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Fluctuations of scattered waves: going
beyond the ensemble average

J. Broky, K. M. Douglass, J. Ellis, and A. Dogariu
College of Optics and Photonics, CREOL, University of Central Florida

Orlando, Florida 32816, USA
adogariu@creol.ucf.edu

Abstract: The interaction between coherent waves and random media is a
complicated, deterministic process that is usually examined upon ensemble
averaging. The result of one realization of the interaction process depends
on the specific disorder present in an experimentally controllable interaction
volume. We show that this randomness can be quantified and structural
information not apparent in the ensemble average can be obtained. We
use the information entropy as a viable measure of randomness and we
demonstrate that its rate of change provides means for discriminating
between media with identical mean characteristics.

© 2009 Optical Society of America
OCIS codes: (030.6600) Statistical Optics; (290.1990) Diffusion.
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A random medium is typically characterized by an ensemble of realizations of disorder. When
waves interact with a random medium, each member of this ensemble, i.e. each particular real-
ization of disorder, has its own pattern of fluctuations in the scattered wave. The interaction is a
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non-self-averaging process, and the complicated features of the scattered waves are all rooted in
the structural properties of the specific realization of randomness [1, 2, 3, 4, 5, 6]. In principle,
some of this structural information can be recovered if (i) the phase coherence is maintained
over the entire interaction, (ii) the process is not lossy, and (iii) the disorder does not vary in
time. In practice, however, due to finite sizes and experimental noise, one always infringes at
least on the second requirement. Furthermore, the information available is often too complex
to process in a practical manner. Therefore, an average over an ensemble of realizations of dis-
order is usually taken to determine mean statistical properties. For instance, numerous speckle
patterns resulting from different interactions must be averaged to learn about the global prop-
erties [7]. Unfortunately, this averaging inherently discards information specific to particular
realizations as well as the variations from one realization to the next.

As such, the following question arises: can one learn anything about the stochastic process
by examining a set of its individual realizations? In principle, having access to a number of
samples should allow one to study the rate of convergence toward the ensemble average char-
acteristics. Following the example of stochastic interaction between coherent waves and ran-
dom media, we will demonstrate that the significant sample to sample fluctuations can be used
to extract information not available in the ensemble average. Because the convergence of the
statistical properties of moments is a general problem for numerous physical phenomena that
are described as random processes, concepts similar to the one discussed here may be exploited
in other situations.

As an example, let us consider the interaction of photons with a random medium character-
ized by a number density NV of scattering centers and by the scattering cross-section σ describ-
ing the properties of a single scattering event. For each realization of disorder α , the interaction
will be defined by a specific distribution pα (s) of available photon path-lengths s through the
medium. When an ensemble average is taken over many such realizations, the photon inter-
action will be described by a probability distribution function p(s) = 〈pα (s)〉 = f (s,D) that
has a universal behavior depending only on the normalized diffusion coefficient D ∝ 1/(NV σ)
[8]. Note that all of the experimentally observable properties of the stochastic interaction can
be described in terms of the probability distribution p(s) whose exact functional form f (s,D)
may also depend on the particular geometry of an experiment. Clearly, there could be many dis-
similar media with different NV and σ that nevertheless display the same characteristics upon
ensemble averaging. In practice, this ensemble can be acquired in different ways for dynamic
or stationary systems, but the final result is the same: the number density and the scattering
cross-section are being coupled through the diffusion coefficient, and only their product is ac-
cessible.

For a specific realization of the material disorder, the distribution of available path-lengths
pα (s) will deviate from the one corresponding to the ensemble average:

pα (s) = f (s,D) [1+δα (s,ξα)] . (1)

Because this deviation δα (s,ξα) is specific to a particular realization of disorder, it depends
on variables not present in the ensemble average. Specifically, this can be expressed through a
configuration function ξα describing the particular morphology of the given realization α . In
the example above, the function ξα describes the locations of scattering centers available in the
realization and depends only on the number density and not on the scattering cross-section. For
media with continuously varying refractive indexes, one can still define a configuration function
ξα that is independent of the strength of the scattering. By examining the statistical properties
of δα (s,ξα) , one could infer information not available in the ensemble average.

Two observations about the general behavior of δα (s,ξα) are worth making. First, as the
length s of the path increases, more and more different trajectories of the same length are
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Fig. 1. Sketch of path-length distributions for two media with identical mean properties
(same D). The two media consist of scatterers of different cross-sections σ and different
number densities NV and are examined over the same range of path-lengths s. The medium
with smaller number density provides fewer possible paths of given length s resulting in
larger fluctuations of pα (s).

possible through the medium, and pα (s) approaches the value corresponding to the weight
of trajectories of length s in the ensemble average. In other words, in terms of the variable
s, the function δα (s,ξα) represents a nonstationary random process. Second, because upon
ensemble averaging a scattering region will exist at any position, this random function is of
zero mean, 〈δα (s,ξα)〉 = 0. However, because of the implicit dependence on the density of
scattering regions, it is expected that higher order statistics of δα (s,ξα) can be used to reveal
characteristics of the wave-matter interaction not included in the value of D.

This concept is illustrated schematically in Fig. 1 where the path-length distributions corre-
sponding to two different media are sketched over similar ranges of s. The two media consist of
scattering centers having different cross-sections but also different number densities such that,
upon ensemble average, they are described by the same diffusion coefficient. Clearly, when
compared to all potential trajectories, there are fewer available paths of given length s through
the medium with less scattering centers. Consequently, the path-length distribution pα (s) de-
viates more significantly from the ensemble average p(s) = 〈pα (s)〉. A measure of the nonsta-
tionary fluctuations in pα (s) should discriminate between the two media, as we will show in
the following.

Evidently, the random function pα (s) displays not only fluctuations in s but also differences
from one material realization α to another. There are many ways in which the two-dimensional
statistical characteristics of pα (s) can be quantified. Of course, a simple averaging over α will
provide a path-length distribution p(s) = f (s,D) which corresponds to the ensemble average.
For a single realization α on the other hand, higher order moments of the fluctuations in pα (s)
can be evaluated. Even though pα (s) is nonstationary in s, one can still calculate simple es-
timators such as, for instance, the variance Vα (ξα) =

∫
δ 2

α (s,ξα)ds−|∫ δα (s,ξα)ds|2 of the
fluctuations along s. However, this simple estimate is inadequate because δα (s,ξα) is a zero-
mean random function and, consequently, a unique and meaningful normalization is difficult to
define.

As the deviation δα (s,ξα) from the ensemble average can be regarded as a form of disorder,
we can choose to examine its variance in terms of the Shannon information entropy [9]:

Hα (s1,s2) =−
∫ s2

s1

δ 2
α (s,ξα)∫ s2

s1
δ 2

α (s,ξα)ds
log

(
δ 2

α (s,ξα)∫ s2
s1

δ 2
α (s,ξα)ds

)
ds. (2)
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Fig. 2. The averaged backscattered intensities for medium A (blue solid line) and medium
B (red dashed line). The insets show typical micrographs of the materials examined.

In Eq. (2), we define this finite scale entropy to account for realistic situations of any measure-
ment that extends over a finite range [s1,s2]. Furthermore, the finite scale entropy can be nor-
malized to its maximum allowable value for the entire range S = s2− s1 as

hα (s1,s2) =−Hα (s1,s2)/ log
(

1
S

)
. (3)

Of course, the normalized entropy hα (s1,s2) will still vary from realization to realization and
one can further build its average hα(s1,s2) over the number of realizations available. Being
constructed in terms of the specific fluctuations of each realization α , this average is a compre-
hensive measure of the overall fluctuations in δα (s,ξα).

We conducted an experiment to analyze the fluctuations in realizations of pα (s) . The dis-
tribution of photon path-lengths through different multiply-scattering media was measured in-
terferometrically using the procedure of optical path-length spectroscopy (OPS)[10, 11]. Us-
ing radiation with a short coherence length and an envelope detection of the interferometric
signal, OPS provides a direct measure of scattering contributions with specified pathlengths.
Measuring the magnitude of the envelope allows us to analyze differences in fluctuations of
the signal from two different media. The OPS measurements are based on fiber optic arrange-
ments that permit different modalities for injecting light into and collecting reflected light from
a scattering medium. The configuration can be monostatic, where the same fiber acts as both
the source and detector, or bistatic when the injection and detection points are separated by an
adjustable distance ∆ allowing for an experimental control over the volume of interaction. In the
frame of diffusion theory for lossless media, the path-length distribution p(s,∆) corresponding
to the ensemble average can be evaluated to be

p(s,∆)∼ exp
(
− z2

e +∆2

4sD

)
D− 3

2 s−
5
2 , (4)

where ze is the so-called extrapolation length [10].
We examined two different highly diffusive media that have approximately identical average

properties. These random dielectrics are non-absorbing polymer networks and have average
pore sizes of 0.45 µm and 1.2 µm. Upon ensemble averaging, both are characterized by the
same value of the transport mean free path of 10 µm.

Path-length distributions averaged over ten different realizations of these random media are
shown in Fig. 2 together with their corresponding scanning electron micrographs. Even though
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Fig. 3. Typical mean square fluctuations δ 2
α (s,ξα ) of path-length distributions for media A

and B shown in Fig.2.

their structural morphologies are obviously different, the similar behavior of p(s) is a clear
indication that, on average, the two media are being described by the same diffusion coefficient.
On the other hand, the fluctuations from the average are rather dissimilar as can be seen in
Fig. 3 where we plot the typical mean square of the fluctuations δ 2

α(s,ξα) corresponding to
the two media. In general, medium A exhibits smaller deviations from the average which can
be interpreted as a larger number of scattering trajectories available for each s. Note also that
the fluctuations in δ 2

α(s,ξα) decrease for larger values of s because these random processes are
nonstationary as discussed above.

Let us now examine in more detail the situation where the scale of available path-lengths is
varied. In practice, this amounts to controlling the size of the interaction volume which can be
implemented in the bistatic OPS measurements as suggested in the inset of Fig. 4. By increasing
the source-detector separation ∆ the interaction volume is enlarged while enforcing a minimum
path-length. According to our notation in Eq. (2), this amounts to setting the lower path-length
limit at s1 = ∆ and the upper one at s2 = ∆ + S. Here S denotes the value of the total span
of path-lengths available in the measurement; S is constant in our experiments. Subsequent
normalization and averaging over different realizations was performed following the procedure
outlined by Eq. (3). In Fig. 4 we present the values of the normalized scale dependent entropy
hα (∆) averaged over ten realizations of disorder for both media examined.

As can be seen for both media, when the interaction volume increases, the entropy increases
as expected because in all realizations α , δα(s,ξα) is a nonstationary process, and its fluctua-
tions decrease at larger s. The absolute values and the rate of increase for hα (∆) however are
medium specific.

Two main observations are in place. First, we notice the higher values of the entropy for
medium A. This is the result of a higher number density of scattering centers which determines
a larger number of possible optical paths having a given length s. Therefore, there are smaller
fluctuations in δ 2

α(s,ξα) as discussed before and, consequently, the entropy tends toward its
value corresponding to an infinite number of possible trajectories of length s.

The second observation relates to the different rates of entropy increase as suggested by the
dashed lines in Fig. 4. This behavior can be understood by realizing that a certain path-length s
can be reached through a different number m of scattering events. For independent scattering,
the joint distribution p(s,m) of such a process is Poissonian and the cumulative probability of
scattering orders up to M that contribute to paths of length s is described, in average, by a uni-
versal cumulative distribution function p(s,M) [12]. This cumulative distribution increases fast
for low values of M and tends to saturate for higher scattering orders. In one realization where
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Fig. 4. Average normalized entropy hα (∆) for medium A (blue circles) and medium B (red
boxes) for increasing volumes of interaction in a bistatic configuration as depicted in the
inset.

the interaction volume is finite, the maximum scattering order M contributing to a certain s is
essentially determined by the number density of available scattering centers. Thus, processes
involving different number densities will in fact experience different regions of the cumulative
distribution function. For the sparser medium B, a change in M results in a faster increase of
the corresponding values of p(s,M) and, consequently, a faster decrease in the possible fluctu-
ations. Because the entropy is a measure of magnitude of these fluctuations, it follows that the
medium B should be characterized by a faster rate of entropy increase as can be seen in Fig. 4.
As a result, in spite of being described in average by the same diffusion coefficient D, the two
media can be discriminated based on their corresponding densities of scattering regions. This
information was not available in the ensemble average.

In conclusion, we have demonstrated a new way of analyzing the fluctuations of scattered
waves resulting from the interaction between coherent fields and disordered media. In general,
the complexity of such deterministic processes can be reduced only through ensemble averag-
ing at the expense of available information. We have demonstrated that analyzing individual
members of the ensemble of interactions provides means to extract information beyond that
available in the ensemble average.

The deviation of an individual path-length distribution from the ensemble average is a non-
stationary random process which also varies from one realization to another. There are different
ways to analyze such a random function. Here we have shown that specific properties of the
random medium’s morphology can be evidentiated by using the scale dependent entropy associ-
ated with the variance of path-length fluctuations. This is of particular interest in practice where
the volume of interaction can be easily controlled from macroscopic to microscopic scales [13].

Finally, the procedure outlined here is quite general and may find other applications for
discriminating between physical processes with identical mean parameters. One example may
be the possibility to extract information from nonstationary “noise” and a limited number of
samples in the study of neurotransmitter receptors [14].
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