys. Chem. 96, 7615

�1992�.
�57� L. Lammich, D. Strasser, H. Kreckel, M. Lange, H. B. Peder-

sen, S. Altevogt, V. Andrianarijaona, H. Buhr, O. Heber, P.
Witte, D. Schwalm, A. Wolf, and D. Zajfman, Phys. Rev. Lett.
91, 143201 �2003�.

�58� Å. Larson �private communication�.

V. KOKOOULINE AND C. H. GREENE PHYSICAL REVIEW A 72, 022712 �2005�

022712-12


	Theoretical study of dissociative recombination of C-2v triatomic ions: Application to H2D+ and D2H+
	Recommended Citation

	tmp.1566492453.pdf.ZGjso

