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Theoretical modeling of an A6 relativistic magnetron
D. J. Kaupa)

University of Central Florida, Orlando, Florida

~Received 27 August 2003; accepted 9 February 2004; published online 11 May 2004!

The analytical modeling of the initialization stage of a relativistic magnetron of the A6 cylindrical
design is presented, where only two dominant modes are used: a direct current~dc! background
mode and a radio frequency~rf! pump mode. These two modes interaction nonlinearly, with the dc
background being driven by the dc electromagnetic forces and the ponderomotive forces of the rf
mode, while the rf mode is the most unstable linear eigenmode on this dc background. In cylindrical
geometry, the diocotron resonance is found to occur over a broader region than in planar models. In
fact, in certain parameter regimes, the resonance can appear twice, once near the Brillouin edge, and
second, just below the anode. In these parameter regimes, the oscillating electrons can be
accelerated twice. Numerical results for the initiation stage agree quite well with the known
experimental results on the A6. Results for 350 kV are emphasized, and similar results have also
been obtained for voltages between 300 and 500 kV. Numerical data are presented that indicate a
possible source for a nonlinear instability, which could give rise to pulse shortening, in the later
operating stage, where the device should be smoothly delivering power. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1710518#

I. INTRODUCTION

The analytical modeling of crossed-field vacuum de-
vices, such as crossed-field amplifiers~CFAs! and magne-
trons, can give new insights into their operation, and the
physical processes that occur inside them. These devices
have been analyzed with ‘‘particle-in-cell’’~PIC! codes~see
Refs. 1–4! and guiding center theory~see Refs. 5–8, and
references therein!. Our modeling approach is complemen-
tary, in that we use Fourier modes. The original Fourier mul-
tiscale expansion for a planar magnetron model was first de-
scribed in Ref. 9, and the importance of the second-order
~quasilinear! conditions for determining the operating elec-
tron density profiles was detailed in Refs. 10 and 11. This
approach produces reasonable predictions for the phase
shifts, dc current flow, and other characteristics of these
devices.12 Furthermore, when the total density is recon-
structed from the high-frequency rf wave and the dc back-
ground, the resulting density profiles are similar to those
seen in numerical simulations, showing the well-known
spoke structure~see Fig. 2 below!.

Any strong rf electric field propagating in the slow wave
structure of a crossed-field, electron vacuum device will
drive a Brillouin sheath13 unstable10,11 by means of a Ray-
leigh instability,14 whenever a wave-particle resonance~dio-
cotron! occurs inside the sheath. This linear wave-particle
instability originates in a Rayleigh-like equation11 with a
shear flow. Once this linear instability initializes, the laminar
flow of the electrons is strongly disturbed, and a nonlinear
instability is then triggered, which is a second-order diffu-
sion process.9,15,16 This nonlinear diffusion process causes
the electrons to redistribute into a new average background

dc density profile, one which will be in equilibrium with the
nonlinear diffusion process, which is driven by the pondero-
motive pressure of the propagating rf wave.10,11 This diffu-
sion process is driven by the density gradient at the edge of
the sheath,10 which for a Brillouin flow is very large. The
total profile, consisting of the new stationary dc background
and the rf oscillations, appears as an oscillating background
with a series of periodic ‘‘spokes,’’ as seen in numerical
simulations with PIC codes.1,2,6 These spokes carry the dc
current from the cathode to the anode. The physics of the
turn-on process for developing these spokes has been de-
scribed in Ref. 12.

Previous studies of the A6 have included the study of
relativistic planar models6,17–19and also the observation that
there is an instability which could arise whenever the dc
radial current becomes too large.20 Studies by others have
included the derivation of the dispersion relation and the
growth rates of the diocotron instability for a relativistic pla-
nar magnetron in the guiding center approximation for a
tenuous beam.21 Also, the importance of the rf inducedE
3B drift velocity in reducing the efficiency of such a device
has been treated by Riyopoulos22 in the guiding center ap-
proximation.

Here we use analytical modeling to present an analytical
and a numerical treatment of the relativistic cylindrical mag-
netron in the A6 configuration. In carrying out this study, our
primary purpose will be to devise an analytical model,
whereby one can expose and understand the physical pro-
cesses occurring inside the magnetron. Thus we concentrate
first on the analytics, selecting from the equations, in a con-
sistent fashion, those terms which would be dominant. The
major assumption that we use is that the dominant terms are
those that come from the dc background and a single rf
mode.9,23Secondary assumptions are also used, where appro-
priate, to complement this one. Once the analytical results
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are obtained, then we concentrate on numerics. In this man-
ner, one is able to reveal features about these devices that
cannot be easily accessed by other methods. We have been
able to outline the operating range of the parameters and give
the various characteristics at any operating point, such as the
phase shifts, current flow, growth rates, and power flow.12,23

We can also study the various physical processes which oc-
cur inside the tube, noting features that may be useful in the
design of these devices.23,24

In Sec. II, we discuss the relativistic equations for an A6
configuration. Then in Sec. III, we discuss the equations de-
termining the dc background solution, provided the density
profile is known. In Sec. IV, we do the same for the rf solu-
tion. It is in Sec. V where we will describe how one can
obtain the density profile, by use of the second-order nonlin-
ear diffusion equation. Here we impose the adiabatic ap-
proximation and use it to determine how the density profile
reshapes.

To clarify what we mean by the adiabatic approximation,
we briefly describe it here. First, the dc density profile is
determined by a nonlinear~quasilinear! diffusion equation,
first detailed by Davidson.15 This equation consists of the
sum of three basic terms. Lettingn0 be the dc density profile,
D the nonlinear diffusion coefficient~which is proportional
to the rf power!, t a slow time, andS a source term~nonlin-
ear in n0), then this equation is of the basic form]tn0

1] r(D] rn0)1S50. As is well known, diffusion equations
will generally evolve so that the contributions from the first
term, ]tn0 , tend to vanish. In this case, we have the major
balance occurring between the nonlinear diffusion term and
the source term. The adiabatic approximation is where we
assume that this balance is the key balance, so that we then
ignore the first term. As to why this balance occurs, we note
that as the device is initiated, due to the relatively slow~to
the electrons! changes in the dc voltage, one would expect
the electrons to have time to diffuse and reshape the density
profile. Thus one would expect the transient states to be
small, and therefore the density profile, at every instant of
time, should be essentially an equilibrium state, as deter-
mined by the stationary solutions of this nonlinear diffusion
equation. This form of modeling is shown to produce reason-
able predictions for the behavior of these devices.

Once we obtain the analytical results, then we turn to
numerics to evaluate the solutions of these equations. One
feature of these equations is that they are ‘‘stiff’’ near the
Brillouin edge, requiring care in varying the parameters and
the initial values. At the same time, one has to determine four
internal parameters, whose values are essential in obtaining
the correct dc and rf solutions, as well as to match to the
applied voltage and external ambient magnetic field. How
this can be done by an iteration procedure is described in
Sec. VI. Our general results will be presented mostly in
graphical form in Sec. VII, and concluding remarks will be
presented in Sec. VIII.

II. BASIC EQUATIONS AND APPROACH

The geometry and configuration that we shall be using is
shown in Fig. 1, which is a representation of the A6.25 In the

middle is the cathode, located atr 5r 1 . We take the external
ambient dc magnetic field to be of strengthBext, and aligned
along the negativez axis ~into the paper!, which gives the
electron drift velocity to be in the negativef direction. Next
to the cathode will be an electron sheath~not shown! which
will extend out toward the anode, located atr 5r 2(.r 1).
The anode is composed of a slow wave structure~SWS!
consisting of vanes and slots, which is simply a collection of
wave guides, inside of which the rf wave will resonate and
grow.

To model the A6, it is necessary to perform a fully rela-
tivistic treatment of the system in cylindrical geometry. We
start with the relativistic cold fluid equations for a single
species, which are

] tn1“•~ny!50, ~1!

] t~gy!1~y"“ !~gy!1E1y3B50, ~2!

and Maxwell’s equations,

“3E1] tB50, ~3!

“3B2
1

c2
] tE52

1

c2
ny, ~4!

with the initial conditions

“•B50, ~5!

“•E52n. ~6!

In the above, we have takenn to be the electron plasma
frequency squared (4pe2r/m) wheree(m) is the magnitude
of the electronic charge~mass! andr is the electron number
density.E is e/m times the electric field, andB is e/(mc)
times the magnetic field. Thus the units ofE are acceleration,
and the unit ofB is frequency. We will take the fluid velocity
vector to be always in therf plane, and all quantities~ex-
cept one! to be independent of thez coordinate. The one
exception is the second-order dc contribution to thef com-
ponent of the second-order dc magnetic field, which, as we
shall see, must be taken to be linear inz. This follows from

FIG. 1. A representation of the geometry of a cylindrical magnetron. The
cathode is the surface of the inner shaded area atr 5r 1 and the anode is at
r 5r 2 , which is the inner surface of the vanes in the vane-slot slow-wave
structure surrounding the cathode. The sheath will be formed just outside the
cathode surface. Thez direction is out of the paper.
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Ampère’s law and the presence of the second-orderr com-
ponent of the dc current density.g is the standard relativistic
factor, 1/A12y•y/c2.

It is from these equations~1!–~6!, the geometry, an ex-
pansion in dominant modes, the specified parameters, and
simplifying assumptions that all our results will follow. As
we have done before,23 we assume that we will only need to
consider one oscillating rf mode and the dc background
mode, on which the rf mode propagates. This will be a basic
model, which one could further refine as the need arises. To
simplify matters, we will assume that we will not need to use
Floquet theory, although the system is periodic in the azi-
muthal direction~see discussion on this point below!. Thus
we take the dc solution to be cylindrically symmetric and the
rf mode to be a single mode of the formei (mf2vt), wherem
is the azimuthal modal number andv is a complex fre-
quency, with the real part being the rf oscillation frequency
and the imaginary part~Im v5s! being the growth rates. At
the same time, we will allow for a slow-time dependence in
the zeroth-order dc terms, since these quantities will have to
slowly shift in order to accommodate, and adjust to, any
growing rf mode. This expansion is primarily an expansion
in terms of Fourier components, one component~dc! which
is independent off and the fast time, and one component of
the formei (mf2vt). We will later expand the dc component
in a simple multiple-time scale with only two scales: a con-
stant part and a slow-time part.9 Thus the general form of this
expansion, for any quantityG, is

G5G0~r ,t!1eG1~r !ei ~mf2vt !1e2G2~r !e2st, ~7!

wheret is the slow time and the expansion parameter ise. In
line with the adiabatic approximation, we will assume that
the derivation of any zeroth order quantityG0 , with respect
to t, will always be small compared to the ponderomotive
and gradient terms.

Here we will only consider the initialization of the de-
vice. One starts with an external magnetic field applied
across the device, and then the dc voltage is turned on,
slowly compared to the electron cyclotron frequency. The
electron sheath forms with an approximate cylindrically
symmetric, stationary Brillouin flow. As the dc voltage in-
creases, the Brillouin shear flow eventually becomes strong
enough to excite the linear wave particle~diocotron! reso-
nance (Rv/m5ydrift /r ), whereRv is the real part of the
complex frequencyv. At this point, a growing linear insta-
bility initializes. As it grows, due to nonlinear terms in the
equations, it will beat against itself and create
ponderomotive-like forces, which become additional contri-
butions to the dc components of the equations. These forces
cause shifts in the dc quantities, proportional to the square of
the rf amplitudes, as well as determine the shape of the elec-
tron density profile.

In regard to Floquet theory, we make the following com-
ment. For the A6, Floquet theory would require that we
couple all modes where them’s differed by66 j , wherej is
any integer. However, as long as one is not near an edge of a

Brillouin zone~the 2p mode is at such an edge, thep mode
is midway between edges!, any Floquet solution would gen-
erally be dominated by one of these modes. We therefore
assume that the Floquet solution is indeed dominated by one
of these modes, and that modes differing by66 j from that
mode may be ignored. For the A6 and our geometry, them
523 mode is thep mode, for which this approximation
would work best. We also expect it to be a good approxima-
tion for the two adjacent modes,m522 andm524, but
possibly poor for them521 andm525 modes.

III. BACKGROUND SOLUTION

We begin our analysis by inserting an expansion of the
form ~7!, for all dependent variables, into the relativistic
cold-fluid, Maxwell equations, and expand the equations. We
note thatB2f must be linear inz, in order to satisfy Ampe`re’s
law. As mentioned earlier, the zeroth-order terms will all be
generally dependent on the slow-time scale,t5e2t.

The equations will decompose into coefficients of vari-
ous powers ofeimf ande. We solve iteratively, starting at the
lowest power ofe~50!. The e50 terms of each equation
~1!–~6!, gives us the conditions for the existence of the
‘‘background’’ or dc solution.16 Detailing these, from New-
ton’s equations, we obtain a quadratic relation for the drift
velocity,

E02g0

y0
2

r
1y0B050, ~8!

where it is understood that the zeroth-order quantities given
above have the appropriate component for that field. (E0 is
the radial component,y0 is thef component, andB0 is thez
component!. From Poisson’s law, given the density, the dc
electric field is given by

1

r
] r~rE0!52n0 , ~9!

and from Ampe`re’s law,

] rB052n0y0 /c2, ~10!

we can determine the radial dependence ofB0 . We take the
dc electric field to vanish at the cathode~the space-charge
limited current condition! and the average of the dc magnetic
field over the interaction region to be equal to the externally
applied dc magnetic fieldBext. The latter also conserves the
magnetic flux through the interaction region. These condi-
tions are

E0~r 1!50, E
r 1

r 2
rB0dr5~r 2

22r 1
2!Bext. ~11!

A third condition is that the electric field must give the ap-
plied dc voltage,
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2E
r 1

r 2
E0dr5Vdc. ~12!

We shall later need the derivative ofy0 with respect tor.
This can be obtained by differentiating~8! and using~9! and
~10! to eliminate the derivatives ofB0 andE0 . That results
in

] ry05
rn0g0

22y0B0

rD B0
, ~13!

where the quantityDB0 is

DB05B02
g0y0

r
~11g0

2!. ~14!

We solve this system by taking~13! to define y0 , with
y050 at the cathode~this is equivalent to the space-charge
limited current condition!, and the integral of~10! to define
B0 . Its value at the cathode will be adjusted so that the
integral in ~11! is satisfied. Then we use~8! to evaluate
E0 . If the denominator in~13! ever becomes zero at some
value of r in the interaction region, then this corresponds to
an unallowable state, sincey0 must remain finite. This con-
dition never occurs in a planar system~where r 5`). In a
cylindrical system, in order to have magnetic insulation, one
must use a stronger magnetic field than in the planar case,
because in addition, one must also overcome the centrifugal
force on the electrons. The conditionDB0.0 insures that
any additional magnetic field, required to counteract the cen-
trifugal force and to maintain magnetic insulation, will be
present.

IV. THE rf SOLUTION

Now we turn our attention to the first-order~rf! solu-
tions. These are the linearized equations, and have been
given before.9,17,18,26–28An important point in the consider-
ation of the form that we shall use is that it is the particle
dynamics that are the most important and fundamental. Con-
sequently, we have found that it is best to eliminate the elec-
tromagnetic fields in favor of the velocities,9,27 or equiva-
lently, in terms of Lagrangian displacements.14,18,29For this
system, the first-order Lagrangian displacements can be de-
fined by

y1r52 ivej r , y1f52 ivejf1S y0

r
2] ry0D j r , ~15!

where ve5v2my0 /r , which is the Doppler shifted fre-
quency seen in the moving electron’s frame,j is the first-
order Lagrangian displacement, and the subscript 1 will gen-
erally refer to a first-order quantity.

Of the rf components of the electromagnetic fields, two
components of the rf magnetic field are found to vanish
(B1r505B1f). We also take thez components of the elec-
tric field, the velocity, and the Lagrangian displacement to

vanish (E1z505y1z5jz), so that the rf motion will remain
in the r -f plane. The rf component of the number density is
given by

n152
1

r
] r~rn0j r !2 i

n0jf

r
, ~16!

and the nonzero electromagnetic field components are given
by

E1f5g0
3jfve

22 iD B0j rve , ~17!

B1z52
v

c2me

@rg0ve
222DB0y02g0~11g0

2!y0
2

1n0y0me#j r2
ir vDB0ve

c2me

jf , ~18!

where

me5m2v
r y0

c2
, ~19!

ve5v2m
y0

r
. ~20!

Due to the combination of the relativistic factor and the
cylindrical symmetry, the analytical expressions for the equa-
tions of motion becomes essentially too complex for hand
calculations. Both the planar relativistic case17,19 and the cy-
lindrical nonrelativistic case30 have been obtained by hand.
However, the combination of relativistic plus cylindrical in-
creases the complexity by an exponential factor. Conse-
quently, from this order on, we have resorted to using the
symbolic computational softwareMACSYMA ~Ref. 31! to ob-
tain the expansion of, and the reduction of, these equations.
By taking either the nonrelativistic limit, or the planar limit,
one can verify that these equations do have the proper lim-
iting forms, and therefore can verify these equations in those
limits. We have done this for the planar limit, and do find
agreement with the previous planar equations.23 We shall
present no derivation here, and shall simply present the final
reduced results.

The first-order equations, with the aid ofMACSYMA, can
be reduced to a set of second-order ordinary differential
equations~ODE!, of the form

dj r

dr
5Crr j r1 iCrfjf , ~21!

djf

dr
5 iCfrj r1Cffjf . ~22!

With the aid ofMACSYMA, the coefficients are found to be
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Crr 52
1

r
2

2g0
2y0S ve1me

y0

r D
mec

2
1

g0
6y0

Ar2 F4meve1
y0

c2r
~r 2ve

222g0
2y0

2!G2
g0

3y0

Amec
2 H n0S 2ve1

y0me

r D1
2g0

3ve

r 2
@2r 2ve

2

1~g0
223!y0

2#J 1
g0

3ve

c2DB0mer
@r 2ve

21y0
2~3g0

221!#1
2g0

4

ADB0r H g0
3~g0

211!

r 3 Fmever 2g0
2

y0
3

c2 Gy0
22n0meveJ

1
g0

4

c2ADB0mer
H ve

3g0
3@r 2ve

21y0
2~g0

223!#2
2g0

5~11g0
2!y0

6ve

c2r 2
1n0F r 2ve

32y0
2ve~11g0

2!12g0
2

y0
3

r
meG J , ~23!

Crf52g0
2 me

r
1

g0
2rve

2

c2me

12g0
6~11g0

2!
y0ve

Ar2
1

g0
3ve

2

c2Ame
F rn01

g0
3

r S r 2ve
212g0

2
y0

4

c2 D G1
g0

5y0
2ve

c2DB0r
2

2g0
5y0ve

2

c2DB0me

1
g0

4ve

ADB0r 3 H y0
2F2~11g0

2!1
r 2ve

2

c2 Gg0
52n0r 2~3g0

221!J 2
2g0

9ve
2y0

c2ADB0mer
2

@r 2ve
22y0

2~11g0
2!#, ~24!

Cfr5
me

g0
2r

S 122rg0
3 n0

A D22
g0

2y0
2

Ar3 F ~3g0
221!me1g0

2 r y0

c2
veG1

2y0
3

c2Ar2ve
F2n01g0

6
y0

4

c2r 2G1
4y0m

g0
2merve

1
r 4ve

413y0
2r 2ve

2~3g0
221!12y0

2~g0
426g0

211!

Ac2g0
2mer

3
1

n0g0

c2Amer
@r 2ve

21~3g0
221!y0

2#1
y0g0

c2DB0r 2 S 4me1
r y0

c2
ve

2D
2

1

DB0rv r
F2n0S 22

1

g0
2D 2

y0~g0
414g0

221!

r 2c2g0
G2

2y0

c2DB0me
H n01

g0

r 2
@2r 2ve

21y0
2~r 0

223!#J
1

g0
5y0

ADB0r 4 H 4me@r 2ve
22~11g0

2!y0
2#2

n0y0ver
3

g0c2
1

y0rve

c2
@r 2ve

22~113g0
2!y0

2#J
2

2g0
5y0
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4
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223!y0
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n0r 2

g0
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g0
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2!y0
4

c2ADB0r 3ve
Fg0

3y0
2

r 2
1n0G , ~25!

Cff52
1

r
2

2g0
2y0

c2r
2

4g0
2mey0

r 2ve

1
2g0

2y0ve

c2me

1
g0

6y0
2

Ar3 F2~11g0
2!2

r 2ve
2

c2 G1
g0~3g0

221!n0

Ar
1

2vey0g0
6

c2Amer
2

3F2r 2ve
22y0

2~32g0
2!1

n0r 2

g0
3 G2

g0~11g0
2!2y0

DB0r 2
1

2me

DB0rve
Fn02g0

3~11g0
2!

y0
2

r 2G2
rg0

3

c2DB0me
F n0

g0
3 S ve1me

y0

r D
1veS ve

21
2g0

2y0
4

c2r 2 D G2
2g0

7~11g0
2!y0

ADB0r 4
@r 2ve

22~11g0
2!y0

2#2
g0

7ve
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g0
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22~11g0
2!y0

2#

1ve
2@r 2ve

22~32g0
2!y0

2#22g0
2~11g0

2!
y0

6

c2r 2J , ~26!

where

A5S DB01g0
3 y0

r D 2

1g0
4

y0
2

r 2
2g0

4ve
2. ~27!

We will need two boundary conditions for this second-order
set of ODE’s. The first one will come fromE1f vanishing at
the cathode~conducting surface condition!, and the second
one will come from matching the interior plasma solution to
the electromagnetic field solution in the SWS. For the latter

we require that, at the anode, the ratio ofE1f /B1z in the
plasma region to match the same as that in the SWS, which
will be assumed to be a vacuum region. To calculate the ratio
on the plasma side, we need the forms ofE1f andB1z , given
above by~17! and ~18!. To calculate the ratio on the SWS
side, we solve Maxwell’s equations for the given vane-slot
configuration, subject to standard boundary conditions on the
slot surfaces. In the numerical calculations of this ratio, we
have included the first three azimuthal modes in each slot.

Given these boundary conditions and the background
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density profile, for each value ofm, one then determines the
~complex! eigenvalues ofv which will satisfy the boundary
conditions. In general, there can be several eigenvalues ofv
for each value ofm. While all of these would in general be
initially excited and would proceed to grow at their indi-
vidual growth rates, it is the one with the largest growth rate
that will eventually dominate. We then search through the list
of eigenvalues for that one, and that is the one that we take as
the operating mode. Typically, for the parameter space that
we have searched, we have found that this mode will havem
in the range of24<m<21.

V. NONLINEAR DIFFUSION–SECOND-ORDER dc

In second order, the rf wave beats against itself, creating
a ponderomotive force. This force causes a nonlinear diffu-
sion to initiate, wherein the steep density gradient of the
Brillouin flow is reduced. Due to the nonlinear terms in~1!–
~6!, this diffusion causes the dc solution to slowly shift away
from its initial solution, at a rate proportional to the square of
the rf amplitude. An analysis of all such shifts in the nonrel-
ativistic case was given in Refs. 9 and 15, along with a
discussion of the evolution of the background density profile.

Although the zeroth-order solution does evolve during
the nonlinear diffusion process, by using the adiabatic ap-
proximation discussed in the Introduction, we bypass the
transient region and go directly to the stationary solution,
wherein the electrons have redistributed themselves to be in
balance with the ponderomotive and electromagnetic forces.
We have shown that this nonlinear diffusion process will be
generally quite rapid.10

In the fully relativistic case, there is a lag in the growth
of the second-order fields~due to the finite speed of light!
which is not present in the nonrelativistic case. Along with
this, the strong dc radial current creates aB2f component,
linear in z, which then will generate smallz components of
the velocity and electric field, proportional toz. Depending
on the width of the device inz, this could become an impor-
tant consideration. However, if the device is sufficiently thin,
then these effects will be small and can be ignored. The only
consequence of assuming a thin device and ignoring thesez
components ofy andE will be that thef component of~3!
will not be exactly satisfied. Also, in an actual device, the use
of ‘‘end caps’’ tends to limit these longitudinal effects and
motions.

Taking the above thin approximation, we have that the
second-order dc solution will have the following features.
The second-order corrections to the dc magnetic field are
given by

B2r50, B2f5
B0c

2 C2zr2

c2r
, B2z52

1

2sr
] r~rE2f!,

~28!

whereB0c is the value of the zeroth-order dc magnetic field
at the cathode,C2 is essentially the radial dc velocity of the
electrons, andr 2 is the radius of the device at the inside of
the vanes~anode!. ~The factors ofB0c , r 2 , and c in the
expression forB2f are there simply to normalizeC2 to a
velocity.! Since the device will carry a dc radial current, one

must have a nonzeroB2f component, and thusC2 must be
nonzero. This constant will reappear later as a key quantity
in the nonlinear diffusion equation, where it will essentially
determine the width of the Brillouin-like section of the pro-
file.

The second-order electric field has only af component
(E2r505E2z), which satisfies the equation

] r
2E2f1Ce1] rE2f1Ce0E2f5CeS, ~29!

where the coefficients are

Ce15
1

r
1

n0y0

c2DB0
S 12

4g0
3s2

D D ,

Ce052
1

r 2
1

n0y0

c2DB0r
S 12

4g0
3s2

D D 2
4s2

c2 S 11
n0

D D ,

~30!
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and where the denominator termD is defined as
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2

r 2D 2n0 . ~31!

The boundary conditions onE2f are that it must vanish at
both the cathode and the anode, since it is independent off,
and both surfaces will appear to be conducting surfaces.32

Also, QA is the rf part of Ampe`re’s equation,QN is the rf part
of Newton’s equation. These parts are given by
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~32!
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and where the ‘‘* ’’ indicates the complex conjugate of the
quantity, and ‘‘1c.c.’’ means to add the complex conjugate
of all the preceeding terms that are contained inside that
particular bracket. Continuing, from the second-order New-
tonian equations, we have that the second-order changes in
the velocities are given by

y2r52
2g0

2s

D
~y0B2z1QNr!1

DB0

g0D
~E2f1QNf!,

y2f52
1

DB0
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2
2s

D
~E2f1QNf!, ~33!

y2z50.

The next and last result which follows from the second-
order dc equations is the nonlinear diffusion equation, which
determines the stationary density profile. This equation, in
the adiabatic approximation, where we ignore]tn0 and the
slow-time derivatives of all other quantities, is

Dnl] rn01Nnln01C2B0c
2 D

r 2

r
50, ~34!

where
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In ~35!, the subscript ‘‘0’’s on theQ’s indicate that all terms
proportional to] rn0 have been removed.@In ~34!, all that we
did was to move any and all terms which contained the radial
derivative ofn0 , over into the nonlinear diffusion coefficient
Dnl , which is where they are now found. OnlyQAr andQNf

did contain such terms.# To solve Eq.~34!, we must append
one boundary condition, which we take to ben0a , which is
the value of the stationary density at the anode,r 5r 2 . This
value of n0a will appear as a control parameter in our nu-
merical solutions.

VI. NUMERICAL METHOD OF SOLUTION

At this point, we now have a closed system of ordinarily
differential equations, and we have sufficient boundary con-
ditions to define a solution, if one exists. The zeroth-order dc
equations are nonlinear. Givenn0(r ), one can integrate them
from the cathode up to the anode, given the value ofB0c , the
value ofB0 at the cathode. This value is initially unknown,
but one can start with an initial guess, and by using the
Newton–Raphson method, rapidly converge to the correct
value that will satisfy the second condition in~11!. In regard
to the first-order rf equations, they are linear in the rf vari-
ables, but nonlinear in the zeroth-order quantities. Given a
value for the complex frequencyv, the mode numberm, and
the dc solution, by requiringE1f , ~17!, to vanish at the
cathode, then matching at the SWS, we can uniquely deter-
mine the rf solution, up to an overall normalization constant.
The second-order dc equations are linear in the second-order
variables, but nonlinear in the zeroth-order variables, and
quadratic~nonlinear! in the rf fields. The key quantity to
determine will be the stationary density profilen0 , whose
determining equation is~34!. Of course, inspection reveals
that once one has the stationary density profile, then all the
other quantities may be determined by either quadrature or
differentiating and/or algebra, whence the stationary density
profile is the key quantity to obtain. We have found that these
profiles may be obtained by a simple iteration technique. The
basin of convergence is generally quite large, unless one is
near a point where the solution no longer exists.

The general iteration method that we used is as follows.
One starts with some reasonable density profilen0(r ), either
a combination of a box plus a ramp, or some nearby profile,
and then solve for the dc electromagnetic fields. Once one
has a starting profile and the accompanying dc fields, then
one proceeds to solve the rf equations~22! for the radial and
azimuthal displacements, using the given boundary condi-
tions below Eq.~27!. One checks all mode numbers,26
,m,0, for the most unstable mode, varying the complex
value of v until the electron plasma solution at the anode
matches that of the SWS. With this, one then has the eigen-
valuev, the mode numberm, and the rf solution, up to the
overall arbitrary normalization constant.

To find the normalization constant for the rf solution, we
require the total density variations, dc plus the rf oscillations,
as in ~7!, to never be negative, since a negative electron
density would be unphysical. This condition then gives an
upper limit to the value of the normalization coefficient,
which also is the precise value that must be used, for the
following reason. In the absence of the rf waves, the density
profile would relax back to the Brillouin value, which has
n0a vanishingly small. For the rf wave to exist, thenn0a must
be lifted off of its Brillouin value of zero, and become suf-
ficiently large to accommodate the amplitude of the rf oscil-
lations, without driving the total electron density negative.
Turning this argument around then for a givenn0a , one
would take the amplitude of the rf density oscillations,
un1(r )u, to be just large enough to exactly fit under the den-
sity profile n0(r ). Examples of this will be seen in Fig. 2 in
the next section.
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Once the rf normalization constant has been determined,
then the rf fields are uniquely determined, up to an overall
phase. Although this rf solution is consistent with the dc
fields, the dc fields may not be consistent with these new rf
fields. So now we turn to satisfying the condition on the
density profile, given by~34!, as well as calculating the
second-order fieldsE2f andB2z . The condition~34! is what
is known as a ‘‘stiff’’ ODE. Its solution will typically have
exponential behavior with very short scale lengths, on the
order of the width of the edge of the classical Brillouin
sheath. Furthermore, due to the stiffness of this ODE, as one
varies the unknown parameterC2 , the solution can rather

suddenly violate the single-particle stability limit.~In the
nonrelativistic limit, the single-particle stability range for the
electron density isn0,B0

2, which is just the Brillouin limit.!
To complicate the problem further, the boundary conditions
are mixed, with the value ofn0 being specified at the anode
n0a and other parameters being specified at the cathode.

There are probably several iteration schemes which
would solve these equations. The iteration that we have used
is to integrate~34! to obtainn0 , and then varyC2 , using
Newton–Raphson, until the new density profile gives the
correct applied dc voltageVdc. Outside of this iteration, we
have another iteration whereby we varyB0c until we have

FIG. 2. Plots of certain density profiles for the A6 at 350 kV and an ambient magnetic field ofBext518 GHz ~6.4 K G! case, when the rf field is in them
522 mode. In the first plot, forn0a50.11, we see the density profile and the magnitude of the rf oscillations for an initiating rf field, with a peak in the rf
density oscillations at the diocotron resonance. In the second plot, we have combined the dc and the rf solutions to compose the total density profile, at a
slightly lower value ofn0a50.10. In the third plot, we show the configuration when the rf wave reaches its maximum amplitude, atn0a50.125. In the final
plot, we see how the configuration changes when one tries to exceed this limit. Here we have the solution forn0a50.14, showing how the rf amplitude at the
anode will decrease.

FIG. 3. In the first panel we show a plot of the magnitudes of the Lagrangian displacements, for the same parameters as Fig. 2~c!. In ~b!, we show a plot of
the real part ofve vs r for the same solution.
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both the correctVdc and Bext. Then we use~11!, ~12!, and
~8! to determine the new values ofE0 , B0 , and y0 by
quadrature.

Once we have the new density profile and the new dc
fields, then we have the dc solution consistent with the rf
fields. However, now the old rf fields will generally be in-
consistent with the new dc fields. So we return to the calcu-
lation of the rf fields and then back to the second-order dc
fields and the density profile. We continue these iterations
until all the coefficients,Vdc, B0c , m, v, andC2 , have sta-
bilized to within a specified relative variation of no more
than typically 1026. However sometimes the convergence
does not occur, and that is usually because no solution can
exist for the chosen values of the parameters (Vdc, Bext, and
n0a). This can show up as an rf solution having a vanishing
growth rate for allm values, due toVdc being too small for
the given value ofBext, or even as no solution existing forn0

due ton0a being too large, and sometimes even being too
small. Occasionally we have found that the solution will con-
verge to some period-2 solution, wherein the values ofB0c ,
m, v, andC2 converge to a repetition of alternating values.24

Period-3 and period-4 solutions have also been seen. Thus it
is not surprising that sometimes one also sees chaotic results
occurring. These equations are nonlinear and little is known
about necessary conditions for solutions to exist.

VII. NUMERICAL RESULTS

As the first example of our results, we show in Fig. 2 a
set of four typical results for the density profilen0 and the
magnitude on the rf density oscillations atV5350 kV, Bext

518 GHz~6.4 K G!, and for the mode numberm522. This
is toward the low side of the operational range of the mag-
netic field, and in this region, the density profiles tend to be
‘‘soft,’’ and the mode numbers correspondingly tend to be
low, and on the order of21–23. The horizonal axis is the
radius in cm, where the cathode is on the left, starting at 1.58
cm, and the anode is on the right, at 2.11 cm. Figure 2~a!
shows the solution whenn0a50.11, and we see that the rf
field is becoming well developed, with a peak in theun1u
curve, which is where the diocotron resonance occurs at the
edge of the sheath.@In all these figures, the units ofn is
frequency squared, in units of~rad/nsec!2. However, we will
give n0a as a ratio compared to the square of the electron
cyclotron frequency, in rad/nsec, of the external magnetic
field. As such,n0a is essentially just the ratio of the dc den-
sity at the anode, compared to the dc density at the cathode.#
As one can also see, the rf field has been scaled so that it fits
entirely under then0 curve, and just touches it at the anode
on the right. Consequently, the total density is everywhere
nonnegative. In Fig. 2~b!, we show a two-dimensional view

FIG. 4. Similar to Fig. 3, except forBext521 GHz~7.5 K G! andn0a50.044. This figure shows a second diocotron resonance just under the anode, and the
corresponding increase in the oscillations of the azimuthal displacements.

FIG. 5. The density profile, the magnitude of the rf density oscillations, and the Lagrangian displacements for a soft density profile, withV5350 kV, Bext

517 GHz ~6.1 K G!, andn0a50.12.
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for a single period of the rf wave at a slightly smaller value
of the amplitude of the rf wave,n0a50.10. ~In these three-
dimensional plots, each coordinate has been scaled from zero
to unity.! Here the cathode is at the back on the left, where
one clearly sees the sheath. Coming out of the sheath is a
spoke of electrons, reaching up to the anode, in the fore-
ground at the right.

As the amplitude of the rf wave at the anode increases,
the first thing that happens is that the value ofn0a will be
pushed to larger values. The second thing that happens is that
the diocotron peak will grow and generally narrow. Eventu-
ally, it will touch the n0 curve, as shown in Fig. 2~c! for
n0a50.125. This now is effectively the largest operating am-
plitude that the rf wave can have at these parameters, be-
cause now, the rf amplitude becomes limited by the dio-
cotron peak, and not the rf amplitude at the anode. An
example of this is clearly shown in Fig. 2~d!, which is for the
slightly higher value ofn0a50.14. Note that now, at the
anode, a gap has opened up between the background density
and the rf density oscillations, with the net result that the rf
oscillation amplitude hasdecreasedat the anode. Solutions
such as this latter, with the gap, are probably unphysical or
unstable, since they correspond to a reduced rf amplitude of
the rf wave in the vanes. These observations are in line with
previous similar observations in Ref. 23.

In Fig. 3~a!, we show the rf Lagrangian displacements
for then0a50.14 solution. The units for each axis is in cm s.
One notes the enhanced amplitude of the rf oscillations in the
f direction, at the diocotron resonance, as well as the begin-
ning of another enhancement as one nears the anode. The
latter can be understood from Fig. 3~b!, where we show the
real part ofve vs r. What is different here from the planar
case is that after going through the diocotron resonance
~where the real part ofve50), this quantity then goes
slightly negative, and then begins to turn back toward the
resonance. In the planar case, or a low aspect ratio cylindri-
cal case, such never happens, since the drift velocity is al-
ways monotonically increasing in magnitude. However, in a
high aspect ratio cylindrical case, such as the A6, one can
have the magnitude of the drift velocity decreasing after one
passes through the region of the sheath.~Mainly because the
radial electric field will vary asr 21, once one is outside the
sheath.! In almost all our solutions, we have seen the real

part of ve returning toward the resonance, after the sheath
has been passed, and in several cases, even crosses zero and
has a second resonance, just below the anode. An example of
this is shown in Fig. 4. As one can see, there is a second peak
in the rf oscillations at the second resonance, and of course,
there will be a corresponding secondary boost to the ampli-
tudes of the rf oscillations of the electrons, before they strike
the anode.

For other solutions at other ambient magnetic fields, we
have seen similar behaviors in the dc density profiles and the
rf Lagrangian displacements. Invariably, the lower magnetic
fields give a ‘‘soft’’ sheath, which in some cases, can extend
out to one-half of the cathode-anode spacing. Furthermore,
the magnitude of the Lagrangian displacements become
smaller, even at the diocotron resonance, with the value at
the anode being even smaller still, only a small fraction of
the maximum value at the diocotron resonance. A typical
example is shown in Fig. 5. The slackness of the density
profile and the lack of significant rf oscillations at the anode
would suggest that at these parameters, one should not ex-
pect this to be an optimum operating state, and experimen-
tally, it is not.25

At the higher magnetic fields, the sheath becomes quite
‘‘hard,’’ and almost Brillouin in shape, except for a rather
small ‘‘shelf’’ extending out to the anode, as shown in Fig. 6.
The harder the density profile becomes, the smaller the at-
tached shelf is, in order to have a consistent solution. It is
this relationship that seems to be the dominant limitation on

FIG. 6. The density profile, the magnitude of the rf density oscillations, and the Lagrangian displacements for a hard density profile, withV5350 kV,
Bext524 GHz ~8.6 K G!, andn0a50.028.

FIG. 7. The eigenfrequencies forV5350 kV.
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the power delivered at the higher magnetic fields. The more
tightly the Brillouin sheath is held, the more limited are the
rf oscillations. Also, we see in Fig. 6~b! another example of
the doubled peaked structure of the Lagrangian displace-
ments. These structures tend to dominate at the higher mag-
netic fields, and may play a role in delivering higher power
levels. However, this range in the A6 is limited. Attempts to
find solutions atV5350 kV and Bext525 GHz ~8.9 K G!
have been generally unsuccessful, with only a small section
of solutions being found, and those are in a parameter range
that one would consider to be likely unstable. We also note
that Bext525 GHz is well above the optimum operating
range for the A6~see Fig. 23 in Ref. 6!, so the lack of
solutions in this range is not surprising.

We can compactly summarize the remaining features of
these solutions in a series of plots for the operating param-
eters. In Fig. 7, we show a plot of the eigenfrequencies for
the range of the solutions found atV5350 kV. The most
obvious feature is a general independence of the parameters
Bext andn0a .

The growth rates is shown in Fig. 8, for the fastest
growing mode. Here, in Fig. 8~a!, one sees a consistent pat-
tern wherein the instability, which initiates at the lower val-
ues ofn0a , starts off as ap mode (m523), except at the
higher magnetic fields, shown in Fig. 8~b!, where it starts off
as a m524 mode. However, as the rf amplitude grows,
whereinn0a has to increase, for the lower magnetic fields,
the growth rate of thep mode eventually becomes exceeded

by the growth rate of them522 mode, and then at very
high n0a values, even by them521, for Bext516 GHz~5.7
K G!. However, at the higher magnetic fields, no such mode
switching occurs, and one has them524 mode as being the
fastest growing mode. We note that forBext521 GHz ~7.5
K G!, we were unable to locate a consistent solution forn0a

less than 0.03.
The magnitude of thef component of the electric field

at the anodeE1fa determines the magnitude of the rf fields in
the vane structure, and consequently, the power flow. These
solutions are shown in Fig. 9 forV5350 kV, as a function of
n0a , at various values ofBext and the modal numberm. The
quantities in the parentheses are the values of the ambient
magnetic field, in GHz, and the negative of the modal num-
ber m. Note that the sections of the curves with negative
slope, corresponds to the situation shown in Fig. 2~d!,
wherein as one increasesn0a , the amplitude of the rf oscil-
lations at the anodedecreases. Thus these negative slope
sections of the curves are most likely unphysical solutions.

One also sees from here how the characteristics of the dc
profile will shift as the rf fields grow. As the device is initi-
ated, the classical Brillouin flow will form. Due to the Ray-
leigh instability,14 the nonlinear diffusion process will ini-
tiate, with the Brillouin flow reshaping as shown in the
earlier figures. During this reshaping, the rf fields will grow
out of the noise, with the mode with the largest growth rate
dominating. Those modes with the largest growth rate, are
the ones shown in Fig. 8. As the rf mode grows,E1fa must

FIG. 8. The growth rates at V5350 kV as a function ofn0a , at various values ofBext and the modal numberm. The quantities in the parentheses are the
values of the ambient magnetic field, in GHz, and the negative of the modal numberm.

FIG. 9. Thef component of the magnitude of the electric field at the anode atV5350 kV, as a function ofn0a , at various values ofBext and the modal
numberm. The quantities in the parentheses are the values of the ambient magnetic field, in GHz, and the negative of the modal numberm.
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grow at the rate determined bys in Fig. 8. Thus in Fig. 9, we
see thatn0a must then increase to match to the increasing
amplitude of the rf oscillations in the SWS. However, once
E1fa reaches its maximum amplitude, it can grow no further,
and the device then enters into what we have called the
‘‘saturation stage.’’20 This is an operating state wherein there
is no growth, and the device steadily delivers power. The
study of the stability of this saturation stage is still to be
done.

The coefficientC2 for V5350 kV, as a function ofn0a ,
at various values ofBext and the modal numberm, is shown
in Fig. 10. This coefficient is essentially the second-order dc
radial velocity, in cm/ns, and gives how rapidly the electrons
transit from the cathode to the anode.

There is another feature of these results that needs to be
mentioned. As one can observe from Figs. 8~a! and 9~a!, at a
fixed Bext, there are overlaps in the domains of them
522 and m523 modes. It is in the neighbor of these
domains ofn0a values, that one could expect mode compe-
tition to occur, since fluctuations in the background density
could throw the device from one mode to another, or even
allow both to coexist. Note that such would not occur for
magnetic fields greater than about 18.5 GHz, since the mode
switching would then occur afterE1fa has peaked.

Another parameter of interest is the ratio of the second-
order radial velocityy2r compared to the amplitude of the
radial rf velocityuy1r u. This ratio can indicate the possibility

of an instability in the saturation stage. For the nonrelativis-
tic planar case, it has been shown in Ref. 20 that the satura-
tion stage will have no consistent solution, if at some value
of r, y2r>uy1r u. In fact, the instability that would then occur,
would have to be one in which the solution becomes nonsta-
tionary, and very likely, chaotic. For comparison, from our
unpublished numerical data on the initiation stage of the non-
relativistic T266, the ratio ofy2y /uy1yu is never seen to be-
come larger than 0.25. This device is a CFA and does de-
pendably amplify an rf wave. For the A6, and in particular
for the data in the first panel in Fig. 11, one notes that at
aboutr 51.64 cm, this ratio has a value of'0.55. While this
ratio is below unity, nevertheless it is significantly larger than
that for the T266. Furthermore, should there happen to be
any strong fluctuations in these velocity components, the
equilibrium value of this ratio could be potentially pushed
above unity, at which point, the stationary solution would go
unstable, and the device would shut down. This is indeed an
observation feature of the A6,33 and this could be a possible
explanation as to why it occurs.

In the second panel of Fig. 11, we show the maximum
amplitudes of thef component of the electric field at the
anode,E1fa , which were taken from the peak values in Fig.
9, as a function ofBext. These values show what the operat-
ing modes are, just before the system continues on into the
saturation stage. One notes here that them522 mode domi-
nates at lower values ofBext, shifts to them523 mode as

FIG. 10. The values of the coefficientC2 at V5350 kV, as a function ofn0a , at various values ofBext and the modal numberm. The quantities in the
parentheses are the values of the ambient magnetic field, in GHz, and the negative of the modal numberm.

FIG. 11. In the first panel, we show second-order radial velocity and the magnitude of the rf radial velocity, atV5350 kV, as a function ofr. Near the cathode,
at the left, the smallest value of the ratio ofy2r /uy1r u is '0.55. In the second panel, we showE1fm , which is the maximum amplitude ofE1fa ~obtained from
the peak values in Fig. 9!, as a function ofBext .
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Bext increases, and finally shifts to them524 mode at the
higher values ofBext. From this curve, one sees that the
device would initiate whenBext is in the range of 17–24
GHz, or 6–9 K G, which is exactly where the A6 does oper-
ate at 350 kV.25 We have also studied the initiation of the A6
at other voltages as well. In general, the results are similar to
those for 350 kV, however, with expected shifts in the vari-
ous parameters. For brevity at these other voltages, we will
only show the curves corresponding to the second panel in
Fig. 11, which will indicate the corresponding operating
ranges forBext. In Fig. 12, we show the results for 300 and
325 kV. What one observes here is that at 300 kV, the values
of E1fm are considerably lower than those at 325 and 350
kV. In fact, the values forE1fm for thep mode appear to be
so low that one would expect the device to certainly not
operate in thep mode, and perhaps not at all. On the other
hand, in the second panel, at 325 kV, one sees a dramatic
increase in the presence of thep mode, and thus would ex-
pect the device to operate in that mode, although at a lower
power than at 350 kV.

In Fig. 13, we show the results for 400 and 500 kV. What
one observes here is that at 400 kV, the device should operate
in the range of 18–24 GHz, while at 500 kV, it should oper-
ate in the range of 21–28 GHz. We have not investigated our
model above 500 kV.

In a recent study,34 numerical PIC simulations have been
performed for a ‘‘rising-sun’’ magnetron operating at ap-
proximately 500 kV, where it was found that mode competi-
tion was a major problem in the operation of a rising-sun

magnetron at the higher voltages. We have already remarked
that mode competition could be expected to occur, whenever
the domains of them523 andm522 overlap, as seen in
Fig. 8. From the corresponding curve at 500 kV, the domains
of them523 andm522 mode do overlap below about 25
GHz, above which only thep mode exists. However, we do
not observe a significant increase in the widths of the overlap
domains between 350 and 500 kV.

VIII. CONCLUDING REMARKS

Using only two modes, we have analytically modeled
the initiation stage of an A6 relativistic magnetron. The re-
sults obtained show reasonably good quantitative agreement
with the known operating range of the device. This analysis
gives one an understanding of the important physical pro-
cesses in the device, and allows one to understand the nature
of the solutions for the various variables and parameters. One
new feature is that in a cylindrical device, with a sufficiently
large aspect ratio, the electrons can be given a second
‘‘boost’’ on their way to the anode~see Fig. 4!, where the
diocotron resonance occurs not only at the edge of the Bril-
louin sheath, but also just under the anode. This should be a
feature of high aspect ratio cylindrical systems in general.
All that is required for a double diocotron resonance to occur
in a cylindrical device is for the aspect ratio to be sufficiently
large, so thatve would recross zero near the anode.

A second observation is that we have a possible mecha-
nism for the random shutting down of such a device.33 Per

FIG. 12. The maximum amplitude ofE1fa for 300 and 325 kV as a function ofBext .

FIG. 13. The maximum amplitude ofE1fa for 400 and 500 kV as a function ofBext .

3163Phys. Plasmas, Vol. 11, No. 6, June 2004 Theoretical modeling of an A6 relativistic magnetron



previous results for the nonrelativistic, planar model, we had
shown that a too large of a cathode-anode current would
drive the background density unstable, and thereby destroy
the steady delivery of power.20 The necessary criteria for
stability was found to be that the radial dc velocity must
always be less than the magnitude of the radial rf velocity.
Although this is a nonrelativistic result, one would expect the
same criteria to also apply in the relativistic case, with small
corrections. For our model of the A6, we found that the
maximum ratio of the dc radial velocity to the rf radial ve-
locity could become as large as 0.55. While this is still
smaller than unity, for the nonrelativistic T266, the maxi-
mum ratio was always less than 0.25. Thus the A6 operates
closer to this instability limit than the T266 does. Should
there happen to be random fluctuations in the A6 that would
be sufficiently large near the edge of the sheath, then one
could expect them to randomly turn on this instability. The
key question then becomes, just how smooth and steady are
these velocity flows in the actual device? Per PIC code re-
sults, as in Fig. 25 of Ref. 6, one suspects that random fluc-
tuations of this size may not be unusual. If so, then this could
well be an explanation as to why the A6 would tend to shut
down, after entering upon the saturation stage.
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