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Extraordinarily wide-view circular polarizers for 
liquid crystal displays 
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2Chi Mei Optoelectronics, Tainan, Taiwan, 74144, R. O. C. 
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Abstract: A new broadband wide-view circular polarizer is proposed for 
high transmittance multi-domain vertical-alignment liquid crystal displays 
(MVA LCDs). This configuration only requires one biaxial plate in the 
conventional circular polarizer. The optimal film parameters are obtained 
analytically through spherical trigonometric method on the Poincaré sphere 
and through computer-aided parameter search method. According to this 
design, the high transmittance MVA LCD exhibits a contrast ratio CR >200:1 
over ~80o viewing cone. 

©2008 Optical Society of America 

OCIS codes: (230.3720) Liquid crystal devices; (260.5430) Polarization; (999.9999) Circular 
polarizer 
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1. Introduction 

High contrast ratio and wide viewing angle are two critical requirements for liquid crystal 
displays (LCDs), such as LCD TVs, desktop monitors, and notebook computers. To achieve 
wide viewing angle, a good dark state over a large viewing cone must be maintained. Currently, 
multi-domain vertical-alignment (MVA) mode [1] and in-plane switching (IPS) mode [2, 3] are 
the two major approaches meeting these requirements. A MVA LCD exhibits an inherent high 
contrast ratio at normal incidence because the LC molecules are initially aligned vertically to 
the substrates. To minimize the light leakage at oblique angles, various phase compensation 
schemes under crossed linear polarizers have been developed [4, 5]. However, a shortcoming 
of a MVA LCD employing crossed linear polarizers is the reduced transmittance. Ideally, the 
LC directors should be all rotated 45o with respect to the polarizer’s optic axis in order to 
achieve maximum transmittance in a voltage-on state. But in reality, the LC director’s 
reorientation is not very uniform. As a result, the transmittance is decreased.   

To enhance transmittance, a circularly polarized light is preferred because it is independent 
of the LC director’s reorientation angle [6, 7]. A typical circular polarizer consists of a linear 
polarizer and a quarter-wave plate with its optic axis oriented at 45o from the polarizer’s 
transmission axis. A MVA cell sandwiched between two crossed circular polarizers has a broad 
bandwidth in the visible spectral region (as the two quarter-wave plates from the bottom and top 
circular polarizers are crossed to each other to have a self-compensation for wavelength 
dispersion), but its viewing angle is too narrow. This is because the off-axis light leakage from 
the combination of LC layer (even if it is compensated by a negative C-plate), two quarter-wave 
plates, crossed linear polarizers cannot be eliminated at all angles. Recently, some wide-view 
and broadband circular polarizers have been proposed [8-11]. For instance, Hong et al designed 
a wide-view circular polarizer using a linear polarizer and two biaxial films [10]. This design 
significantly widens the acceptance angle, but the tradeoff is the increased cost. In Ref. 11, Lin 
proposed another circular polarizer configuration for MVA LCDs, where the two quarter-wave 
plates from two crossed circular polarizers consist of a positive A-plate and a negative A-plate. 
In his design, two opposite quarter-wave plates are aligned parallel to each other so that the 
self-compensation effect occurs regardless of the viewing direction. Besides, two more A-plates 
are also employed for the compensation of the crossed linear polarizers. This design greatly 
simplifies the device configuration while maintaining an excellent viewing angle, but two 
negative A-plates are required. All the abovementioned designs require one or more additional 
negative C-plates to fully cancel the phase retardation from the LC layer.  

In this paper, we propose a new wide-view circular polarizer for MVA LCDs that only 
requires one additional biaxial plate from a conventional crossed circular polarizer. The device 
configuration is shown in Fig. 1. This design uses the least number of wave plates to achieve 
wide view. In our design, the negative C-plate is intended to partially compensate the phase 
retardation from the LC layer. After optimization, the residual phase retardation from the 
negative C-plate and LC layer (a positive C-plate) together with the biaxial plate can 
compensate for all incident angles. Besides, the required phase retardation value (dΔn/λ) of the 
effective positive C-plate can be analytically determined by a spherical trigonometric method 
on the Poincaré sphere [12]. The parameters of the biaxial plate are then obtained by computer 
optimization. To verify the proposed optical configuration, we calculated its performance in a 
4-domain MVA structure. This simple design leads to an excellent dark state over the entire 90o 
viewing cone and a contrast ratio over 200:1 is expanded to ~80o viewing cone. 
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Fig. 1. Schematic of a MVA cell under the new circular polarizer with one biaxial film. 

2. Design of wide-view circular polarizer for MVA cells 

2.1. Light leakage from conventional circular polarizers 

Before demonstrating our designs to achieve wide-viewing angle, we first studied the origins of 
off-axis light leakages from two crossed conventional circular polarizers (each consisting of a 
linear polarizer and a quarter-wave plate oriented at 45o from the polarizer’s transmission axis). 
We traced the change of polarization state of the incident light through this system on the 
Poincaré sphere. The Stokes parameters related to each polarization state are obtained by 
solving the electric fields using the 2-by-2 matrix method [13, 14]. Here we plotted the 
polarization change of the incident light at two different azimuthal directions ϕinc = -45o and ϕinc 
= 0o, while the incident polar angle θinc is kept at 70o for both cases. At the beginning stage, the 
effects from the LC layer and negative C-film are excluded. Their effects will be included later.  

The first factor that affects the viewing angle is the deviation of effective polarizer angle 
viewed at an oblique direction. At the bisector direction with ϕinc = -45o and θinc=70o as shown 
in Fig. 2(a), point P and point A on the equator represent the absorption axis of the bottom and 
top linear polarizer, respectively. As an opposite extent of OP, the point T on the other side of 
equator stands for the transmission axis of the bottom polarizer, i.e., the polarization state of the 
incident light passing the bottom linear polarizer. Here at this bisector direction with θinc=70o, 
point T and point A depart from each other, indicating a light leakage. This deviation can be 
depicted by TOA∠ in the Poincaré sphere, which is the supplementary angle of POA∠ . 
Generally, for two axes aligned at ϕ1 and ϕ2 in the x-y plane, their effective angle δ2, 1 in the 
media (with refractive index of np) for the incident light at an oblique direction (ϕinc, θinc) from 
the air can be expressed as [5]: 

)
)(cos)/(sin1)(cos)/(sin1

)cos()cos()/(sin)cos(
(cos

2
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222
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For the crossed polarizers considered here, ϕ1=0o, ϕ2=90o, and average polarizer refractive 
index np ~1.5. In addition, when represented on the Poincaré sphere, a factor of 2 needs to be 

included, leading to 1,22δ=∠POA and 1,22δπ −=∠TOA . Thus, when ϕinc =-45o and θinc=70o, 

TOA∠ is ~28.26o, which is quite a large deviation from 0o at normal incidence. 
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A second factor degrading the viewing angle is the off-axis phase retardation from each 
uniaxial quarter-wave plate. The effective retardation value of the A-plate and C-plate can be 
described as follows [5, 15]: 
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where φn is the alignment angle of the optic axis of the A-plate, and ne and no are the refractive 
index of the plate, respectively. 

From Fig. 2(a), the incident light passing the bottom linear polarizer is first moved to point 
B by the bottom quarter-wave plate (this trace is a rotation of point T to point B along the +S1 
axis), and is further converted to point F by the subsequent top quarter-wave plate (which is a 
rotation along the -S1 axis). For ϕinc=-45o, the retardation value for the bottom quarter-wave 
plate (with φn=45o) is larger than that from the top quarter-wave plate (with φn=135o), as 
indicated from Eq. (2) and is verified in Fig. 2(a) from simulation. The shorter trace BF with 
respect to trace TB on the Poincaré sphere makes final point F deviated even more from the 
absorption axis of the top linear polarizer at point A. 

 

o

(a) (b)

o

P

o

(a) (b)

o

P

 

Fig. 2. Polarization state trace on the Poincaré sphere at θinc = 70°, (a) ϕinc = -45° and (b) ϕinc =0°. 

On the other hand, when viewed at ϕinc=0o and θinc=70o, the transmission axis of the bottom 
polarizer at point T overlaps with the absorption axis of the top polarizer at point A, as their 
effective angle δ2, 1 from Eq. (1) is always equal to 90o independent of the polar angle θinc. 
However, based on Eq. (1) the optic axes of the two quarter-wave plates viewed at ϕinc = 0o and 
θinc=70o are no longer  ±45o from the polarizer’s transmission axis. Hence, their corresponding 
effective optic axes on the Poincaré sphere are no longer parallel to each other, making the 
rotational trace BF and trace TB separated, as shown in Fig. 2(b).  

Figure 3 plots the light leakage from above two crossed circular polarizers viewed from 
different directions. As we can see, the 10% light leakage (~0.034) occurs at about 60o and the 
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global maximum value is about 0.04, which is inadequate for achieving a high contrast ratio at 
wide angles.  
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Fig. 3. Angular light leakage from two crossed circular polarizers each consisting of a linear 
polarizer and a quarter-wave plate, and the maximum transmittance from two parallel linear 
polarizers is ~34%. 

2.2. Determination of phase retardation for the effective positive C-plate 

In our circular polarizer configuration shown in Fig. 1, we intentionally design the negative 
C-plate to partially compensate the LC layer (a positive C-plate), making them together perform 
like a positive C-plate. This additional effective positive C-plate yields a complete 
compensation for ϕinc = 0o and θinc=70o. Along with this C-plate, the biaxial plate works to 
compensate the other direction at ϕinc = -45o and θinc=70o.  
 

o
Q

 

Fig.  4. Spherical angle relations on the Poincaré sphere at ϕinc = 0o and θinc=70o. 

Figure 4 shows the polarization trace on the Poincaré sphere when viewed at ϕinc = 0o and 
θinc=70o, after inserting an effective positive C-plate between the two crossed quarter-wave 
plates. Here, the bottom quarter-wave plate converts the light from point T to point B as before. 
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Then, the effective positive C-plate functions to move the light from point B to point C, where 
the subsequent top quarter-wave plate can transfer the light from point C completely to the 
absorption direction at point A of the top polarizer, rather than that in Fig. 2(b). In addition, 
under such a condition, point B and point C are symmetric along the S1-S3 plane.  

The required phase retardation of the effective positive C-plate can be analytically derived 
by a spherical trigonometric method on the Poincaré sphere. The first bottom quarter-wave 
plate rotates the light polarization from point T to point B along its effective optic axis OQ on 
the Poincaré sphere, as shown in Fig. 4. Then the effective positive C-plate rotates the 
polarization from point B along the +S1 axis, therefore the rotational spherical angle BTC∠ is 
equal to the related retardation of the C-plate. Here because of the symmetry between the 
spherical arcTB and arc AC (please note here the polarization trace TB (or AC) is not equivalent 
to the described spherical arcTB (or AC ), which must be defined on the large circle on a sphere), 

spherical angle ππ −∠=∠−=∠ BTQCAQBTC 22 . And the spherical angle BTQ∠ can be 
calculated from the geometric relations in the spherical triangle BTQ, where spherical arcs 
TQ , BQ , and spherical angle BQT∠ can be uniquely determined by the polarization rotation 

from the bottom quarter-wave plate. In spherical triangle BTQ, arc TQ  is equal to arc BQ , 

which further equals to the TOQ∠ (assuming the radius of this sphere is 1). From Eq. (1) by 
setting ϕ1=0o and ϕ2=45o, and ne_A = 1.5902, no_A = 1.5866 (at λ=550 nm) (here np~1.58), we 

can obtain oTOQ 4.102~2 1,2δ=∠ , yielding arc length 787.1~BQTQ = . Besides, the 

spherical angle BQT∠ is equal to the off-axis phase retardation of the uniaxial quarter-wave 
A-plate that can be obtained from Eq. (2) [5]. Using positive A-plate parameters with alignment 
angle φn=45o, the spherical angle BQT∠ is ~92.08o. From the spherical trigonometry, in 
spherical triangle BTQ, we can first calculate the spherical arc TB  (please notice the 
polarization trace TB on the sphere is not equivalent to the spherical arcTB ) to get spherical 
angle BTQ∠ from the following equation [16] 

))cos()(sin)((coscos 221 BQTTQTQTB ∠+= − ,  (4) 
and 

))sin(/)sin(/)sin()sin((cos2 1 TQTBBQssBTQ −=∠ − ,  (5) 

where )(
2

1
BQTBTQs ++= . From these relations, we find arc TB ~1.5592 and 

BTQ∠ ~102.56o. Hence, the spherical angle π−∠=∠ BTQBTC 2 is ~25.12o, which is also 
equal to the retardation of the effective positive C-plate as described in Eq. (3). 

Therefore, if the refractive indices ne_C and no_C for the effective positive C-plate are also 
set as 1.5902 and 1.5866, we find the preferred dΔn/λ value of the C-plate is about 0.16. 
Besides, we find this retardation almost maintains a constant value over a wide range of θinc that 
changes from 1o to 89o, as plotted in Fig. 5. This means we can set the retardation value for the 
required effective positive C-plate that comes from the partial compensation between the 
negative C-plate and the LC cell at one oblique angle and it will work equally well for all other 
incident polar angles. 

Furthermore, the light at point C after the effective positive C-plate is converted to point 
A by the top quarter-wave plate. Here because we align the nx axis of the biaxial plate along the 
bottom polarizer transmission axis, the light at point A maintains its polarization passing the 
biaxial plate, thus is fully absorbed by the top linear polarizer. 
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Fig. 5. Phase retardation of the effective positive C-plate with different incident angle θinc at ϕinc 
= 0°. 

2. 3. Determination of biaxial plate in the circular polarizers 

At other incident direction with ϕinc = -45o and θinc=70o, the bottom polarizer transmission axis 
at point T deviates from the top polarizer absorption direction at point A, as shown in Fig. 6. 
The first quarter-wave plate transfers the incident light from the bottom polarizer to point B, 
then the following effective positive C-plate moves it further to point C along the -S1 axis. After 
that, the top quarter-wave plate further converts the light to point D. At this direction with ϕinc 
= -45o and θinc=70o, the biaxial plate works on the impinging light polarization change. For a 
biaxial plate, it can be characterized by its Nz factor ( )/()( yxzxZ nnnnN −−= ) and its in-plane 
phase retardation d(nx-ny)/λ [17]. By properly tuning these two parameters while plotting the 
polarization trace on the Poincaré sphere, we find when Nz ~ 0.35 and d(nx-ny)/λ ~0.34 the final 
polarization after the biaxial plate can reach the top linear polarizer’s absorption axis at point 
A, i.e., the light leakage is minimized. The calculated polarization trace from simulation is 
shown in Fig. 6. 

 

Fig. 6. Polarization trace on the Poincaré sphere at ϕinc = -45o and θinc=70o. 
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3. Results and Discussion 
We applied the abovementioned optical configuration to a 4-domain MVA cell with cell gap 
d=4 μm. The LC material employed is Merck MLC-6608; its parameters are listed below: 
extraordinary and ordinary refractive indices ne = 1.5578, no = 1.4748 (at λ=589 nm), parallel 
and perpendicular dielectric constants ε// = 3.6, ε⊥ = 7.8, and elastic constants K11 = 16.7 pN and 
K33 = 18.1 pN. The negative C-plate used here has extraordinary and ordinary refractive indices 
ne = 1.5024 and no = 1.4925 (at λ=550 nm). We calculated the LC directors distribution by the 
finite element method [18], and the corresponding optical properties, e.g., angular light leakage 
and viewing angle, by the 2x2 matrix methods [13, 14]. During calculations, we found when the 
overall phase retardation of the effective positive C-plate (that comes from the partial 
compensation of the LC layer by the negative C-plate) is about 0.17, a globally minimized light 
leakage was obtained. This value is very close to 0.16, the value we derived analytically. 

Figure 7 shows the simulated brightness distribution of the 4-domain MVA cell under 
linear polarizers (top) and proposed circular polarizers (bottom). Because the LC directors do 
not tilt towards the preferred directions that are ±45o with respect to the polarizer transmission 
axis near the chevron-shaped slit regions, the output transmittance under two crossed linear 
polarizers is only about 23.0%. For comparison, the maximum transmittance Tmax from two 
parallel polarizers employed here is about 34%. However, under circular polarizers, as its 
dependence of the rotation angle ϕ is removed, the transmittance is increased to ~30.4% and is 
much more uniform. Thus, the proposed circular polarizers have enhanced the brightness of the 
MVA cell by ~30%, which is beneficial for reducing power consumption. 

ϕϕ

P

A

P

A

P

A

P

A

 

Fig. 7. Transmittance for a 4-domain MVA cell under crossed linear polarizers (top) and 
proposed circular polarizers (bottom) at normal incidence and λ=550 nm. 

 
In addition to the enhanced transmittance, the off-axis light leakage of the MVA cell using 

our new circular polarizers is also suppressed significantly. Figure 8(a) shows the angular light 
leakage with a global maximum value below 5×10-4. Accordingly, the corresponding viewing 
angle of this display as plotted in Fig. 8(b) is also greatly widened. The contrast ratio >200:1 
over ~80o viewing cone is obtained. 
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Fig. 8. (a) Angular light leakage of the MVA using this new circular polarizer and (b) its 
iso-contrast plot at λ= 550 nm. 

In comparison to linear polarizers, our circular polarizers have similar performances in 
terms of viewing angle, light leakage, and spectral bandwidth, but have a ~30% higher  
transmittance for a 4-domain MVA-LCD. In comparison to conventional circular polarizers, 
our circular polarizers exhibit a similar broad bandwidth, but much wider viewing angle and 
higher contrast ratio. As a result, our new circular polarizers can also be used in transflective 
LCDs, where the reflective mode usually requires a top circular polarizer in order to achieve a 
good dark state [19-21]. By using these new circular polarizers in a transflective LCD, we can 
also obtain both wide view angle and high contrast ratio.  
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4. Conclusion 

We demonstrated a new wide-view circular polarizer for high transmittance MVA LCDs. This 
wide-view design only introduces a single biaxial plate into the conventional circular polarizer 
configuration for MVA LCDs, where the partial compensation between the negative C-plate 
and the LC layer, along with the biaxial plate significantly suppressed the off-axis light leakage 
in omni directions. The related methodology for retardation plate design is also discussed in 
detail. We believe these circular polarizers will make important impact to the next generation 
wide-view and high transmittance MVA LCDs in both transmissive and transflective displays. 
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