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BREAKING OF SYMMETRICAL PERIODIC SOLUTIONS IN A
SINGULARLY PERTURBED KDV MODEL∗

ALEXANDER TOVBIS†

Abstract. There are several recent developments in the well-known problem of breaking of
homoclinic orbits (splitting of separatrices) of a system that undergoes a singular perturbation.
First, survival of a homoclinic orbit is an exceptional situation that can be linked to triviality of
the Stokes phenomenon of the underlying “truncated” equation. Second, homoclinic connections to
exponentially small periodic orbits survive the perturbation in the generic case. In this paper we
consider a different problem: we study deformations of “genuine” periodic orbits of the second order
equation y′′ = y + y2 that undergoes the singular perturbation ε2y′′′′ + (1 − ε2)y′′ = y + y2, where
ε > 0 is a small parameter. We prove that if the period and the constant of motion do not change
too rapidly (in ε), a genuine (nontrivial) periodic solution does not survive the perturbation.

Key words. singular perturbations, periodic solutions, exponentially small phenomena

AMS subject classifications. 34E, 34M, 34D15, 37J

DOI. 10.1137/070694053

1. Introduction.

1.1. Breaking of homoclinic connections. Let y = 0 be a hyperbolic sta-
tionary point of an n-dimensional differential equation y′ = f(y), and let Ws, Wu be
the stable and unstable manifolds at y = 0. It is said that the stationary point y = 0
has a homoclinic connection if there exists a phase trajectory, originating and ending
at y = 0, that lies on Ws ∩ Wu. For example, the (bounded) separatrix solution

(1) y(x) = − 3/2
cosh2(x/2)

to

(2) y′′(x) = y(x) + y2(x)

corresponds to the homoclinic connection of the stationary point (0, 0) in the phase
plane of (2). There exists a general problem to describe how a singular perturbation
of the original equation affects the homoclinic (or a heteroclinic) connection. A large
number of particular singularly perturbed equations, originating from the correspond-
ing physical or computational problems, have been discussed in the literature (see, for
example, [STL] and the references therein). In particular, the singular perturbation

(3) ε2y′′′′(x) + (1 − ε2)y′′(x) = y(x) + y2(x)

of (2) is related to the traveling wave reduction of a fifth order KdV equation that
models gravity water waves. Existence or nonexistence of homoclinic connections of
(3) has been studied in a number of papers; see, for example, [HM], [PRG], [GJ].
A rigorous proof of nonexistence of such connections was obtained in [AM] (see also
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published electronically November 19, 2008. This work was supported by NSF grant DMS 0508779.
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BREAKING OF SYMMETRICAL PERIODIC SOLUTIONS 1517

[Eck]) and later on in [To4], where the “asymptotic beyond all orders” approach, first
suggested in [KS] for a simple crystal growth model, was put on a rigorous basis.
This approach is, in a sense, a natural way to study exponentially small phenomena,
such as the mismatch between the stable and the unstable manifolds of (3). The
goal of the present paper is to show that a similar argument can be used to prove
nonexistence of symmetrical periodic solutions to (3) (see below), subject to some
additional requirements.

The approach of [KS] is to rescale (3), which is called the outer equation, to the
inner equation

(4) v′′′′(z) + (1 − ε2)v′′(z) = ε2v(z) + v2(z),

where x = εz and v = ε2y. The main advantage of (4) versus (3) is that the (ex-
ponentially small) difference between the stable and unstable solutions is detectable
even in the leading order part

(5) v′′′′(z) + v′′(z) = v2(z),

of (4), which is called the truncated equation (4). This means that the difference
between the stable and unstable solutions to (3) can be studied through the Stokes
phenomenon of (5). In fact, in [TP] we considered the family of singular perturbations

(6) ε2y(iv) + (1 − ε2)y′′ − y = y2 + ε2γ
(
2yy′′ + (y′)2

)
of (2), parametrized by γ ∈ R, and found exact conditions for persistence of the ho-
moclinic connection (under the singular perturbation) in terms of the Stokes constant
for the corresponding truncated inner equation. The technique developed in [To4] can
be modified to consider singularly perturbed problems in other settings. For exam-
ple, it was used in [To5] to show that the discretized equation (3) does not have a
homoclinic connection.

Notice that persistence of the homoclinic connection under singular perturba-
tions (3), (6) is equivalent to existence of a symmetrical (even) stable solution to
the corresponding equation. Since the family of stable solutions to (3) (or to (6)) is
one-dimensional (translation), we can arrange for y′(0) = 0; then the symmetry of
the stable solution y(x) is equivalent to y′′′(0) = 0.

1.2. Deformation of periodic solutions under singular perturbations.
The problem of deformations of periodic solutions under singular perturbations has
not yet received as much attention as the problem of homoclinic connections. However,
it is known that there exist symmetrical periodic solutions to (3) that are exponentially
small in ε; see [Lo] and later papers [IL1], [IL2]. We consider such periodic solutions as
deformations of a constant solution y ≡ 0 of the unperturbed equation (2). Existence
of even periodic solutions that are deformations of a trivial solution was also proved
in [BPBA] for a certain class of reversible fourth order Hamiltonian systems with zero
Hamiltonian. Discussion of even periodic solutions for some fourth order ODEs with
nonzero Hamiltonian and cubic nonlinearity ((3) has a quadratic nonlinearity) can be
found in [PT].

In the present paper we extended the technique of [To4] to study deformations of
a genuine (nonconstant) periodic solution of (2). We limit our attention to periodic
solutions inside the potential well of (2). Any such solution is given by the Weierstrass
elliptic ℘-function with invariants g2, g3,

(7) y(x) = 6℘g2,g3(x − x0) −
1
2
,
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1518 ALEXANDER TOVBIS

and has an integral of motion

(8) y′2 = y2 +
2
3
y3 + C,

where x0 ∈ C is a translation and g2 = 1
12 , g3 = − 1

36 (C + 1
6 ) (see section 1.3).

The requirement C ∈ (− 1
3 , 0) on the constant of motion (energy) C guarantees that

solution y(x) is inside the potential well. (The value C = 0 corresponds to the trivial
solution and to the separatrix solution of (2), whereas C = − 1

3 corresponds to the
stationary solution y(x) ≡ −1.) Solution (7) is a periodic function with finite basic
real and purely imaginary periods

(9) 2ω1 =
∫ ∞

e1

du√
4u3 − 1

12u − g3

, 2ω3 = i

∫ e3

−∞

du√
4u3 − 1

12u − g3

,

where e1, e3 are the largest and the smallest real roots of 4u3 − 1
12u − g3 = 0 (see

below), respectively. It is also an even function provided that x0 is an integer linear
combination of ω1, ω3. It will be convenient for us to choose

(10) x0 = ω3,

so that the unperturbed solution (7) is bounded, real-valued, symmetrical, and peri-
odic with the period 2ω1 on x ∈ R. Equivalently, we can consider solution (7) with
x0 = 0 along the horizontal line ω3 + R in the complex x-plane.

The perturbed equation (3) also has an integral of motion

(11) ε2(2y′′′y′ − y′′2) + (1 − ε2)y′2 − y2 − 2
3
y3 = C(ε),

where C(ε) is the constant of motion (energy). Since we are interested in deformations
of periodic solutions satisfying (8), we require C(0) = C ∈ (− 1

3 , 0).
Let α ≥ 1. We say that a solution y(x, ε) to the perturbed equation (3) is a

Cα-deformation of a periodic solution (7) (in the potential well) to the unperturbed
equation (2) under the singular perturbation (3) on interval S if

(12) Y (x, ε) = Y (x, 0) + εαỸ (x, ε),

where vector Ỹ (x, ε) is continuous in ε, uniformly on interval S of the x-axis. Here
Y (x, ε) = Col (y(x, ε), y′(x, ε), y′′(x, ε), y′′′(x, ε)). Note that a Cα-deformation of a
periodic solution (7) has constant of motion (11) satisfying

(13) C(ε) = C + εαC̃(ε),

where C̃(ε) is a continuous function.
Our main result is the following theorem.
Theorem 1.1. Let y(x, 0) = 6℘ 1

12 ,g3
(x−ω3)− 1

2 , where |g3| < 6−3, be a periodic
solution (inside the potential well) of the nonperturbed equation (2). Let n ∈ N and
y(x, ε) be a Cα-deformation, α ≥ 1, of y(x, 0) under the perturbation (3) on some
open interval S that contains the segment [ω1, nω1]. Then the deformation y(x, ε) does
not contain a sequence of symmetric periodic solutions y(x, εm) of (3) with periods
2kω1(εm), where k = 1, 2, . . . , n, limm→∞ εm = 0, and ω1(ε) is subject to

(14) ω1(ε) − ω1 = ε
α
2 τ(ε),

D
ow

nl
oa

de
d 

08
/1

3/
19

 to
 1

32
.1

70
.2

7.
11

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BREAKING OF SYMMETRICAL PERIODIC SOLUTIONS 1519

where τ(ε) is a continuous function for small ε ≥ 0.
Similarly to the homoclinic connection problem, the central idea of our proof

here is uniform (in small ε ≥ 0) control of an iterative solution of inner equation (4).
In a certain sense, though, the homoclinic connection problem is simpler, because
the manifolds of stable and unstable solutions to (3) are one-dimensional, whereas
deformations of a periodic solution to (2) under the perturbation (3) form a manifold
of the full dimension. We rescale the outer equation (3) to the inner equation (4) by
x = εz, v = ε2y and approach the problem through the following sequence of steps:
(a) we construct by iterations a two-parameter family Fα of deformations of the
rescaled periodic solution (7), (10), satisfying (4); (b) we show that solutions v(z, ε)
to the inner equation (4) that corresponds to a Cα-deformation y(x, ε) of a periodic
solution (7) with the period 2ω1 belong to the family Fα; and (c) for any k ∈ N we
prove that the family Fα does not contain a sequence {v(z, εm)}∞1 of symmetrical and
periodic (with the period 2k ω1(εm)

εm
) solutions if ω1(ε) is subject to (14).

The paper is organized in the following way. In the remaining part of this section
we describe the Stokes phenomenon for the truncated inner equation (5) and some
connections between deformations of homoclinic and periodic orbits of (3). Solution
of (3) by iterations, which yields the two-parameter family of solutions Fα, is obtained
in sections 2–3. Finally, the proof of Theorem 1.1 is completed in section 4.

1.3. Periodic solutions of the unperturbed equation. It is easy to check
that the values C from the interval (− 1

3 , 0) define periodic solutions of the unperturbed
equation (2) within the well of the potential −y2 − 2

3y3. After the change of variables
y = 6X − 1

2 , (8) is reduced to

(15) X ′2 = 4X3 − 1
12

X − g3,

where g3 = − 1
36 (C + 1

6 ). The solution to this equation is given by the Weierstrass
elliptic function ℘(x) = ℘g2,g3(x), where the invariant g2 = 1

12 and g3 is defined above.
Thus, periodic solutions to the unperturbed equation (2) are given by

(16) y(x) = 6℘g2,g3(x) − 1
2
.

The number Δ = g3
2 − 27g2

3 is called the discriminant of ℘g2,g3(x). The condition
Δ > 0 is equivalent to |g3| < 6−3, i.e., to C ∈ (− 1

3 , 0). Under this condition the
Weierstrass function ℘ has real period 2ω1 defined by (9) and purely imaginary period
2ω3, where ω1,−iω3 are positive numbers (the latter requires correct choice of the
branch of the square root in (9)). Using the standard notation, we denote ω2 = ω1+ω3

and ej = ℘(ωj), where j = 1, 2, 3. It is well known that (see, for example, [GR]) ej

are the roots of the cubic polynomial in (15),

(17) ℘′(ωj) = 0, j = 1, 2, 3, e1 + e2 + e3 = 0, and e3 ≤ e2 ≤ e1.

When x varies along the real axis, the value of ℘ varies between e1 and +∞ (as
℘(x) is an even function that has a second order pole at the origin with the principle
part 1

x2 ); see Figure 1.
This corresponds to the periodic solution of (2), defined by (16), with the range

from ẽ1 to infinity outside the potential well, i.e., to the unbounded branch of the
periodic orbit (the energy of the motion is fixed). Here ẽj = 6ej − 1

2 , j = 1, 2, 3; see
Figure 2.
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Fig. 1. Part of the parallelogram of periods 0ω1ω2ω3 for the Weierstrass functions ℘(x) in the
complex x-plane together with the corresponding values of ℘ shown in the brackets.

�� �� ������

y

y’

e e e0~ ~~
23 1

Fig. 2. Phase portrait of (2) showing periodic solutions (Δ > 0) of the same period inside
(bounded) and outside (unbounded) the potential well. Here ẽj = 6ej − 1

2
, j = 1, 2, 3.

When x varies along the horizontal line �x = ω3, the value of ℘ varies between
e3 and e2. That corresponds to the periodic solution of (2), defined by (16), with
the range from ẽ3 to ẽ2 inside the potential well, i.e., to the bounded branch of the
periodic orbit. When x varies along the vertical line 	x = ω1, the value of ℘ varies
between e1 and e2. That corresponds to the tunneling between the unbounded and
bounded branches of the periodic orbit defined by the solution (16); see Figures 1 and
2. For Δ < 0 the periods ω1 and ω3 are complex conjugated so that ω2 is real. In this
case the value of ℘ varies between e2 and +∞, which corresponds to infinite periodic
motion outside the potential well; see Figure 3.
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��������

y’

0 y2
~e

Fig. 3. Phase portrait of (2) showing an unbounded periodic solution (Δ < 0) outside the
potential well. Here ẽ2 = 6e2 − 1

2
.

Here and henceforth it will be convenient for us to consider x0 from (7) to be zero.
Then we are interested in the behavior of y(x) along the horizontal line ω3(ε) + R.

1.4. Solutions to the perturbed equation. Considering perturbations of the
separatrix solution (1) of the original equation, we focus our attention on the stable
and unstable solutions of the perturbed equation (3) (those are solutions correspond-
ing to the one-dimensional manifolds Ws and Wu in the phase space of (3)). We
define the unstable and stable solutions to (3) as

(18) yu,s(x, ε) =
∞∑

k=1

yk(ε)e±kx,

respectively, where y1(ε) as an arbitrary continuous positive function and all yk, k > 1,
are uniquely defined through y1 [To4]. The series (18) is convergent in properly chosen
left- and right-half planes of the complex x-plane, respectively. It is easy to check that
for ε = 0 the choice of y1(0) = 6 yields the unbounded separatrix solution

(19) y(x) =
3/2

sinh2(x/2)
,

which is related to the bounded separatrix solution (1) through the shift x 
→ x + iπ.
Considering x as a complex variable, now and henceforth we refer to (19) as the
separatrix solution of (3).

Perturbations of periodic solutions to the original equation (2) that we are inter-
ested in are not as clearly identifiable as solutions (18) in the separatrix case. We start
with considering the separatrix solution of (3) as the limit of periodic solutions (16)
as C → 0−. In this limit the real half-period ω1 → ∞, and the imaginary half-period
ω3 → iπ. Thus, the point ω2 → iπ + ∞ as C → 0−.

Note that the stable and unstable solutions (18) are symmetrical with respect
to x = 0 since ys(x, ε) = yu(−x, ε). Alternatively, we can consider yu(x) as the
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1522 ALEXANDER TOVBIS

symmetrical continuation of ys(x) through x = ∞ on the compactification of R.
The same observation is correct for the horizontal line �x = π and x = iπ + ∞. The
analogue of the point x = iπ+∞ in the periodic case is x = ω2. Therefore, by analogy
with the separatrix case, we will consider perturbations of the periodic solution (16)
that are symmetrical with respect to the point ω2(ε). Equivalently, that means that
the first and third derivatives of y(x) turn zero at x0 = ω2. The remaining two of the
total of four conditions to define y(x, ε) are y′(ω3(ε), ε) = 0 and the integral of motion
(11). Thus, y(x, ε) satisfies third order differential equation (11) with the prescribed
energy C(ε) together with three boundary conditions

(20) y′(ω3(ε), ε) = 0, y′(ω2(ε), ε) = y′′′(ω2(ε), ε) = 0,

where C(0) = C and 2ω1(ε), 2ω3(ε) are the fundamental periods of the Weierstrass
function ℘ in the solution (16) of (8).

It is easy to see that if f(x) is an even (symmetrical at x = 0) periodic function
with a period 2ω1, then f(x) is symmetrical at any point x = kω1, k ∈ N. Since a
solution y(x, ε) to the BVP (11), (20) is symmetrical at x = ω2(ε) on the horizontal
line �x = �ω3(ε), y(x, ε) is an even periodic solution if and only if

(21) y′′′(ω3(ε), ε) = 0.

1.5. The Stokes phenomenon for the inner equation. Periodic solutions
(16) to (2) have second order poles at x = 0. The asymptotic beyond all orders
approach of [KS] suggests blowing up this singularity by rescaling

(22) x = εz, y(x, ε) = ε−2v(z, ε),

where z is a new independent complex variable. The rescaled equation (inner equa-
tion) is given by (4), which we can rewrite as

(23) (D2
z + 1)(D2

z − ε2)v = v2.

Let v+(z, ε) and v−(z, ε) denote, respectively, the rescaled solutions to the BVP
(11), (20) and to its “symmetrical” problem, where conditions at ω2(ε) are replaced by
the same conditions at −ω̄2(ε) = −ω1(ε)+ω3(ε), i.e., y′(−ω̄2(ε), ε) = y′′′(−ω̄2(ε), ε) =
0. Our observation (proved below) is that, similarly to the case of the separatrix
solution, the leading order (in ε) of the difference between v+(z, ε) and v−(z, ε) can
be derived from the truncated equation

(24) (D2
z + 1)D2

zv = v2.

Note that z = ∞ is the irregular singular point of (24) and that this equation has a
unique formal power series solution

(25) v̂(z) =
∞∑

k=1

vk

z2k
,

where v1 = 6.
The inverse Laplace transform L−1 converts the truncated inner equation (24)

into the convolution equation

(26) (p4 + p2)V (p) = V (p) ∗ V (p),
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where p is a dual variable (called Borel variable), V (p) = [L−1v](p), and F (p)∗G(p) =∫ p

0 F (p−τ)G(τ)dτ . It is well known that the asymptotic expansion (25) of v(z) yields
the corresponding asymptotic expansion in powers of p of V (p) at p = 0.

Theorem 1.2. Equation (26) admits a unique nontrivial power series solution
in odd powers of p. This solution defines a function V (p) that is analytic at the whole
p-plane except for two vertical rays: from p = i upward and from p = −i downward.
The function V (p) is of exponential order 1 along any nonvertical ray in this cut
p-plane.

This theorem follows from a more general statement (Main Theorem) of [To2].
Corollary 1.3. Let v±(z) be defined by

(27) v±(z) =
∫ ±∞

0

e−zpV (p)dp.

These functions are the only analytic solutions of the truncated inner equation (24)
that satisfy

(28) v±(z) ∼ v̂(z) as z → ∞, z ∈ S±,

where S± are sectors

(29) S+ = {z : | arg z| < π} , S− = {z : | arg z − π| < π} .

Moreover,

(30) v+(z) − v−(z) = −2πiseiz(1 + o(1)) as z → ∞, 0 < arg z < π,

where the constant s is determined through

(31) s = lim
p→−i

(p + i)V (p).

Proof. The Taylor expansion of V (p) at p = 0 can be obtained by applying the
inverse Laplace transform (Borel transform) to the formal series v̂(z). The function
V (p) is analytic on a Riemann surface that has possible branch points of the loga-
rithmic type at p = ik, where k ∈ Z \ {0}. The statement on the behavior of V (p)
at singularities p = ±i follows from Theorem 2.2 in [To2]. The uniqueness of solu-
tions v±(z) satisfying (28) follows from Theorem 1.2 and properties of the Laplace
transform.

Definition 1.4. The constant s in (31) is called the Stokes constant for the
truncated inner equation (24).

Proposition 1.5. The following three conditions are equivalent: (i) the for-
mal power series solution (25) has a positive radius of convergence; (ii) s = 0; and
(iii) v+(z) ≡ v−(z).

Proof. The fact that (i) implies (iii) is obvious. The inverse statement follows
from the fact that v(z) = v+(z) ≡ v−(z) implies that the function v(z) is single-
valued near infinity and has asymptotic expansion v̂(z) in the full neighborhood of
infinity (see [Wa]). It is also clear that (i) implies (ii), since in this case L−1v̂(z) is an
entire function. Suppose now that s = 0. Since V (p) is real-analytic on R, we obtain
that V (p) = o( 1

p−(±i) ) as p → ±i. That means, according to Corollary 2.2 in [To2],
that v+(z) coincides with v−(z) in both the lower and upper z half-planes. Thus (ii)
implies (iii).
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1524 ALEXANDER TOVBIS

Divergence (zero radius of convergence) of the formal power series (25) was proved
in [To2, p. 247]. According to Proposition 1.5, this implies that v+(z) �≡ v−(z). (In
fact, nonzero numerical values of s for equations, equivalent to (24), were computed
in [PRG], [GJ] by means of formal Borel summation.) This implies, at least at the
formal level, that solution v+(z, ε) to (23) does not coincide with solution v−(z, ε) to
(23). To make this statement rigorous, it is sufficient to show that (a)

(32) v±(z, ε) → v±(z)

as ε → 0 in some regions R± uniformly in z ∈ R±, and (b) intersection R+ ∩ R−
contains some segment of a positive length.

2. Inner equation. In the following theorem (Theorem 2.1) we construct a
two-parameter family of solutions to (23) that are symmetrical at z = ω̃2(ε) and that
converge to v+(z), or to its translation v+(z − h), h ∈ R, as ε → 0 uniformly in
the corresponding region (see below) of the complex z-plane. Here ω̃j(ε) = ωj(ε)

ε ,
j = 1, 2, 3.

This result constitutes an essential part of the method of [KS]; convergence of
v+(z, ε) to v+(z) was mentioned only briefly in the original paper [KS] (with regard
to a third order equation considered there), but explicit formulations and proofs were
omitted. In other papers, connection between solutions of (23) and (24) was consid-
ered only on the formal level. The proof of convergence of v+(z, ε) to v+(z) in the
separatrix case was given in [To4] (see also [To5] for the discretized equation (2), as
well as [TP] for a more general family of singular perturbations of (2)). The major
difficulty there was based on the fact that solutions of the full and of the truncated
inner equations have different rates of convergence to 0 as z → ∞ (in proper direc-
tions): v+(z, ε), ε > 0, approaches 0 exponentially fast (in z), while v+(z) has only
power order convergence. One needs to find, however, some uniform majorization
that will cover both cases. In order to find such a majorization, we suggested [To4],
[To5] linearizing (23) around the unperturbed solution 6q2, where q(z, ε) = ε

sinh εz
2

,
and applying the contraction mapping principle to the obtained equation. A similar
approach will be developed below with the natural choice

(33) q(z, ε) = ε

√
℘ 1

12 ,g3(ε)(εz) − 1
12

,

where g3 = g3(ε) is determined through ω1 = ω1(ε) by (9).

2.1. Linearized equation. The substitution

(34) v(z, ε) = u(z, ε) + 6c(ε)q2(z, ε),

where q(z, ε) is given by (33), reduces (23) to

(35) (D2
z + 1)(D2

z − ε2)u = u2 + 12c(ε)q2u + f(q).

Here c = c(ε) is a continuous function satisfying c(0) = 1. Calculations of f after
some algebra yield

(36) f(q) = c
[
36(c − 1 − 4ε2)q4 − 6!q6 − 2ε6J(ε)

]
,

where

(37) J(ε) = −36g3(ε) −
1
6
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is determined through ω1 = ω1(ε). (To simplify notation, we omit the ε dependence in
ωj or ω̃j , j = 1, 2, 3, provided that such omission cannot cause any misunderstanding.)
Note that limε→0 6c(ε)q2(z, ε) = 6

z2 . This is the leading term of the asymptotic
expansion (25) of v+(z). So, substitution (34) linearizes (23) with respect to the
leading term for both positive and zero values of ε.

Let

(38) w = (D2 + 1)u.

Then (35) becomes

(39) (D2 − ε2)w =
[
(D2 + 1)−1w

]2
+ 12cq2(D2 + 1)−1w + f(q)

or

[D2 − (ε2 + 12q2)]w =
[
(D2 + 1)−1w

]2
(40)

+ 12cq2[(D2 + 1)−1 − 1]w − 12q2(1 − c)w + f(q).

Using the identity

(41) (D2 + 1)−1 − 1 = −(D2 + 1)−1D2

and solving (39) for D2w, we finally get

[D2 − (ε2 + 12q2)]w = [1 − 12cq2(D2 + 1)−1]
(
f(q) + [(D2 + 1)−1w]2

)
(42)

− 12q2(1 − c)w − 12cq2(D2 + 1)−1
[
ε2 + 12cq2(D2 + 1)−1

]
w.

This integrodifferential equation is equivalent to (35), (38). We solve (42) by the con-
traction mapping principle, considering it as a “perturbation” of the nonhomogeneous
linear ODE

(43) [D2 − (ε2 + 12q2)]w = [1 − 12cq2(D2 + 1)−1]f(q).

The corresponding homogeneous equation

(44) [D2 − (ε2 + 12q2)]w = 0

has two independent solutions v1(z) and v2(z), where v2(z) is symmetric (even) and
v1(z) is antisymmetric (odd) at the origin. Indeed, v = 6q2 is a solution to (D2−ε2)v =
v2, which is the rescaled equation (2). Differentiating both sides of the latter equation,
we get (D2 − ε2)v′ = 2vv′. This equation coincides with (44), where w = v′. Thus,
we obtain

(45) v1(z) = 6
d

dz
q2 = 6ε3℘′(εz).

The second linearly independent solution can be taken as

(46) v2(z) = v1(z)
∫ z

0

dξ

v2
1(ξ)

.
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1526 ALEXANDER TOVBIS

Note that ℘(εz) is symmetrical and, thus, v1 is an antisymmetrical (odd) function
with respect to any integer combination of half periods ω̃1 and ω̃3. It will be shown
below (section 2.3) that solutions

(47) v2j(z) = v2(z) − 1
6ε7Δ

[
3g3

2
ωj − g2ζ(ωj)

]
v1(z), j = 1, 2, 3,

to (44), where

(48) ζ(x) =
1
x
−
∫ x

0

(
℘(y) − 1

y2

)
dy

is a “negative antiderivative” of ℘, are symmetrical at the points z = ω̃j , respectively.

2.2. Formulation of the theorem. Let g(z) be a function, symmetrical (even)
with respect to the point ω̃2(ε), and let I2 = (D2 + 1)−1 denote the operator, inverse
to D2+1 and such that I2g(z) is symmetrical with respect to ω̃2(ε). The construction
of I2 will be given in section 3.1.

Equation (42) can be written in the operator form as w = Nw, where

(49)

Nw = I1 ◦
[
(1 − 12cq2I2)[f + (I2w)2] − 12q2(1 − c)w + 12cq2I2(ε2 + 12cq2I2)w

]
and

(50) I1g(z) = −v1(z)
∫ z

ω̃2

v2(ξ)g(ξ)dξ + v2(z)
∫ z

ω̃2

v1(ξ)g(ξ)dξ.

We define iterations

(51) w0 = 0, w1 = Nw0 + ε6b(ε)v22(z), wn = Nwn−1, n = 2, 3, . . . ,

and Δwn = wn −wn−1, n = 1, 2, . . . , where b(ε) is a continuous function in a vicinity
of ε = 0. The following theorem proves uniform convergence of the series

∑∞
n=1 Δwn

in a region Rz0 ⊂ C, which is defined below. Thus, we obtain a family of solutions to
(42), parametrized by c(ε) and b(ε), which are symmetrical at z = ω̃2.

Consider the parallelogram of periods of the elliptic function q(z, ε) (the periods
are 2ω̃1 and 2ω̃3) centered at the origin with the square cut that has vertices ±z0(1+i)
and ±z0(1 − i), where z0 > 0 is a positive constant. We require ε ∈ [0, ε0], where

(52) ε0z0 < min{ω1, |ω3|}.

By Rz0 we denote a quarter of this figure, i.e., of the parallelogram of periods with
the square cut, that lies in the first quadrant; see Figure 4.

Theorem 2.1. Let E be a closed subinterval of (− 1
3 , 0), and let J(ε) from (37)

be a function, defined on a neighborhood of ε = 0 with the range in E. Let continuous
functions b(ε), c(ε) satisfy

(53) |b(ε)| ≤ lεα and |c(ε) − 1| ≤ lεα

for some l > 0, α ≥ 1, and for all nonnegative ε from a vicinity of ε = 0. Then there
exist ε0 > 0, z0 > 0 satisfying (52), which depend only on E and l, and such that the
series

(54) w(z, ε) =
∞∑

n=1

Δwn(z, ε)
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z
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0
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0
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Fig. 4. Region Rz0 .

converges uniformly in Rz0 × [0, ε0].
Remark 2.2. The rectangular “cut” in Rz0 can be replaced by a cut of any other

shape so that the distance between Rz0 and the origin is O(z0). In fact, it will be
replaced by a more convenient triangular “cut” in the course of the proof.

The proof of the theorem is given in section 3.4.

2.3. The second fundamental solution to the linearized equation. Note
that, similarly to the separatrix case, the solution v1 to (44) is an odd function, while
the solution v2 is an even function; see (45)–(46). Moreover, ℘(εz) is symmetrical, and,
thus, v1 is an antisymmetrical (odd) function with respect to any integer combination
of half-periods ω̃1 and ω̃3.

Our computation of v2 is based on the well-known fact (see, for example, [WW])
that the difference between two elliptic functions with the same periods and same
principal parts at each singular point is a constant. The only zeros of the function
℘′(εz) within the parallelogram of periods are simple zeros at the points ω̃j , j = 1, 2, 3.
Therefore

(55)
1

℘′2(εz)
= A0 +

3∑
j=1

Aj℘(εz − ωj)

for all z and

(56)
∫ z

0

dξ

℘′2(εξ)
= A0z − 1

ε

3∑
j=1

Aj [ζ(εz − ωj) + ζ(ωj)],

where the constants Ak, k = 0, 1, 2, 3, will be discussed below and ζ(x), defined by
(48), is an odd function. The following arguments use some standard facts about the
Weierstrass ℘-function that can be found, for example, in [WW], [Ha].

Using the “addition theorem” for ζ-function

(57) ζ(εz − ωj) − ζ(−ωj) = ζ(εz) +
1
2

℘′(εz)
℘(εz) − ej

, j = 1, 2, 3,

we get

(58)
∫ z

0

dξ

℘′2(εξ)
=

1
ε

⎡
⎣A0εz − ζ(εz)

3∑
j=1

Aj −
1
2
℘′(εz)

3∑
j=1

Aj

℘(εz) − ej

⎤
⎦ .
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1528 ALEXANDER TOVBIS

Constants Ak, k = 0, 1, 2, 3, are calculated in Lemma 2.3 below. Differential equations

(59) ℘′2 = 4
3∏

j=1

(℘ − ej) and ℘′′ = 6℘2 − g2

2

for the Weierstrass ℘-function and identities

(60) e1e2 + e1e3 + e2e3 = −g2

4
and e1e2e3 =

g3

4
are also utilized in this lemma.

Lemma 2.3.

(61)

A0 =
9g3

Δ
, Aj =

[
1

2(ej − ei)(ej − ek)

]2

, j = 1, 2, 3, and A+ =
3∑

j=1

Aj =
6g2

Δ
,

where the indices i, j, k are a permutation of 1, 2, 3.
Proof. The Taylor expansion of ℘ at ωj, j = 1, 2, 3, yields

(62) ℘(x) = ej + aj(x − ωj)2 + O(x − ωj)4.

Therefore the principal part of (℘′)−2 at ωj is 1
4a2

j (x−ωj)2
. According to (59), aj =

1
2℘′′(ωj) = 3e2

j − g2
4 . The principal part of ℘(x) at the origin is 1

x2 . Thus

(63) Aj =
1

(6e2
j −

g2
2 )2

=
[

1
2(ej − ei)(ej − ek)

]2

,

where the indices i, j, k are a permutation of 1, 2, 3. The latter expression follows from

3e2
j −

g2

4
= 2e2

j + ej(ej + ei) + ejek + eiek = 2e2
j + eiek = 2(ei + ek)2 + eiek(64)

= (2ei + ek)(2ek + ei) = (ei − ej)(ek − ej),

where (17) and (60) were taken into account.
Direct computations, based on (17) and (60), show that

(65)
3∑

j=1

e2
j =

g2

2
,

∑
i<k

e2
i e

2
k =

g2
2

16
, and

3∑
j=1

e3
j =

3
4
g3,

where summation in the second expression is taken over all possible pairs i, k such
that 1 ≤ i < k ≤ 3. Then

(66)
3∑

j=1

Aj =
∑

i<k(ei − ek)2

4
∏

i<k(ei − ek)2
=

3g2

8
∏

i<k(ei − ek)2
.

Next we compute the denominator, using (60) and (63):

−8
∏
i<k

(ei − ek)2 =
3∏

j=1

(
6e2

j −
g2

2

)
= − g3

2

8
+ 6

g2
2

4

3∑
j=1

e2
j − 18g2

∑
i<k

e2
i e

2
k(67)

+ 63
3∏

j=1

e2
j =

1
2
(27g2

3 − g3
2) = −Δ

2
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BREAKING OF SYMMETRICAL PERIODIC SOLUTIONS 1529

Now the second statement of the lemma follows from (66).
In order to evaluate A0 we put z = 0 at (55). Since ℘′ has a pole at the origin,

(55) yields

(68) A0 = −
3∑

j=1

Ajej =

∑3
j=1 ej(ei − ek)2

−4
∏

i<k(ei − ek)2
.

Using (17) and (65), we calculate the numerator in the latter expression as − 9
4g3.

Then the first statement of the lemma follows from (67)–(68).
Now, the combination of (45)–(46) and of (58)–(59) yields

(69) v2(z) =
1

6ε4

⎡
⎣[A0x − A+ζ(x)]℘′(x) − 2

3∑
j=1

Aj(℘(x) − ei)(℘(x) − ek)

⎤
⎦ ,

where for convenience we use the notation x = εz. The latter sum is a quadratic
polynomial in ℘, which, according to (17) and (68), can be written as −2A+℘2 +
2A0℘ + B, where the constant B = −2

∑3
j=1 Ajeiek. In order to determine B, note

that (46) implies that v2 is an even function, which has zero of order four at the origin.
Using the Laurent expansions of ℘, ℘′, and ζ at the origin (see [GR]) and equating
the constant term of (69) to be zero, we obtain

(70) B = −2
3∑

j=1

Ajeiek = A+

( g2

10
+

g2

30

)
+ 2A+

g2

10
=

2g2
2

Δ
.

Combining the latter equation with (69) and Lemma 2.3 yields

v2(z) =
1

ε4Δ

([
3g3

2
εz − g2ζ(εz)

]
℘′(εz) − 2g2℘

2(εz) + 3g3℘(εz) +
g2
2

3

)
(71)

=
1

ε4Δ

(
3g3

2
[εz℘′(εz) + 2℘(εz)] − g2

3
[
3ζ(εz)℘′(εz) + 6℘2(εz) − g2

])
.

Note that v2(z) is an elliptic function if and only if 3g3
2 x−g2ζ(x) is doubly periodic

with fundamental periods 2ω1, 2ω3. Using ζ(x + 2ωj) = ζ(x) + 2ζ(ωj) for all x in the
domain of ζ and j = 1, 2, 3 [GR], we can write the condition that v2 is an elliptic
function as

(72) 3g3ωj − 2g2ζ(ωj) = 0, j = 1, 3.

Considering these equations as a linear system for unknowns 3g3,−2g2, we come to
the conclusion that it cannot have nontrivial solutions since its determinant ω1ζ(ω3)−
ω3ζ(ω1) ≡ − iπ

2 [GR]. Thus v2 is not an elliptic function for any energy C ∈ (− 1
3 , 0).

Note that in the case of the separatrix solution v2 is also not a hyperbolic function
(see [To4]).

2.4. Estimates for v1(z), v2(z). Let T denote trapezoid ABCD in C with the
vertices A(ω̃1 − ω̃3), B(ω̃1 + 2ω̃3), C(3

2 ω̃3), D(− 1
2 ω̃3). We start with the estimate

(73) |q2(z, ε)| ≤ Q

|z|2
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1530 ALEXANDER TOVBIS

with some Q > 0, which is valid for any ε ≥ 0 and for any z in the trapezoid
T . The value of the constant Q can be chosen as Q = 1 + |ω2|2Q̃, where Q̃ =
1
12 + maxx∈T̃ |℘(x) − 1

x2 |. Here T̃ denotes the trapezoid in the x-plane, x = εz, that
corresponds to T . Note that ω2 is defined by the energy J(ε) of the periodic solution
(33). However, we can choose Q such that (73) holds for all J(ε) ∈ E.

Lemma 2.4. There exist positive constants A and B such that the estimates

(74) |v1(z)| ≤ A

|z|3 and |v2(z)| ≤ B|z|4

are valid in T for any ε ≥ 0 and any J(ε) ∈ E.
Proof. The first estimate follows from (45) and the inequality

(75)
∣∣∣∣℘′(x) +

2
x3

∣∣∣∣ ≤ A3

in T̃ , similarly to (73).
The second inequality (74) follows from the fact that the expression in the square

brackets in the right-hand side of (69) is bounded by 6|x|4B in T̃ with some positive
constant B that does not depend on ε and on J(ε) ∈ E.

3. Solution by iterations.

3.1. Operator (D2 + 1)−1. Let ω ∈ C, a > 0, and let an analytic function
g(z) be real-valued on 	z = 	ω and symmetrical with respect to ω. Note that under
these assumptions g(z) is also real-valued along �z = �ω.

Proposition 3.1. The operator Iω
a defined by

(76) Iω
a g(z) =

1
2i

[
eiz

∫ z

ω−ia

e−iξg(ξ)dξ − e−iz

∫ z

ω+ia

eiξg(ξ)dξ

]

is inverse to D2 + 1, and Iω
a g(z) is real-valued on 	z = 	ω and symmetrical with

respect to ω.
Proof. The first statement of the proposition is obvious. In order to prove the

second statement, we decompose

(77) Iω
a g(z) = Iωg(z) +

1
2i

[
eiz

∫ ω

ω−ia

e−iξg(ξ)dξ − e−iz

∫ ω

ω+ia

eiξg(ξ)dξ

]
,

where Iω = Iω
0 . Let ib =

∫ ω+ia

ω ei(ξ−ω)g(ξ)dξ. Since g is real-valued along the path
of integration, b ∈ R and −ib =

∫ ω−ia

ω
e−i(ξ−ω)g(ξ)dξ. Thus, the second term in (77)

is symmetrical and real-valued as it is

(78)
1
2i

[ibei(z−ω) + ibe−i(z−ω)] = b cos(z − ω).

To complete the proof we observe that

Iω =
1
2i

[
eiz

∫ z

ω

e−iξg(ξ)dξ − e−iz

∫ z

ω

eiξg(ξ)dξ

]
=
∫ z

ω

sin(z − ξ)g(ξ)dξ(79)

= sin(z − ω)
∫ z

ω

cos(ξ − ω)g(ξ)dξ − cos(z − ω)
∫ z

ω

sin(ξ − ω)g(ξ)dξ
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is also symmetrical with respect to ω and real-valued.
Using the reflection principle, it is easy to show that the function g(z) of Propo-

sition 3.1 is periodic with real or purely imaginary period 2P if and only if it is
symmetrical with respect to ω + P . Then Proposition 3.1 shows that there is a (real)
one-parameter family of operators Iω

a , preserving the symmetry of g at ω. The fol-
lowing proposition shows that symmetry can be preserved at both ω and ω + P if P
is not a multiple of π. If P is a multiple of π, one can prove that a symmetrical and
periodic (D2 + 1)−1g(z) exists if and only if the Fourier expansion of g(z) does not
contain a cos z term.

Proposition 3.2. Let g(z) be a function, symmetrical with respect to ω and
ω + P and real-valued on [ω, ω + P ], where P is either real or purely imaginary. If
P �= kπ, k ∈ N, then there exists an operator I that is inverse to D2 + 1 and such
that Ig inherits the abovementioned properties of g.

Proof. To satisfy the requirements at ω, the operator I has to be of the form
Ig = Iωg + d cos(z − ω), where d ∈ R (and depends on g). Then

Ig = Iω+P g + d cos(z − ω)

(80)

+
1
2i

[
ei(z−ω−P )

∫ ω+P

ω

e−i(ξ−ω−P )g(ξ)dξ − e−i(z−ω−P )

∫ ω+P

ω

ei(ξ−ω−P )g(ξ)dξ

]
.

Let A1,2 denote the (two) terms in the square brackets, respectively, and let A =
1
2 (A1 + A2), B = 1

2 (A1 − A2). Then the square bracket expression in (80) becomes
A sin(z − ω − P ) − iB cos(z − ω − P ). Therefore

(81) Ig = Iω+P g + (d cosP − iB) cos(z − ω − P ) + (A − d sin P ) sin(z − ω − P ).

Using (79) we see that the first two terms in the right-hand side of (81) are symmetrical
at ω + P . Thus Ig is symmetrical with respect to ω + P if and only if

(82) d =
2
∫ ω+P

ω cos(ξ − ω − P )g(ξ)dξ

sinP
.

Equation (82) can be satisfied for any P �= kπ, k ∈ Z. Noting that d and iB are real
for both real and purely imaginary P concludes the proof.

3.2. Estimates for the operator I2. Consider the trapezoid T introduced in
section 2.4. Given a number z1 ∈ (0, 1

4 ω̃1), which is independent of ε, we cut a triangle
near the origin with vertices z1, z2, z3, where z2, z3 are the points on the intersection
of the imaginary axis and the lines through the points z1, A and the points z1, B,
respectively. The obtained region is denoted by Tz1 . Clearly, for a given z0 > 0 we
have Rz0 ⊂ Tz1 if z0 is large enough (i.e., according to (52), if ε0 is small enough).
We define the operator

(83) I2 = I ω̃2
−2iω̃3

.

For a given z ∈ Tz1 , γ±(z) denote contours of integration [z, B] and [z, A], respectively;
see Figure 5.

Proposition 3.3. The inequality

(84)
∣∣∣∣ ξz
∣∣∣∣ >

ω1√
ω2

1 − 25
4 ω2

3
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Fig. 6. Trapezoid ABCD and angles φ(z), φ0.

holds for all z ∈ Tz1 and all ξ ∈ γ+(z) ∩ γ−(z).
Proof. For an arbitrary z ∈ Tz1 , let φ(z) denote the angle between the segments

γ−(z) and [0, z] (see Figure 6), and let α(z) = minξ∈γ−(z)
|ξ|
|z| . We choose the acute

angle for φ(ω̃1 + 2ω̃3) (at the vertex B) and then define φ(z) in Tz1 by continuity.
Clearly α(z) = 1 if φ(z) ≥ π

2 and α(z) = sin φ(z) if φ(z) < π
2 . The latter case can

happen only if �z ≥ 0; hence α(z) = 1 if �z < 0. Let φ0 be the acute angle between
AB and DB. We show that φ(z) ≥ φ0 for every z ∈ Tz1 .

Indeed, let us inscribe the right trapezoid ABCD into a circle. Then (at the
vertex C) φ(3

2 ω̃3) = φ0. Simple geometrical considerations (see Figure 6) imply that
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minz∈Tz1
φ(z) is attained at z = 3

2 ω̃3. Thus, α(z) ≥ sin φ0. Therefore

(85) α(z) ≥ sin φ0 =
ω1√

ω2
1 − 25

4 ω2
3

for any z ∈ Tz1 . The same estimate holds for the contour γ+(z). The proof is
completed.

Proposition 3.4. For any z ∈ Tz1

(86) |I2f(z)| ≤

√
1 − 4

ω2
1

ω2
3

max
ξ∈γ+(z)∪γ−(z)

|f(ξ)|,

where f is a continuous function on Tz1 .
Proof. According to the construction of γ+, γ−,

(87) 	[i(ξ − z)] ≤ − |ω3|√
4ω2

1 − ω2
3

|z − ξ| and 	[i(z − ξ)] ≤ − |ω3|√
4ω2

1 − ω2
3

|z − ξ|

for all ξ ∈ γ±(z), respectively. Therefore

|I2f(z)| ≤ 1
2

∣∣∣∣∣
∫

γ−(z)

ei(z−ξ)f(ξ)dξ +
∫

γ−(z)

ei(z−ξ)f(ξ)dξ

∣∣∣∣∣(88)

≤ max
ξ∈γ+(z)∪γ−(z)

|f(ξ)|
∫ ∞

0

e−
(
|ω3|/

√
4ω2

1−ω2
3

)
λdλ,

which implies (86).
Lemma 3.5. If

(89) |f(z)| ≤ 1
|z|a

in Tz1 with a ≥ 0, then

(90) |I2f(z)| ≤ β

|z|a ,

where β = (1 − 25ω2
3

4ω2
1

)
1
2 (1 − 4ω2

1
ω2

3
)

a
2 .

This lemma is a direct consequence of Propositions 3.3 and 3.4.

3.3. Estimates for the operator I1. Solution I1g to linear differential equa-
tion (43), where g denotes the right-hand side of (43), that we consider in the paper
is given by (50). In order to estimate I1, we need the following simple statement.

Proposition 3.6. Let a ray λ on the complex z-plane lie outside the disk |z| < a,
a > 0. Then for any α ≥ 2

(91)
∣∣∣∣
∫

λ

dz

zα

∣∣∣∣ ≤ π

aα−1
.

Proof. Let m denote the line containing the ray λ. Suppose m is tangent to the
disk |z| < a at the point ω. If z ∈ m, then |z|2 = a2 + x2, where x = |z − ω|. Then

(92)
∣∣∣∣
∫

λ

dz

zα

∣∣∣∣ ≤
∫ ∞

−∞

dx

(a2 + x2)
α
2
≤ 2

aα−2

∫ ∞

0

dx

(a2 + x2)
=

π

aα−1
.
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1534 ALEXANDER TOVBIS

This estimate will definitely hold if m does not intersect the closed disk |z| ≤ a.
Suppose now that m intersects the disk |z| < a. Let ω denote the vertex of the

ray λ, and let ζ denote one of the two points which lie on the distance a from both ω
and m. Then |ξ − ζ| < |ξ| for any ξ ∈ λ, and we can apply the estimate (92) again,
placing the origin at ζ.

Notice that estimates of Proposition 3.3 are applicable to the contours in (50).
Then, using Lemma 2.4 and Proposition 3.6, we can easily establish the following
estimates.

Lemma 3.7. If |g(z)| ≤ K|z|−n, n ≥ 6, or if |g(z)| ≤ K|z|−4 in Tz1 , then

(93) |I1g(z)| ≤ M1K

|zn−2| and |I1g(z)| ≤ M2K

ε|z−3| ,

respectively, where M1 = (1− 25
4

ω2
3

ω2
1
)

n−5
2 πAB and M2 = max{2|ω3|,

√
ω2

1 − 9
4ω2

3}AB.

3.4. Proof of Theorem 2.1. Proof. We start with the obvious observation that

(94) ε ≤
√

ω2
1 − 4ω2

3

|z|
if z ∈ Tz1 . Using the first inequality in (53), we obtain that f(q) from (36) satisfies

(95) |f | ≤ K̃0|z|−6 + εK̃1|z|−4

in Tz1 with some positive constants K̃0, K̃1 that do not depend on ε and J(ε) ∈ E.
Thus, according to (49) and the estimates for I1,2,

(96) |Nw0| ≤
K

2

(
εα−1

|z|3 +
1

|z|4

)

in Tz1 for some constant K > 0 that does not depend on ε, J(ε), and z1.
Let us now prove by induction that by choosing a sufficiently large z1 > 0 we can

find δ > 0, such that the estimate

(97) Δwn ≤ (δM)n−1 K

|z|3 , where δM ≤ 1
2
,

holds in Tz1 for all n = 1, 2, . . . , all J(ε) ∈ E, and all sufficiently small ε. Here
M = max{M1, M2}, where M1 is given in Lemma 3.7 with n = 6.

According to Lemma 2.4, the estimate for v22 for all z ∈ Tz1 and J(ε) ∈ E is

(98) |v22(z)| ≤ B|z|4 +
L

ε7|z|3

for some L > 0. Then, according to (94), (96), and (53), we can choose K > 0 to be
so large that w1 = Nw0 + ε6b(ε)v22 satisfies

(99) |w1| ≤
K

|z|3

in Tz1 for all J(ε) ∈ E and all sufficiently small ε. Thus, for n = 1, (97) has been
established. Assume that this estimate is true for k = 1, 2, . . . , n, and let us establish
it for k = n + 1. First, we can represent

Δwn+1 = I1 ◦
[
(1 − 12cq2I2)[I2(wn + wn−1) · I2Δwn] − 12q2(1 − c)Δwn(100)

+ 12cq2I2(ε2 + 12cq2I2)Δwn

]
.
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Taking into account (99) and Lemma 3.5, we obtain the estimates

(101)

12Qlεα

|z|

∣∣∣∣Δwn

z

∣∣∣∣ , 12cQβ

[
ε

|z|

∣∣∣∣εΔwn

z

∣∣∣∣+ 12cQβ

|z|

∣∣∣∣Δwn

z3

∣∣∣∣
]

, 4Kβ2

(
1 +

12cQβ

|z|2

) ∣∣∣∣Δwn

z3

∣∣∣∣
for the second, third, and first (nonlinear) terms in the square brackets in (100),
respectively. For the latter estimate, observe that both wn and wn−1 are bounded
by 2K

|z|3 according to (97). (Note that the constants β, K, M are independent of z1.)
Applying operator I1 to these three terms and utilizing Lemma 3.7, we obtain the
estimates

(102)

12Ql

|z| εα−1M |Δwn| , 12cQβ

[
ε +

12cQβ

|z|

]
M

|z| |Δwn| , 4Kβ2

(
1 +

12cQβ

|z|2

) ∣∣∣∣MΔwn

z

∣∣∣∣ .
Factoring M |Δwn|, we obtain |Δwn+1| ≤ δM |Δwn|, where

(103) δ =
12Qlεα−1 + 12cQβε

|z| +
122c2Q2β2

|z|2 +
4Kβ2

|z|

(
1 +

12cQβ

|z|2

)
.

By choosing a sufficiently large z1 > 0 and sufficiently small ε0 > 0, we can guarantee
the condition δM ≤ 1

2 in Tz1 for all ε ≤ ε0 and for all J(ε) ∈ E. Thus, (97) holds for
k = n + 1. We can choose some z0 ≥ z1 so that Rz0 ⊂ Tz1 and ε0z0 ≤ max{ω1, |ω3|}
(taking smaller ε0 if necessary). Thus, inequalities (97) prove convergence of iterations
to a solution of (42) that is uniform in Rz0 × (0, ε0] for all J(ε) ∈ E.

In the case ε = 0 the region Tz1 becomes the right half-plane with the appropriate
cut, q2 = 6

z2 , f(q) = − 6!
z6 , and the fundamental solutions v1,2 to the homogeneous

equations (43) become v1(z) = −12
z3 and v2(z) = −z4

84 . Thus, for the case ε = 0
Lemma 2.4 becomes trivial, and the proof of convergence of iterations w =

∑∞
1 Δwn

that solve (42) holds for the case ε = 0. (Note that in this case the contours of
integration in the integral operators I1,2 are the rays, emanating from z, with the
slope 	w


w , where w is the beginning of the corresponding contour in the case ε > 0;
in other words, arg w does not depend on ε.) Thus, the proof of Theorem 2.1 is
completed.

Remark 3.8. It is easy to verify that α > 1 in Theorem 2.1 implies that there
exist some Ln > 0 such that for all n ∈ N

(104) |Δwn| ≤ Ln|z|−n(1+α̃)−2

in Rz0 , where α̃ = min{1, α − 1}. Moreover, for all n ∈ N there exist some Kn > 0
such that

(105)

∣∣∣∣∣∣
∞∑

j=n

Δwn

∣∣∣∣∣∣ ≤ Kn|z|−n(1+α̃)−2.

Let P ⊂ T denote the triangle with vertices ω̃3, ω̃1, and ω̃1 + 2ω̃3. It is clear that
z ∈ P implies that all the contours of integration in operators I1,2 are in P . Notice
that in P

(106) min{ω1, |ω3|} ≤ ε|z| ≤
√

ω2
1 − 4ω2

3.
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1536 ALEXANDER TOVBIS

The latter condition allows us to prove convergence of iterations in P without the
requirement (53) in Theorem 2.1.

Corollary 3.9. If instead of (53) in Theorem 2.1 we require only

(107) lim
ε→0

b(ε) = lim
ε→0

[c(ε) − 1] = 0,

the statement of Theorem 2.1 is still valid in P × [0, ε0]; i.e., there exists some ε0 > 0
such that the series (54) is uniformly convergent in P × [0, ε0].

Proof. The function

(108) h(ε) = max{|b(ε)|, |c(ε) − 1|}

is continuous and nonnegative, and limε→0 h(ε) = 0. Then inequalities (95) and (96)
become

(109) |f | ≤ K̃0|z|−6 + h(ε)K̃1|z|−4 and |Nw0| ≤
K

2

(
h(ε)
ε|z|3 +

1
|z|4

)
,

respectively. Then, as in Theorem 2.1, we can choose K > 0 so large that

(110) |w1| ≤
h̃(ε)K
|z|2

in P , where h̃(ε) = max{h(ε), ε2}.
As in Theorem 2.1, we will prove convergence of (54) by induction if we show

that by choosing a sufficiently small ε0 > 0 we can find δ > 0, such that the estimate

(111) Δwn ≤ (δM)n−1 h̃(ε)K
|z|2 , where δM ≤ 1

2
,

holds in P for all n = 1, 2, . . . and all J(ε) ∈ E. Taking into account (111) and
Lemma 3.5, we obtain the estimates

12Qlh̃(ε)
∣∣∣∣Δwn

z2

∣∣∣∣ ,(112)

12cQβ

[∣∣∣∣ε2Δwn

z2

∣∣∣∣+ 12cQβ

|z|2

∣∣∣∣Δwn

z2

∣∣∣∣
]

, 4h̃(ε)Kβ2

(
1 +

12cQβ

|z|2

) ∣∣∣∣Δwn

z2

∣∣∣∣
for the second, third, and first (nonlinear) terms in the square brackets in (100),
respectively. Making sure that h̃(ε) and |z−2| are sufficiently small by choosing a
sufficiently small ε0 and using Lemma 3.7, we can repeat the arguments of Theorem 2.1
in order to complete the proof of convergence of iterations (54).

Remark 3.10. In fact, we can prove convergence of iterations (54) in larger
domains than those stated in Theorem 2.1 and Corollary 3.9. Fix some n ∈ N.
For Theorem 2.1, we replace the trapezoid T with vertices ABCD by the (concave)
hexagon T with vertices AONBCD, where O = ω̃1, N = nω̃1+ ω̃3, and other vertices
are the same as in T ; see Figure 7. For z ∈ T , contours of integration in operators I1,2

are the same as before, except for contour γ−(z) that is now the union of segments
[z, O] and [OA]. For Corollary 3.9, we replace the triangle P with vertices ω̃3, ω̃1,
ω̃1 + 2ω̃3 by a quadrilateral P with vertices ω̃1, nω̃1 + ω̃3, ω̃1 + 2ω̃3, ω̃3. For z ∈ P ,
contours of integration in operators I1,2 are the same as before. It is easy to verify
that the estimates for operators I1,2 from Lemmas 3.7 and 3.5 hold in domains T and
P , possibly with larger constants that depend on n. Now proofs of Theorem 2.1 and
Corollary 3.9 can be extended to the domains T and P , respectively.
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Fig. 7. Hexagon T with vertices AONBCD. The contour γ−(z) is the union of segments [z, O]
and [OA].

3.5. Symmetry at ω̃2. Here we will show that any solution to inner equation
(23), obtained through iterations (54), is symmetrical with respect to z = ω̃2. Con-
sequently, corresponding solutions to the outer equation (1), connected with (23) via
(22), are symmetric at x = ω2.

The operator I1 can be represented in the following form.
Proposition 3.11. If a function g(z) is analytic and bounded in Tz1 , then

(113) I1g = v1(z)
∫ z

ω̃2

∫ t

ω̃2
v1(τ)g(τ)dτ

v2
1(t)

dt.

Proof. Using (46) and integration by parts, one gets

I1g = −v1(z)
∫ z

ω̃2

(
v1(t)g(t)

∫ t

0

dτ

v2
1(τ)

)
dt + v2(z)

∫ z

ω̃2

v1(t)g(t)dt(114)

= v1(z) ×
[
−
∫ t

ω̃2

v1(τ)g(τ)dτ ·
∫ t

0

dτ

v2
1(τ)

∣∣∣∣
z

ω̃2

+
∫ z

ω̃2

∫ t

ω̃2
v1(τ)g(τ)dτ

v2
1(τ)

dt +
∫ z

0

dt

v2
1(τ)

·
∫

γ(z)

v1(t)g(t)dt

]

= v1(z) lim
ζ→ω̃2

[∫ z

ζ

v1(t)g(t)dt ·
∫ ζ

0

dt

v2
1(τ)

]
+ v1(z)

∫ z

ω̃2

∫ t

ω̃2
v1(τ)g(τ)dτ

v2
1(τ)

dt.

Note that the limit in the latter expression is zero because
∫

γ(ζ)
v1(t)g(t)dt has a zero

of order two at ω̃2, whereas
∫ ζ

0
dt

v2
1(τ)

has a simple pole there.
Based on (45) and (73), solutions to the homogeneous equation (44) preserving

the symmetry at the points ω̃j , j = 1, 2, 3, are given by

(115) v2j(z) = v2(z) − 1
6ε7Δ

[
3g3

2
ωj − g2ζ(ωj)

]
v1(z), j = 1, 2, 3,
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1538 ALEXANDER TOVBIS

respectively. Indeed, direct calculations show that Dzv2j(ω̃j) = 0. Then, according
to (44),

(116) D3
zv2j = (ε2 + 12q2)Dzv2j + 12(q2)′v2j = 0

at z = ω̃j . By continuing this argument for higher derivatives, we prove symmetry
of v2j at z = ω̃j. Also, note that v2j(ω̃j) ∈ R. Then, according to the differential
equation for v2j , all even derivatives of v2j at z = ω̃j are also real.

The fact that operator I1 preserves the symmetry at the point ω̃2 and real-
valuedness along the line �z = �ω̃2 is a direct consequence of Proposition 3.11.
Thus, according to (36), Δw1 is symmetric with respect to ω̃2 and real-valued on the
line �z = �ω̃2. Then, according to (100) and to Proposition 3.1, the same is true
for w =

∑∞
1 Δwn. Now, according to (34), the corresponding solution v(z, ε) to (23)

satisfies

(117) v′(ω̃2, ε) = v′′′(ω̃2, ε) = 0

and is real-valued on �z = �ω̃2.
Thus, in Theorem 2.1 and Corollary 3.9 we have constructed a two-parameter

family of solutions to (23), where b(ε) and c(ε) are the parameters, that are real along
�z = �ω̃2 and satisfy (117).

3.6. Calculation of I1f(q). In order to calculate I1f(q), we use (36) and (45)
to evaluate the integral

∫ t

ω̃2

v1(τ)f(q(τ))dτ =
∫

f(q)d(6q2)(118)

= c

[
c − 1 − 4ε2

3
(6q2)3 − 5/6(6q2)4 − 2ε6C(ε)(6q2)

]∣∣∣∣
z

ω̃2

in (113). Switching to the original variable x = εz and using (113), we obtain

(119)
I1f = 6ε3c℘′(x)

×
∫ x

ω2

(6℘(t) − 1
2 )
[

c−1−4m2

3ε (6℘(s) − 1
2 )2 − 5ε

6 (6℘(s) − 1
2 )3 − 2εC(ε)

]∣∣∣s=t

s=ω2

dt

144
∏3

1(℘(t) − ej)
.

The integrand in (119) is nonsingular at t = ω2 since the numerator has zero at this
point. Using this fact, we can cancel the factor (℘ − e2) in both the numerator and
denominator. Then direct calculations show that the integrand in (119) becomes

c − 1 − 4ε2

3ε
·
℘2 + (e2 − 1

4 )℘ + e2
2 − 1

4e2 + 1
48

4(℘ − e1)(℘ − e3)
(120)

−
5ε
6 (6℘(t) − 1

2 )4

144
∏3

1(℘(t) − ej)
−

2εC(ε)(6℘(t) − 1
2 )

144
∏3

1(℘(t) − ej)
.
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BREAKING OF SYMMETRICAL PERIODIC SOLUTIONS 1539

Let us focus on the first term of (120). Separating the integer part, we can rewrite it
as

c − 1 − 4ε2

3 · 4ε

[
1 − 1

4
℘ + e2 − 1

6

(℘ − e1)(℘ − e3)

]
(121)

=
c − 1 − 4ε2

3 · 4ε

[
1 − B0 + B1℘(t − ω1) + B3℘(t − ω3)

4

]
,

where

(122)

B1 = −
e3 + 1

6

(e1 − e3)2(e1 − e2)
, B3 =

e1 + 1
6

(e1 − e3)2(e2 − e3)
, and B0 = −B1e1 − B3e3.

The expressions for B1, B3, and B0 were obtained by evaluating the principal parts
of the left-hand side of (122) at t = ω1, t = ω3, and t = 0, respectively.

Using similar calculations, we obtain expressions

− 15ε

2
℘(t) +

5ε

2
− 5ε

24
[E0 + E1℘(t − ω1) + E3℘(t − ω3)] and(123)

− εC(ε)
12

[D0 + D1℘(t − ω1) + D3℘(t − ω3)]

for the second and the third terms of (120), respectively, where

(124) D1 =
1

(e1 − e3)2(e1 − e2)
, D3 = − 1

(e1 − e3)2(e2 − e3)
, D0 = −D1e1−D3e3

and

(125) E3 = −
9
4e3 + 3

2e2 + 36e3
2 − 1

3

(e1 − e3)2(e2 − e3)
, E0 = −E1e1 − E3e3.

(The constant E0 could be calculated similarly to E3, but we do not need its explicit
value.)

Substituting (121)–(125) into (119), we obtain

I1f = cε3℘′(x) {45ε[ζ(x) − ζ(ω2)] + 6G1[ζ(x − ω1) − ζ(ω1)](126)

+ 6G3[ζ(x − ω3) − ζ(ω3)] +
[
−15ε + (c − 1 − 4ε2)(2ε)−1 − 6G1e1 − 6G3e3

]
(x − ω2)

}
,

where x = εz and

(127) Gj = −Bj(c − 1 − 4ε2)
48ε

− 5ε

24
Ej −

εC(ε)
12

Dj , j = 1, 3.

3.7. The limit of iterations as ε → 0. In this subsection we assume that
conditions of Theorem 2.1 hold. In the ε = 0 case, direct calculation, based on (50)
and (49), shows that

(128) Δw1(z, 0) = −90
z4

+
12 · 6!

7

(
−z−3

∫ z

∞
t2I2[t−6]dt + z4

∫ z

∞
t−5I2[t−6]dt

)
.
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It is easy to check that Δwn, n = 2, 3, . . . , is a function, analytic in Tz1 and possessing
an asymptotic expansion in powers of z−2 there, such that

(129) Δwn(z) ∼ O(z−2(n+1)), z → ∞, | arg z| <
π

2
.

Then, according to Corollary 1.3, the solution (34) to (23) in the case ε = 0 coincides
with v+(z), i.e., v(z, 0) = v+(z).

Let w(z, ε) denote the solution (54) from Theorem 2.1. In order to prove the
continuity of w(z, ε) in ε at ε = 0, we need the following statement.

Proposition 3.12. Let g(z, ε) be analytic in z in Tz1 and continuous in ε for all
sufficiently small ε ≥ 0. Moreover, let g(z, 0) ∼ O(z−b) and Δεg(z, ε) ∼ O(z−a) in
Tz1 , the latter uniformly in ε, where a, b ≥ 0 and Δεg(z, ε) = g(z, ε) − g(z, 0). Then

(130) ΔεI2g(z, ε) = O(z−a) + O(εb),

and, if b > 5,

(131) ΔεI1g(z, ε) = O(z2−a) + O(εb−5z−3) + O(z−b+4ε2),

where both (130) and (131) are uniform in Tz1 and in small ε ≥ 0.
Proof. Since g(z, ε) is analytic in Tz1 ,

ΔεI2g(z, ε) =
1
2i

[∫ z

ω̃1−ω̃3

ei(z−ξ)Δεg(ξ, ε)dξ −
∫ z

ω̃1+2ω̃3

e−i(z−ξ)Δεg(ξ, ε)dξ

]
(132)

+
1
2i

[∫ ω̃1−ω̃3

∞
ei(z−ξ)g(ξ, 0)dξ −

∫ ω̃1+2ω̃3

∞
e−i(z−ξ)g(ξ, 0)dξ

]
.

According to Lemma 3.5, estimate (130) follows directly (132).
To prove (131), we first consider Δεq

2(z, ε). Representing ℘(x) = [℘(x) − 1
x2 ] +

1
x2 = Ψ(x) + 1

x2 , we note that Ψ(x) is analytic in the trapezoidal region T̃ (vertices
at ω1 − ω3, ω1 + 2ω3,

3
2ω3,− 1

2ω3). (The trapezoid T̃ is the image of the trapezoid T
under the scaling x = εz.) Since q2(z, 0) = 1

z2 for any z ∈ T , we have

(133) Δεq
2(z, ε) = ε2

[
Ψ(εz) − 1

12

]
= O(ε2)

uniformly in T . Similarly, using (45), (46), and (71), we obtain

(134) v1(z, ε) − v1(z, 0) = O(ε3)

and

(135) v2(z, ε) − v2(z, 0) = O(ε2z6)

uniformly in T .
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BREAKING OF SYMMETRICAL PERIODIC SOLUTIONS 1541

Now,

(136)

ΔεI1g(z, ε) = −
[
v1(z, ε)

∫ z

ω̃2

v2(ξ, ε)g(ξ, ε)dξ − v1(z, 0)
∫ z

ω̃2

v2(ξ, 0)g(ξ, 0)dξ

]

+
[
v2(z, ε)

∫ z

ω̃2

v1(ξ, ε)g(ξ, ε)dξ − v2(z, 0)
∫ z

ω̃2

v1(ξ, 0)g(ξ, 0)dξ

]

+

[
−v1(z, 0)

∫ ω̃2

∞
v2(ξ, 0)g(ξ, 0)dξ + v2(z, 0)

∫ ω̃2

∞
v1(ξ, 0)g(ξ, 0)dξ

]
.

The third term in the right-hand side of (136) is of the order O(εb−2) as ε → 0, while
the first term can be represented as

− v1(z, ε)
∫ z

ω̃2

[v2(ξ, ε)Δεg(ξ, ε) + g(ξ, 0)Δεv2(ξ, ε)] dξ(137)

− Δεv1(z, ε)
∫ z

ω̃2

v2(ξ, 0)g(ξ, 0)dξ.

Using Lemma 2.4 together with (134), (135), we obtain estimates

(138) O(z2−a) + O(ε2z4−b) + O(ε3z5−b)

for the three terms of (137) that are uniform in T and in small ε ≥ 0. The second
term in the right-hand side of (136) yields the same result. Now (131) follows from
(138) and (94).

Theorem 3.13. (1) If in condition (53) of Theorem 2.1 we require α > 1, then

(139) lim
ε→0

v(z, ε) = v+(z)

uniformly on compact subsets of Tz1.
(2) If condition (53) of Theorem 2.1 is replaced by

(140) c(ε) = 1 + εαc̃(ε) and b(ε) = εαb̃(ε),

where α = 1 and functions c̃(ε), b̃(ε) are continuous for small ε ≥ 0, then

(141) lim
ε→0

v(z, ε) = v+(z − z∗)

uniformly on compact subsets of Tz1 , where the translation z∗ depends on b̃(0), c̃(0).
Proof. (1) As a consequence of (133), we obtain that (139) is equivalent to

(142) lim
ε→0

w(z, ε) = w(z, 0)

as ε → 0 uniformly on compact subsets of Tz1 . Since w(z, ε) =
∑∞

n=1 Δwn(z, ε),
where the series converges uniformly for all sufficiently small ε ≥ 0 and all z ∈ Tz1 , it
is sufficient to prove the continuity of each Δwn(z, ε) in ε ≥ 0 in order to prove the
continuity of w(z, ε).
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1542 ALEXANDER TOVBIS

According to (36) and (94),

(143) f(z, 0) = −6!z−6 and Δεf(z, ε) = O(εαz−4).

Then, according to Proposition 3.12,

(144) ΔεI1f(z, ε) = O(εα̃z−3),

where α̃ = min{α − 1, 1}. Using

(145) Δε[h(z, ε)g(z, ε)] = h(z, ε)Δεg(z, ε) + Δεh(z, ε)g(z, 0)

together with (36) and (130), we prove that Δw1(z, ε) = w1(z, ε) also satisfies (144).
Now limε→0 Δwn(z, ε) = Δwn(z, 0), n = 2, 3, . . . , can be proved by induction.

Assume that Δε(Δwk(z, ε)) satisfies (144) for every k ∈ N, k ≤ n. We want to
prove the statement for k = n + 1. According to (94), (129), and (130), Δεg(z, ε) =
O(εα̃z−6), where g(z, ε) denotes the argument of I1 in (100). It is easy to see that
g(z, 0) = O(z−2(n+3)). Then the fact that Δε[Δwn+1(z, ε)] satisfies (144) follows from
(131). The proof of part (1) is completed.

(2) According to (126), for a given z ∈ Tz1

(146) lim
ε→0

I1f = −90
z4

+
c̃(0)

{∑
j=1,3 Bj [2ζ(ωj) − ω2ej] − 4ω2

}
4z3

,

where Bj are defined by (122). Similarly,

(147) lim
ε→0

ε7b̃(ε)v22 = −b̃(0)
3g3
2 ω2 − g2ζ(ω2)

3Δz3
.

Thus,

(148) lim
ε→0

w1(z, ε) = −90
z4

+
12z∗
z3

,

where the constant z∗, which depend on b̃(0), c̃(0), can be derived from (146), (147).
Now we can repeat the argument of part (1) to show that Δwn(z, ε) is continuous

in ε. It is pretty straightforward to show that Δwn(z, 0) = O(z−n−2) as z → ∞
and that Δwn(z, 0) has asymptotic expansion in z−1. Due to uniform convergence of
series (54) in Theorem 2.1, we proved that limε→0 v(z, ε) is a solution of the truncated
equation (24) that has asymptotic expansion in z−1 as z → ∞ with the leading terms
6
z2 + 12z∗

z3 + · · · . Then (141) follows from Corollary 1.3.

4. Nonexistence of symmetric periodic solutions to (3). Let S be an
interval of R that contains the point ω1 = ω1(0), and let y(x, ε) be a Cα-deformation
of y(x, 0) = 6℘ 1

12 ,g3
(x − ω3) − 1

2 , where |g3| < 6−3, and where ω1, ω3, and g3 are
related through (9). As mentioned earlier, it is more convenient for us to consider
y(x, ε) as a Cα-deformation of y(x, 0) = 6℘ 1

12 ,g3
(x)− 1

2 on the interval S+ω3. Assume
that y(x, ε) contains a sequence {y(x, εm)}∞1 of solutions that are symmetrical at
x = ω3(εm) (after a proper translation β(ε)) and periodic (along the horizontal line
x = ω3(εm) + R) with the period 2ω1(εm), where limm→∞ εm = 0 and ω1(εm) satisfy
(14). Here ω1(ε), ω3(ε), and g3(ε) are related through (9).

Let us show that β(εm) = O(εα
m). Indeed, since y(x, ε) is a Cα-deformation of

y(x, 0), we know that y′(ω2(ε)+β(ε), ε)−y′(ω2(ε)+β(ε), 0) = O(εα) and limε→0 β(ε) =
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0. But solutions y(x+β(εm), εm) are symmetrical at ω3(εm) and have period 2ω1(εm),
m ∈ N, so y′(ω2(εm) + β(εm), εm) = 0. Thus,

(149) y′(ω2(εm) + β(εm), 0) = O(εα
m).

Since y′(ω2, 0) = 0, then y′(ω2(εm) + β(εm), 0) = β(εm)y′′(ω2(εm) + θ(εm)β(εm), 0)
by the mean value theorem, where θ(εm) ∈ (0, 1). Combining this with (149) and
the fact that ℘′′ is separated from zero in a vicinity of ω2 (see (64)), we obtain
β(εm) = O(εα

m). Since derivatives of y(x, 0) are bounded on the line ω3 + R, it is easy
to show that y(x+β(εm), εm) are also Cα-deformations of y(x, 0). Thus, without any
loss of generality, we will consider only such deformations y(x, ε) of y(x, 0) that are
symmetrical at ω2(ε). That means that solutions v(z, ε) to the inner equation (4),
that correspond to such y(x, ε), are symmetrical at ω̃2(ε).

Let us denote by Fα, α ≥ 1, the two-parameter family of solutions constructed
in Theorem 2.1 that satisfy an additional assumption: condition (53) in Theorem 2.1
is replaced by (140), where α ≥ 1. The proof of Theorem 1.1 is divided into the
following two steps: (1) if v(z, ε) is the inner solution, symmetrical at z = ω̃2(ε), that
corresponds to a Cα-deformation y(x, ε) and if ω1(ε) satisfies (14), then v(z, ε) ∈ Fα;
(2) if ω1(ε) satisfies (14), then there is no symmetrical and 2ω1(ε) periodic solution
v(z, ε) ∈ Fα. Here and below we use ω̃j to denote ω̃j(ε), j = 1, 2, 3, wherever such
notation is clear. Additionally, we prove that the BVP

2v′′′v′ − v′′2 + (1 − ε2)v′2 − ε2v2 − 2
3
v3 = ε6C(ε),(150)

v′(ω̃3, ε) = v′(ω̃2, ε) = v′′′(ω̃2, ε) = 0

has a unique solution in Fα.
If y(x, ε) is a Cα-deformation of solution (16), then the constant of motion C(ε)

of y(x, ε), given by (11), satisfies (13). Then the corresponding inner solution v(z, ε)
satisfies (150) and the two latter boundary conditions of (150). It is easy to see that
v(z, ε) is periodic with the period 2ω1(ε) and symmetrical if and only if, additionally,
v′(ω̃3, ε) = v′′′(ω̃3, ε) = 0. In other words, a solution v(z, ε) to the BVP (150) is
symmetric and periodic with the period 2ω1(ε) if and only if v′′′(ω̃3, ε) = 0.

4.1. Solution of BVP (150). Here we prove existence and uniqueness of solu-
tion to BVP (150) within the family Fα using the implicit function theorem.

If v(z, ε) is a solution to the BVP (150), then the integral of motion (150) evalu-
ated at the points z = ω̃2, z = ω̃3 becomes

(151) ε2v2(ω̃j) +
2
3
v3(ω̃j) + v′′2(ω̃j) + ε6C(ε) = 0,

where j = 2, 3. We want to show that for sufficiently small ε there exists a unique
v ∈ Fα satisfying (151). To this end, we can restrict our attention on the triangle
P ⊂ Tz1, which was introduced in section 3.4.

According to (34), (49),

(152) v = 6q2 + ṽ = 6q2 + 6εαc̃q2 + I2

[
ε6+αb̃v22 + I1f(q) + w̃

]
,

where

(153) w̃ = −12cI1q
2I2f(q) +

∞∑
n=2

Δwn.
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1544 ALEXANDER TOVBIS

It is easy to see that v(z, ε) = O(ε2) uniformly in P as ε → 0. According to
(106), (140), and Remark 3.8, we have w(z, ε) = O(ε3+α̃) uniformly in P , where
α̃ = min{1, α − 1} as ε → 0. Then, according to (152) and Lemma 2.4,

(154) ṽ ∼ O(ε3+α̃) and w̃ ∼ O(ε4+2α̃)

uniformly in P as ε → 0. Now combining (154) and (39), we see that

(155) w′′ = ε2w + [I2w]2 + 12cq2I2w + f(q) ∼ O(ε5+α̃) as ε → 0,

uniformly on P . Then

(156) w′(z, ε) =
∫ z

ω̃2

w′′(t, ε)dt = O(ε4+α̃)

uniformly in z ∈ P . To estimate v′′ in (151) we need the following statement.
Proposition 4.1. Let g(z, ε) be a differentiable in z ∈ Tz1 function. If there

exists a constant M > 0 such that for all small ε > 0 both |g(z, ε)| and |g′(z, ε)| are
bounded by M in Tz1 , then there exists some δ0 > 0 such that

(157) I2g(z, ε) = g(z, ε)− I2g
′′(z, ε) + O

(
e−

δ0
ε ρ(z)

)
as ε → 0 uniformly in P , where ρ(z) = min{|z − (ω̃1 + 3ω̃3)|, |z − (ω̃1 − ω̃3)|}.

Proof. Integrating by parts I2g(z, ε), expressed by (76) and (83), twice, we obtain

I2g(z, ε) = g(z, ε) − I2g
′′(z, ε) − 1

2
ei(z−ξ) [g(ξ, ε) − ig′(ξ, ε)]

∣∣∣
ξ=ω̃1−ω̃3

(158)

− 1
2

e−i(z−ξ) [g(ξ, ε) + ig′(ξ, ε)]
∣∣∣
ξ=ω̃1+3ω̃3

.

The last two terms of (158) are exponentially small in ε−1 according to the construc-
tion of Tz1 .

Under the assumptions of Proposition 4.1,

(159) D2I2g = g − I2g = I2D
2g + O

(
e−

δ0
ε ρ(z)

)
.

According to (156), Proposition 4.1 is applicable for g(z, ε) = w(z, ε). Thus,

(160) v′′ = 6c(ε)(q2)′′ + I2w
′′ = O(ε4) as ε → 0,

uniformly on [ω̃3, ω̃2].
Note that y = 6q2

ε2 is the solution of the unperturbed equation (2) with the
constant of motion J(ε); see (37). Thus,

(161)
(

6q2

ε2

)2

+
2
3

(
6q2

ε2

)3

+ J(ε) = 0

at x = εz = ωj , j = 1, 2, 3. Notice that (9) and (14) imply that

(162) J(ε) = C + εαJ̃(ε),
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where J̃(ε) is a continuous function. Now substituting v = 6q2+ ṽ into (151), dividing
both sides by ε7+α̃, and taking into account (161), we obtain

2
(

6q2

ε2

)
v̆ + ε1+α̃v̆2 + 2

(
6q2

ε2

)2

v̆ + 2ε1+α̃

(
6q2

ε2

)
v̆2(163)

+
2
3
ε2+2α̃v̆3 +

v′′2

ε7+α̃
+ C̃(ε) − J̃(ε) = 0

at z = ω̃2, ω̃3, where

(164) v̆(z, ε) =
ṽ(z, ε)
ε3+α̃

= c̃(ε)
(

6q2

ε2

)
+ ε4b̃(ε)I2v22 + I2

I1f(q) + w̃

ε3+α̃
.

Equation (163) evaluated at the points z = ω̃2, ω̃3 forms a system that we denote by

(165) F (ε, b̃, c̃) = 0.

Lemma 4.2. There exist some ε1 ∈ (0, ε0] and functions b̃(ε), c̃(ε), continuous on
[0, ε1], such that the system (165) holds identically on [0, ε1]. Moreover, the solution
b̃(ε), c̃(ε) to (165) is unique.

Proof. The proof is based on the implicit function theorem (see, for example, [MB,
p. 122]). According to this theorem, we have to show that (a) F (0, b̃(0), c̃(0)) = 0 for
some b̃(0), c̃(0); (b) matrix

(166) Col
(

∂F

∂b̃
,
∂F

∂c̃

)∣∣∣∣
ε=0

is not singular; and (c) F and ∂F
∂c̃ , ∂F

∂b̃
are continuous in all variables in a vicinity of

(0, b̃(0), c̃(0)).
According to (156), we can apply Proposition 4.1 to v̆(z, ε) − c̃(ε)6q2

ε2 = I2w
ε3+α̃ .

Then

(167) lim
ε→0

v̆(z, ε) = c̃(0)
(

6℘(εz) − 1
2

)
+ b̃(0) lim

ε→0
ε4v22(z, ε)+ lim

ε→0

I1f(q)
ε3+α̃

+ lim
ε→0

w̃

ε3+α̃

uniformly on [ω̃3, ω̃2]. Due to Remark 3.8, the last limit in (167) is zero.
Using (63), (69), (47), and the fact that v1(ω̃j) = 0, we have

(168) lim
ε→0

ε4v22(ω̃j , ε) = − 1
12

1
(ej − ei)(ej − ek)

.

Note that I1f(q)(ω̃2) = 0. To calculate limε→0 ε−3−α̃I1f(q)(ω̃3), we notice that

℘′(x − ωj) =
(
6e2

j −
g2

2

)
(x − ωj) + O((x − ωj)2)(169)

= 2(ei − ej)(ek − ej)(x − ωj) + O((x − ωj)2)

as x → ωj, j = 1, 2, 3. It follows then from (126) that

ε−3I1f(q)(ω3, ε) = 12c(ε)(e1 − e3)(e2 − e3)G3(170)

=
c(ε)

e1 − e3

{
−c(ε) − 1 − 4ε2

4ε

(
e1 +

1
6

)
− 5ε

2

(
9
4
e3 +

3
2
e2 + 36e3

2 −
1
3

)
+ εC(ε)

}
.
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Using (126), we obtain

lim
ε→0

ε−3−α̃I1f(q)(ω̃3 = −
c̃(ε)(e1 + 1

6 )
4(e1 − e3)

(171)

− δα̃,1

e1 + 1
6 + 5

2

(
9
4e3 + 3

2e2 + 36e3
2 − 1

3

)
+ 36g3 + 1

6

e1 − e3

at z = ω̃3, where δα̃,1 = 1 if α̃ = 1 and δα̃,1 = 0 otherwise. Combining (167)–(171),
we obtain

lim
ε→0

v̆(ω̃2) =
(

6e2 −
1
2

)
c̃(0) +

b̃(0)
12(e1 − e2)(e2 − e3)

,(172)

lim
ε→0

v̆(ω̃3) =
[(

6e3 −
1
2

)
−

e1 + 1
6

4(e1 − e3)

]
c̃(0) − b̃(0)

12(e1 − e3)(e2 − e3)
− δα̃,1D̃,

where D̃ denotes the last fraction in (171).
According to (154) and (160), in the limit ε → 0 equations (163) become

(173) 2
[
36℘2(ωj) −

1
4

]
lim
ε→0

v̆(ω̃j) + C̃(0) − J̃(0) = 0,

where j = 2, 3. Clearly, (172)–(173) form a linear system of equations for the un-
knowns b̃(0), c̃(0). Note that the first factor in (173) is different from zero since,
otherwise, according to (64), we would have either C = 0 or C = − 1

3 , which contra-
dicts our assumption C ∈ (− 1

3 , 0). After some algebra, we calculate the determinant
of the matrix of linear system (172)–(173) as

(174)∣∣∣∣∣
6e2 − 1

2
1

12(e1−e2)(e2−e3)

6e3 − 1
2 − e1+ 1

6
4(e1−e3)

− 1
12(e1−e3)(e2−e3)

∣∣∣∣∣ =
1

3
√

Δ

∣∣∣∣∣
(6e2 − 1

2 )(e1 − e2) 1

(6e3 − 1
2 )(e1 − e3) − e1+

1
6

4 −1

∣∣∣∣∣
=

7(e1 + 1
6 )

12
√

Δ
,

where Δ, defined by (67), is different from zero. This determinant is different from
zero since e1 > 0. Thus, we have established parts (a) and (b) of the lemma; i.e.,
we have established that F (0, b̃(0), c̃(0)) = 0 at z = ω̃2, ω̃3 for some b̃(0), c̃(0) and
that matrix (166) is nonsingular. Continuity of F follows from Theorem 3.13 and
the fact that iterations Δwn(z, ε) in the solution (54) are polynomials in b̃(0), c̃(0) of
degree not exceeding n. Estimates of Theorem 2.1 can be readily adjusted to prove
convergence of the series

∑∞
n=1

∂Δwn(z,ε)
∂c̃ and

∑∞
n=1

∂Δwn(z,ε)

∂b̃
at z = ω̃2, z = ω̃3.

Part (c) and the whole proof are completed.
Theorem 4.3. If C(ε) and ω1(ε) satisfy (13) and (14), respectively, where α ≥ 1,

then the BVP (150) has a unique solution in Fα.
Proof. According to Lemma 4.2, it is sufficient to show that (151) at z = ω̃3 and

the rescaled integral of motion (150) imply v′(ω̃3) = 0. Indeed, addition of these two
equations yields

(175) v′(ω̃3)[2v′′′(ω̃3) + (1 − ε2)v′(ω̃3)] = 0.
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That means that v′(ω̃3) = 0 or 2v′′′(ω̃3) + (1 − ε2)v′(ω̃3) = 0. According to (34),
and since operators D and D2 + 1 commute, this implies u′(ω̃3) = 0 or 2w′(ω̃3) =
(1 + ε2)u′(ω̃3). If u′(ω̃3) = 0, then v′(ω̃3) = 0, and the proof is completed. The
assumption u′(ω̃3) �= 0 leads to a contradiction. Indeed, on one hand, we have

(176) u′(ω̃3) =
2

1 + ε2
w′(ω̃3),

whereas, on the other hand, according to Proposition 4.1,

(177) u′(ω̃3) = I2w
′|z=ω̃3 = w′(ω̃3) − I2w

′′′|z=ω̃3 + O
(
e−

δ0
ε

)
.

Proposition 4.1 is applicable to I2w
′ according to (39) and (156). Moreover, differ-

entiating (39), we obtain w′′′ = O(ε6+α̃) uniformly on [ω̃3, ω̃2]. Thus, (177) contra-
dicts (176).

4.2. Proof of Theorem 1.1.
Proof. As mentioned in the beginning of section 4, our proof consists of two

steps. Step (1) is to show that the inner solution v(z, ε) = ε2y(εz, ε), corresponding
to a Cα-deformation y(x, ε) of the periodic solution y(x, 0), is an Fα solution. Let us
consider first the case n = 1.

As discussed above, we can assume without any loss of generality that v(z, εm) is
symmetrical with respect to z = ω̃3(εm) and z = ω̃2(εm), where g3(εm) and ω3(εm)
are defined by ω1(εm) through (9). Then v′(ω̃2(εm), εm) = v′′′(ω̃2(εm), εm) = 0,
so that v(z, εm) is defined by initial conditions v(ω̃2(εm), εm) and v′′(ω̃2(εm), εm). In
order to show that there is a solution in Fα with the abovementioned initial conditions
at z = ω̃2(εm), we first establish that

v(ω̃2(en), εm) − ε2
m

(
6e2(0) − 1

2

)
= ε2+α

m ṽ(εm),(178)

v′′(ω̃2(en), εm) − ε4
m

(
3e2

2(0) − 1
48

)
= ε4+α

m ṽ′′(εm),

where ṽ(ε), ṽ′′(ε) are continuous functions. Indeed, according to our assumptions and
taking into account (14),

y(ω2(εm), εm) − y(ω2, 0)(179)

= [y(ω2(εm), εm) − y(ω2(εm), 0)] + [y(ω2(εm), 0) − y(ω2, 0)]

= εα
mỹ(ω2(εm), εm) +

1
2
εα

mτ2(εm)℘′′(ω2(0) + θ(ω1(εm) − ω1)),

where θ ∈ (0, 1). Here we used the mean value theorem and the fact that ℘′(ω2(0)) =
0. A similar estimate holds for y′′(ω2(εm), εm) − y′′(ω2, 0). Then, (178) follows from
(179).
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According to (164), equations (178) in the leading order can be written as

c̃(ε)
(

6q2

ε2

)
+ ε4b̃(ε)I2v22 + I2

I1f(q) + w̃

ε3+α̃
(180)

= ṽ(ε) − 1
2
τ2(ε)℘′′(ω2(0) + θ(ω1(ε) − ω1(0))),

c̃(ε)D2
z

(
6q2

ε2

)
+ ε4b̃(ε)D2

zI2v22 + D2
zI2

I1f(q) + w̃

ε3+α̃

= ṽ′′(ε) − 3
2
(e2(ε) + e2(0))τ2(ε)℘′′(ω2(0) + θ(ω1(ε) − ω1(0))).

According to (167) and Proposition 4.1, in the limit ε → 0 equations (180) become

c̃(0) lim
ε→0

6q2

ε2
+ b̃(0) lim

ε→0
ε4v22(ω̃2(ε), ε) = ṽ(0) − 1

2
τ2℘′′(ω2(0)),(181)

c̃(0) lim
ε→0

[
6q2

ε2
+

36q4

ε4

]
+ b̃(0) lim

ε→0

{
ε4v22(ω̃2(ε), ε)

[
1 +

12q2

ε2

]}
= ṽ′′(0)

− 3e2(0)τ2(0)℘′′(ω2(0)).

Here we used the fact that 6q2

ε2 and v22 satisfy differential equations (2) and (44),
respectively. Calculation of the determinant of the latter system yields

lim
ε→0

∣∣∣∣∣∣
6q2

ε2 ε4v22

6q2

ε2 + 36q4

ε4

[
1 + 12q2

ε2

]
ε4v22

∣∣∣∣∣∣ = lim
ε→0

∣∣∣∣∣
6q2

ε2 ε4v22

36q4

ε4 12q2ε2v22

∣∣∣∣∣(182)

= 36 lim
ε→0

q4v22 =
3(e2(0) − 1

2 )2

(e1(0) − e2(0))(e2(0) − e3(0))
�= 0.

Following the arguments of Lemma 4.2, we can now use the implicit function theorem
to show that the system (180) has a unique solution c̃(ε), b̃(ε), where c̃(ε), b̃(ε) are
continuous functions. Thus, v(z, ε) ∈ Fα. To prove step (1) for the case for general n
we simply have to consider the region P from Remark 3.10 instead of the triangle P
and the point nω̃1(ε) + ω̃3(ε) instead of ω̃2(ε).

To prove step (2), we assume that there is a family of solutions v(z, εm) ⊂ Fα to
(4), where ω1(ε) satisfies (14), that is symmetrical at ω̃3(εm). However, according to
Theorem 3.13,

(183) lim
m→∞ v(z, εm) = v+(z)

uniformly in z on any closed segment of the imaginary axis that belongs to Tz1 . Due
to the symmetry with respect to the imaginary axis, we also have

(184) lim
m→∞ v(z, εm) = v−(z)

uniformly in z on the same segment of the imaginary axis. But, according to Corol-
lary 1.3, v+(z) �≡ v−(z). The obtained contradiction proves nonexistence of a family
of symmetric periodic solutions v(z, εm) ⊂ Fα, α > 1, where εm → 0. The same
result, according to Theorem 3.13, part (2), holds for the case α = 1.
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