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Effects of the surrounding medium on the optical 

properties of a subwavelength aperture 

Olena Lopatiuk-Tirpak* and Sasan Fathpour 

CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL 32816, U.S.A. 

*otirpak@creol.ucf.edu 

Abstract: Influence of the refractive index of the surrounding material on 

the performance of a C-shaped subwavelength aperture is investigated. The 

changes in the spectral response (0.6 µm to 6 µm wavelength range) and 

power throughput of the aperture in an optically opaque silver (Ag) film are 

described for two configurations: one where the film with the aperture is 

immersed in an infinite dielectric slab and the other where the metallic layer 

is immediately adjacent to a semi-infinite dielectric substrate. It is shown 

that, while the resonant wavelengths increase monotonically with refractive 

index for both cases, the rates of these increases, as well as the behavior of 

the power throughput, depend not only on the configuration, but also 

strongly on the transmission mode. These findings have important 

implications for the design of subwavelength aperture-enhanced devices. 

© 2009 Optical Society of America 

OCIS codes: (260.3910) Metal optics; (240.6680) Surface plasmons; (250.5403) Plasmonics; 

(160.4760) Optical properties; (260.2710) Inhomogeneous optical media. 
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1. Introduction 

Subwavelength apertures have been the subject of many computational and experimental 

investigations ever since the demonstration of the extraordinary optical transmission [1]. The 

ability to combine high irradiance with subwavelength spot size opens the door to many new 

applications, including high-speed, high-responsivity photodetectors [2,3], nanophotonic 

circuits [4,5], and chemical and biological sensors [6]. 

While several earlier works have addressed the role of the surrounding medium in 

subwavelength metal optics [7–9], most studies of subwavelength apertures are performed on 

free-standing metal films [10–12] or films on a dielectric with a constant refractive index, n 

[13]. This work will show that there are substantial qualitative and quantitative differences 

between these two cases, which ought to be accounted for in device design. A single C-shaped 

subwavelength aperture is chosen for this systematic study. The chief advantage of the C-

shaped antenna over aperture arrays and corrugation-enhanced apertures is in its compact size 

[2], which renders it better suited for nanophotonic applications. Promising implementation of 

C-shaped antennas has been proposed and/or implemented for photodetectors [2,3], 

waveguides [14,15], surface-emitting lasers [16], and switchable transmission filters [17]. 

It is widely accepted that the resonant wavelength of a frequency-selective metallic surface 

structure embedded in an infinite dielectric medium scales linearly with the refractive index of 

the latter, n [18]. Similarly, a 2( 1) / 2n +  scaling [18] is commonly argued to be applicable 

to metallic layers on a semi-infinite substrate. These approximations are often cited to predict 

the substrate effects on the optical properties [10,19]. However, results reported below show 

that while the scaling holds true for immersed apertures, the more realistic configuration, i.e., 

when the aperture is fabricated in a plasmonic metal (as opposed to perfect electric conductor) 

on a dielectric substrate, presents itself with many consequential, qualitative and quantitative 

differences. In this case, the extent and the manner in which resonant wavelengths and the 

power throughput vary with n depend on the specific transmission mechanism involved. 

Understanding these differences is critical for successful design and accurate performance 

predictions of aperture-enhanced plasmonic devices. To the best of the authors’ knowledge, 

this is the first systematic computational study of an aperture with plasmonic metals on 

dielectric substrates under the conditions of varying n of the surrounding medium. 

2. Methodology 

The dimensions of the aperture used in this work are shown in Fig. 1(a). The shape of the 

aperture was borrowed from our initial studies (not presented here) that aimed at maximizing 

the power throughput (PT) at near-IR wavelengths. To illuminate the nature of the 

transmission modes, the Ag layer thickness, d, was varied from 100 to 1000 nm. For varying 

refractive index studies, d was chosen to be 300 nm, for reasons that will be presented in 

context below. The calculations were performed using the finite-integration method within the 

CST Microwave Suite. Optical properties of the Ag were simulated by fitting the 

experimentally obtained dielectric constant values [20] to the Drude model in the wavelength 

(C) 2009 OSA 21 December 2009 / Vol. 17,  No. 26 / OPTICS EXPRESS  23862
#120095 - $15.00 USD Received 17 Nov 2009; revised 8 Dec 2009; accepted 10 Dec 2009; published 14 Dec 2009



range of 0.6 µm to 6 µm. Silver was chosen over other commonly used metals, such as gold or 

aluminum, because of its low absorption losses (imaginary dielectric constant) in the studied 

spectral range. The material surrounding the aperture is modeled as a lossless dielectric. The 

excitation source was a plane wave with the amplitude of 1 V/m, polarized along the x-axis. 

Absorbing boundary conditions were set for all six boundaries. 

In order to determine the spectral characteristics of the aperture response, the excitation 

was delivered as a pulse with the duration of ~5 femtoseconds, roughly covering the 

mentioned 0.6 µm to 6 µm wavelength range. The spectral response was assumed to be 

represented by the local electric field at the point P1 [Fig. 1(a)], located at the exit surface. 

This assumption was verified at several other points on the exit surface, where despite the 

relative intensity variations, the major spectral features were found to remain unchanged. 

The fraction of energy transmitted by the aperture was quantified by calculating the PT 

[21] at a wavelength of interest. PT is defined as the ratio of total exit power surface to that 

impinging upon the physical area of the aperture and was calculated by integrating the normal 

component of the Poynting vector over the entire surface of the aperture in the plane 

immediately adjacent to the Ag layer. It should be clarified that because near-field radiation, 

in general, contains both propagating and evanescent components, the values of PT may 

change with distance from the exit surface. Therefore, PT should be viewed as a metric for 

comparison, rather than a quantitative measure of extraordinary transmittance. 

 

Fig. 1. (a) The schematic representation of the studied aperture, showing the location of the E-

field probes used to evaluate the spectral response. The excitation radiation propagates in the –z 

direction; (b) Evolution of the E-field spectral response with increasing d, measured at point P1 

in Fig. 1(a) and for the case of aperture on a dielectric substrate with n = 3.45. Inset: Spectral 

response as a function of thickness at point P2 in Fig. 1(a). The color scale of the inset is 10 

times that of the main figure. 

3. Results and discussion 

Before discussing the role of the surrounding material, it is helpful to examine the different 

transmission mechanisms of the C-shaped aperture. The origin of the transmittance peaks in 

the spectral response can be deduced by monitoring the shifts of the resonant wavelengths 

while changing the thickness of the metal layer. The evolution of the response with d is shown 

in Fig. 1(b) as an example of the aperture-on-substrate configuration, where the Ag film is 

immediately adjacent to a substrate with n = 3.45 (that of silicon), and the remainder of the 

space, including the aperture cavity, is set to n = 1. The response is measured at point P1 in 

Fig. 1(a), and the excitation impinges on the system from the vacuum side. In the studied 

wavelength range, the response shows the evolution of several peaks: one that undergoes a 

blue shift with increasing d (peak A), three that red-shift (peaks B, C, and E), and a faint 

thickness-invariant peak denoted as D. 
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Peak A is present even for infinitesimally thin metal layer (the thickness of one mesh cell, 

not shown) and is most likely caused by the interaction of two evanescent surface waves on 

either side of the aperture [7]. In other words, the surface plasmons excited by the incident 

pulse on each metal-dielectric interface couple to each other inside the aperture cavity with a 

strength that is chiefly determined by how well-matched their frequencies are. As confirmed 

below, the transmittance through the aperture is highest when the refractive indices of the 

front and back materials are the same, as this allows for constructive interference of the 

evanescent waves inside the aperture. On the other hand, for the case presented in Fig. 1(b), 

where the index of the substrate differs substantially from that of the entrance surface, the 

plasmon frequencies differ significantly, resulting in weak coupling; this in turn causes the 

transmittance to decrease rapidly with increasing thickness. From here on, this mode will be 

referred to as the evanescently coupled surface plasmon (ECSP) mode. 

Peaks B, C, and E correspond to the different orders of a Fabry-Perot-like (FP) aperture 

cavity mode, as suggested by their thickness dependence and by the electric field (E-field) 

profiles taken at the corresponding wavelengths (Fig. 2). The wavelength, λ, of the FP 

resonances is determined not only by the cavity thickness, but also by the phase change, φ, 

upon reflection from the front and back surfaces: 2 / ( / )d Nλ ϕ π= − , where N is an integer. 

Therefore, the spectral position of the FP peaks can differ considerably from 2d/N [22]. 

 

Fig. 2. E-field distributions for d = 1000 nm at the wavelengths of the FP modes (random 

phase). The wavelengths are, from left to right: 1.51 µm, 1.16 µm, and 875 nm, corresponding 

to peaks B, C and E in Fig. 1(b), respectively. The x- and z-component are shown in the top 

and bottom panels, respectively. The plane shown corresponds to the x-z plane containing the 

point P1 of Fig. 1(a). 

The peak D has a signature of a surface mode, as its spectral position is invariant with d 

for a constant n. Examination of the E-field distribution along the exit surface revealed that 

the excitation is highly localized at the corners of the “peninsula” of the C-shape aperture, 

with a spatial distribution resembling the corresponding Poynting vectors of Fig. 4(b). It is 

interesting to note that whenever the wavelength of this mode is close to the FP modes, there 

occurs a spike in local E-field magnitude at point P2, as the inset of Fig. 1(b) demonstrates. 

The study of the effect of n on the resonance wavelengths and PT of the aperture was 

started with the case where a 300-nm thick Ag film containing the aperture is immersed into 

an infinite slab of a dielectric material. The representative spectrum of the aperture response 

for n = 1 [top row in Fig. 3(c)] has an ECSP mode (peak A) at ~1.6 µm and the first FP mode 

(peak B) at 890 nm. There are significant differences between the transmission characteristics 
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of the two peaks; the intent to highlight these differences motivates our choice of the Ag layer 

thickness (300 nm), whereas only 100 nm or so would be sufficient for optical opacity. 

In the immersed aperture case, the positions of both peaks A and B scale linearly with n 

[Fig. 3(a)], matching the analytical expression for a perfect electric conductor [18]. The PT 

follows a similar trend for both maxima, as shown in the inset of Fig. 3(a). The degree of the 

PT increase with n is noteworthy, particularly for the longer wavelength peak, where it shows 

a nearly four-fold increase as n goes from 1 to 4. It is noted that the data shown in Fig. 3(a) 

also suggest the increase of PT with resonant wavelength, similar to the findings of Ref. [11], 

where the wavelength was varied by changing the C-aperture dimensions, while n was kept 

constant. In that case, the authors defined a “correlation length” that is of the order of the 

resonant wavelength, such that the photons within this length of the aperture are coupled and 

are transmitted together. Thus, the longer the wavelength, the greater the correlation length, 

and consequently, more photons are transmitted. 

 

Fig. 3. The shifts of the resonance wavelengths with n in an immersed aperture (a) and the 

aperture on a substrate (b), at point P1 [cf. Figure 1(a)]. Solid and open symbols represent the 

data for the ECSP peak [A in Fig. 1(b)] and one of the FP resonances [B in Fig. 1(b)], 

respectively. The change in resonance wavelength predicted by the analytical model (see text) 

is shown by the dashed lines. Power throughput at the wavelengths corresponding to the two 

peaks in spectral response as a function of n is shown in the corresponding insets. (c) Evolution 

of the spectral E-field response with n for the aperture-on-substrate case. The arrow identifies 

the peak corresponding to the surface mode D. Note the different abscissa scales for different 

values of n. 

We next examine the case of semi-infinite dielectric layer, i.e., the aperture on a substrate. 

The results obtained for this configuration are summarized in Figs. 3(b) and 3(c) and differ (in 

some instances, quite dramatically) from those for the immersed case of Fig. 3(a). While the 

wavelength of the ECSP peak (solid circles) increases with n, similar to the immersed 

aperture, the rate of this increase (0.6 µm per unit index) is nearly 3 times lower than that for 

the immersed case (1.7 µm per unit index). The important finding here is that this dependence 

is much shallower than expected from the analytical model [18], which predicts a scaling 

factor of 2( 1) / 2n +  [shown by the dashed lines in Fig. 3(b)]. 

The FP peak B [open squares in Fig. 3(b)] is nearly invariant with n. This is again in 

contrast with the immersed aperture case. Since this peak owes its origin to a FP cavity mode, 

it is feasible that its position is determined to a large extent by the index of the material filling 

the cavity (which is vacuum for the aperture-on-substrate configuration). Consequently, the 

observed modest red-shift can be attributed to the aforementioned phase change upon 

reflection from the exit surface. PT at this peak increases up to n = 2.5, in a manner similar to 
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the immersed aperture, but decreases from there on. Closer inspection of the spectral response 

[Fig. 3(c)] reveals that this decrease is coincidental with the proximity of the surface mode D, 

which appears as a minor feature at about 0.89 µm for n = 3 and increasingly overlaps the FP 

peak at higher values of n. Note that while PT for the FP mode exhibits a non-monotonous 

change, the local E-field decreases steadily with increasing n, as shown in Fig. 3(c). Similarly, 

referring back to the inset of Fig. 1(b), it can be observed that while the interaction of the FP 

and surface modes results in the substantial enhancement of local E-field, the forward PT does 

not necessarily follow the same trend. While the former determines to local intensity, the 

latter measures the amount of forward power flow and is related to aperture transmittance. 

This lack of correspondence between the two quantities indicates that high intensity 

enhancements at the exit surface of the aperture are not necessarily an indicator of aperture 

transmittance even under near-field conditions. 

 

Fig. 4. Spatial distribution of the normal component of the Poynting vector at the exit surface 

of the Ag film, at the wavelengths of (a) 1.14 µm for n = 2.5 and (b) 1.22 µm for n = 4. 

Negative sign corresponds to the Poynting vector component along the propagation direction of 

the exciting wave. 

The PT reduction with increased degree of mode overlap is likely due to the change in the 

spatial distribution of the Poynting vector. This change is evident in Figs. 4(a) and 4(b), where 

the exit Poynting vector distributions for n = 2.5 and 4 are compared. The interaction of the 

surface and FP modes at n = 4 [Fig. 4(b)] alters the power flow through the aperture quite 

dramatically. As is evident from Fig. 4(b), the Poynting vector distribution at the wavelength 

of the FP mode acquires the symmetry characteristics of the surface mode D, with a large 

fraction of power being backscattered at the corners of the peninsula of the C-shape. As a 

result, while the power flow along the sidewall of the aperture is still increasing with n, the net 

power arriving at the exit surface is diminished. Similar mode interconversion was reported in 

Ref [22]. and was also attributed to the coupling of the surface and FP modes. 

4. Summary 

It is shown that the optical properties of a plasmonic aperture are strongly affected by the 

surrounding medium. For both immersed and on-substrate configurations, the resonant 

wavelengths increase with n (although to a varying extent). The power throughput behavior is 

more complicated and is affected not only by the adjacent material, but also, for the aperture-

on-substrate configuration, may increase or decrease with n, depending on the interplay of the 

transmission mechanisms. This work highlights the richness of the optical phenomena 

involved in subwavelength aperture transmission and demonstrates the importance of 

accounting for the effect of the surrounding medium when designing such plasmonic devices. 
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