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PHYSICS OF PLASMAS VOLUME 11, NUMBER 6 JUNE 2004

Theoretical modeling of an A6 relativistic magnetron

D. J. Kaup?
University of Central Florida, Orlando, Florida

(Received 27 August 2003; accepted 9 February 2004; published online 11 May 2004

The analytical modeling of the initialization stage of a relativistic magnetron of the A6 cylindrical
design is presented, where only two dominant modes are used: a direct ¢dmebackground

mode and a radio frequencif) pump mode. These two modes interaction nonlinearly, with the dc
background being driven by the dc electromagnetic forces and the ponderomotive forces of the rf
mode, while the rf mode is the most unstable linear eigenmode on this dc background. In cylindrical
geometry, the diocotron resonance is found to occur over a broader region than in planar models. In
fact, in certain parameter regimes, the resonance can appear twice, once near the Brillouin edge, and
second, just below the anode. In these parameter regimes, the oscillating electrons can be
accelerated twice. Numerical results for the initiation stage agree quite well with the known
experimental results on the A6. Results for 350 kV are emphasized, and similar results have also
been obtained for voltages between 300 and 500 kV. Numerical data are presented that indicate a
possible source for a nonlinear instability, which could give rise to pulse shortening, in the later
operating stage, where the device should be smoothly delivering poweR00@ American
Institute of Physics.[DOI: 10.1063/1.1710518

I. INTRODUCTION dc density profile, one which will be in equilibrium with the
nonlinear diffusion process, which is driven by the pondero-
The analytical modeling of crossed-field vacuum de-motive pressure of the propagating rf wa¥é?! This diffu-
vices, such as crossed-field amplifigSFAs) and magne- sjon process is driven by the density gradient at the edge of
trons, can give new insights into their operation, and thehe sheath? which for a Brillouin flow is very large. The
physical processes that occur inside them. These devicestal profile, consisting of the new stationary dc background
have been analyzed with “particle-in-cellPIC) codes(see  and the rf oscillations, appears as an oscillating background
Refs. 1-4 and guiding center theor{see Refs. 5-8, and with a series of periodic “spokes,” as seen in numerical
references therejn Our modeling approach is complemen- simulations with PIC codes*® These spokes carry the dc
tary, in that we use Fourier modes. The original Fourier mul-current from the cathode to the anode. The physics of the
tiscale expansion for a planar magnetron model was first daurn-on process for developing these spokes has been de-
scribed in Ref. 9, and the importance of the second-ordegcribed in Ref. 12.
(quasilinear conditions for determining the operating elec-  Previous studies of the A6 have included the study of
tron density profiles was detailed in Refs. 10 and 11. Thigelativistic planar modefs-’~*°and also the observation that
approach produces reasonable predictions for the phasgere is an instability which could arise whenever the dc
shifts, dc current flow, and other characteristics of theseadial current becomes too Iaré‘éStudies by others have
devices'® Furthermore, when the total density is recon-included the derivation of the dispersion relation and the
structed from the high-frequency rf wave and the dc backgrowth rates of the diocotron instability for a relativistic pla-
ground, the resulting density profiles are similar to thosenar magnetron in the guiding center approximation for a
seen in numerical simulations, showing the well-knowntenuous bearf Also, the importance of the rf induce
spoke structurésee Fig. 2 beloyw X B drift velocity in reducing the efficiency of such a device
Any strong rf electric field propagating in the slow wave has been treated by Riyopoufdsn the guiding center ap-
structure of a crossed-field, electron vacuum device willproximation.
drive a Brillouin sheath? unstablé®* by means of a Ray- Here we use analytical modeling to present an analytical
leigh instability’* whenever a wave-particle resonar{d®-  and a numerical treatment of the relativistic cylindrical mag-
cotron occurs inside the sheath. This linear wave-particlenetron in the A6 configuration. In carrying out this study, our
instability originates in a Rayleigh-like equatidrwith a  primary purpose will be to devise an analytical model,
shear flow. Once this linear instability initializes, the laminarwhereby one can expose and understand the physical pro-
flow of the electrons is strongly disturbed, and a nonlineakcesses occurring inside the magnetron. Thus we concentrate
instability is then triggered, which is a second-order diffu-first on the analytics, selecting from the equations, in a con-
sion proces§:>!® This nonlinear diffusion process causessistent fashion, those terms which would be dominant. The
the electrons to redistribute into a new average backgrounghajor assumption that we use is that the dominant terms are
those that come from the dc background and a single rf
dTelephone: 407-823-2795: fax: 407-823-6253. Electronic mail: mode??* Secondary assumptions are also used, where appro-
kaup@ucf.edu priate, to complement this one. Once the analytical results
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are obtained, then we concentrate on numerics. In this man-
ner, one is able to reveal features about these devices that
cannot be easily accessed by other methods. We have been
able to outline the operating range of the parameters and give
the various characteristics at any operating point, such as the
phase shifts, current flow, growth rates, and power .

We can also study the various physical processes which oc-
cur inside the tube, noting features that may be useful in the
design of these devicéd?*

In Sec. I, we discuss the relativistic equations for an A6
configuration. Then in Sec. lll, we discuss the equations de-
termining the dc background solution, provided the density
profile is known. In Sec. IV, we do the same for the rf solu-
tlon'_ It is in Se_c. v W_here we will describe how one Ca_n FIG. 1. A representation of the geometry of a cylindrical magnetron. The
obtain the density profile, by use of the second-order nonlinzathode is the surface of the inner shaded area-at, and the anode is at
ear diffusion equation. Here we impose the adiabatic apr=r,, which is the inner surface of the vanes in the vane-slot slow-wave
proximation and use it to determine how the density prof"estructure surrounding the cgthqde. The sheath will be formed just outside the

cathode surface. Thedirection is out of the paper.
reshapes.

To clarify what we mean by the adiabatic approximation,
we briefly describe it here. First, the dc density profile is
determined by a nonlinegquasilineay diffusion equation, middle is the cathode, locatedratr . We take the external
first detailed by Davidsoft This equation consists of the ambient dc magnetic field to be of strendgh,, and aligned
sum of three basic terms. Lettimg be the dc density profile, along the negative axis (into the paper, which gives the
D the nonlinear diffusion coefficientwhich is proportional electron drift velocity to be in the negativgdirection. Next
to the rf powey, 7 a slow time, and5 a source terngnonlin-  to the cathode will be an electron she#tiot shown which
ear in ny), then this equation is of the basic formn,  will extend out toward the anode, located ratr,(>r,).
+9,(Dd,ng) +S=0. As is well known, diffusion equations The anode is composed of a slow wave struct(B8/9
will generally evolve so that the contributions from the first consisting of vanes and slots, which is simply a collection of
term, d,ng, tend to vanish. In this case, we have the majorwave guides, inside of which the rf wave will resonate and
balance occurring between the nonlinear diffusion term angrow.
the source term. The adiabatic approximation is where we To model the A6, it is necessary to perform a fully rela-
assume that this balance is the key balance, so that we théistic treatment of the system in cylindrical geometry. We
ignore the first term. As to why this balance occurs, we notestart with the relativistic cold fluid equations for a single
that as the device is initiated, due to the relatively sloav ~ species, which are
the electronschanges in the dc voltage, one would expect _
the electrons to have time to diffuse and reshape the density an+V-(nv)=0, @
profile. Thus one would expect the transient states to be d,(yv)+(vV)(yv)+E+ vXB=0, 2
;mall, and therefore the_ density pro_f_lleZ at every instant Ofand Maxwell’s equations,
time, should be essentially an equilibrium state, as deter-
mined by the stationary solutions of this nonlinear diffusion =~ VXE+B=0, ()
equation. This form of modeling is shown to produce reason-
able predictions for the behavior of these devices.

Once we obtain the analytical results, then we turn to
numerics to evaluate the solutions of these equations. One. I .
feature of these equations is that they are “stiff” near theWIth the initial conditions
Brillouin edge, requiring care in varying the parameters and V-B=0, (5)
the initial values. At the same time, one has to determine four
internal parameters, whose values are essential in obtaining V-E=-n. ©®)
the correct dc and rf solutions, as well as to match to thén the above, we have takemto be the electron plasma
applied voltage and external ambient magnetic field. Howfrequency squared (#e?p/m) wheree(m) is the magnitude
this can be done by an iteration procedure is described iof the electronic chargémass andp is the electron number
Sec. VI. Our general results will be presented mostly indensity.E is e/m times the electric field, an® is e/(mc)
graphical form in Sec. VII, and concluding remarks will be times the magnetic field. Thus the unitsBre acceleration,
presented in Sec. VIII. and the unit oB is frequency. We will take the fluid velocity
vector to be always in the¢ plane, and all quantitie@x-
cept ong to be independent of the coordinate. The one
exception is the second-order dc contribution to ¢gheom-

The geometry and configuration that we shall be using igonent of the second-order dc magnetic field, which, as we
shown in Fig. 1, which is a representation of the’Rén the ~ shall see, must be taken to be lineazirThis follows from

1 1
VXB——ZatE:——va, (4)
C C

II. BASIC EQUATIONS AND APPROACH
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Ampere’s law and the presence of the second-ordeom-  Brillouin zone(the 2r mode is at such an edge, themode

ponent of the dc current density.is the standard relativistic is midway between edggsany Floquet solution would gen-

factor, 14/1— v- v/c?. erally be dominated by one of these modes. We therefore
It is from these equationgl)—(6), the geometry, an ex- assume that the Flogquet solution is indeed dominated by one

pansion in dominant modes, the specified parameters, araf these modes, and that modes differingbgj from that

simplifying assumptions that all our results will follow. As mode may be ignored. For the A6 and our geometry,nthe

we have done befor& we assume that we will only need to =—3 mode is them mode, for which this approximation

consider one oscillating rf mode and the dc backgroundvould work best. We also expect it to be a good approxima-

mode, on which the rf mode propagates. This will be a basition for the two adjacent modegs=—2 andm= —4, but

model, which one could further refine as the need arises. Tpossibly poor for then=—1 andm= —5 modes.

simplify matters, we will assume that we will not need to use

Floquet theory, although the system is periodic in the azi-

muthal direction(see_ discussion_on _this point belb_vﬂ'hus Ill. BACKGROUND SOLUTION

we take the dc solution to be cylindrically symmetric and the

rf mode to be a single mode of the fore™?~“Y, wherem We begin our analysis by inserting an expansion of the

is the azimuthal modal number and is a complex fre-  form (7), for all dependent variables, into the relativistic

quency, with the real part being the rf oscillation frequencycold-fluid, Maxwell equations, and expand the equations. We

and the imaginary paftm w=o0) being the growth rate. At note thaB,, must be linear irz, in order to satisfy Ampe’s

the same time, we will allow for a slow-time dependence injaw. As mentioned earlier, the zeroth-order terms will all be

the zeroth-order dc terms, since these quantities will have tgenerally dependent on the slow-time scate,e’t.

slowly shift in order to accommodate, and adjust to, any  The equations will decompose into coefficients of vari-

growing rf mode. This expansion is primarily an expansionous powers o&'™¢ ande. We solve iteratively, starting at the

in terms of Fourier components, one compon@d which  Jowest power ofe(=0). The e=0 terms of each equation

is independent of and the fast time, and one component of (1)—(6), gives us the conditions for the existence of the

the forme'(™?~“Y. We will later expand the dc component “hackground” or dc solutiort® Detailing these, from New-

in a simple multiple-time scale with only two scales: a con-ton’s equations, we obtain a quadratic relation for the drift
stant part and a slow-time part-hus the general form of this velocity,

expansion, for any quantitg, is
v

i Bo=vo~ +w0Bo=0, )

GZGO(I',T)-FEGl(r)e'(m¢’*wt)+62G2(r)e2(rt, @

where it is understood that the zeroth-order quantities given

whereris the slow time and the expansion parameter is ~ 200ve have the appropriate component for that fiefg, i6
line with the adiabatic approximation, we will assume thatth€ radial componenty is tr,1e¢component, an@, is thez
the derivation of any zeroth order quant@g, with respect CcOmponent From Poisson’s law, given the density, the dc
to 7, will always be small compared to the ponderomotive€€ctric field is given by
and gradient terms.

Here we will only consider the initialization of the de- E(? Ey—_ 9
vice. One starts with an external magnetic field applied r (FEo)=~No, ©
across the device, and then the dc voltage is turned on,
slowly compared to the electron cyclotron frequency. Theand from Ampee’s law,
electron sheath forms with an approximate cylindrically
symmetric, statipnary Brillouin flow. As the dc voltage in- 9,By=—Novy/c?, (10)
creases, the Brillouin shear flow eventually becomes strong
enough to excite the linear wave partididiocotron reso-
nance Rw/Mm=uvy;x/r), whereRw is the real part of the
complex frequencyo. At this point, a growing linear insta-
bility initializes. As it grows, due to nonlinear terms in the
equations, it will beat against itself and create
ponderomotive-like forces, which become additional contri-
butions to the dc components of the equations. These forc ﬁ)ns are
cause shifts in the dc quantities, proportional to the square o
the rf amplitudes, as well as determine the shape of the elec- .
tron density profile. Eo(r1)=0, f “rBodr=(r2—r?)Bey. (11)

In regard to Floquet theory, we make the following com- r
ment. For the A6, Floquet theory would require that we
couple all modes where the's differed by =6j, wherej is A third condition is that the electric field must give the ap-
any integer. However, as long as one is not near an edge offdied dc voltage,

we can determine the radial dependenc®gf We take the

dc electric field to vanish at the cathodthe space-charge
limited current conditiohand the average of the dc magnetic
field over the interaction region to be equal to the externally
applied dc magnetic fiel®.,;. The latter also conserves the
magnetic flux through the interaction region. These condi-
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ry vanish E,,=0=wv,,=&,), so that the rf motion will remain
- fr Eodr=Vyc. 12 in ther-¢ plane. The rf component of the number density is
! given by
We shall later need the derivative of with respect ta.
This can be obtained by differentiatitg) and using(9) and 1 Noéy
(10) to eliminate the derivatives @, andE,. That results Ny=——dr(fNoé)) —1——, (16)
in

5 and the nonzero electromagnetic field components are given
MoYo— voBo

- by
(7rU0 rDBO ’ (13)
. . E1¢: Vggqswg_ iDgoéwe, 17
where the quantitp g, is
Yoo 2 Bi,=— ® [ yow2—2Dgovo— Yo(1+ y3)v3
DBOZBO_T(1+70)_ (14) z c2m, 0We oY%~ Yo 0/Yo
We solve this system by takin¢l3) to define vy, with + NgvoM]E, — ir @Dpowe (18)
_ . . oVoMe]&; 2 X
vo=0 at the cathodéthis is equivalent to the space-charge c“mg
limited current condition and the integral of10) to define
By. Its value at the cathode will be adjusted so that thewhere
integral in (11) is satisfied. Then we us€) to evaluate
Ey. If the denominator inN13) ever becomes zero at some
value ofr in the interaction region, then this corresponds to |, :m_wrﬂ (19)
an unallowable state, sinag must remain finite. This con- ¢ c?’
dition never occurs in a planar systgmherer=«). In a
cylindrical system, in order to have magnetic insulation, one
must use a stronger magnetic field than in the planar case, we:w_mﬂ_ (20)

because in addition, one must also overcome the centrifugal r
force on the electrons. The conditiddigy>0 insures that o o
any additional magnetic field, required to counteract the cen- Due to the combination of the relativistic factor and the

trifugal force and to maintain magnetic insulation, will be cylindrical symmetry, the analytical expressions for the equa-
present. tions of motion becomes essentially too complex for hand

calculations. Both the planar relativistic c&s¥ and the cy-
lindrical nonrelativistic cas® have been obtained by hand.
However, the combination of relativistic plus cylindrical in-
creases the complexity by an exponential factor. Conse-

Now we turn our attention to the first-ordérf) solu- quently, from this order on, we have resorted to using the

tions. These are the linearized equations, and have beéHmbonC compqtanonal SOftwaMACSYMA (Ref. 3] to Ob'.
given beforé?17:1826-28\n imnortant point in the consider- tain the expansion of, and the reduction of, these equations.

ation of the form that we shall use is that it is the particIeBy taking either the nonrelativistic limit, or the planar limit,

dynamics that are the most important and fundamental. Corf2€ can verify that these equations do have the proper lim-

sequently, we have found that it is best to eliminate the elec'—_tin_g forms, and thereforg can verify these .eq.uations in those
tromagnetic fields in favor of the velocitiég’ or equiva- IMits- We have done this for the planar limit, and do find
lently, in terms of Lagrangian displacemett<®2For this ~ agreement with the previous planar equatibhte shall

system, the first-order Lagrangian displacements can be gRresent no derivation here, and shall simply present the final
reduced results.

IV. THE rf SOLUTION

fined by : . . .
The first-order equations, with the aid mACSYMA, can
% be reduced to a set of second-order ordinary differential
v =—iweér,  vip=—lweéyt T &,vo)fr, (15  equationg ODE), of the form
where w,=w—muyy/r, which is the Doppler shifted fre- dé¢, )
guency seen in the moving electron’s frangeis the first- chrrgr—'—lcrtﬁgd” (21

order Lagrangian displacement, and the subscript 1 will gen-
erally refer to a first-order quantity.
Of the rf components of the electromagnetic fields, two ~ d&;
components of the rf magnetic field are found to vanish dr 1CoerértCusby. (22)
(B1,=0=B;4). We also take the components of the elec-
tric field, the velocity, and the Lagrangian displacement toWith the aid ofMACSYMA, the coefficients are found to be



Phys. Plasmas, Vol. 11, No. 6, June 2004

Theoretical modeling of an A6 relativistic magnetron 3155
Vo
23/21)0 Wt Mg— 6 3 3
1 0 e ey Yovo v Yovo me\ 2y
C,=—-—— 2 + 22| Amewet — (12w2—2v202 02 Vol 20+ ——= % 2202
meC Ar? c’r meC? r2
e
3 3.2 3
YoWe Yo | Yo(vot1) Vo
+<y%—3>vé]] + [r2wg+j(3v5— D]+ 25 [ 7 | Mewel = Yo | v~ NoMewe
goMel Bol r c
4 5 2\.6 3
Yo 2yp(1+ ) vowe Vo
S — eyo[r2w§+vé(y§—3)]—#+no rPwi—vhw(1+y3) +2yo—me| 1, (23
c“ADgomer cer r
w? 3 2 3 8 5 2 5. 2
m, )/ Yows Yo VolUpWe 27YgUo®w
Cr¢:_‘)/g_e+ : °+2 0(1+ 0) 20— m o+— r we+2y 20 o 20 €
r c?m, c*Am, cDgor  ¢“Dggme
4 2 2 9 2
Yo®e | 5 2 e|l.s 2 a2 2%096% 5 5 2
+ vg| 2(1+ y5) + Yo—Nor“(3vg—1) | —————=[reows—v5(1+y5)1, (24
ADBOr3| 0 o g2 |70 0 c?ADgoMmer? ¢ 0 0
3 4
me no ')/0 0 UO 2'U0 Yy 4'U0m
C =—(1—2ry3 ) 2221 (392— )Mo+ Yo— wg | + 2ng+ Yo—s |+ ———
e oA Ar® 0 ©T 02 T T capr2g |70 MO0 YeMel we
4 4 2.2 2.0 2 2,4 2
Mwe+3vpr“wg(3yg— 1)+ 2v( yg— 6y5+1) NoYo YoYo rvg
+ SN +— [rPwi+(3y5—Dpl+ 5——— | 4Met — 0}
Actygmer CAmgr Cc“Dpgor c
1) wo(vt4v—1) 2 Yo
" Dgglw n°<2__2> - 2.2 T n0+_2[2r2‘”<25+"§(rg_3)]
Bol Wr Yo r<c<vyo c“Dgome r
5
Yovo NoUower > Uorwe
+ 21 AmdrPwi—(1+ vl - ——, [rPwi—(1+375)v]
ADgor YoC
2y5v0 Nor? 74(1-1- )/z)v4 731}2
— 12wl (14 92) 18] 2rwi+ (73— 3) B+ — 22 22, (25)
c“ADgomer Yo C°ADpgor’we| r
1 2’)’oUo Aygmevy  2¥gvowe  YVorg > rPoa|  yo(37%— LMo 20ev076
Cop=— 1~ 2 2 3 |21+ %) - —; A 2 2
r c?r “we c mg Ar c r c*Amer
2 2\2 3
Nof Yo(1+90) v 2mg v Yo |No Vo
x| 2r20g- ey o |- T B o1y - L T e
Yo Dgor Bo! We r?]  c®DgoMe| v5
2vgug\ | 2v4(1+ vy Yowe | Mo
+we| Wit ——| |- T [FPoi—(1+ Y9 vh]— 5 ———— 1 5[rei— (1+ ¥5)1g]
cr ADggr Cc“ADgomer | 5
v
+odrfeg= (3= 70)v] = 2%(1+%0) 5 5 (26)
|
where

2

1Y
40 4 2
_|_,yOr_2_

3 Yo ?
A= DBO+7OT

YoWe-

we require that, at the anode, the ratio©f, /B4, in the
plasma region to match the same as that in the SWS, which
will be assumed to be a vacuum region. To calculate the ratio
on the plasma side, we need the form&gf, andB,,, given
above by(17) and (18). To calculate the ratio on the SWS

(27)

We will need two boundary conditions for this second-orderside, we solve Maxwell's equations for the given vane-slot

set of ODE’s. The first one will come frof, , vanishing at

configuration, subject to standard boundary conditions on the

the cathodegconducting surface conditionand the second slot surfaces. In the numerical calculations of this ratio, we
one will come from matching the interior plasma solution to have included the first three azimuthal modes in each slot.

the electromagnetic field solution in the SWS. For the latter

Given these boundary conditions and the background
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density profile, for each value of, one then determines the must have a nonzerB,, component, and thu€, must be
(complex eigenvalues ofo which will satisfy the boundary nonzero. This constant will reappear later as a key quantity
conditions. In general, there can be several eigenvalues of in the nonlinear diffusion equation, where it will essentially
for each value om. While all of these would in general be determine the width of the Brillouin-like section of the pro-
initially excited and would proceed to grow at their indi- file.

vidual growth rates, it is the one with the largest growth rate  The second-order electric field has onlybacomponent
that will eventually dominate. We then search through the lis{ E,,=0=E,,), which satisfies the equation

of eigenvalues for that one, and that is the one that we take as

the operating mode. Typically, for the parameter space that afE2¢+ Ce19:E24+ CeoE24="Ces, (29
we have searched, we have found that this mode will mave
in the range of-4<m=—1. where the coefficients are
V. NONLINEAR DIFFUSION-SECOND-ORDER dc 1 Novo 478(72
In second order, the rf wave beats against itself, creating Cel_? - CZDBO< D )
a ponderomotive force. This force causes a nonlinear diffu-
sion to initiate, wherein the steep density gradient of the 3 9 )
Brillouin flow is reduced. Due to the nonlinear terms(in— c :_£+ NoYo (1_ 4rvo0 )_41 1 @)
(6), this diffusion causes the dc solution to slowly shift away &0 r2  c?Dgr D c? D)’
from its initial solution, at a rate proportional to the square of (30
the rf amplitude. An analysis of all such shifts in the nonrel-
ativistic case was given in Refs. 9 and 15, along with a 4n4Quy0?
discussion of the evolution of the background density profile.  Ces=—20Qa4+ 5
Although the zeroth-order solution does evolve during ¢’D
the nonlinear diffusion process, by using the adiabatic ap- 2n,Qp; 4y352
proximation discussed in the Introduction, we bypass the 0T ( _ 0 )
transient region and go directly to the stationary solution, ¢’Dgo D

wherein the electrons have redistributed themselves to be in

balance with the ponderomotive and electromagnetic forceeind where the denominator terinis defined as

We have shown that this nonlinear diffusion process will be

generally quite rapid® 1 L%
In the fully relativistic case, there is a lag in the growth D= —(DBO+ Yoo

of the second-order fieldglue to the finite speed of light Yo '

which is not present in the nonrelativistic case. Along with N . ]

this, the strong dc radial current create®g, component, The boundary conditions o, are that it must vanish at

linear inz, which then will generate sma#l components of POth the cathode and the anode, since it is independef of

the velocity and electric field, proportional m Depending and both surfaces will appear to be conducting surftes.

on the width of the device ig, this could become an impor- AIS0, Qa is the rf part of Ampee’s equationQy is the rf part

tant consideration. However, if the device is sufficiently thin,Of Newton’s equation. These parts are given by

then these effects will be small and can be ignored. The only

2

2 UO
4o°+ 2| No. (31)

3
%

consequence of assuming a thin device and ignoring these ny vy,
components ob and E will be that the¢ component of3) Qar= 2 +c.c.,
will not be exactly satisfied. Also, in an actual device, the use
of “end caps” tends to limit these longitudinal effects and .
motions. _Mvy N

Taking the above thin approximation, we have that the Qap= c? ¢.C.,
second-order dc solution will have the following features. 32
The second-order corrections to the dc magnetic field are

iven b . MYo 3 o
g y Qer[ Bl vigti Tulrv’1‘¢+2y0vov’{¢v1r§+C.C.
B3.C,zr, 1
B, =0, qus—Ta By, = — mal’(rEz(b)! . , ¥ ,
(28) +'}’Oar|vlr| _3'}’orc_2|vlr|
whereBy. is the value of the zeroth-order dc magnetic field )
at the cathodeC, is essentially the radial dc velocity of the YoYo 2 3 %0 2 2 Vo
: . . J + v 2ng—2y5— (1+y5) —3y5—

electrons, and, is the radius of the device at the inside of C2DBO| u 0 70r2 (1+70)=3% r

the vanes(anode. (The factors ofBg., r,, andc in the
expression foB,, are there simply to normaliz€, to a
velocity) Since the device will carry a dc radial current, one

3
Yo
+T|Ul¢|2(1_37’(2)),



Phys. Plasmas, Vol. 11, No. 6, June 2004 Theoretical modeling of an A6 relativistic magnetron 3157

VI. NUMERICAL METHOD OF SOLUTION

1
Qno= [ —Blu+ ygv’lcr&rvhﬁ_ vo| (375—4) T
At this point, we now have a closed system of ordinarily
differential equations, and we have sufficient boundary con-
ditions to define a solution, if one exists. The zeroth-order dc
equations are nonlinear. Giveg(r), one can integrate them
from the cathode up to the anode, given the valuBgf, the
3 Vo0 2 2 P value of By at the cathode. This value is initially unknown,
+C-C-] +270?(|Ulr| +37lv14l%) but one can start with an initial guess, and by using the
Newton—Raphson method, rapidly converge to the correct
200l vy,|? value that will satisfy the second condition(hl). In regard
T .2 %Mo to the first-order rf equations, they are linear in the rf vari-
ables, but nonlinear in the zeroth-order quantities. Given a
and where the *” indicates the complex conjugate of the value for the complex frequenay, the mode numbem, and
quantity, and “-c.c.” means to add the complex conjugate the dc solution, by requirinds; 4, (17), to vanish at the
of all the preceeding terms that are contained inside thatathode, then matching at the SWS, we can uniquely deter-
particular bracket. Continuing, from the second-order New-mine the rf solution, up to an overall normalization constant.
tonian equations, we have that the second-order changes The second-order dc equations are linear in the second-order

2

Novp 3, 2 Yo
> t3%(%t1) Do,

*
-3 U1rl1g

DgoC

DBO|°"e|2

the velocities are given by variables, but nonlinear in the zeroth-order variables, and
2920 D qguadratic(nonlineay in the rf fields. The key quantity to
o B0 : . . . .
Vg = — T(U0822+ Qnr) + _D(E2¢+ Qng), determ!ng will be _the stationary densn)_/ profmg, whose
Yo determining equation i$34). Of course, inspection reveals

1 42352 that once one has the stationary density profile, then all the
Vo= — _<1_ ﬁ)(UoBz +Quy) other quantities may be determined by either quadrature or
Dgo D ‘ differentiating and/or algebra, whence the stationary density
20 profile is the key quantity to obtain. We have found that these
_ H(EMJr Qng), (33 profiles may be obtained by a simple iteration technique. The
basin of convergence is generally quite large, unless one is

near a point where the solution no longer exists.

The general iteration method that we used is as follows.
The next and last result which follows from the second-One starts with some reasonable density profjie), either
order dc equations is the nonlinear diffusion equation, whichta combination of a box plus a ramp, or some nearby profile,
determines the stationary density profile. This equation, irand then solve for the dc electromagnetic fields. Once one
the adiabatic approximation, where we ign@@, and the has a starting profile and the accompanying dc fields, then

‘UZZZO.

slow-time derivatives of all other quantities, is one proceeds to solve the rf equatid@g) for the radial and
azimuthal displacements, using the given boundary condi-
D id; N+ Nn,n0+CZBSCDr—2=O, (34)  tions below Eq.(27). One checks all mode numbers,6
r

<m<0, for the most unstable mode, varying the complex
value of w until the electron plasma solution at the anode
matches that of the SWS. With this, one then has the eigen-
value w, the mode numbem, and the rf solution, up to the

where

2 2

20" grl2 3 Yo 4 Vo 2 . . .
nl= Dgot+ Yoo + v —2+40 ) overall arbitrary normalization constant.

Yo r To find the normalization constant for the rf solution, we

DgoQ (35 require the total density variations, dc plus the rf oscillations,
Np=2750Qn;—Dc?Qaro— 20 N¢0—7gv0&rE2¢ as in. (7), to never be negative, .since q_negative glectron
density would be unphysical. This condition then gives an

Dgo  , v upper limit to the value of the normalization coefficient,
- y_0+707 2¢ which also is the precise value that must be used, for the

following reason. In the absence of the rf waves, the density
In (35), the subscript “0”s on theQ’s indicate that all terms profile would relax back to the Brillouin value, which has
proportional tod, ny have been removefin (34), all that we  ng, vanishingly small. For the rf wave to exist, theg, must
did was to move any and all terms which contained the radiabe lifted off of its Brillouin value of zero, and become suf-
derivative ofng, over into the nonlinear diffusion coefficient ficiently large to accommodate the amplitude of the rf oscil-
Dy, Which is where they are now found. Ory,, andQy lations, without driving the total electron density negative.
did contain such termkTo solve Eq.(34), we must append Turning this argument around then for a givep,, one
one boundary condition, which we take to bg,, which is  would take the amplitude of the rf density oscillations,
the value of the stationary density at the anader,. This  |ny(r)|, to be just large enough to exactly fit under the den-
value of ng, will appear as a control parameter in our nu- sity profile ng(r). Examples of this will be seen in Fig. 2 in
merical solutions. the next section.
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FIG. 2. Plots of certain density profiles for the A6 at 350 kV and an ambient magnetic fi@gef18 GHz (6.4 K G) case, when the rf field is in the

=—2 mode. In the first plot, fony,=0.11, we see the density profile and the magnitude of the rf oscillations for an initiating rf field, with a peak in the rf
density oscillations at the diocotron resonance. In the second plot, we have combined the dc and the rf solutions to compose the total density profile, a
slightly lower value ofny,=0.10. In the third plot, we show the configuration when the rf wave reaches its maximum amplitages8t125. In the final

plot, we see how the configuration changes when one tries to exceed this limit. Here we have the sologon @ot4, showing how the rf amplitude at the
anode will decrease.

Once the rf normalization constant has been determinedsuddenly violate the single-particle stability limitln the
then the rf fields are uniquely determined, up to an overalhonrelativistic limit, the single-particle stability range for the
phase. Although this rf solution is consistent with the dcelectron density i< Bé, which is just the Brillouin limit)
fields, the dc fields may not be consistent with these new rffo complicate the problem further, the boundary conditions
fields. So now we turn to satisfying the condition on theare mixed, with the value af, being specified at the anode
density profile, given by(34), as well as calculating the ng, and other parameters being specified at the cathode.
second-order field&,, andB,,. The condition(34) is what There are probably several iteration schemes which
is known as a “stiff” ODE. Its solution will typically have would solve these equations. The iteration that we have used
exponential behavior with very short scale lengths, on thés to integrate(34) to obtainng, and then varyC,, using
order of the width of the edge of the classical Brillouin Newton—Raphson, until the new density profile gives the
sheath. Furthermore, due to the stiffness of this ODE, as oneorrect applied dc voltag¥,.. Outside of this iteration, we
varies the unknown paramet€,, the solution can rather have another iteration whereby we vaBy. until we have

Elvs.r Re(®,) vs. r
30 15
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FIG. 3. In the first panel we show a plot of the magnitudes of the Lagrangian displacements, for the same parameter&)adnFig),2ve show a plot of
the real part ofw, vsr for the same solution.
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FIG. 4. Similar to Fig. 3, except fdB.,=21 GHz(7.5 K G) andny,=0.044. This figure shows a second diocotron resonance just under the anode, and the
corresponding increase in the oscillations of the azimuthal displacements.

both the correcVy. and Bgy. Then we usgl11), (12), and  VII. NUMERICAL RESULTS

(8) to determine the new values &,, By, and vy by ] o
quadrature. As the first example of our results, we show in Fig. 2 a

Once we have the new density profile and the new dS€t of. four typical results .for the. de.nsity profig and the
fields, then we have the dc solution consistent with the rfhagnitude on the rf density oscillations \ét=350kV, Bey
fields. However, now the old rf fields will generally be in- =18 GHz(6.4 KG), and for the mode numben=—2. This
consistent with the new dc fields. So we return to the calculs toward the low side of the operational range of the mag-
lation of the rf fields and then back to the second-order ddetic field, and in this region, the density profiles tend to be

fields and the density profile. We continue these iterationsSOft,” and the mode numbers correspondingly tend to be
until all the coefficientsVqe, Boe, M, », andC,, have sta- low, and on the order of-1-—3. The horizonal axis is the

bilized to within a specified relative variation of no more radius in cm, where the cathode is on the left, starting at 1.58
than typically 10°. However sometimes the convergenceCm, and the anode is on the right, at 2.11 cm. Figui® 2
does not occur, and that is usually because no solution ca#ows the solution wheng,=0.11, and we see that the rf
exist for the chosen values of the parametafs. ( B, and  field is becoming well developed, with a peak in thg|

Noa). This can show up as an rf solution having a vanishingcurve, which is where the diocotron resonance occurs at the
growth rate for allm values, due td/4. being too small for ~edge of the sheathln all these figures, the units of is

the given value 0B, Or even as no solution existing foj ~ frequency squared, in units @fad/nse’. However, we will

due tony, being too large, and sometimes even being todive Ny, as a ratio compared to the square of the electron
small. Occasionally we have found that the solution will con-cyclotron frequency, in rad/nsec, of the external magnetic
verge to some period-2 solution, wherein the valueBgf, field. As suchng, is essentially just the ratio of the dc den-
m, », andC, converge to a repetition of alternating vali&s. sity at the anode, compared to the dc density at the cathode.
Period-3 and period-4 solutions have also been seen. ThusA one can also see, the rf field has been scaled so that it fits
is not surprising that sometimes one also sees chaotic resukstirely under theny curve, and just touches it at the anode
occurring. These equations are nonlinear and little is knowron the right. Consequently, the total density is everywhere

about necessary conditions for solutions to exist. nonnegative. In Fig. ®), we show a two-dimensional view
nvs.r 1€l vs. 1
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FIG. 5. The density profile, the magnitude of the rf density oscillations, and the Lagrangian displacements for a soft density profiie386tRV, Bgy;
=17 GHz (6.1 KG), andng,=0.12.
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FIG. 6. The density profile, the magnitude of the rf density oscillations, and the Lagrangian displacements for a hard density profite 350tkV,
Bex= 24 GHz (8.6 K G), andny,=0.028.

for a single period of the rf wave at a slightly smaller value part of w, returning toward the resonance, after the sheath

of the amplitude of the rf waveng,=0.10. (In these three- has been passed, and in several cases, even crosses zero and
dimensional plots, each coordinate has been scaled from zehas a second resonance, just below the anode. An example of
to unity) Here the cathode is at the back on the left, wherethis is shown in Fig. 4. As one can see, there is a second peak
one clearly sees the sheath. Coming out of the sheath isia the rf oscillations at the second resonance, and of course,
spoke of electrons, reaching up to the anode, in the forethere will be a corresponding secondary boost to the ampli-

ground at the right. tudes of the rf oscillations of the electrons, before they strike
As the amplitude of the rf wave at the anode increasesthe anode.
the first thing that happens is that the valuengf, will be For other solutions at other ambient magnetic fields, we

pushed to larger values. The second thing that happens is thaave seen similar behaviors in the dc density profiles and the
the diocotron peak will grow and generally narrow. Eventu-rf Lagrangian displacements. Invariably, the lower magnetic
ally, it will touch the ny curve, as shown in Fig.(®) for fields give a “soft” sheath, which in some cases, can extend
noa=0.125. This now is effectively the largest operating am-out to one-half of the cathode-anode spacing. Furthermore,
plitude that the rf wave can have at these parameters, béhe magnitude of the Lagrangian displacements become
cause now, the rf amplitude becomes limited by the diosmaller, even at the diocotron resonance, with the value at
cotron peak, and not the rf amplitude at the anode. Arthe anode being even smaller still, only a small fraction of
example of this is clearly shown in Fig(d®, which is for the  the maximum value at the diocotron resonance. A typical
slightly higher value ofng,=0.14. Note that now, at the example is shown in Fig. 5. The slackness of the density
anode, a gap has opened up between the background dengitpfile and the lack of significant rf oscillations at the anode
and the rf density oscillations, with the net result that the rfwould suggest that at these parameters, one should not ex-
oscillation amplitude hadecreasedat the anode. Solutions pect this to be an optimum operating state, and experimen-
such as this latter, with the gap, are probably unphysical otally, it is not®
unstable, since they correspond to a reduced rf amplitude of At the higher magnetic fields, the sheath becomes quite
the rf wave in the vanes. These observations are in line wittthard,” and almost Brillouin in shape, except for a rather
previous similar observations in Ref. 23. small “shelf” extending out to the anode, as shown in Fig. 6.
In Fig. 3@, we show the rf Lagrangian displacements The harder the density profile becomes, the smaller the at-
for the ng,= 0.14 solution. The units for each axis is in cm s. tached shelf is, in order to have a consistent solution. It is
One notes the enhanced amplitude of the rf oscillations in théhis relationship that seems to be the dominant limitation on
¢ direction, at the diocotron resonance, as well as the begin-
ning of another enhancement as one nears the anode. The
latter can be understood from Figib3 where we show the
real part ofw, vs r. What is different here from the planar 18
case is that after going through the diocotron resonance whk
(where the real part otw,=0), this quantity then goes me-3
slightly negative, and then begins to turn back toward the * '-—r—_
resonance. In the planar case, or a low aspect ratio cylindri- 20 e =2
cal case, such never happens, since the drift velocity is al- sk
ways monotonically increasing in magnitude. However, in a [

«(GHz) vs. nga

» o] ——
high aspect ratio cylindrical case, such as the A6, one can °f -

have the magnitude of the drift velocity decreasing after one ST vassok

passes through the region of the sheé¥hainly because the 0p ——t——t —L e Y EEryE—

radial electric field will vary as ~*, once one is outside the
sheath). In almost all our solutions, we have seen the real FIG. 7. The eigenfrequencies fot=350 kV.



Phys. Plasmas, Vol. 11, No. 6, June 2004 Theoretical modeling of an A6 relativistic magnetron 3161

Growth rate, , vs. ng, Growth rate, @, vs. ng,
30 6
9 V= 350kV [ V = 350kV
25F 7
1 (17.3) ()
200 4 i
s I
15k
[ s
9 rl{g »?)
[
10f %
%
osf ~&
0.%;0 . N . o:;s N N N ol|o N A =, 000 — oll s 0|2 —— ol} e, o|4 — s
: Y noa o . Y . 2 noa * y .

FIG. 8. The growth rater at V=350kV as a function ofiy,, at various values oB.,; and the modal numbem. The quantities in the parentheses are the
values of the ambient magnetic field, in GHz, and the negative of the modal number

the power delivered at the higher magnetic fields. The mordy the growth rate of then=—2 mode, and then at very
tightly the Brillouin sheath is held, the more limited are the high ngy, values, even by then=—1, for B,,,= 16 GHz (5.7
rf oscillations. Also, we see in Fig.(6) another example of K G). However, at the higher magnetic fields, no such mode
the doubled peaked structure of the Lagrangian displaceswitching occurs, and one has time= —4 mode as being the
ments. These structures tend to dominate at the higher magastest growing mode. We note that fBg,=21 GHz (7.5
netic fields, and may play a role in delivering higher powerK G), we were unable to locate a consistent solutionrfgy
levels. However, this range in the A6 is limited. Attempts toless than 0.03.
find solutions atV=350kV andB.=25GHz (8.9 KG) The magnitude of thed component of the electric field
have been generally unsuccessful, with only a small sectioat the anodé, 4, determines the magnitude of the rf fields in
of solutions being found, and those are in a parameter rangée vane structure, and consequently, the power flow. These
that one would consider to be likely unstable. We also notesolutions are shown in Fig. 9 f&f=350kV, as a function of
that B.,=25GHz is well above the optimum operating ny,, at various values dB.,; and the modal numbean. The
range for the A6(see Fig. 23 in Ref. % so the lack of quantities in the parentheses are the values of the ambient
solutions in this range is not surprising. magnetic field, in GHz, and the negative of the modal num-
We can compactly summarize the remaining features ober m. Note that the sections of the curves with negative
these solutions in a series of plots for the operating paranslope, corresponds to the situation shown in Figd),2
eters. In Fig. 7, we show a plot of the eigenfrequencies fowherein as one increaseg,, the amplitude of the rf oscil-
the range of the solutions found ®=350kV. The most lations at the anodeecreasesThus these negative slope
obvious feature is a general independence of the parametessctions of the curves are most likely unphysical solutions.
Bext @ndngy - One also sees from here how the characteristics of the dc
The growth rateo is shown in Fig. 8, for the fastest profile will shift as the rf fields grow. As the device is initi-
growing mode. Here, in Fig.(8), one sees a consistent pat- ated, the classical Brillouin flow will form. Due to the Ray-
tern wherein the instability, which initiates at the lower val- leigh instability’* the nonlinear diffusion process will ini-
ues ofng,, starts off as ar mode (n=—3), except at the tiate, with the Brillouin flow reshaping as shown in the
higher magnetic fields, shown in Figi8, where it starts off earlier figures. During this reshaping, the rf fields will grow
as am=—4 mode. However, as the rf amplitude grows, out of the noise, with the mode with the largest growth rate
whereinng, has to increase, for the lower magnetic fields,dominating. Those modes with the largest growth rate, are
the growth rate of ther mode eventually becomes exceededthe ones shown in Fig. 8. As the rf mode grows,,, must
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FIG. 9. The¢ component of the magnitude of the electric field at the anodé=a850 kV, as a function of,, at various values oB.,; and the modal
numberm. The quantities in the parentheses are the values of the ambient magnetic field, in GHz, and the negative of the modal number



3162 Phys. Plasmas, Vol. 11, No. 6, June 2004 D. J. Kaup

C, vs. ng, Ca vs. ng,
o4 0030
012 . ool
-2l
.10 - oo
008 C;
Cy 0015 |-
006
oo
004
0005 |-
002 | V =2350kV
V = 350kV
- 192163) . A , ~N LY L
0.00 = L i i . 000 002 004 006 008 0.10 0.2
00 0.1 02 po. 03 04 05 1o

FIG. 10. The values of the coefficieft, at V=350KkV, as a function ofy,, at various values 0B, and the modal numben. The quantities in the
parentheses are the values of the ambient magnetic field, in GHz, and the negative of the modamumber

grow at the rate determined layin Fig. 8. Thus in Fig. 9, we of an instability in the saturation stage. For the nonrelativis-
see thatng, must then increase to match to the increasingdic planar case, it has been shown in Ref. 20 that the satura-
amplitude of the rf oscillations in the SWS. However, oncetion stage will have no consistent solution, if at some value
E14a reaches its maximum amplitude, it can grow no further,of r, v, =|vy,|. In fact, the instability that would then occur,
and the device then enters into what we have called theould have to be one in which the solution becomes nonsta-
“saturation stage.?° This is an operating state wherein there tionary, and very likely, chaotic. For comparison, from our
is no growth, and the device steadily delivers power. Thaunpublished numerical data on the initiation stage of the non-
study of the stability of this saturation stage is still to berelativistic T266, the ratio oi;zy/|v1y| is never seen to be-
done. come larger than 0.25. This device is a CFA and does de-
The coefficientC, for V=350KkV, as a function of,, pendably amplify an rf wave. For the A6, and in particular
at various values oB.,; and the modal numben, is shown for the data in the first panel in Fig. 11, one notes that at
in Fig. 10. This coefficient is essentially the second-order daboutr =1.64 cm, this ratio has a value ef0.55. While this
radial velocity, in cm/ns, and gives how rapidly the electronsratio is below unity, nevertheless it is significantly larger than
transit from the cathode to the anode. that for the T266. Furthermore, should there happen to be
There is another feature of these results that needs to ly strong fluctuations in these velocity components, the
mentioned. As one can observe from Fig@) &nd 9a), ata  equilibrium value of this ratio could be potentially pushed
fixed Bey, there are overlaps in the domains of the  above unity, at which point, the stationary solution would go
=—2 and m=—3 modes. It is in the neighbor of these unstable, and the device would shut down. This is indeed an
domains ofn,, values, that one could expect mode compe-observation feature of the A8,and this could be a possible
tition to occur, since fluctuations in the background densityexplanation as to why it occurs.
could throw the device from one mode to another, or even In the second panel of Fig. 11, we show the maximum
allow both to coexist. Note that such would not occur foramplitudes of the¢p component of the electric field at the
magnetic fields greater than about 18.5 GHz, since the moad&node E, 4, , Which were taken from the peak values in Fig.
switching would then occur afte, 4, has peaked. 9, as a function 0B,,;. These values show what the operat-
Another parameter of interest is the ratio of the seconding modes are, just before the system continues on into the
order radial velocityv,, compared to the amplitude of the saturation stage. One notes here thattive—2 mode domi-
radial rf velocity|v,,|. This ratio can indicate the possibility nates at lower values @,,;, shifts to them=—3 mode as
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FIG. 11. In the first panel, we show second-order radial velocity and the magnitude of the rf radial veldtity8%d kV, as a function of. Near the cathode,
at the left, the smallest value of the ratiowf /|vy,| is ~0.55. In the second panel, we sh&,,,, which is the maximum amplitude &, ;, (obtained from
the peak values in Fig.)9as a function oB,,;.
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FIG. 12. The maximum amplitude &, 4, for 300 and 325 kV as a function &,,;.

By increases, and finally shifts to tiie= —4 mode at the magnetron at the higher voltages. We have already remarked
higher values ofB.,. From this curve, one sees that the that mode competition could be expected to occur, whenever
device would initiate wherB,,, is in the range of 17—-24 the domains of then=—3 andm= —2 overlap, as seen in
GHz, or 6-9 K G, which is exactly where the A6 does oper-Fig. 8. From the corresponding curve at 500 kV, the domains
ate at 350 k\#> We have also studied the initiation of the A6 of them= —3 andm= —2 mode do overlap below about 25
at other voltages as well. In general, the results are similar téHz, above which only ther mode exists. However, we do
those for 350 kV, however, with expected shifts in the vari-not observe a significant increase in the widths of the overlap
ous parameters. For brevity at these other voltages, we wiflomains between 350 and 500 kV.
only show the curves corresponding to the second panel in
Fig. 11, which will indicate the corresponding operating
ranges foB.,. In Fig. 12, we show the results for 300 and VIll. CONCLUDING REMARKS
325 kV. What one observes here is that at 300 kV, the values Using only two modes, we have analytically modeled
of E;4m are considerably lower than those at 325 and 35Qhe initiation stage of an A6 relativistic magnetron. The re-
kV. In fact, the values foE, 4, for the 7 mode appear to be sults obtained show reasonably good quantitative agreement
so low that one would expect the device to certainly notwith the known operating range of the device. This analysis
operate in ther mode, and perhaps not at all. On the othergives one an understanding of the important physical pro-
hand, in the second panel, at 325 kV, one sees a dramatiesses in the device, and allows one to understand the nature
increase in the presence of themode, and thus would ex- of the solutions for the various variables and parameters. One
pect the device to operate in that mode, although at a lowemnew feature is that in a cylindrical device, with a sufficiently
power than at 350 kV. large aspect ratio, the electrons can be given a second
In Fig. 13, we show the results for 400 and 500 kV. What“boost” on their way to the anodésee Fig. 4, where the
one observes here is that at 400 kV, the device should operatiocotron resonance occurs not only at the edge of the Bril-
in the range of 18—24 GHz, while at 500 kV, it should oper-louin sheath, but also just under the anode. This should be a
ate in the range of 21-28 GHz. We have not investigated oufieature of high aspect ratio cylindrical systems in general.
model above 500 kV. All that is required for a double diocotron resonance to occur
In a recent study* numerical PIC simulations have been in a cylindrical device is for the aspect ratio to be sufficiently
performed for a “rising-sun” magnetron operating at ap- large, so thatw, would recross zero near the anode.
proximately 500 kV, where it was found that mode competi- A second observation is that we have a possible mecha-
tion was a major problem in the operation of a rising-sunnism for the random shutting down of such a devit®er
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FIG. 13. The maximum amplitude &, 4, for 400 and 500 kV as a function &,;.
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