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Nonlinear propagation of two-dimensional gravity wave trains
in magnetohydrodynamics

David K. Rollins and Bhimsen K. Shivamoggi
University of Central Florida, Orlando, Florida 32816

~Received 29 February 2000; accepted 29 January 2001!

Nonlinear evolution of modulated two-dimensional gravity wave trains in a conducting fluid subject
to a tangential applied magnetic field are considered. The effect of the applied magnetic field on the
stability of the modulation and on the saturation amplitude in the long-time evolution are examined.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1362528#

I. INTRODUCTION

An interface between two plasma media can support
low-frequency Alfvén surface waves propagating along the
magnetic field in the plane of the interface~Kruskal and
Schwarzschild;1 Gerwin;2 Chen and Hasegawa3,4!. These are
similar to gravity wave trains on the surface of water. Alfve´n
surface waves in a plasma are an important area of research
in the context of Alfvén-wave heating of laboratory plasmas
~Chen and Hasegawa;3,4 Collins, Cramer, and Donnely;5 Ap-
pert, Vaclavik, and Villard6! and solar-atmospheric flux-tube
wave propagation, which leads to heating of the solar coro-
nal plasma~Ionson;7 Wentzel;8 and Roberts9!. The mecha-
nism for the Alfvén-wave heating of laboratory plasmas in-
volves the Alfvén surface waves that are believed~Ref. 4! to
provide a means of coupling power from an external antenna
to a resonance layer in the plasma. The plasma is then heated
by the spatial Alfve´n resonance damping of the waves in the
plasma.

Studies of one-dimensional surface waves in magnetohy-
drodynamics in a plane-slab geometry10 have been made by
Savage,11,12 Shivamoggi,13–16 Kant and Malik,17 among oth-
ers. In this paper, we consider the nonlinear evolution of the
modulated waves in the two-dimensional case, and examine
the effect of the applied magnetic field on the nonlinear
propagation.

Consider an initially, quiescent, infinitely conducting liq-
uid subjected to a gravitational field in the vertical direction
~Fig. 1! that is confined to a regiony50 by a vacuum mag-
netic field aligned with the surface of the liquid. The gravity
here may be an effective force field that simulates the dy-
namic effects due to the curvature of the magnetic field
~Rosenbluth and Longmire18!. The dimensionless form of the
equations are

y,h: fxx1fyy1fzz50, ~1!

y.h: cxx1cyy1czz50, ~2!

y5h: fy5h t1fxhx1fzhz , ~3!

cy5hx1cxhx1czhz , ~4!

f t1
1
2~fx

21fy
21fz

2!1h1M2@cx1 1
2~cx

21cy
21cz

2!#50,
~5!

y→`: fy→0, ~6!

y→`: cy→0, ~7!

where“f is the perturbation in the velocity potential of the
liquid, “c is the perturbation in the vacuum magnetic field,
andh is the displacement of the liquid at the interface. Here,
we have nondimensionalized the various physical quantities
using a reference lengthl0 and a reference timeAl0 /g. The
dimensionless parameterM25B0

2/l0rg, where B0 is the
magnetic field strength,g is the gravitational acceleration,
andr is the density of the liquid.

II. NONLINEAR EVOLUTION EQUATION FOR THE
TWO-DIMENSIONAL MODULATED GRAVITY
WAVE TRAINS

The linear dispersion relationv0
25k(11M2k) can be

generalized to the two-dimensional case by interpretingk as
the magnitude of the wave vectork5( l ,0,m). This leads to
the nonlinear dispersion relation

v25Al 21m21M2~ l 21m2!1v0k0
2a2. ~8!

Expanding ~8! about k05(k0,0,0) with perturbation
(k1,0,k2) gives

v5v01
dv0

dk0
k12ak1

21bk2
21 1

2v0k0
2a2, ~9!

where

v05~k01M2k0
2!1/2,

dv0

dk0
5~112M2k0!/2v0 ,

~10!
a5 1

8v0
3,

b5
112M2k0

4k0v0
.

Using ~9!, one may write19 the nonlinear Schro¨dinger equa-
tion describing the evolution of the two-dimensional modu-
lated surface waves:

i S At1
dv0

dk0
AxD2aAxx1bAzz2k~ uAu22uA0u2!A50,

~11!
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where

k[
k0

3

2v0
~112M2v0

2!.

III. STABILITY OF TWO-DIMENSIONAL
MODULATIONS

To investigate the stability of the two-dimensional
modulations, we put

A~j,z,t !5@r~j,z,t !#1/2exp@ is~j,z,t !#,

j5x1
dv0

dk0
t. ~12!

Equation~11! then leads to

1
2 r t2asjrj2arsjj1bszrz1brszz50, ~13!

2rs t1
arj

2

4r
2

arjj

2
1arsj

22
brz

2

r
1

brzz

2

2brsz
22kr~r2r0!50. ~14!

Setting further,

r5r01r1~j,z,t !, s5s1~j,z,t !, ~15!

linearizing inr1 ands1 , and putting

r1 ,s1;exp@ i ~K1j1K2z2Vt !#, ~16!

Eqs.~13! and ~14! lead to the solvability condition

V25~aK1
22bK2

2!~aK1
22bK2

222kr0!. ~17!

The stability boundaries, given byV250, are the pair of
straight lines,

K156Ab

a
K2 , ~18!

and the hyperbola

aK1
22bK2

222kr050. ~19!

Figure 2 shows the instability region (K1 ,K2) space for the
applied magnetic field, being zero and nonzero. The linear
instability region is unbounded in both cases. However, in

the MHD case (MÞ0), the modulations propagating trans-
verse to the applied tangential magnetic field are seen to be
stabilized by the latter, as to be expected.

IV. THE LONG-TIME EVOLUTION OF THE
MODULATIONALLY UNSTABLE SURFACE WAVES

We will now consider the effect of the applied tangential
magnetic field on the nonlinear development of the initially
linearly unstable modulation. For this purpose, we will con-
sider the initial-value problem for modulations with wave
numbers near the threshold for instability. The set of hyper-
bolic branches~19! reduces to the instability thresholdK1

56A2kr0 /a for the one-dimensional modulation. The set
of linear branches~18! is peculiar for the two-dimensional
modulation and does not exist for the one-dimensional
modulation. We need to construct solutions separately near
each of the branches.

Following Shivamoggi,20 we refine the multiple-scale
development given by Janssen21 to derive an equation for the
nonlinear evolution of the linearly unstable modulation of
the gravity wave train. This involves perturbing the wave
numberk instead of the nonlinearity parameter~as done by
Janssen21 and inserting in the solutions near the linear insta-
bility threshold an explicit detuning parameterx.

A. Solution near the hyperbolic branches

We look for a solution of the following form:

r~x,z,t!5r01er1~x,z,t!1e2r2~x,z,t!1... ,

s~x,z,t!5es1~x,z,t!1e2s2~x,z,t!1... , ~20!

aK1
22bK2

252kr01e2x1... ,

wheree is a small parameter that characterizes the departure
of aK1

22bK2
2 from the linear stability threshold value

FIG. 1. Deformed surface of plasma supported by a tangential magnetic
field.

FIG. 2. Unstable region~shaded! in wave number space for zero~bold! and
nonzero magnetic parameterM.
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2kr0 , t5et is the show time scale characterizing the slow
time evolution near the threshold, andx is an explicit detun-
ing parameter.

Substituting~20! into Eqs.~13! and ~14!, we find that

r1~x,z,t!5a~t!ei ~AaK1x1AbK2z!1c.c., ~21!

where c.c. stands for the complex conjugate anda(t) is as-
sumed to be real valued. Following the development of
Shivamoggi,20 we find thata(t) satisfies the equation

S da

dt D 2

5k2~a0
22a2!~a22c!, ~22!

wherea0 is the initial value ofa(t), and

c[2
2ar0x

k
2a0

2.

Equation~22! exhibits periodic, bounded solutions oscil-
lating between 0 anda0 if c,0, and betweena0 andAc if
c.0, which corresponds tox,0. The latter case implies the
saturation of the linearly unstable modulation. Figure 3
shows the variation of the saturation amplitudec with M2.
Observe that the effect of increasing the magnetic field is to
decrease the saturation amplitudec; c indeed becomes nega-
tive if the magnetic field is strong enough.

B. Solution near the linear branches

We look for a solution of the following form:

r~x,z,t!5r01er1~x,z,t!1e2r2~x,z,t!1... ,

s~x,z,t!5es1~x,z,t!1e2s2~x,z,t!1... , ~23!

aK1
22bK2

25e2x1... .

Substituting~23! into Eqs.~13! and ~14!, we find that

r150, s15~t!ei ~AaK1x1AbK2z!1c.c. ~24!

Following the development of Shivamoggi,20 we find that
b(t) satisfies the equation

d2b

dt22~2kar0x!b50. ~25!

Equation~25! shows that nonlinearities toO(e3) have
no effect on the linearly unstable modulation near the linear
branches of the instability threshold.

V. DISCUSSION

In this paper, we have considered some aspects of the
nonlinear evolution of modulated two-dimensional gravity

wave trains in a conducting fluid subjected to a tangential
applied magnetic field. We have first investigated the effect
of the applied magnetic field on the modulational instability
of the surface wave. We have then investigated the effect of
the applied magnetic field on the saturation amplitude in the
long-time evolution of the modulationally unstable waves. In
both investigations, the applied magnetic field is found to
have a stabilizing effect in the nonlinear development of the
modulated surface waves. This suggests that an applied tan-
gential magnetic field has the potential to play a significant
role in the Alfvén-wave heating mechanism of laboratory
plasmas which is based on the excitation of Alfve´n surface
waves by an external coupler and its damping by the spatial
Alfvén resonance.

APPENDIX: NONLINEAR EVOLUTION EQUATION
FOR THE ONE-DIMENSIONAL MODULATED GRAVITY
WAVE TRAINS

Here we give a derivation of the nonlinear evolution
equation describing the modulated surface waves by using
the averaged Lagrangian method~Whitham22!. The Lagrang-
ian corresponding to magnetohydrodynamic surface waves is
~Shivamoggi15!

L5E
2`

h~x,z,t !S f t1
1

2
fx

21
1

2
fy

21
1

2
fz

2Ddy

2E
h~x,z,t !

`

M2S cx1
1

2
cx

21
1

2
cy

21
1

2
cz

2Ddy1
1

2
h2.

~A1!

The variational principle,

dE
t1

t2E
x1

x2E
z1

z2
Ldxdzdt50, ~A2!

subject to the restrictions that the variationsdf, dc, and
dh50 at the boundariesx5x1 ,x2 , z5z1 ,z2 and t5t1 ,t2

then gives rise to Eqs.~1!–~7! via the usual procedure in the
calculus of variations.

We consider a finite-amplitude stationary wave of fre-
quencyv0

25k0(11M2k0) and a wave numberk0 propagat-
ing in the x direction and superpose on it a slowly varying
weak modulation. Following Whitham,22 we assume that the
wave can be taken to be sinusoidal locally, i.e.,h5a cosu,
but with amplitudea andu phase varying slowly withx, z,
and t, i.e.,

a5a~x,z,t !,
~A3!

u5u~x,z,t !5k0x2v0t1s~x,z,t !.

We may then introduce a generalized frequencyv and wave
numbersk and l via

v52u t5v02s t ,
~A4!

k5ux5k01sx , l 5uz5sz ,

FIG. 3. Saturation amplitudeC as a function of the magnetic parameterM.
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which satisfy compatibility conditions

kt1vx50, l t1vz50. ~A5!

Using Eqs.~1!–~4!, ~6!, and~7!, we obtain

h5a cosu1 1
2a

2k~112kM2!cos 2u ~A6!

f5S va

k
sinu1

vax

k2 ~12ky!cosu1
at

k
cosu Deky

1kva2M2 sin 2ue2ky, ~A7!

c5~a sinu1axy cosu!e2ky1a2v2 sin 2ue22ky. ~A8!

The long-time evolution equations are found by using
~A6!–~A8! in ~A1! and calculating the average Lagrangian,

L̄5
1

2p E
0

2p

Ldu

5
1

4 S 12
v2

k Da21
at

2

4k
1

aatt

2k
1

vatax

4k2 1
3v2aaxx

8k3

1
3vaaxt

4k2 1
v2ax

2

8k3 1
kM2a2

4
1

1

8
k2a4

1
1

4
k2M2v2a42

M2ax
2

8
2

M2aaxx

8k
. ~A9!

Variation of L̄ with respect tou gives

]

]t
~a2!1

]

]x S dv0

dk0
a2D50, ~A10!

and variation ofL̄ with respect toa gives

v5v0F11
axx

8v0
4a

1
k3

2v0
2 ~112M2v0

2!a2G . ~A11!

For weak modulations, expanding~A11! aboutk5k0 anda
50, we have

v5v01
dv0

dk0
~k2k0!1

1

2

d2v0

dk0
2 F ~k2k0!22

axx

a G1
]v

]a2 a2.

~A12!

Using ~A5!, we obtain from~A10! and ~A12!, the coupled
equations,

at1
dv0

dk0
ax1

1

2

d2v0

dk0
2 ~sxxa12sxax!50, ~A13!

s t1
dv0

dk0
sx1

1

2

d2v0

dk0
2 S sx

22
axx

a D
1

k0
3

2v0
~112M2v0

2!a250. ~A14!

Putting A5aeis in ~A13! and combining~A13! and
~A14!, we obtain the nonlinear Schro¨dinger equation

i S At1
dv0

dk0
AxD1

1

2

d2v0

dk0
2 Axx2

k0
3

2v0

3~112M2v0
2!uAu2A50. ~A15!

The derivation of Eq.~A15! was given by Kant and Malik17

using, on the other hand, the method of multiple scales
~Kevorkian and Cole23!.
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