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Self-healing properties of optical Airy beams 
John Broky, Georgios A. Siviloglou, Aristide Dogariu, and Demetrios N. Christodoulides 

CREOL/College of Optics & Photonics, University of Central Florida, Orlando, FL 32816 

Abstract:  We investigate both theoretically and experimentally the self-
healing properties of accelerating Airy beams. We show that this class of 
waves tends to reform during propagation in spite of the severity of the 
imposed perturbations. In all occasions the reconstruction of these beams is 
interpreted through their internal transverse power flow. The robustness of 
these optical beams in scattering and turbulent environments is also studied 
experimentally. Our observations are in excellent agreement with numerical 
simulations.  
©2008 Optical Society of America  

OCIS codes: (260.2110) Electromagnetic optics; (350.5500) Propagation; (290.5850)Scattering, 
particles; (290.7050) Turbid media. 
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1. Introduction 

Quite recently accelerating Airy beams have been predicted within the framework of optics 
[1]. As it was demonstrated in this theoretical study [1], this novel class of waves can exhibit 
two key characteristics: they remain approximately diffraction-free while their intensity 
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features tend to transversely accelerate (or self-bend) during propagation. This suggestion led 
to the first experimental realization of optical Airy beams where these intriguing properties 
were directly observed in one- and two-dimensional configurations [2]. In a subsequent study 
the ballistic dynamics of Airy beams were also studied experimentally, indicating that these 
waves can move along parabolic trajectories-akin to those of projectiles under the action of 
gravity-while their center of gravity follows a straight line [3,4]. We note that these finite-
energy beams are mathematically related to the non-spreading Airy wavepackets initially 
considered by Berry and Balazs within the context of quantum mechanics [5].  

These works generated interest in further exploring the nature and peculiarities of Airy 
beams [6-11]. More specifically Besieris and Shaarawi showed that the centroid of Airy 
beams varies linearly with range [4]. Bandres and Gutiérrez-Vega studied the propagation of 
Airy beams in ABCD systems [7] while Sztul and Alfano investigated in detail the evolution 
of their Poynting vector and angular momentum [8]. The possibility of realizing generalized 
tomographic maps using Airy waves was suggested by Asorey et al [9]. Spatiotemporal Airy 
wavepackets can also be encountered in dispersive environments [1,2], and Airy tails can be 
observed during non-solitonic radiation as indicated by Gorbach and Skryabin [10].  

Perhaps one of the most remarkable properties of any diffraction-free beam [12,13] is its 
very ability to self-reconstruct during propagation [14,15]. This characteristic is of particular 
importance especially when such waves propagate in inhomogeneous media [16]. The 
question naturally arises whether Airy beams can self-heal themselves and to what extent? If 
so, how does this process take place and how is it affected by the beam’s acceleration 
dynamics? For example, can an Airy beam negotiate adverse environments?  

In this work we study both theoretically and experimentally the self-healing properties of 
optical Airy beams. We show that this family of waves exhibits remarkable resilience against 
perturbations and tends to reform during propagation.  In all the examined physical settings 
the reconstruction of these beams is monitored through their internal transverse power flow. 
The robustness of these optical beams in adverse environments such as in scattering and 
turbulent media is also studied experimentally. Our observations are in excellent agreement 
with numerical simulations. Finally, we have demonstrated that an Airy beam can retain its 
shape under turbulent conditions as opposed to a Gaussian beam that suffers massive 
deformations in the same environment.  

2.  Dynamics of optical Airy beams 

To analyze the propagation behavior of optical Airy beams we employ the normalized 
paraxial equation of diffraction [1-3]: 
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)( msAi  denotes the Airy function [17], 0/ xxsx =  and 0/ yysy =  represent dimensionless 

transverse coordinates, with 00 , yx  being arbitrary transverse scales, and 2
0/ kxzx =ξ and 

2
0/ kyzy =ξ  are used to normalize the propagation distance z . ma  in the exponential function 

is a small positive parameter associated with the effective aperture of the system, and mv  is 

related to the initial launch angle mθ (or “velocity”) of this beam through ),(/ 00 yxkmm νθ =  
[3]. Figure 1 shows experimental results at 0=z  and cmz 20=  describing the evolution of a 
two-dimensional Airy beam when 08.0=ma ),( yxm = , mx μ1500 ≈ and my μ770 ≈ . The 
scaling bar in Fig. 1(a). and in all the figures of this work corresponds to mμ200 . 

   
Fig. 1. Intensity cross-sections of an experimentally observed two-dimensional Airy beam with 

mx μ1500 =  and my μ770 = and 08.0=a at (a) 0=z and (b) cmz 20= . 

 
From Eq. 2(b) one can also directly determine the trajectory of the main (corner) lobe of the 
Airy beam as a function of distance. This 3D curve is given by: 
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       In principle this trajectory can be appropriately tailored through the magnitude and sign 
of the launch angles mθ , and the scales 00 , yx . Clearly, for zero launch angles mθ  and if 

00 yx = , the main lobe of the Airy beam will move on a parabola (projected along the 
�45 axis in the yx − plane). On the other hand, a “boomerang-like” curve may result if for 

example the “launch” angles are chosen to have opposite signs, say mradx 2−=θ and 

mrady 2=θ  (while myx μ7700 == ), as shown in Fig. 2. What is also very interesting is the 

fact that these displacements vary quadratically with the wavelength 0λ .  
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Fig. 2. Motion of the main lobe of a symmetric )77( 00 myx μ==  Airy beam when 

launched at mradx 2−=θ  and mrady 2=θ  . 

 
The self-healing properties of a non-diffracting (ND) field configuration, when it is partially 
blocked by a finite opaque obstacle at 0=z , can be explained from Babinet’s principle [15]. 
If the non-diffracting input field is disturbed by a finite energy perturbation ),( yxε , i.e.  

( ) ( ) ( )0,,0,,0,, =−=== zyxzyxUzyx ND εφ , then from Eq. (1) one finds that 

0)2/1( 2 =∇+ ⊥εε ki z . As a result the perturbation ε  is expected to rapidly diffract as opposed 
to the non-diffracting beam that remains invariant during propagation. As a consequence, at 

large distances ( ) ( )22
,,,, zyxUzyx ND≅φ , and hence the ND beam reforms during 

propagation. This argument holds for all ND fields including the accelerating Airy beam.  

Of relevance to our discussion is the Poynting vector S
�

 associated with Airy optical 

beams. In the paraxial regime, S
�

is given by [18]: 
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where 000 εμη =  is the impedance of free space. zS
�

denotes the longitudinal component of 

the Poynting vector whereas ⊥S
�

the transverse.  From Eqs. (3, 4) one can directly obtain the 

direction of the Poynting vector associated with an ideal 2D Airy ( 0=ma ) beam, as 
schematically indicated in Fig. 3.  
 

 

Fig. 3. Schematic representation of the Poynting vector S
�

in a Cartesian system of coordinates. 
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 More specifically, the angle ψ the projection of S
�

makes with respect to x  axis is given by: 
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On the other hand, the direction of S
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relative to the z axis is given by: 
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Note that for ideal Airy beams, the Poynting vector S
�

 is at every point parallel to the unit 

tangent vector l̂ of the trajectory curve of Eq. (3) (see Fig. 2). This statement is also valid for 
finite energy Airy beams during the quasi-diffraction free stage of propagation. At larger 
distances however small deviations are expected to occur as shown in Fig. 4 for the 1D case. 
In addition one can show that the polarization of the beam can evolve in a similar manner.  
 

 

Fig. 4. Direction of the Poynting vector S
�

 (red line) associated with an one-dimensional finite 

energy Airy when 05.0=a and mx μ770 = as a function of distance ξ . The blue line 

depicts the direction of the tangent unit vector l̂ of an ideal Airy beam ( 0=a and 

mx μ770 = ). 

 
The reconstruction of an accelerating optical Airy beam will be monitored in our work 

through the transverse component of the Poynting vector ⊥S
�

. 

3. Experimental Set-up 

The experimental set-up used to generate Airy beams is shown in Fig. 5(a). As in Refs. [2,3], 
the Airy wavefront  )/exp()/()/exp()/( 0000 yayyyAixaxxxAi  is produced by Fourier 
transforming a broad Gaussian beam when a 2D cubic phase modulation is imposed. A 
linearly polarized Gaussian beam from an Argon-ion laser at nm488  is collimated using a 
beam expander to a beam width of mm7.6 . The cubic phase (Fig. 5(b)) was introduced using 
a computer controlled spatial light modulator (SLM). A spherical lens L with a focal length 

mf 1=  was placed at a distance f  in front of the SLM phase array in order to generate the 
finite energy two-dimensional Airy wavepacket. The exponentially truncated Airy 
function )08.0,77( 00 =≅= amyx μ  is Fourier generated at a distance f after the lens (Fig. 
5(c)). The propagation dynamics of these beams can then be recorded, as a function of 
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propagation distance, by translating the imaging apparatus. In order to block the Airy pattern 
in a controlled manner a rectangular opaque obstacle was inserted at this point using a micro-
positioner.  

 

 
Fig. 5. (a). Experimental set-up, (b). Two-dimensional cubic phase mask, and (c). 
experimentally observed Airy beam. 

 

4. Self-healing properties of Airy beams 

In order to demonstrate the self-healing properties of Airy beams (after they have been 
perturbed) we monitor their self-reconstruction during propagation. In all cases we block a 
portion of its initial intensity profile. The most prominent intensity characteristic of an Airy 
beam happens to be its main corner lobe (as seen in Fig. 5(c)) which contains a large 
percentage of the beam’s total power (in our case almost 40%). In a first experiment, an 
opaque rectangular obstacle was employed to obstruct the corner lobe of the Airy pattern.  
The resulting intensity distribution is shown in Fig. 6(a) where the FWHM of the blocked lobe 
feature was approximately mμ130  corresponding to myx μ7700 ≈= and 08.0=a . Figure 
6(b) depicts the reformation of this Airy beam after a distance of cmz 11= . The self-healing of 
this beam is apparent. The main lobe is reborn at the corner and persists undistorted up to a 
distance of cm30  (Fig. 6(c)). In our set up, this latter distance ( cm30 ) corresponds 
approximately to four diffraction lengths of the corner lobe. Our experimental observations 
are in excellent agreement with numerical results presented in Figs. 6(d)-6(f) for the same 
propagation distances. 
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Fig. 6. Self-healing of an Airy beam when its main lobe is blocked. Observed intensity profile 
at (a) the input 0=z , (b) cmz 11= , and (c) cmz 30= . The corresponding numerical 
simulations are shown in (d-f).  

 
We note that had the main lobe been launched in isolation it would have experienced a 5-fold 
increase in the beam width over the same propagation distance, while the peak intensity would 
have dropped to 5% of its initial value. We have carried out this experiment for comparison 
purposes. Figure 7(a) shows this main lobe at cmz 0= and after cmz 30=  (Fig 7(b)). The 
corresponding numerical simulations are shown in Figs. 7(c) and 7(d). This is another 
manifestation of the non-diffracting nature of Airy beams.  
  

   
                       

   

Fig. 7. (a). Main lobe in isolation is observed at 0=z , (b) and after diffraction at 

cmz 30= .  (c), (d) Corresponding intensity profiles as obtained from theory. 

 

(C) 2008 OSA 18 August 2008 / Vol. 16,  No. 17 / OPTICS EXPRESS  12886
#98252 - $15.00 USD Received 2 Jul 2008; revised 1 Aug 2008; accepted 5 Aug 2008; published 8 Aug 2008



In order to understand this self-healing process it is important to study the internal 

transverse power flow ⊥S
�

 within the perturbed Airy beam.  To do so we use the result of Eq. 
(4). Figure 8(a) depicts the transverse flow within the Airy beam at cmz 1=  when the main 
lobe has been removed. Evidently the power flows from the side lobes towards the corner in 
order to facilitate self-healing. On the other hand, once reconstruction has been reached (at 

cmz 11= ), then the internal power density around the newly-formed main lobe flows along 

the �45 axis in the yx −  plane (for 00 yx = ) in order to enable the acceleration dynamics of 
the Airy beam (Fig. 8(b)).  

 

   

Fig. 8. Calculated transverse power flow ⊥S
�

at (a) cmz 1= , and (b) cmz 11= . 

So far we have experimentally demonstrated that an Airy beam can reconstruct itself when 
its main lobe has been blocked. Of interest will be to examine whether the beam could self-
heal even after more severe perturbations. In a second set of experiments we have totally 
blocked all the internal structure (lobes) of the Airy pattern (Fig. 9(a)). Remarkably after 

cmz 16=  of propagation the beam self-heals and reconstructs in detail its fine intensity 
structure as depicted in Fig. 9(b). Figures 9(c) and 9(d) show the corresponding calculated 
intensity profiles for these same distances. 

 

   
 

   
Fig. 9. Self-healing of an Airy beam when all the internal lobes are blocked. Observed intensity 
profiles at (a) the input 0=z and (b) cmz 16= . The corresponding numerical simulations 
are shown in (c) and (d).  
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 The internal power flow during this latter self-healing process is shown in Fig. 10. At 
cmz 1= , the Poynting vector provides energy towards the blocked region for rebirth to occur 

while on the main lobe is directed along �45  in the yx −  plane in order to enable the self-
bending of the Airy beam.  

 

Fig. 10. Transverse power flow ⊥S
�

revealing the self-healing mechanism at cmz 1= . 

 
Another possibility is to block a 3x3 lobe portion of the Airy beam around its corner as 

shown in Fig. 11(a) using a metallic obstacle. In this case the beam reforms at cmz 24= (Fig. 
11(b)). Compared to the other two cases, this self-healing distance is somewhat longer since 
the perturbation is now more severe (given the ratio of the power blocked over the incident 
power).  Figures 11(c) and 11(d) show the corresponding simulated patterns while Fig. 11(e) 
depicts the transverse power flow at cmz 1= .  
 

 
Fig. 11. Self-healing of an Airy beam when a region of 9 lobes is blocked. Observed intensity 
profiles at (a) the input 0=z and (b) cmz 24= . The corresponding numerical simulations 

are shown in (c) and (d). Calculated transverse power flow ⊥S
�

at (e) cmz 1= . 

 
Finally we present experimental evidence of Airy beam reconstruction when a non 

symmetric obstruction is used. This asymmetric perturbation was carried out by blocking the 
first three lobes of an Airy wavepacket along the y  axis as shown in Fig. 12(a). Interestingly, 
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in this physical setting, the beam not only self-heals itself after cmz 18=  but also the initially 
blocked part is reborn even brighter when compared to its surroundings (Fig. 12(b)). This is a 
clear manifestation of the non-diffracting character of the Airy beam. The corresponding 
numerical results (Figs. 12(c) and 12(d)) are in excellent agreement with the experiments. 
                            

   

   
Fig. 12. Self-healing of an Airy beam when 3 lobes along y  axis are blocked. Observed 

intensity cross-sections at (a) the input 0=z and (b) cmz 18= . The corresponding 
numerical simulations are shown in (c) and (d).  

5. Propagation of Airy beams in adverse environments 

In the previous section we have demonstrated that optical Airy beams are remarkably resilient 
to amplitude deformations when propagating in free space. The question is:  are such self-
healing Airy wavepackets also robust in adverse environments? To address this question we 
have experimentally studied the propagation of Airy beams in scattering and turbulent media.   

5.1 Airy beams in scattering media 

In order to study the self-healing dynamics of Airy beams in scattering media we have again 
blocked their main corner lobe (Fig. 13(a)). To do so we have prepared two different samples 
of silica microspheres ( 45.1=n ) suspended in pure water( 33.1=n ). The size of the dielectric 
micro-particles was mμ5.0  and mμ5.1  in diameter and thus light scattering was 
predominantly of the Mie type [19]. Both suspensions were %2.0 in weight concentration 
while the volume filling factor was %1.0  (the specific gravity of the silica particles 
is 2

2
=SiOρ ). We have ultrasonicated the prepared mixtures for one hour, to make sure that the 

silica particles were mono-dispersedly suspended in water. The scattering cross-section of the 

microspheres is estimated to be 2055.0 mμ  and 276.3 mμ  [20] for the small and large particles 
respectively. These values lead to significant light scattering, enough to give a granular 
appearance when the beam propagates cm5  in the water-silica mixture (diameter of mμ5.0 ) 
(Fig. 13(b)). A longer ( cm10 ) cell was used to observe the complete reformation of the Airy 
pattern in the same scattering media. Figure 13(c) depicts the self-healing of an Airy beam 
after propagating cm10 in the same environment. Besides the anticipated drop in the beam 
intensity due to Mie scattering, the beam still exhibits in every respect its characteristic 
pattern. 
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Fig. 13. Self-healing of an Airy beam when propagating in a suspension of mμ5.0  silica 

micro-spheres in pure water. Observed intensity profiles at (a) the input 0=z , (b) 

cmz 5= , and (c) cmz 10= .  

 
To complete our observations we have repeated the same experiment with mμ5.1  

microspheres having a much larger scattering cross-section and hence more pronounced 
scattering effects. The self-reconstructed beam at the end of a cm10 glass cell is depicted in 
Fig. 14. 

 

Fig. 14. Self-healing of an Airy beam in a suspension of mμ5.1  silica micro-spheres in pure 

water after a propagation distance of cmz 10= .  

 

5.2 Airy beams in turbulent media 

Finally, we have studied the effect of turbulence on an Airy beam. The turbulent environment 
was realized over a heated rough accordion-shaped aluminum foil above which violent heat 
convection air currents were generated. The turbulence was controlled by adjusting the 
temperature of the hotplate around 300 degrees Fahrenheit. The Airy beam was then passed 
right above the aluminum foil up to a distance of cm8 . In all our experiments the resilience of 
the Airy beam (without any initial amplitude distortions) against turbulence was remarkable 
(Fig. 15(a) and the associated video file). To some extent this robustness can be qualitatively 
understood if one considers the phase structure of the beam: alternations in phase between 
0 ’s andπ ’s result in zero-intensity regions and these singularities can be in turn extremely 
stable [21,22]. For comparison purposes we turned off the cubic phase from the SLM, thus 
producing a comparable Gaussian beam. This diffracting Gaussian beam was then passed 
through the same turbulent system. Unlike the Airy beam, the Gaussian beam suffered 
massive distortions as it is evident from Fig. 15(b) and the associated video file. Clearly the 
Gaussian beam is heavily deformed (shape distortion and continuous “center of mass” 
hopping) and it exhibits a rather involved phase structure.  
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Fig. 15. Propagation in a turbulent medium of (a) (Media 1) an optical Airy beam and (b) 
(Media 2) a comparable Gaussian beam.  

6. Conclusions 

In this work we have demonstrated both theoretically and experimentally the self-healing 
properties of optical Airy beams. By monitoring their internal transverse power flow we have 
provided insight concerning the self-healing mechanism of Airy beams. We have also 
experimentally shown that these optical beams can also be robust in adverse environments 
such as in scattering and turbulent media. Our observations are in excellent agreement with 
numerical simulations. Finally, we have demonstrated that an Airy beam can retain its shape 
and structure under turbulent conditions as opposed to a comparable Gaussian beam that 
suffers from massive deformations. We believe that the robust nature of Airy beams may have 
important implications in other areas. These may include atmospheric propagation of non-
diffracting Airy beams as well as microscopy applications for biological tissues. 

Acknowledgment  

The authors wish to thank Lockheed Martin Corporation for partially funding this research 
project. 

(C) 2008 OSA 18 August 2008 / Vol. 16,  No. 17 / OPTICS EXPRESS  12891
#98252 - $15.00 USD Received 2 Jul 2008; revised 1 Aug 2008; accepted 5 Aug 2008; published 8 Aug 2008

http://www.opticsexpress.org/viewmedia.cfm?URI=oe-16-17-12880-1
http://www.opticsexpress.org/viewmedia.cfm?URI=oe-16-17-12880-2

	Self-healing properties of optical Airy beams
	Recommended Citation

	tmp.1566480316.pdf.UuMmn

