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PHYSICS OF PLASMAS VOLUME 8, NUMBER 6 JUNE 2001

Nonlinear propagation of two-dimensional gravity wave trains
in magnetohydrodynamics

David K. Rollins and Bhimsen K. Shivamoggi
University of Central Florida, Orlando, Florida 32816

(Received 29 February 2000; accepted 29 January)2001

Nonlinear evolution of modulated two-dimensional gravity wave trains in a conducting fluid subject
to a tangential applied magnetic field are considered. The effect of the applied magnetic field on the
stability of the modulation and on the saturation amplitude in the long-time evolution are examined.
© 2001 American Institute of Physic§DOI: 10.1063/1.1362528

. INTRODUCTION y—®: ¢,—0, 6

An interface between two plasma media can suppory—co: y—0, (7)
low-frequency Alfven surface waves propagating along the
magnetic field in the plane of the interfa¢kruskal and
Schwarzschild; Gerwin? Chen and Hasegaw. These are
similar to gravity wave trains on the surface of water. Ative
surface waves in a plasma are an important area of researc
in the context of Alfve-wave heating of laboratory plasmas
(Chen and Hasegaw#: Collins, Cramer, and DonneR/Ap-
pert, Vaclavik, and Villar) and solar-atmospheric flux-tube
wave propagation, which leads to heating of the solar coro?
nal plasma(lonson’ Wentzel® and Roberty. The mecha-
nism for the Alfven-wave heating of laboratory plasmas in-
volves the Alfvan surface waves that are believgRef. 4 to
provide a means of coupling power from an external antenna
to a resonance layer in the plasma. The plasma is then heated The linear dispersion relatiomj=k(1+M?2k) can be
by the spatial Alfva resonance damping of the waves in thegeneralized to the two-dimensional case by interpreking

whereV ¢ is the perturbation in the velocity potential of the
liquid, V¢ is the perturbation in the vacuum magnetic field,
and » is the displacement of the liquid at the interface. Here,
e have nondimensionalized the various physical quantities
using a reference lengtty, and a reference tlmé)\ /g. The
dimensionless parametévi’= 0/)\0pg, where By is the
magnetic field strengthg is the gravitational acceleration,
ndp is the density of the liquid.

II. NONLINEAR EVOLUTION EQUATION FOR THE
TWO-DIMENSIONAL MODULATED GRAVITY
WAVE TRAINS

plasma. the magnitude of the wave vectkr=(1,0m). This leads to
Studies of one-dimensional surface waves in magnetohythe nonlinear dispersion relation
drodynamics in a plane-slab geoméfriave been made by w2 = T2 M2+ M2(12+ M2) + wokZa2, ®)

Savagel'*? Shivamoggit®~*°Kant and Malik!” among oth-

ers. In this paper, we consider the nonlinear evolution of théexpanding (8) about ky=(ky,0,0) with perturbation

modulated waves in the two-dimensional case, and examingk,0k,) gives

the effect of the applied magnetic field on the nonlinear do

propagation. 0=wyt+ ——
Consider an initially, quiescent, infinitely conducting lig- dkO

uid subjected to a gravitational field in the vertical directionwhere

(Fig. 1) that is confined to a regiop=0 by a vacuum mag- _ 225112

netic field aligned with the surface of the liquid. The gravity wo=(Ko+M%kp) ™,

here may be an effective force field that simulates the dy- 4, wo

1— aki+ BK3+ swokja?, 9)

namic effects due to the curvature of the magnetic field dk — =(14+2M%kg) /2w,
(Rosenbluth and Longmit®. The dimensionless form of the 10
equations are a=1w0], (10
Y<n Pyt ¢yy+ $,,7~=0, (1 _ 1+2M 2k0
 dkgw

Y>n0 Ut ’pyy'*_ ¥,7=0, 2 . o . 19 . .

Using (9), one may writé® the nonlinear Schidinger equa-
y=n. ¢y=m+ byt b7, (3)  tion describing the evolution of the two-dimensional modu-

lated surface waves:
lﬂy: Ixt It Y1y, (4)

dwg
(At dko ) aAXX+BAZZ_ K(|A|2_|AO|2)A:0!

bt (Pt Gt 2)+ pt M by + 5(W5+ o+ 92)1=0,
) (11
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FIG. 1. Deformed surface of plasma supported by a tangential magnetic
field. -101
=20
where
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IIl. STABILITY OF TWO-DIMENSIONAL
MODULATIONS

To investigate the stability of the two-dimensional

modulations, we put

A&z =[p(&z)]"exdio(£,2,1)],

E=x+ %t. (12)
dko
Equation(11) then leads to
Ipi—aopi— apoyt Bop,t Bpo,~0, (13
—port Z—’f— % +apof- B_p§+ ﬁgzz
~Bpai—kp(p—po)=0. (14)
Setting further,
p=potpi(&z,t), o=01(§21), (15
linearizing inp; ando;, and putting
p1,o1~exXi(Ki§+Kyz—Qt)], (16)
Egs.(13) and(14) lead to the solvability condition
0= (aKi-BK3)(aKi~ BK3~2kp). 17)

The stability boundaries, given b§?=0, are the pair of
straight lines,

B
Klzi \/;Kz,

and the hyperbola

(18)

aK?— BK3—2kpo=0. (19

Figure 2 shows the instability regiorK(,K,) space for the

FIG. 2. Unstable regiofshaded in wave number space for zetbold) and
nonzero magnetic parametet.

the MHD case 1 #0), the modulations propagating trans-
verse to the applied tangential magnetic field are seen to be
stabilized by the latter, as to be expected.

IV. THE LONG-TIME EVOLUTION OF THE
MODULATIONALLY UNSTABLE SURFACE WAVES

We will now consider the effect of the applied tangential
magnetic field on the nonlinear development of the initially
linearly unstable modulation. For this purpose, we will con-
sider the initial-value problem for modulations with wave
numbers near the threshold for instability. The set of hyper-
bolic brancheq19) reduces to the instability threshokd;
=+ \2kpg/a for the one-dimensional modulation. The set
of linear brancheg18) is peculiar for the two-dimensional
modulation and does not exist for the one-dimensional
modulation. We need to construct solutions separately near
each of the branches.

Following Shivamoggf® we refine the multiple-scale
development given by Jans&to derive an equation for the
nonlinear evolution of the linearly unstable modulation of
the gravity wave train. This involves perturbing the wave
numberk instead of the nonlinearity paramet@s done by
Jansseft and inserting in the solutions near the linear insta-
bility threshold an explicit detuning parameter

A. Solution near the hyperbolic branches

We look for a solution of the following form:
p(X,2,7)=potep1(X,2,7)+ 62p2(X,Z, T+,
o(X,2,7)=€0,(X,2,7) + €205(X,2,7) + ..., (20

aKi—,BK§=2Kp0+ ex+...,

applied magnetic field, being zero and nonzero. The lineawheree is a small parameter that characterizes the departure
instability region is unbounded in both cases. However, irof aKi— K3 from the linear stability threshold value
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wave trains in a conducting fluid subjected to a tangential
0.2 applied magnetic field. We have first investigated the effect
0.1 of the applied magnetic field on the modulational instability
0 i of the surface wave. We have then investigated the effect of
2 4 M 6 8 10 the applied magnetic field on the saturation amplitude in the
-0.1 long-time evolution of the modulationally unstable waves. In
02 both investigations, the applied magnetic field is found to
have a stabilizing effect in the nonlinear development of the

modulated surface waves. This suggests that an applied tan-
gential magnetic field has the potential to play a significant
role in the Alfven-wave heating mechanism of laboratory
2kpo, 7= €t is the show time scale characterizing the slowplasmas which is based on the excitation of Aifveurface
time evolution near the threshold, agds an explicit detun- waves by an external coupler and its damping by the spatial

FIG. 3. Saturation amplitud€ as a function of the magnetic paramekér

ing parameter. Alfvén resonance.
Substituting(20) into Egs.(13) and(14), we find that
p1(X,z,7)=a(r)e VKx+BK2) L ¢ ¢ (21)

APPENDIX: NONLINEAR EVOLUTION EQUATION

where c.c. stands for the complex conjugate aQf) is as-  For THE ONE-DIMENSIONAL MODULATED GRAVITY
sumed to be real valued. Following the development ofyavE TRAINS

Shivamogg?® we find thata(r) satisfies the equation

da! 2 Here we give a derivation of the nonlinear evolution

—| =«*a3-a?(a’-c), (22)  equation describing the modulated surface waves by using

dr the averaged Lagrangian methihithant?. The Lagrang-
wherea, is the initial value ofa(7), and ian corresponding to magnetohydrodynamic surface waves is

(Shivamogg®)
_ 2apox
Tk % n(x,z,w( 1,1, 1 2)
. o o ) . L:J ¢t+_¢x+_¢y+_¢z dy
Equation(22) exhibits periodic, bounded solutions oscil- o 2 2 2

lating between 0 and, if c<0, and betweer, and \/c if

o 1 1 1 1
¢>0, which corresponds tp<<0. The latter case implies the - J M?| g+ > P+ > ¢§+ > 2 |dy+ > 7.
saturation of the linearly unstable modulation. Figure 3 7(%.2,0)
shows the variation of the saturation amplitutlevith M?2. (A1)

Observe that the effect of increasing the magnetic field is to o o
decrease the saturation amplitulee indeed becomes nega- 1€ variational principle,
tive if the magnetic field is strong enough.

tr (X2 (22
B. Solution near the linear branches 5ft1 fxl Ll Ldxdzdt0, (A2)

We look for a solution of the following form: ) . o
subject to the restrictions that the variatiodg, &y, and

p(X,2,7)=po+ €p1(X,2,7) + €2pp(X,2,7) + ..., o67=0 at the boundariex=x;,x,, z=2;,2, and t=ty,t,
23) then gives rise to Eq$1)—(7) via the usual procedure in the
calculus of variations.
aK?—BK3=e’x+.... We czonsider a fiznite—amplitude stationary wave of fre-
_ . . quencyw§=ky(1+M<ky) and a wave numbeég, propagat-

Substituting(23) into Eqs.(13) and(14), we find that ing in theox direction and superpose on it a slowly varying
p1=0, glz(T)ei(v‘EKlH VBK22) 4 ¢ . (24) weak modulation. Following Whithaff,we assume that the
wave can be taken to be sinusoidal locally, i#= a cosé,
but with amplitudea and 6 phase varying slowly wittx, z,

o(X,2,7)=€01(X,2,7)+ €205(X,2,7) + ...,

Following the development of Shivamogdiwe find that
b(7) satisfies the equation

andt, i.e.,
d’b
g2 (2kapox)b=0. (25 a=a(x,zt),
(A3)
Equation(25) shows that nonlinearities t®(e%) have 0= 0(x,z,t) =kox— wgt + o(X,7,t).
no effect on the linearly unstable modulation near the linear
branches of the instability threshold. We may then introduce a generalized frequeacgnd wave
numbersk and! via
V. DISCUSSION
a)=—0t=wo—0't,
In this paper, we have considered some aspects of the (A4)

nonlinear evolution of modulated two-dimensional gravity k=60,=ko+oy, 1=6,=0,,
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which satisfy compatibility conditions

kit 0,=0, l+w,=0. (A5)
Using Eqgs.(1)—(4), (6), and(7), we obtain
n=acosf+ 2a’k(1+2kM?)cos 29 (AB)
b= wka sin 6+ (1 ky)cos6+ ?cosa)
+kwa®M?sin 20e2ky, (A7)
= (asinf+a,y cosh)e W+a’w?sin20e K. (A8)

The long-time evolution equations are found by using
(A6)—(A8) in (Al) and calculating the average Lagrangian,

— 1 2w
L= > Ldé

2

a; aagy
KT 2k

3w?aay,
8k®

(,!)atax
4K?

_11 wz 2+
~2 ks

2,2 2,2
wa;, kMcas 1
X +§k2a4

3waay
8k | a

4K?

1 M2a2 MZ2aa
T 2M 2,24 ox D dd
+4kaa 8 8K

Variation of L with respect tod gives

(A9)

dw
(aZ) O 2
Ix dko
and variation ofL with respect taa gives
o K3
1+ 8uta + 5o 2(1+2|\/|2w3):;12

For weak modulations, expandiri§g11l) aboutk=k, anda
=0, we have

(A10)

=g (A11)

2w Jw

a
da’

(A12)

Using (A5), we obtain from(A10) and (A12), the coupled
equations,
dk, X2 ko

aXX

(k—ko)+ a

w = w0+

[(k ko)?—

dko dkg

(Uxxa+ 20,a,)=0, (A13)

Nonlinear propagation of two-dimensional gravity . . . 2933

dwo 1d2wo 2 Ayx
+t—ot s —— | 0i— =
dke 72 diZ |7 a
5
2 2\,2_
+ g (14 2M26f)a?=0

(A14)

Putting A=a€'? in (A13) and combining(A13) and

(Al14), we obtain the nonlinear Schdimger equation

d 1 dZwOA k3
dko dko XX 2(1)0

X (1+2M?w3)|A[?A=0. (A15)

The derivation of Eq(A15) was given by Kant and Malik
using, on the other hand, the method of multiple scales

(Kevorkian and Col&).

IM. D. Kruskal and M. Schwarzschild, Proc. R. Soc. London, Se228
348 (1954.

°R. Gerwin, Phys. Fluid40, 2164(1967.

3L. Chen and A. Hasegawa, J. Geophys. Ri&5.1033(1974.

4L. Chen and A. Hasegawa, Phys. Fluitig 1399(1974).

5G. A. Collins, N. F. Cramer, and I. J. Donnely, Plasma Phys. Controlled
Fusion26, 273(1984.

K. Appert, J. Vaclavik, and L. Villard, Phys. Fluids7, 432 (1984.

7J. A. lonson, Astrophys. 226, 650(1979.

8D. G. Wentzel, Astron. Astrophyd6, 20 (1979.

B. Roberts, Sol. Phys59, 27 (1981).

10The plane-slab geometry is a reasonable approximation for tokamak con-
figuration, if one identifies the axis with the local magnetic field direc-
tion, they axis with the radial coordinate, and thexis with the azimuthal
coordlnate(F|g 1.
M. D. Savage, J. Plasma Phyis.229 (1967).

12M. D. Savage, J. Fluid Mecht2, 289(1970.

3B, K. Shivamoggi, J. Plasma Phy&7, 321 (1982.

14B. K. Shivamoggi, J. Plasma Phy28, 13(1982.

15B. K. Shivamoggi, Q. Appl. Math41, 31 (1983.

8B, K. Shivamoggi, J. Plasma Phy43, 183(1990.

YR, Kant and S. K. Malik, Phys. Fluid®8, 3534(1985.

18M. N. Rosenbluth and C. L. Longmire, Ann. Physl.Y.) 1, 120(1957.

19This procedure is substantiated by a detailed calculation in the Appendix
where the one-dimensional version of H@G1) is derived by using the
averaged Lagrangian meth@@/hitham (Ref. 20]. The extension to the
two-dimensional case is straightforward, but the algebra is involved.

20G, B. Whitham, Proc. R. Soc. London, Ser.289, 6 (1967.

21B, K. Shivamoggi, J. Phys. &3, 4289(1990.

22p_ A. E. M. Janssen, Phys. Flui@d, 23 (1981).

23], Kevorkian and J. D. Col&@erturbation Methods in Applied Mathemat-
ics (Springer-Verlag, Berlin, 1981



	Nonlinear propagation of two-dimensional gravity wave trains in magnetohydrodynamics
	Recommended Citation

	Using PHP format

