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MINIMUM LAGRANGE MULTIPLIER UNIT ROOT TEST WITH TWO STRUCTURAL BREAKS

Junsoo Lee and Mark C. Strazicich*

Abstract—The endogenous two-break unit root test of Lumsdaine and
Papell is derived assuming no structural breaks under the null. Thus,
rejection of the null does not necessarily imply rejection of a unit root per
se, but may imply rejection of a unit root without break. Similarly, the
alternative does not necessarily imply trend stationarity with breaks, but
may indicate a unit root with breaks. In this paper, we propose an
endogenous two-break Lagrange multiplier unit root test that allows for
breaks under both the null and alternative hypotheses. As a result,
rejection of the null unambiguously implies trend stationarity.

I. Introduction

SINCE THE influential paper of Perron (1989), researchers have
noted the importance of allowing for a structural break in unit root

tests. Perron (1989) showed that the ability to reject a unit root
decreases when the stationary alternative is true and an existing
structural break is ignored. Perron (1989) used a modified Dickey-
Fuller (hereafter DF) unit root test that includes dummy variables to
allow for one known, or exogenous, structural break. Subsequent
papers modified the test to allow for one unknown breakpoint that is
determined endogenously from the data. One widely used endogenous
procedure is the minimum test of Zivot and Andrews (1992, hereafter
ZA), which selects the breakpoint where the t-statistic testing the null
of a unit root is the most negative. Given a loss of power from
ignoring one break, it is logical to expect a similar loss of power from
ignoring two, or more, breaks in the one-break test. Lumsdaine and
Papell (1997, hereafter LP) continue in this direction and extend the
minimum ZA unit root test to include two structural breaks.

One important issue common to the ZA and LP (and other
similar) endogenous break tests is that they assume no break(s)
under the unit root null and derive their critical values accordingly.
Thus, the alternative hypothesis would be “structural breaks are
present,” which includes the possibility of a unit root with break(s).
Thus, rejection of the null does not necessarily imply rejection of
a unit root per se, but would imply rejection of a unit root without
breaks. This outcome calls for a careful interpretation of test
results in empirical work. In the presence of a break under the null,
researchers might incorrectly conclude that rejection of the null
indicates evidence of a trend-stationary time series with breaks,
when in fact the series is difference-stationary with breaks. Despite
this fact, numerous empirical papers that employ these endogenous
break unit root tests conclude that rejection of the null is evidence
of trend stationarity.1

The hypotheses implied in the above endogenous break unit root
tests differ from those in Perron’s (1989) exogenous break unit root
test, which allowed for the possibility of a break under both the null
and alternative hypotheses. Allowing for breaks under the null is

important in Perron’s test; otherwise, the unit root test statistic will
diverge as the size of a break under the null increases. It is important
to note that a similar divergence occurs in the endogenous break unit
root tests. Nunes, Newbold, and Kuan (1997) and Lee and Strazicich
(2001) provide evidence that assuming no break under the null in
endogenous break tests causes the test statistic to diverge and lead to
significant rejections of the unit root null when the data-generating
process (DGP) is a unit root with break(s).2

As a remedy to the limitations noted above, we propose a two-
break minimum Lagrange multiplier (LM) unit root test in which the
alternative hypothesis unambiguously implies trend stationarity. Our
testing methodology is extended from the LM unit root test that was
initially suggested in Schmidt and Phillips (1992, hereafter SP).
Whereas assuming no break(s) under the null might be necessary in
the LP test to make the test statistic invariant to breakpoint nuisance
parameters, this assumption is not required in the LM test, as the
distribution is invariant to breakpoint nuisance parameters (see
Amsler and Lee, 1995).3

Our paper proceeds as follows. Section II discusses the asymptotic
properties of the endogenous two-break LM unit root test. Section III
examines the test performance in simulations. Section IV examines
Nelson and Plosser’s (1982) data and compares the results with those
of the LP test. Section V summarizes and concludes.

Throughout the paper, the symbol “3” denotes weak convergence
of the associated probability measure.

II. Test Statistics and Structural Breaks under the Null

Perron (1989) considered three structural break models as follows:
the “crash” model A allows for a one-time change in level; the
“changing growth” model B allows for a change in trend slope; and
model C allows for a change in both the level and trend. Consider the
DGP as follows:

yt � ��Zt � et, et � �et�1 � εt, (1)
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1 See Raj and Slottje (1994), Ashworth, Evans, and Teriba (1999), Mehl
(2000), and Ben-David, Lumsdaine, and Papell (2002), among others, for
examples of papers that employ the ZA or LP endogenous break tests and
conclude that rejection of the null indicates trend stationarity.

2 An anonymous referee convincingly points out that the high rejection
rates in the LP test can be viewed as high power. This point is valid if the
desired alternative is the existence of breaks. Otherwise, if the null is
rejected, one may then need to examine the source of the rejection, as the
alternative includes a unit root with break. In this case, the question
whether a time series is trend-stationary or difference-stationary would
still remain. We take the view that it is desirable to employ tests that allow
for the possibility of structural change in a unit root process. One may
pose the question “can structural change coincide with a unit root
process?” We answer this question in the affirmative. First, we note that
Perron (1989) allowed for a break under the null in his initial unit root test.
Second, our view is consistent with Harvey, Leybourne, and Newbold
(2001), who suggest that a structural break under the unit root null can be
interpreted as a large permanent shock or outlier.

3 Strictly speaking, the endogenous-break LM unit root test is invariant
to breakpoint nuisance parameters only for model A (level shifts). The LM
test for model C (level and trend shifts) is not invariant to nuisance
parameters, but is nearly so. However, in no case does the LM test diverge
or exhibit any systematic pattern of overrejections in the presence of
breaks under the null (see footnote 9).
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where Zt is a vector of exogenous variables and εt � iid N(0, �2).4

Two structural breaks can be considered as follows.5 Model A allows
for two shifts in level and is described by Zt � [1, t, D1t, D2t]�,
where Djt � 1 for t � TBj 
 1, j � 1, 2, and 0 otherwise. TBj

denotes the time period when a break occurs. Model C includes two
changes in level and trend and is described by Zt � [1, t, D1t, D2t,
DT1t, DT2t]�, where DTjt � t � TBj for t � TBj 
 1, j � 1, 2, and
0 otherwise. Note that the DGP includes breaks under the null (� �
1) and alternative (� � 1) hypothesis in a consistent manner. For
instance, in model A (a similar argument can be applied to model C),
depending on the value of �, we have

Null yt � �0 � d1B1t � d2B2t � yt�1 � v1t, (2a)

Alternative yt � �1 � �t � d1D1t � d2D2t � v2t, (2b)

where v1t and v2t are stationary error terms; Bjt � 1 for t � TBj 
 1,
j � 1, 2, and 0 otherwise; and d � (d1, d2)�. In model C, Djt terms
are added to (2a) and DTjt terms to (2b), respectively. Note that the
null model (2a) includes dummy variables Bjt. Perron (1989, p. 1393)
showed that including Bjt is necessary to ensure that the asymptotic
distribution of the test statistic is invariant to the size of breaks (d)
under the null.6 In the LP test it is assumed that d1 � d2 � 0 under
the unit root null (thus omitting Bjt terms; LP, p. 212), and critical
values of the test were derived under this assumption. As previously
noted, this assumption is required; otherwise,the distribution of the LP
test will depend on breakpoint nuisance parameters describing the
location and magnitude of breaks under the null.

The two-break LM unit root test statistic can be estimated by
regression according to the LM (score) principle as follows:

�yt � �� �Zt � �S̃t�1 � ut, (3)

where S̃t � yt � �̃x � Zt�̃, t � 2, . . . , T; �̃ are coefficients in the
regression of �yt on �Zt; �̃x is given by y1 � Z1�̃ (see SP); and y1

and Z1 denote the first observations of yt and Zt, respectively. The unit
root null hypothesis is described by � � 0, and the LM test statistics
are given by

�̃ � T�̃, (4a)

 ̃ � t-statistic testing the null hypothesis � � 0. (4b)

Assuming that the innovations εt satisfy the regularity conditions of
Phillips and Perron (1988, p. 336), we define two error variances,
assumed to exist and to be positive, as follows:

�ε
2 � lim

T3!

T�1E�ε1
2 � · · · � εT

2�,

�2 � lim
T3!

T�1E�ε1 � · · · � εT�
2.

We additionally assume (i) the data are generated according to (1),
with Zt � [1, t, D1t, D2t]� for model A and Zt � [1, t, D1t, D2t, DT1t,
DT2t]� for model C; and (ii) TBj/T 3 �j as T 3 !, where � � (�1,
�2)�. Then, from the asymptotic results demonstrated in the Appendix,
we can show that under the null hypothesis,

�̃ 3 �
1

2

�ε
2

�2 ��
0

1

V� B
�m��r�2 dr��1

(5a)

 ̃ 3 �
1

2

�ε

� ��
0

1

V� B
�m��r�2 dr��1/ 2

, (5b)

where V� B
(m)(r) is defined for m � A and C, respectively.

An important implication of (5a) and (5b) is the invariance prop-
erty. In the Appendix, we show that the expression V� B

( A)(r) is the same
as a de-meaned Brownian bridge, V� (r) � V(r) � "0

1 V(r) dr. This
result implies that the asymptotic null distribution of the two-break
LM unit root test for model A is invariant to the location (�) and
magnitude (d) of structural breaks. This property follows from the
results shown in Amsler and Lee (1995) for their exogenous one-break
LM unit root test. Fortunately, this same outcome carries over to the
endogenous break LM unit root test. Thus, the asymptotic distribution
of the endogenous break LM unit root test will not diverge in the
presence of breaks under the null and is robust to their misspecifica-
tion. Unfortunately, this invariance property does not strictly hold for
model C, as the asymptotic null distribution of the endogenous break
LM test depends on � (see Appendix). However, unlike the LP test,
the minimum LM unit root test statistic for model C does not diverge
in the presence of breaks under the null, even when the breaks are
large (see section III).

The two-break minimum LM unit root test determines the break-
points (TBj) endogenously by utilizing a grid search as follows:

LM� � inf
�

�̃���, (6a)

LM � inf
�

 ̃���. (6b)

The breakpoint estimation scheme is similar to that in the LP test; the
breakpoints are determined to be where the test statistic is minimized.
As is typical in endogenous break tests, trimming of the infimum over
[#, 1 � #] for some #, say 10%, is utilized to eliminate endpoints.
Then, utilizing the limit theory on continuity of the composite func-
tional in Zivot and Andrews (1992), the asymptotic distributions of the
endogenous two-break LM unit root tests can be described as follows:

4 The baseline SP LM test statistics are driven via a likelihood function
that assumes εt � iid normal, but the iid assumption can be relaxed to
correct for serial correlation. The test statistic can easily be extended to the
case of autocorrelated errors by assuming that A(L)εt � B(L)ut, wherein
A(L) and B(L) are finite-order polynomials with ut � iid (0, �u

2) (see
Ahn, 1993, and Lee & Schmidt, 1994). Further, following Phillips (1987)
and Phillips and Perron (1988), we can assume the same regularity
conditions that permit a degree of heterogeneity and serial correlation in
εt. Then, to correct for autocorrelated errors, lagged augmented terms
�S̃t�j, j � 1, . . . , k, can be included in (3) as in the augmented DF test.
Alternatively, a corrected test statistic using consistent estimates of the
error variances can be employed as in the Phillips-Perron test.

5 Model B is omitted from further discussion, as it is commonly held that
most economic time series can be adequately described by model A or C.

6 In revisions to their structural break unit root tests, Perron (1993) and
Perron and Vogelsang (1992) again include Bt terms in their testing
regressions of the additive outlier (AO) model to be consistent under the
null. They note that with B1 not included, the test statistic diverges as the
size of a break under the null increases. The same would be true for the
innovative outlier (IO) model.
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LM� 3 inf
�
�� 1

2

�ε
2

�2 ��
0

1

V� B
�m��r�2 dr��1�, (7a)

LM 3 inf
�
�� 1

2

�ε

� ��
0

1

V� B
�m��r�2 dr��1/ 2�. (7b)

Critical values are derived using 50,000 replications for the exogenous
break tests and 20,000 replications for the endogenous break tests in
samples of T � 100.7 Pseudo-iid N(0, 1) random numbers are
generated using the Gauss (version 3.2.12) RNDNS procedure.8 Results
are shown in tables 1 and 2.

III. Simulations

This section examines simulation experiments to evaluate the
performance of the two-break minimum LM unit root test. Since the
performance of the LM� test statistic is similar, we discuss only LM .
To highlight the invariance results, we first examine an exogenous
version of the two-break LM test and then proceed to the endogenous
test. Simulations are performed using 20,000 replications in the
exogenous test and 5,000 replications in the endogenous test, in
samples of T � 100. Throughout, R denotes the number of structural
breaks, � is a vector containing the locations of the breaks, and d is a
vector containing the magnitudes of the breaks in the DGP. Re and �e

denote the values assumed in the test regression. All measures of size
and power are reported using 5% critical values.

A. Exogenous Break Test

Simulation results using the exogenous two-break LM unit root test
are reported in table 3. We first examine model A (two level shifts).
Experiment 1 investigates effects of assuming two breaks when no
breaks are present. The results show no significant size distortion,
implying that it does not hurt to allow for breaks when they do not
exist. Note that the power of the LM test under the alternative (� �
0.9) in this baseline case is higher than that of the LP test (reported in
parenthesis). In this respect, these findings are similar to those noted
by Stock (1994) when comparing power of the no-break LM unit root
test with no-break DF tests.

Experiment 2 investigates invariance properties using breaks of
different locations (�) and sizes (d). These findings clearly demon-
strate the invariance properties of the LM test. Regardless of the
location and magnitude of breaks under the null, the two-break LM
unit root test rejects the null at 4.8%. As expected, under the null with
break, the LP test exhibits overrejections, which increase with the
magnitude of the breaks. As previously noted, the greater rejections of
the null in the LP test can be viewed as demonstrating high power
when the alternative hypothesis is “structural breaks are present,” or
as spurious rejections when the null includes a unit root with break.

Experiment 3 examines effects of underspecifying the number of
breaks (Re � R). As expected, the two-break LM test is mostly
invariant, under the null, to assuming too few breaks. Under the
alternative there is a loss of power, which suggests that we should
allow for breaks to increase power. Experiment 4 examines effects of
incorrectly specifying the breakpoints. Again, the two-break LM unit
root test is mostly invariant to assuming incorrect break points under
the null, and there is a loss of power under the alternative.

7 LP used 2,000 replications to obtain their endogenous break test critical
values.

8 Copies of the Gauss computer codes utilized in this paper can be
obtained at the Web site http://www.cba.ua.edu/�jlee/gauss/.

TABLE 1.—CRITICAL VALUES OF THE EXOGENOUS TWO-BREAK LM UNIT

ROOT TEST (T � 100)

Model Aa

1% 5% 10%

 ̃ �3.610 �3.047 �2.763
�̃ �23.13 �17.80 �14.87

Model Cb

 ̃

�1

�2

0.4 0.6 0.8

0.2 �4.82, �4.19, �3.89 �4.92, �4.31, �4.00 �4.76, �4.19, �3.88
0.4 — �4.91, �4.33, �4.03 �4.87, �4.32, �4.03
0.6 — — �4.84, �4.19, �3.89

�̃

�1

�2

0.4 0.6 0.8

0.2 �38.1, �30.2, �26.4 �39.3, �31.6, �27.9 �37.2, �30.1, �26.3
0.4 — �39.1, �31.8, �28.1 �38.7, �31.7, �28.1
0.6 — — �38.3, �30.2, �26.4

a Owing to the invariance property of the LM test, critical values for model A are the same as those
in Schmidt and Phillips (1992).

b Critical values are at the 1%, 5%, and 10% levels, respectively. �j denotes the locations of breaks.

TABLE 2.—CRITICAL VALUES OF THE ENDOGENOUS TWO-BREAK LM UNIT

ROOT TEST (T � 100)

Model A

1% 5% 10%

LM �4.545 �3.842 �3.504
LM� �35.726 �26.894 �22.892

Model C (I)a

1% 5% 10%

LM �5.823 �5.286 �4.989
LM� �52.550 �45.531 �41.663

Model C (II)

LM 

�1

�2

0.4 0.6 0.8

0.2 �6.16, �5.59, �5.27 �6.41, �5.74, �5.32 �6.33, �5.71, �5.33
0.4 — �6.45, �5.67, �5.31 �6.42, �5.65, �5.32
0.6 — — �6.32, �5.73, �5.32

LM�

�1

�2

0.4 0.6 0.8

0.2 �55.4, �47.9, �44.0 �58.6, �49.9, �44.4 �57.6, �49.6, �44.6
0.4 �59.3, �49.0, �44.3 �58.8, �48.7, �44.5
0.6 �57.4, �49.8, �44.4

a In the DGP, �1 and �2 are assumed to be absent.
b Critical values are at the 1%, 5%, and 10% levels, respectively. �j denotes the locations of breaks.
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Results of the exogenous two-break LM unit root test for model C
(two levels and trend shifts) are similar to those for model A, except
that the test statistic is no longer invariant to the location of breaks (�)
under the null, but is nearly so. As with model A, the LM test remains
invariant to the size of breaks (d) under the null. Most important, the
two-break LM test for model C does not exhibit high rejection in the
presence of breaks under the null. Experiment 3� and 4� show a
negative size distortion when the number of breaks is underspecified
or their location is incorrect.

B. Endogenous Break Test

Simulation results for the endogenous two-break LM unit root test
are displayed in table 4. We first examine the results for model A (two
level shifts). Experiment 5 compares 5% rejection rates using different
break locations and magnitudes. Overall, the endogenous LM unit
root test performs well in the presence of breaks under the null and
shows no serious size distortions. In addition, these results indicate
that the same critical values can be utilized regardless of the location
and size of breaks under the null. In contrast, the endogenous two-
break LP test exhibits significant rejections in the presence of breaks
under the null, and more so as the magnitudes increase. Under the

alternative, we observe in experiment 6 that the power of the LM test
is relatively stable for moderate size breaks. For relatively large
breaks d � (10, 10)�, a loss of power is observed. However, this
result may not be surprising, given that the time series would exhibit
big swings and thus a low frequency would dominate the spectrum.

Simulation results for model C are shown at the bottom of table 4.
The endogenous two-break LM unit root test has slightly greater size
distortions than in model A, but rejection rates are still close to 5%.
Most important, as in model A, the LM test does not diverge and
remains free of the overrejections observed in the LP test when breaks
occur under the null. Thus, the endogenous two-break LM test may
still be utilized for model C, but for greater accuracy critical values
should be employed corresponding to the breakpoints (see table 2).

As noted in table 4, the two-break LP test exhibits overrejections in
the presence of breaks under the null, but seemingly high power under
the alternative. Given the common interest in a trend-stationary
alternative, a more appropriate power comparison for model C can be
made by examining the size-adjusted power, which uses adjusted
critical values corresponding to the magnitude of breaks. While the
unadjusted power of the LP test appears high, especially when the
magnitude of breaks is large, the size-adjusted power is comparable to
the endogenous LM test. In experiment 6� the size-adjusted power of

TABLE 3.—REJECTION RATES OF THE EXOGENOUS TWO-BREAK LM UNIT ROOT TEST (T � 100)

Expt.

DGP Estimation Size and Powera

R �� d� Re ��e Under the Null (� � 1.0) Under the Alternative (� � 0.9)

Model A

1 0 — — 2 .25, .50 .048 (.040) .248 (.114)
2 .25, .75 .048 (.040) .246 (.110)
2 .50, .75 .049 (.039) .247 (.105)

2 2 .25, .50 5, 5 2 .25, .50 .048 (.487) .248 (.763)
10, 10 2 .25, .50 .048 (.955) .248 (.998)

2 .25, .75 5, 5 2 .25, .75 .048 (.485) .246 (.757)
10, 10 2 .25, .75 .048 (.956) .246 (.997)

3 2 .25, .50 5, 5 0 — .055 .130
.25, .50 5, 5 1 .25 .047 .152
.25, .50 5, 5 1 .50 .046 .141

2 .25, .50 10, 10 0 — .039 .021
.25, .50 10, 10 1 .25 .034 .041
.25, .50 10, 10 1 .50 .033 .027

4 2 .25, .50 5, 5 2 .25, .75 .048 .149
10, 10 2 .25, .75 .034 .039

Model C

1� 0 — — 2 .25, .50 .051 (.050) .113 (.101)
2 .25, .75 .047 (.052) .112 (.101)
2 .50, .75 .050 (.055) .117 (.105)

2� 2 .25, .50 5, 5 2 .25, .50 .051 (.625) .115 (.773)
10, 10 2 .25, .50 .051 (.986) .115 (.998)

2 .25, .75 5, 5 2 .25, .75 .047 (.627) .112 (.773)
10, 10 2 .25, .75 .047 (.986) .112 (.999)

3� 2 .25, .50 5, 5 0 — .000 .000
.25, .50 5, 5 1 .25 .002 .003
.25, .50 5, 5 1 .50 .004 .004

2 .25, .50 10, 10 0 — .000 .000
.25, .50 10, 10 1 .25 .000 .000
.25, .50 10, 10 1 .50 .000 .000

4� 2 .25, .50 5, 5 2 .25, .75 .015 .013
10, 10 2 .25, .75 .000 .000

a For comparison, the corresponding size and power of the LP test is shown in parentheses.
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the LP test is 0.096, 0.061, 0.059, 0.063, and 0.073, which is
somewhat lower than that of the LM test.

The accuracy of estimating the break points is examined on the
right side of table 4. For model A, the minimum LM test estimates
breakpoints reasonably well under the alternative, whereas the accu-
racy declines in model C. In simulation results not reported here, we
show that the LP test tends to select breakpoints most frequently at
TBj � 1.9

IV. Empirical Tests

In this section, the two-break minimum LM unit root test is applied
to Nelson and Plosser’s (1982) data. We use an augmented version to
correct for serial correlation. Results are compared with the two-break
minimum LP test. Nelson and Plosser’s data comprise fourteen annual
time series ranging from 1860 (or later) to 1970 and have the
advantage of being extensively examined in the literature. All of the
series are in logs except the interest rate. In each test, we determine

the number of lagged augmentation terms by following the general-
to-specific procedure described in Perron (1989) and suggested in Ng
and Perron (1995). Starting from a maximum of k � 8 lagged terms,
the procedure looks for significance of the last augmented term. We
use the 10% asymptotic normal value of 1.645 on the t-statistic of the
last first-differenced lagged term. After determining the optimal k at
each combination of two breakpoints, we determine the breaks where
the endogenous two-break LM t-test statistic is at a minimum. To do
so, we examine each possible combination of two breakpoints over the
time interval [0.1T, 0.9T] (to eliminate endpoints). We follow Perron
(1989) and ZA and assume model A in all series except for the real
wage and the S&P 500 stock index, in which cases model C is
assumed.

Overall, we find stronger rejections of the null using the LP test
than with the LM test. At the 5% significance level, the null is rejected
for six series with the LP test and four series with the LM test.10 For
example, whereas the null is rejected at the 5% significance level for

9 The problem of estimating breakpoints at TBj � 1 occurs when Bjt
terms are included in the test regression and may be avoided if these terms
are omitted as in LP [equation (1), p. 212]. When Bjt terms are omitted, the
estimated breakpoints tend to move from TBj � 1 to TBj, thus seeming to
solve the problem of their incorrect estimation. However, with or without
Bjt terms in the test regression, the two-break LP test statistic diverges and
overrejects in the presence of breaks under the null. Results are available
upon request.

10 The empirical results in table 5 use critical values from table 2 (model
A) and table 3 (model C) in Lumsdaine and Papell (1997) for the
two-break minimum LP test, while including Bjt in the testing regression.
For comparison, the critical values used in the two-break minimum LM
test in table 5 were derived using the same sample size and trimming as
in LP (T � 125 and 1%). The LM test critical values are �4.571, �3.937,
and �3.564 for model A, and �6.281, �5.620, and �5.247 for model C,
at the 1%, 5%, and 10% significance levels, respectively.

TABLE 4.—REJECTION RATES OF THE ENDOGENOUS TWO-BREAK LM$ UNIT ROOT TEST

Expt. �� d� 5% Rej.a

Frequency of Estimated Break Points in the Range

TB � 1 TB TB � 10 TB � 30

Model A

Under the Null (� � 1)

5 — 0, 0 .058 (.046) — — — —
.25, .5 5, 5 .069 (.192) .000 .116 .240 .668
.25, .5 10, 10 .037 (.748) .002 .234 .450 .744
.25, .75 5, 5 .066 (.170) .000 .032 .130 .599
.2, .3 5, 5 .058 (.260) .000 .244 .396 .623

Under the Alternative (� � .9)

6 — 0, 0 .282 (.098) — — — —
.25, .5 5, 5 .200 (.318) .000 .226 .396 .726
.25, .5 10, 10 .049 (.954) .000 .538 .740 .851
.25, .75 5, 5 .230 (.298) .004 .101 .237 .673
.2, .3 5, 5 .148 (.336) .000 .325 .496 .681

Model C

Under the Null (� � 1)

5� — 0, 0 .052 (.052) — — — —
.25, .5 5, 5 .031 (.272) .006 .016 .452 .903
.25, .5 10, 10 .024 (.882) .002 .016 .731 .995
.25, .75 5, 5 .032 (.262) .004 .018 .539 .950
.2, .3 5, 5 .066 (.146) .002 .000 .142 .502

Under the Alternative (� � .9)

6� — 0, 0 .113 (.098) — — — —
.25, .5 5, 5 .084 (.346) .006 .041 .529 .938
.25, .5 10, 10 .060 (.968) .000 .041 .750 1.00
.25, .75 5, 5 .074 (.348) .006 .026 .592 .976
.2, .3 5, 5 .107 (.246) .002 .002 .198 .556

a For comparison, the corresponding size and power of the LP test is shown in parentheses. The corresponding size-adjusted power of the LP test in experiment 6� is .096, .061, .059, .063, and .073, respectively.
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real GNP, nominal GNP, per-capita real GNP, and employment using
the LP test, the null is rejected only at higher significance levels with
the LM test.11 As previously noted, the LP test often selects break-
points near one period before the LM test.

To investigate the potential for overrejections using the LP test, we
estimate the size of breaks under the unit root null. If coefficients of
the one-time dummy variables Bjt are significant, then we expect the
LP test to reject the unit root null hypothesis more often. The null
model in (2a) is estimated using the first-differenced series as follows.
Briefly, for each possible combination of TB1 and TB2 in the interval
[0.1T, 0.9T] (to eliminate endpoints), we again include k augmented
terms using the general-to-specific procedure. After determining the
optimal k at each combination of two breakpoints, the breaks are
determined to be where the Schwarz Bayesian criterion statistic is
minimized. The estimated break coefficients are shown in standard-
ized units, along with other results, in table 5. Break terms under the
null are found to be significant in most series, with (absolute)
magnitudes ranging from near 2 to 8. These results suggest that even
modest-size breaks under the null can potentially lead to different
inference findings, or at least to different levels of significance.

V. Concluding Remarks

In many economic time series, allowing for only one structural
break may be too restrictive. This paper proposes a two-break mini-
mum LM test, which endogenously determines the location of two
breaks in level and trend and tests the null of a unit root. Contrary to
the endogenous two-break unit root test of Lumsdaine and Papell
(1997), the endogenous two-break LM test does not diverge in the
presence of breaks under the null. Thus, using the two-break minimum
LM test, researchers will not conclude that a time series is trend-
stationary with breaks when it is actually difference-stationary with
breaks. In summary, the two-break minimum LM unit root test
provides a remedy for a limitation of the two-break minimum LP test
that includes the possibility of a unit root with break(s) in the
alternative hypothesis. Using the two-break minimum LM unit root
test, rejection of the null hypothesis unambiguously implies trend
stationarity.
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APPENDIX

This appendix describes the asymptotic properties of the endogenous
two-break LM unit root test for models A (two level shifts) and C (two
level and trend shifts). Consider the following regression imposing the
restriction � � 1 in (1):

�yt � �Z�t � � ut, (A-1)

where ut � εt under the null, and Zt allows for exogenous trend break
functions in addition to a linear trend function considered in SP. We define
ũt as the residual from the above regression:

ũt � �yt � �Z�t �̃ � εt � �Z�t��̃ � ��. (A-2)

Then the expression for S̃t in the testing regression (3) can be obtained as
a partial-sum process of ũt. Letting St � ¥ j�2

t εj and [rT] be the integer
part of rT, r � [0, 1], we obtain

T �1/ 2S̃�rT� � T �1/ 2S�rT� � T �1/ 2�Z�rT� � Z1����̃ � ��. (A-3)

As we will see below, the asymptotic properties of the LM test statistics
are determined by the weak limit of this partial-sum-of-residuals process.
Specifically, from regression (3), we obtain

�̃ � �S̃�1M�ZS̃1�
�1�S̃�1M�Z�y�, (A-4)

where S̃1 � (S̃1, . . . , S̃T�1)�, �Z � (�Z2, . . . , �ZT)�, �y � (�y2, . . . ,
�yT)�, and M�Z � 1 � �Z(�Z��Z)1�Z�. Then, following SP, it can be
shown that

T �2S̃�1M�ZS̃1 3 �2 �
0

1

V� B
�m��r�2 dr, (A-5)

where V� B
(m)(r), m � A, C, is the projection of the process V B

(m)(r) on the
orthogonal complement of the space spanned by the trend break function
dz(�, r) as defined over the interval r � [0, 1]. That is,

V� B
�m��r� � V B

�m��r� � dz��, r��̃ for m � A, C, (A-6)

with

�̃ � argmin
�

�
0

1

�V B
�m��r� � dz��, r���2 dr.

Here, V B
(m)(r) is the weak limit of the partial sum residual process S̃[rT] in

(A-3) and is defined so as to depend on the first difference of the
exogenous trend break functions, viz. dz(�, r), which is defined differ-
ently for each break model. In this appendix, we wish to show the explicit
expression for V B

(m)(r), m � A, C. As a special case of the usual SP test
not allowing for breaks, dz(�, r) is simply a constant function, dz(�, r) �
1, and V B

(m)(r) becomes a standard Brownian bridge V(r) � W(r) �
rW(1).

For model A with two level shifts, we let Zt � (t, W�t)�, where Wt �
(D1t, . . . , Dmt)� and � � (�1, ��2)�. Amsler and Lee (1995) derive
asymptotic distributions of the LM test statistics with one known or
exogenous structural break. Here we consider a more general case with a
finite number of, say, m � T structural breaks. Then the partial-sum
process in (A-3) can be written as

T �1/ 2S̃�rT� � T �1/ 2S�rT� � T �1��rT� � 1�T 1/ 2��̃1 � �1�
(A-7)

�T�1�W�rT� � W1��T
1/ 2��̃2 � �2�.

The first term on the right-hand side of (A-7) follows T�1/ 2S[rT] 3
�W(r). For the second term, T1/ 2(�̃1 � �1) � (T�1i�M�Wi)�1T�1/ 2

i�M�Wε, where M�W � I � �W(�W��W)�1�W�. Here, T�1i�M�Wi 3
1, since i��W � i�m (the 1 � m vector of ones) and i�M�Wi � T � m.
Then

T �1/ 2i�M�Wε � T�1/ 2 �
j�2

T

εj � T�1/ 2 �
i�1

m

εTbi
1 3 �W�1�,

T �1��rT� � 1�T 1/ 2��̃1 � �1� 3 �rW�1�.

We can show that the third term vanishes asymptotically. Since W[rT] �
W1 3 im,

�T��̃2 � �2� � �T�1 �W� M1 �W��1T�1/ 2 �W� M1ε � op�1�,

where �W� M1 �W � Im � ImT�1 3 Im and �W� M1ε � (εTB1
1, . . . ,
εTBm
1)� � imε�. Thus, combining results, the terms in (A-7) follow
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T �1/ 2S̃�rT� 3 ��W�r� � rW�1�� � �V�r�, (A-8)

where V(r) is a Brownian bridge. Thus, V B
( A)(r) can be expressed as V(r).

This is the same expression as obtained from the usual SP test ignoring a
break [see the equation before (A3.1) in SP, 1992, p. 283]. In addition,
note that

V� B
� A��r� � V B

� A��r� � �̃1 � �b1��, r�, . . . , bm��, r���̃2,

where bj(�, r) � 1 if r � �j, j � 1, . . . , m, and 0 otherwise. The last
term is again asymptotically negligible as shown for (A-7). Thus, we can
show that V� B

( A)(r) in (A-5) will be a de-meaned Brownian bridge
V� B

( A)(r) � V� (r), where V� (r) � V(r) � "0
1 V(r) dr. Then (A-5) becomes

T �2S̃�1M�ZS̃1 3 �2 �
0

1

V� �r�2 dr. (A-9)

Following SP, we can similarly show that for the second term in (A-4),

T �1S̃�1M�Z �y � T �1S̃�1M�Zε � T �1S̃�1ε� 3 �0.5�ε
2, (A-10)

where ε� � M�Zε and the result is T�1/ 2S̃[rT] � T�1/ 2 ¥ j�2
t ε� j. Combining

this result with (A-9), we obtain for model A

�̃ � T�̃ 3 �0.5
�ε

2

�2 ��
0

1

V� �r�2 dr��1

, (A-11)

which is the same limiting distribution as the usual SP statistic not
allowing for breaks. Accordingly, the limiting distribution of  ̃ is obtained
as in SP.

For model C with two breaks in both level and trend, we let Zt � (t,
W�t)� where Wt � (D1t, D2t, DT1t, DT2t)�. We additionally define dz(�,
r) � [b1(�, r), b2(�, r), d1(�, r), d2(�, r)], where dj(�, r) � 1 if r �
�j, j � 1, 2, and 0 otherwise. We note that the first two terms denoting
a one-time break are asymptotically negligible, as we observed for model
A. Thus, without loss of generality we can simplify the algebra by using
dz(�, r) % [d1(�, r), d2(�, r)], � � (�1, ��2)�, and Zt 	 (t, DT1t,
DT2t)�. Then letting DT � diag [T, T, T], we have, as in SP,

DT
1/ 2��̃ � �� � �DT

�1/ 2 �Z� �Z DT
�1/ 2��1 DT

1/ 2 �Z� ε
(A-12)

3 �B�1 �
0

1

dz��, r� dW�r�,

where

B � � 1 1 � �1 1 � �2

1 � �1 1 � �1 1 � �2

1 � �2 1 � �2 1 � �2

�
and W(r) is a standard Wiener process. Then the partial-sum process in
(A-3) follows as

T �1/ 2S̃�rT� � T �1/ 2S�rT� � T �1/ 2�Z�rT� � Z1��DT
�1/ 2�DT

1/ 2��̃ � ���

3 ��W�r� � z��, r�B�1 �
0

1

dz��, r� dW�r�� (A-13)


 �V B
�C���, r�,

where z(�, r) � (r, dt1(�, r), dt2(�, r)), dtj(�, r) � r, if r � �j, j �
1, 2, and 0 otherwise; and we call V B

(C)(�, r) a break Brownian bridge.
The process V� B

(C)(�, r), which we call a debreaked Brownian bridge, is
accordingly given by (A-6); we note that it depends on �. Then, from
(A.13),

T �2S̃�1M�ZS̃1 3 �2 �
0

1

V� B
�C���, r�2 dr. (A-14)

The result in (A-10) continues to hold for model C. When we use ε� �
M�Zε with �Zt % (1, D1t, D2t)�, it follows that

T �1S̃�1M�Z �y 3 �0.5�ε
2. (A-15)

Thus, the asymptotic distributions of the LM test statistics for model C are
given by (A-14) and (A-15).

INTRANATIONAL HOME BIAS: SOME EXPLANATIONS

Russell Hillberry and David Hummels*

Abstract—Wolf demonstrates that trade within the United States ap-
pears substantially impeded by state borders. We revisit this finding
with improved data. We show that much intranational home bias can be
explained by wholesaling activity. Shipments by wholesalers are much
more localized within states than shipments from manufacturing es-
tablishments. Controlling for relative prices and the use of actual,
rather than imputed, shipment distances also reduces home bias esti-
mates.

I. Introduction

WHY DO political boundaries shape the geographic pattern of
trade? This question has attracted considerable attention since

McCallum’s (1995) finding that Canadian interprovincial trade was 22
times larger than province-state trade. Though the magnitude of
McCallum’s estimate is surprising,1 one can certainly identify reasons
why international borders impede trade. Presumably, national borders
proxy for a wide range of trading frictions, including tariffs and
nontariff measures imposed intentionally by national governments, as
well as costs associated with customs clearance and currency ex-
change that inevitably arise when shipping goods across differing
national jurisdictions.
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