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Abstract: We study spatial soliton dynamics in nano-particle suspensions. 
Starting from the Nernst-Planck and Smoluchowski equations, we 
demonstrate that in these systems the underlying nonlinearities as well as 
the nonlinear Rayleigh losses depend exponentially on optical intensity. 
Two different nonlinear regimes are identified depending on the refractive 
index contrast of the nanoparticles involved and the interesting prospect of 
self-induced transparency is demonstrated. Soliton stability is systematically 
analyzed for both 1D and 2D configurations and their propagation dynamics 
in the presence of Rayleigh losses is examined. The possibility of 
synthesizing artificial nonlinearities using mixtures of nanosuspensions is 
also considered. 
©2007 Optical Society of America  
OCIS codes: (190.3970) Microparticle nonlinear optics, (190.5940) Self action effects, 
(290.5870) Scattering, Rayleigh. 
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1. Introduction 

Molecular kinetics plays a ubiquitous role in many and diverse areas of physics, chemistry, 
and life sciences [1]. Physical kinetics in particular is central in chemical reactions since it 
most directly determines the reactant concentrations. By their very nature, these are 
mesoscopic processes-all governed by statistical physics. Thus far, methods to regulate kinetic 
phenomena have relied on using traditional thermodynamic variables such as pressure, 
temperature, concentrations etc [1]. It will be certainly of importance to device methods to 
optically control kinetic processes at a mesoscopic level. One possible avenue is to alter the 
local concentrations of nano-particle suspensions using optical beams. Yet, it is by now well 
known that, this same process will in turn affect the optical environment, thus leading to a 
mutual interaction between the beam itself and the nano-particle system. Following the 
pioneering work of Ashkin et al [2,3], the possibility of beam self-focusing and of four-wave 
mixing in artificial Kerr-like media involving nanosuspensions was considered in a number of 
experimental studies [2-5]. In such systems the optical nonlinearity is the direct outcome of 
the electromagnetic gradient force and can be relatively high depending on the size of the 
nano-particles involved [6-8]. From a practical perspective, such artificial nonlinear materials 
are quite attractive since nonlinear effects can be observed at very low power levels [2,3]. 
Interest in this area was recently rekindled in a number of new studies on both the theoretical 
[9,10] and the experimental [4,5] front. Nonetheless, it is important to emphasize, that so far, 
in most works the nonlinearity of nano-particle suspensions was a priori assumed to be of the 
Kerr type. Yet, as demonstrated in two theoretical studies [11,12], this rather simplistic 
assumption is only valid when the optical beam intensity is well below a threshold intensity 
set by the thermal energy.  This in turn has important implications on nonlinear beam 
dynamics in such nano-suspension systems. In fact as demonstrated in [11,12], the 
nonlinearity of nanosuspensions varies exponentially with intensity. This exponential 
character of nonlinearity was also recognized in earlier studies using either thermodynamics 
arguments [2] or by invoking Chandrasekhar equation [13].  

In this work, starting from first principles, we analyze the nonlinear response as well as the 
nonlinear Rayleigh losses associated with nano-particle suspensions. This is done by directly 
solving the underlying Nernst-Planck and Smoluchowski equations under equilibrium 
conditions. We show that in such systems both the optical nonlinearity and Rayleigh losses 
vary exponentially with optical intensity. Depending on the sign of the particle polarizability, 
these exponential nonlinearities can be saturable or monotonically increasing with intensity 
(unsaturable). The soliton solutions corresponding to these two cases are obtained and 
analyzed in detail. The stability properties of both 1D and 2D self-trapped states are 
investigated. Our analysis indicates that low power, relatively narrow soliton beams, can 
propagate undistorted over several diffraction lengths in spite of the presence of nonlinear 
Rayleigh scattering effects. In the case of negative polarizability particles, a self-induced 
transparency effect is predicted. The propagation characteristics of these self-localized beams 
are also investigated in nanosuspension mixtures with competing polarizabilities that can 
exhibit a novel nonlinear response.  
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2. Theoretical analysis 

In this section we analyze the interaction between the electromagnetic field of a laser beam 
and the nanoparticles involved in a colloidal suspension. To do so we invoke the particle 
current continuity equation [14], 

                                             0=⋅∇+
∂
∂ J

t
rρ

 ,                                                     (1) 

where ρ  represents the particle concentration and J
r

is the particle current density. In these 
systems, the mechanisms contributing to the particle current density are described by the 
Nernst-Planck equation [14]: 

                                             ρνρ ∇−= DJ
rr

,                                                     (2) 
where D is the diffusion coefficient andν

r
 is the particle convective velocity which is related 

to the external force F
r

 acting on the nanoparticles through the relation  F
rr

µν =  where 
µ represents the particle’s mobility. The first term on the right hand side of Eq. (2) gives the 
drift current due to the external force while the second one describes the diffusion current due 
to Brownian motion. In Eqs (1)-(2) we assume a highly diluted mixture and we neglect any 
particle-particle interactions. Combining Eqs. (1) and (2) one obtains the Smoluchowski 
equation, i.e.,  

                                                  ( ) 0=∇−⋅∇+
∂
∂ ρνρρ D

t
r

 .                                         (3) 

In order to solve Eqs. (1-3) we assume steady state conditions, i.e. 0/ =∂∂ t . In addition, 

under equilibrium the current density is zero, 0=J
r

, i.e. drift is balanced by diffusion. In the 
case where the particle size is small compared to the wavelength (Rayleigh regime), the 
average optical gradient force on this nanoparticle can be obtained within the dipole 
approximation [6-8],   

                                                           IF ∇=
4
αr

   .                                                         (4) 

In Eq. (4), α  represents the particle polarizability and the quantity *EEI
rr

⋅= is associated 

with the light intensity through the peak spatial field amplitude E
r

. In the dipole 
approximation, the polarizability α of a spherical particle having a refractive index pn  is 
given by [15]: 

                                               ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=
2
13 2

2
2

0 m
mnV bp εα     ,                                           (5) 

where 3/4 3aVp π= is the volume of the particle, 0ε is the free space permittivity, bn  is 
the refractive index of the background medium and the dimensionless parameter 

bp nnm /=  represents the ratio of the particle’s refractive index pn to bn .  It is important 
to note that α  can be positive or negative depending on whether the refractive index of the 
particle is higher ( m >1 ) or lower (m<1) than that of the background. 

In the absence of any illumination (I=0), 0== vF rr
, the particle density obeys Laplace’s 

equation 02 =∇ ρ  under steady state conditions. Moreover, at the container boundaries, the 
normal component of the diffusion current ρ∇ is zero. In this case, this Newman boundary 
value problem dictates that the particle density is everywhere constant. This uniform 
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distribution is also the one that leads to maximum entropy (in the absence of external 
constraints).  

If on the other hand, light forces are present, substitution of Eq. (4) into Eq. (2) (under the 
condition 0=J

r
) leads to ( ) 04/ =∇−∇ ρραµ DI . This last partial differential equation 

can be directly integrated and gives )
4

exp(0 I
D

αµρρ = . From Einstein’s relation  

TkD B/1/ =µ  we finally obtain:     

                                               ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= I

Tk B4
exp0

αρρ        ,                                           (6) 

where TkB is the thermal energy and 0ρ  stands for the unperturbed uniform particle density 

(in the absence of light-when the container is large). Given the fact that I
4
α

is associated 

with the optical potential energy, this last result is another manifestation of the Boltzmann 
distribution in statistical physics [1].  Similarly the volume filling factor in nano-suspension 
systems follows a similar rule, that is ( )TkIfIf B4/exp)0()( α=  . Moreover it is 
important to emphasize that this exponential law is only applicable in the case of relatively 
low concentrations (or filling factors) since the diffusion equation itself ignores particle-
particle interactions. As we will see, in most typical cases Rayleigh scattering losses naturally 
provide an upper bound on particle concentration.  

From Eqs. (5) and (6) we notice that the particle concentration will increase in the regions 
where the intensity is high, whenever the refractive index of the particles pn  is higher than 

that of the background bn ( 0>α ). The converse it true in the other regime ( 0<α ), i.e. the 
particles will escape from the high intensity regions when their refractive index is lower than 
that of the surrounding medium. As a result the refractive index is locally perturbed due to this 
intensity dependent change in the particle concentration. To calculate this local index change 
we use the Maxwell-Garnett formula given by [16,17]: 

                                      
( )
( )2222

2222
22

2
22

bpbp

bpbp
beff nnfnn

nnfnn
nn

−−+

−++
=    .                                 (7) 

In Eq.(7) effn  is the effective refractive index of the medium and f  is the volume filling 
factor given by the ratio of the volume of the particles to the total volume. If we expand the 
right hand side of Eq. (7) and by assuming a relatively small index contrast (i.e. 1−m  being 
small) we get: 

                                           ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+=

b

bp
beff n

nn
fnn 2122      .                                    (8) 

In this same limit, Eq.(8) reduces to ( ) pbeff fnnfn +−= 1 . This result could have been 
intuitively anticipated based on fractional composition arguments. The change in the 
refractive index is then given by ( ) fnnnnn bpbeff −=−=∆  where the particle volume 

filling factor is defined as: ( ) ppp VVVNf ρ=∆∆= / . This together with Eq. (6) provides the 
optical nonlinearity of such nanoparticle suspensions [11,12]: 
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I
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α
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In addition to these nonlinear index changes, it is important to incorporate scattering losses in 
the dynamical evolution equations.  If the particle size is smaller than the free-space 
wavelength 0λ , the scattering cross section can be determined in the Rayleigh regime [18], 
that is: 

                                    
2

2

24

0

425

2
1

3
128

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

m
mana b

λ
πσ    ,                             (10) 

where again a is the particle radius. 
We now develop the beam evolution equation in nano-particle suspensions. Starting from 

the Helmholtz equation 022
0

2 =+∇ EnkE eff , and by  assuming  a slowly varying field 

envelope ),,( zyxϕ , that is , ( ) ( ) )exp(,,,, 0 znikzyxzyxE bϕ= , we find that: 

                      ( ) 0
2

1
0

2

0

=+−+∇+
∂
∂

⊥ γϕϕϕϕ ifnnk
nkz

i bp
b

     ,            (11) 

where γ  in the last term represents the loss coefficient and 00 /2 λπ=k . If we now keep 

only the loss term in the last equation, we find that )2exp(2
0

2 zγϕϕ −= . Given that 

)exp(2
0

2 zlαϕϕ −=  where the loss coefficient is given by σρα =l  we finally 

obtain ( )TkI B4/exp2 0 ασρσργ == . This final expression for the loss coefficient is 
important since it demonstrates that the scattering losses are actually nonlinear, i.e. they 
depend on the beam intensity. As will be shown later, these nonlinear Rayleigh losses will 
play a crucial role in the beam propagation dynamics. From these latter results, Eq. (11) takes 
the form: 
 

 ( ) 0
22

1 22

4
0

4
00

2

0

=+−+∇+
∂
∂

⊥ ϕσρϕρϕϕ ϕ
α

ϕ
α

TkTk
pbp

b

BB eieVnnk
nkz

i  .      (12) 

Note that equation (12) is general and is applicable in both cases irrespective of whether the 
polarizability α  is positive or negative. If we first consider the case of positive polarizability 
and by introducing the following normalizations, 2

02/ wnkz b=ξ , wxX /=  , 

wyY /= , 0
2
0

2 2 ρpbpb Vnnnkw −=− , ( ) UTkB
2/1/4 αϕ = , Eq.(12) takes the form: 

0
22

=++++
∂
∂ UeiUeUUUi UU

YYXX δ
ξ

      ,          ( for bp nn >  )    .          (13) 

In Eq.(13) U is the normalized field amplitude, w is a characteristic beam width, and the 
normalized loss δ is given by ( )pbp Vnnk −= 02/σδ . In the same manner, if the 

polarizability is negative, we obtain  

0
22

=+−++
∂
∂ −− ueiueuuui uu

YYXX δ
ξ

   ,                  ( for bp nn < )                (14) 
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where here we used the symbol u instead of U.  If now introduce the transformation 
ξiUeu −=  in equation (14) we obtain: 

    ( ) 01
22

=+−+++
∂
∂ −− UeiUeUUUi UU

YYXX δ
ξ

   ,       ( for bp nn < ) .       (15) 

Equations (13) and (15) are normalized evolution equations describing wave propagation in 
these two different cases.   

Note that in both situations the nonlinearity is of the self-focusing type. In the first case, 
described by Eq. (13), the nonlinearity is monotonically exponential. On the other hand, in the 
second regime (Eq.(15)), the nonlinearity is exponentially saturable.  Even though at first 
sight it might be unclear how both systems lead to a self focusing nonlinearity, this can be 
clarified using the following physical arguments. In the case where the particles have a higher 
refractive index than the background, the polarizability α    of each particle is positive and 
thus the particles are attracted toward the high intensity region, i.e. to the center of the beam, 
thus elevating the effective refractive index of the system (Fig. 1(a)). This will of course 
increase the nonlinear scattering losses as well. On the other hand, particles having a lower 
refractive index than that of the background and hence a negative polarizability will be 
repelled away from the center of the beam, again raising the refractive index at the center 
(Fig. 1(b)). In this latter case however, the nonlinear losses decrease at the beam center (due to 
the reduction in the particle concentration), thus increasing the transparency of the system. As 
it will be shown, this difference in the character of the exponential optical nonlinearity will 
have a profound effect on the beam dynamics of spatial solitons. 
 
 

                                                                
 
 

Fig. 1 A high intensity beam (a) attracting nanoparticles with positive polarizabilities and (b) 
repelling nanoparticles with negative polarizabilities. 

 
 
3. Soliton dynamics and stability properties 

In this section we investigate the dynamics and stability properties of the soliton solutions 
possible in exponentially nonlinear nano-suspensions. To do so, we solve Eqs. (13) and (15) 
in both one and two dimensional configurations in the absence of any nonlinear Rayleigh 
losses ( 0=δ ).  

3.1  1D soliton solutions 

We first consider the 1D case. Here we seek 1D stationary solutions of the 
form ( ) ( ) )exp(, κξξ iXgXU =  where κ  represents the soliton eigenvalue. Substituting 
this latter expression into Eqs. (13) and (15) gives: 

                                       0
2

=+− gegg g
XX κ     ,                                         (16-a) 

                                                  ( ) 01
2

=−+− − gegg g
XX κ                                     (16-b)  

Equations (16) can be readily integrated once, thus leading to: 

(a) (b) 
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                                        1
22 2

Cegg g
X =+−κ                                                       (17-a)  

                                        ( ) 2
22 2

1 Cegg g
X =+−+ −κ                                          (17-b) 

Since asymptotically, these solutions satisfy 0=
∞→X

g  and 0=
∞→XXg , we set 

121 == CC . By rearranging Eqs.(17) we directly obtain: 

                                 
( ) ∫∫ ′±=
′−′+

′ Xg

g

Xd
gg

gd

0
22

0 exp1 κ
                                    (18-a) 

                                 ( ) ∫∫ ′±=
′−−′−+

′ Xg

g

Xd
gg

gd

0
22

0 exp)1(1 κ
        .              (18-b) 

As Eqs. (18) imply, these soliton solutions are symmetric with respect to the origin 0=X . 
Using the boundary conditions at the beam center, namely that ( ) 00 gg =  and ( ) 00 =Xg  
we can now numerically integrate Eqs. (18).  

We will first discuss the 1D soliton solutions associated with exponential nonlinearities, 
i.e., Eq. (18-a). Figure 2(a) shows the existence curve of these solutions, e.g. their normalized 
intensity FWHM as a function of their peak intensities. The inset in Fig. 2(a) shows the 
intensity profile of such a solution at 3=κ . As one can see, the beam width monotonically 
decreases as the soliton peak intensity increases. The stability properties of this class of 
solutions can be systematically examined using the power-eigenvalue ( κ−P ) diagram 

where dXUP
2

∫= . Following Vakhitov and Kolokolov [19], this solution is stable 

whenever the slope of the curve is positive (for 49.2<κ ) and is unstable for higher 
eigenvalues where the slope is negative  as shown in Fig. 2(b).      

         

 
Fig.  2 Normalized soliton FWHM width as a function of their normalized peak intensities in 
exponential nonlinear nanosuspentions. The inset represents the intensity profile of such a 
solution. (b) The corresponding   κ−P  diagram with S being the stable and U the unstable 
branch. 

 
The existence of two different regions of stability is by itself an interesting result given that 
we are dealing with a 1D system [20]. In reality, above this threshold ( 49.2=κ ) these 1D 
solutions tend to catastrophically collapse into a singularity. This behavior can be qualitatively 

(a) (b) 
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explained based on the Taylor series expansion ...)2/1(1 422

+++= UUe U . As a 
result, at lower intensities the nonlinearity is of the Kerr-type and the corresponding solutions 
are stable. However, at higher intensities, the degree of nonlinearity is above the supercritical 

value (i.e. 
4U ) necessary for 1D systems to exhibit collapse [20]. Of course in reality 

nonlinear Rayleigh scattering and/or saturation effects in the particle concentration will 
prevent such a collapse from occurring. The dynamics of these solutions are then studied by 
directly solving Eq. (13) and by including nonlinear Rayleigh scattering losses. To illustrate 
our results we consider the propagation of a soliton beam in nano-suspensions when the 
wavelength is 0.532 mµ . The nano-suspensions involve polystyrene nano-particles (refractive 

index 56.1=pn ) of radius 50 nm  suspended in water ( 33.1=bn ) at a concentration 

of 311107 −× cm  (or 4105.3 −×=f ). Under linear conditions, a 10 micron beam (FWHM 
in width) expands considerably because of diffraction (3 times) and loses 13% of its power 
because of scattering losses. Conversely, in the nonlinear regime, this same beam can 
propagate up to 4 diffraction lengths (2 mm) without any appreciable distortion-limited only 
by the nonlinear losses (20%), as clearly shown in Fig. 3. 

 
Fig. 3(a) Linear propagation of an optical beam in water-polystyrene nanosuspension. (b) 
Nonlinear soliton effects in this same system. 
 

On the other hand, the situation for the saturable nonlinearity (described by Eqs. (15) and 
(18-b)) is quite different. Figure 4(a) shows the soliton existence curve for this latter system.  

 
 
Fig. 4(a) Normalized soliton intensity FWHM width as a function of their peak intensity in 
exponentially saturable nanosuspentions. The inset depicts such a solution  (b) Corresponding 

κ−P  diagram indicating stability. 

(a)

(b) (a)

Losses=13%

(b) 

Losses=20% 
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These results indicate that the intensity FWHM width of these solutions tend to initially 
contract with peak intensity and eventually expand –a characteristic behavior of solitons in 
saturable systems [21,22]. The inset in Fig. 4(a) shows the intensity profile of such a solution 
at 95.0=κ . The power-eigenvalue κ−P  diagram in this regime is shown in Fig. 4(b). 
This graph indicates that in the saturable case (of negative polarizabilities) the 1D soliton 
solutions are always stable since 0/ >κddP . 

Figure 5 depicts the propagation of a 10 micron beam (FWHM in width) in a suspension 
involving 50 nm  air nano-bubbles ( 1=pn ) floating in water ( 33.1=bn ). Again the 
wavelength is taken to be 0.532 mµ . The nano-bubble concentration is assumed to 

be 312102 −× cm  or 310−=f . Under linear or low power conditions, the beam diffracts 
considerably (more than 10 times) and loses almost all its energy (97%) as clearly indicated in 
Fig. 5(a). 

This considerable loss is a direct outcome of Rayleigh scattering at these concentration 
numbers. At power levels sufficient to sustain a soliton however, the beam expels the nano-
spheres from the center, thus giving rise to self-induced transparency and self-trapping 
effects. In other words, at high powers the beam can effectively reduce the “haze” while at the 
same time can establish its own waveguide structure In this case the overall losses drop from 
97% to 20%. A direct simulation of this beam (based on Eq. (15)) shows that the soliton (10 
micron FWHM) can propagate up to 12 diffraction lengths (Fig. 5(b)), i.e. approximately 4 
times more than in the first case. This behavior is understood by recalling that the nonlinear 
losses are exponentially growing in the first case whereas are exponentially decaying in the 
second one.  

 
 

Fig. 5 Linear propagation of a 10 mµ beam in water-air nanobubble suspenstions where 
97% of losses are expected. (b) Nonlinear soliton self-trapping and self-induced transparency 
effects. 
 

3.2 2D soliton solutions 

Two-dimensional soliton solutions in these systems are obtained by directly solving the 2D 
version of Eqs.(13) and(15). To do so we seek stationary solutions in cylindrical coordinates 
having the form ( ) ( ) ( )κξξ irgru exp, =  and we keep in mind the boundary conditions 

0=g at ∞→r  and 0/ =drdg  at 0=r .  
We begin by considering first nanoparticles with positive polarizabilities. In this regime, 

the normalized ( κ−P ) diagram associated with these solutions is shown in Fig. 6(a). The 
monotonically decreasing behavior of this latter curve clearly indicates that the 2D soliton 
solutions in exponentially nonlinear nanosuspensions are always unstable and tend to 

Losses=97% Losses=20% 

(a) (b) 
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catastrophically collapse. Again as in the 1D case, collapse will be prevented because of 
nonlinear Rayleigh scattering and/or saturation effects in the particle concentration. In 
addition, the intensity profiles of this class of waves exhibit a cusp-like shape as a result of the 
exponential nonlinearity, as shown in Fig. 6(b). As an example we study the propagation of a 
10 micron width (FWHM) 2D beam in water containing polystyrene nanospheres. All the 
physical parameters are the same as those used in the corresponding 1D system except for the 
volume filling factor which taken here to be 410−=f . At low power levels the beam 
expands because of diffraction (2 times) and loses 2% of its power as a result of Rayleigh 
scattering, as shown in Fig.  6(c). On the other hand, at 5W (at soliton power), this same beam 
can propagate up to 1mm (3.5 diffraction lengths) without any appreciable expansion and in 
spite of the nonlinear Rayleigh losses (5%) as accounted in Eq.(13), as demonstrated in Fig.  
6(d) . We note that in our simulations this beam would have otherwise undergone a collapse 
had not been for Rayleigh scattering. This collapse behavior is illustrated in Fig. 6(e) in the 
absence of nonlinear losses and by neglecting saturation effects in the particle density. 

 
 

Fig. 6(a) κ−P  stability diagram of 2D solitons in nanosuspentions with positive 
polarizabilities. (b) Soliton intensity profile at 7.1=κ . (c) Beam diffraction at low power 
levels shown in scale. (d) Propagation dynamics of a 2D 10 mµ  soliton beam after 1 mm in 
the presence of Rayleigh losses. (e) Catastrophic collapse in the absence of nonlinear losses. 

 
We now consider 2D soliton solutions in nanosuspensions with negative polarizabilities 

exhibiting saturable exponential nonlinearities similar to those encountered in plasma science 
[23,24]. This is done by considering Eq. (15) in the absence of losses. The ( κ−P )  stability 
diagram associated with these solutions is shown in Fig. 7(a) and indicates that these self-
trapped states are always stable since 0/ >κddP . 

To illustrate our results we consider air nano-bubble suspensions in water. Again all the 
physical parameters used here are the same as those used in the corresponding 1D example 
and 310−=f . Fig. 7(b) shows the intensity profile of a mµ10 beam (FWHM) that is 
possible in this system at a power level of 2.8 Watts. At very low intensities, after 3.5 mm of 
propagation, the beam linearly diffracts (7 times) and loses 80% of its power because of 
substantial Rayleigh scattering, Fig. 7(c). On the other hand, when the beam input power is 6 
W, the beam self-traps and at the same time increases the transparency of the system by 
optically expelling the nanoparticles from its center. In this latter case, the beam expands only 
by 10% and loses a small fraction of energy (20%) after 3.5 mm of propagation as shown in 

(a) (b) (c) 

(d) (e) 
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Fig. 7(d). As in the 1D case, this self-induced transparency effect is again a result of the 
specific nature of the optical gradient force.  

 
Fig. 7(a) κ−P  stability diagram of 2D solitons in nanosuspentions with negative 
polarizabilities. (b) Soliton intensity profile at 5.0=κ . (c) Expantion and loss effects during 
linear propagation of a 2D 10 mµ  beam after 3.5 mm (d)  Self-trapping and self-induced 
transperancy effects at 6 W of beam power in this same system. 

 
 
4. Engineering nonlinearities in nano-suspension systems 

So far we have considered nano-suspensions involving only one type or species of nano-
particles. In this section we study the effect of mixing two or more types of nano-particles in 
the same suspension. In this case the Nernst-Planck equation takes the form: 

                                           ( )∑∑ ∇−==
j

jjjj
j

j DJJ ρνρ
rrr

    ,                               (19) 

where the subscript j runs over all different kinds of nano-particles. In the case of diluted 
suspensions particle-particle interactions can be neglected. As a result each current component 

jJ
r

 vanishes independently and the statistical distribution for each type of nano-particles is 
represented by a Boltzmann distribution, i.e.  

                                                        ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= I

TkB

j
jj 4

exp0

α
ρρ        .                                     (20) 

Following an analysis similar to that of section 2, we find that the beam evolution equation in 
such a system is given by: 
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In Eq. (21), we have incorporated nonlinear contributions from either type of particles, i.e. 
from those with positive or negative polarizabilities (the +/- superscript denotes particles with 
positive/negative polarizabilities). The last term in Eq.(21) represents Rayleigh losses due to 
these two different kinds of nano-particles. For each family, the equation implicitly assumes 
different values for their respective polarizabilities and densities.  Note that in Eq.(21) the 
coefficient of each term is a function of the nano-particle properties (refractive index, radius) 
and their concentrations. Thus by controlling these parameters one could design an otherwise 
nonexistent nonlinear response. For example if we consider a mixture of only two different 
types of particles having equal but opposite polarizabilities and we choose the particle 
concentrations  so as the nonlinear coefficients in both terms of Eq.(21)  are equal to unity, 
then the nonlinear evolution equation (neglecting the loss terms) can take the form: 
 

                                      ( ) 0sinh2 2 =+++
∂
∂ UUUUUi YYXXξ

        .                  (22) 

This suggests that systems with artificial nonlinearities (such as that of Eq.(22) with sine-
hyperbolic nonlinearity) can be for example synthesized at will through appropriate inclusion 
of nanoparticles.  

5. Conclusion 

In conclusion we have demonstrated that the interaction of an optical beam with nanoparticle 
colloidal suspensions leads to exponential self-focusing nonlinear effects as well as 
exponential Rayleigh scattering losses.  This system was investigated in two different regimes 
depending on whether the nanoparticle polarizability is positive or negative and was shown 
that altogether different behavior is expected in each case.  Soliton dynamics and their 
stability properties were analyzed in these two cases for both 1D and 2D configurations and it 
was demonstrated that by taking into account nonlinear Rayleigh losses soliton collapse can 
be prevented. Our analysis revealed that apart from self-trapping, another very interesting 
phenomenon can be expected-that of self-induced transparency, as long as the nanoparticle 
polarizability is negative. In addition we considered the possibility of synthesizing new 
nonlinearities by using mixtures of different types of nanoparticles. We would like to note that 
several other issues merit further investigation. These include for example system dynamics 
under non-equilibrium conditions, particle-particle interactions in high density suspensions, 
and particle distribution in the presence of non-conservative force fields. Finally effects 
arising from temperature gradients, viscosity etc may need attention. We intend to address 
these aspects in future work. 
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