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An intensive sharp photoluminescence at 3.3 eV is observed from single-crystal 3C-SiC nanorods.
Structural characterization reveals that the nanorods contain a fairly large amount of threefold
stacking faults. We tentatively attribute the emission to these stalking faults, which structurally
resemble 6H-SiC nano-layers of 1.5 nm embedded in a 3C-SiC matrix. The emission mechanism is
discussed in terms of spontaneous polarization at the stacking faults. © 2006 American Institute of

Physics. [DOI: 10.1063/1.2358313]

SiC is known for its wide-band-gap electronic structure
as well as excellent thermal and mechanical properties, thus
is potentially useful for applications in high-temperature
electronics and short-wavelength optics.1 SiC has been the
leading material for high-temperature, high-power and high-
frequency electronic devices due to advances in the crystal
growth and doping ability for both n and p types.2 However,
applications of SiC in optical devices are limited by its indi-
rect band gap nature, which results in very low light emis-
sion efﬁciency.3 Increasing the light-emission efficiency for
SiC has received considerable interest in the last two de-
cades. Significant improvements have been made by using
either porous or nano-sized systems.“f7 In these systems, the
enhancements in light emission are mainly attributed to ei-
ther surface defects or quantum confinement effects.

Improved luminescence has also been observed from
SiC quantum well (QW) structures.®” The polytypism of SiC
leads to a unique type of structure-only QW structures in-
volving thin layers of cubic 3C-SiC (which has the smallest
energy gap, ~2.4 eV) embedded in higher energy gap SiC
polytypes, such as 4H- (energy gap=3.3 eV) and 6H-SiC
(energy gap=3.0 eV)."” Because of the spontaneous polar-
ization difference between cubic and hexagonal SiC, internal
electric fields are expected in the QW structures, which leads
to the redshift of the luminescence peaks.

In this letter we report an intensive ultraviolet (UV) pho-
toluminescence (PL) from threefold stacking faults in single-
crystal 3C-SiC nanorods, which structurally resemble 6H-
SiC layers of 1.5 nm thickness embedded in a 3C-SiC ma-
trix. In contrast to the aforementioned QW structures, quan-
tum barrier structures should be formed in the current case
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since 6H-SiC has a higher energy gap than 3C-SiC.

The SiC nanorods used in this study were synthesized
via catalyst-assistant crystallization of amorphous silicon
carbonitride (a-SiCN)."" In brief, a polysilazane precursor
was first decomposed to a-SiCN powder at 1000 °C. The
a-SiCN powder was then reacted with a catalyst (FeCl, in
this study) to form Si—C—Fe liquid alloy droplets at tempera-
tures higher than the tertiary eutectic point of the system.
The nanorods were precipitated and grew from the liquid
droplets at 1700 °C via a solid-liquid-solid mechanism.'" All
heat treatments were performed in an ultrapure N, atmo-
sphere. The obtained nanorods are 80—200 nm in diameter
and up to a few micrometers in length, and grown along
[111] direction (Fig. 1).

The room-temperature steady-state PL spectrum of the
nanorods was measured using a UV lamb micro-Raman

FIG. 1. (a) Scanning electron microscopy image showing the morphology of
the SiC nanorods. (b) TEM image of an individual nanorod. The inset is the
corresponding electron diffraction pattern, showing that the nanorod grows
along [111] direction.

© 2006 American Institute of Physics
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FIG. 2. Room-temperature steady-state PL spectrum of the SiC nanorods.

spectrometer with a He—Cd laser of 325 nm wavelength and
5 mW output power as the excitation light source. The spec-
trum (Fig. 2) reveals two emission peaks: a strong, sharp UV
emission at 378 nm (3.3 eV) and a broad, green emission
ranging from 450 to 600 nm. The intensity of the UV emis-
sion is more than five times higher than that of the green
emission. While the broad emission between 450 and
600 nm might be attributed to 3C-SiC,""? the strong emis-
sion at 3.3 eV, which is significantly higher than the band
gap of crystalline 3C-SiC, is difficult to explain and has
never been observed in 3C-SiC previously. The UV emission
cannot be attributed to structural defects in SiC, such as dis-
locations, carbon di-interstitial, di-vacancies or isolated va-
cancies at the Si site, because the PL signals resulting from
these defects are in the unique range of 1.9-2.3 eV.">! The
UV emission is also different from that observed in porous or
nano-sized 3C-SiC, where PL signals associated with either
quantum confinement or surface defects are generally below
28eV.4 % In addition, the dimensions of the nanorods are
too large to have significant quantum confinement effects. A
3.26 eV PL peak has been frequently observed in crystalline
silicon dioxide films and was attributed to oxygen
vacancies.'> " However, this cannot explain the current re-
sults since no such oxide films were observed on the surface
of the nanorods. The absence of an oxide film is due to the
fact that the nanorods were synthesized in an ultrapure N,
environment.

In order to understand the origin of the UV emission, the
structure of the SiC nanorods was characterized using high-
resolution transmission electron microscopy (HRTEM). Fig-
ure 3(a) is a typical HRTEM image of the nanorods, showing
that the nanorods contain a fairly high concentration of
stacking faults, which are perpendicular to [111], growth di-
rection [Fig. 1(b)]. This result is consistent with x-ray dif-
fraction (XRD) pattern that revealed a large amount of stack-
ing faults in the SiC nanorods [Fig. 3(b)]. Detailed
observation at higher magnification [inset in Fig. 3(a)] re-
veals that the stacking faults are threefold in nature (three
immediately adjacent single stacking faults). It should be
noted that the region around the threefold stacking faults
resembles the structure of 6H-SiC [Fig. 3(c)]. Therefore, the
structure of the nanorods can be viewed as a 3C-SiC matrix
containing 6 H-SiC-like nano-scaled layers. According to this
model, the thickness of these 6H-SiC-like layers should be
about the length of the ¢ axis of 6H-SiC unit cell, which is
~1.5 nm. Such thin layers cannot be detected by XRD since
the formation of XRD peaks requires at least several unit
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FIG. 3. (a) Raman spectrum of the nanorods. The red line is the experimen-
tal result and the blue line is the curve fit by addition of the pink lines. (b)
XRD pattern showing that the nanorods are pure 3C-SiC containing stack-
ing faults. (c) HRTEM image showing the stacking faults in the nanorods.
The inset is the enlargement of the selected area revealing the threefold
stacking fault nature. (d) Schematic model of perfect 3C-SiC and 3C-SiC
containing a threefold stacking fault; the region around the stacking fault
(between two dash lines) shows the structure resembling that of 6H-SiC.

cells. Thus XRD pattern showed only 3C-SiC peaks [Fig.
3(b)].

Based on the above discussion, we tentatively attribute
the intensive light emission at 3.3 eV to the unique structure
of the SiC nanorods. According to Qteish, Heine, and Needs,
in SiC a spontaneous polarization takes place around each
hexagonal turn,'® which is quite strongly localized at the
turn. Such spontaneous polarization leads to electric dipole
moments being built in throughout the 6H-SiC nano-layers.
These electric dipoles can cause opposite charges on both
sides of the nano—layers.19 These localized charges can lead
to potential barriers in the conduction band at the boundaries
of the 6H-SiC nano-layers.18 The barriers will constrict elec-
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FIG. 4. Room-temperature time evolution of the luminescence intensity of
the emission at 3.3 eV.

trons within 6H-SiC layer and thus electronically isolate the
layers from the 3C-SiC matrix. Consequently, the 6H-SiC
layers may act as free-standard nano-sized sheets of 1.5 nm
in thickness, which should lead to strong blueshifted light
emission (3.3 eV is higher than the band gap of bulk 6H
-SiC) due to a quantum confinement effect. It is instructive to
note that the position and shape of the 3.3 eV emission ob-
served from the nanorods closely resembles that of the PL
peak theoretically predicted for 1.5 nm 6H-SiC clusters.”’

Further characterization of the PL behavior of the nano-
rods was carried out by measuring their room-temperature
time-resolved PL spectrum using a fluorescence lifetime
spectrometer with a resolution of 100 ps. Figure 4 shows the
time evolution of the luminescence intensity of the emission
at 3.3 eV. The best fit to the curve was obtained using a
biexponential decay process. The biexponential decay im-
plies that multi levels may be involved in the radiative re-
combination. Two decay time constants of 1.0 and 6.5 ns
were obtained. It should be noted that the decay times of
around 1 ns are at least two orders of magnitude shorter than
that for bulk SiC.*' Such short decay times were typically
observed for the emission from nano-structured indirect-
band-gap materials.”**

In summary, we report an intensive sharp UV emission
from single-crystal 3C-SiC nanorods grown via catalyst-
assisted pyrolysis of a polymeric precursor. We attribute this

Appl. Phys. Lett. 89, 143101 (2006)

unique emission to the threefold stacking faults in the
3C-SiC matrix. The nanorods, which could possibly be as-
sembled into nanostructures capable of emitting strong ultra-
violet light, would be useful for short wavelength nanode-
vices.
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