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We introduce a fresh class of photonic band-gap materials, curvilinear-lattice photonic crystals,
whose distinctive feature is that their individual scatterers are arranged in a curvilinear lattice. We
show that adhering to some restrictions in the acceptable lattice transformations, one can achieve
omnidirectional photonic band gaps for an entire subclass of such structures. We demonstrate,
designing an efficient arbitrary-angle waveguide bend, that curvilinear-lattice photonic crystals can
be employed for creation of original types of nanophotonic devices. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1760222#

One of the most interesting and important achievements
of modern optics is the discovery that the density of photonic
states in some artificially manufactured optical materials can
be controlled in a dramatic fashion—right up to the complete
vanishing of photonic states in certain intervals of wave-
lengths, the so-called photonic band gaps.1 Such materials
are widely known as photonic band gap~PBG! materials or
photonic crystals~PCs!. The last term reflects the fact that
commonly studied designs of PBG materials are based on
periodic modulation of the refractive index in two or three
spatial directions. Investigations of perfectly periodic struc-
tures are historically favored by the analogy to the opening
of electronic band gaps in atomic and molecular crystals.
Due to the periodicity of these structures, the spectrum of
electronic states is organized into an infinite series of elec-
tronic bands, with a possibility to open gaps between them.
The same holds for the spectra of photonic modes inside
materials with sufficiently high-contrast periodic modulation
of the refractive index.

For a long time, structural periodicity has been consid-
ered as a vital force for opening various types of band gaps.
However, after the experimental discovery of electronic qua-
sicrystals in 1984,2 it has been ascertained that the dominant
role in opening band gaps is played by the short-range peri-
odicity. Recent investigations of photonic quasicrystals

~PQCs!3–8 have substantiated the validity of this assertion in
the case of PBG materials.

Based on this analogy with atomic and molecular crys-
tals and quasicrystals, researchers have to date limited their
study to only three basic ordering types of photonic struc-
tures: crystalline, quasicrystalline, and amorphous~assuming
in the latter case the presence of some level of disorder!.
However, in the case ofartificially manufactured PBG ma-
terials there is no inherent limitation for these restrictions. As
a result, other sophisticated forms of ordering may also lead
to PBGs and the resulting structures may exhibit advantages
over existing PC and PQC structures. A profound theoretical
discussion, employing the scaling theories of light localiza-
tion to discuss the corresponding different coherence length
scales has been given by John.9

In this letter we introduce a fresh subclass of PBG ma-
terials, which we name curvilinear-lattice photonic crystals.
Their distinctive feature is that individual scatterers are ar-
ranged in a curvilinear lattice. As an illustration, we explic-
itly discuss the example of a two-dimensional photonic crys-
tal formed by a system of silicon cylinders~with refractive
index n53.4! situated in an air background. For the sake of
simplicity, we assume hereafter that all cylinders have the
same radiusr 50.16a, wherea is an average distance be-
tween nearest-neighbor cylinders. The standard arrangements
of cylinders that are studied with respect to the opening of
photonic band gaps, include square lattices@shown in Fig.
1~a!#, triangular lattices@shown in Fig. 1~b!#, and various
types of quasicrystalline lattices.3–8 In all cases, there existsa!Electronic mail: kurt.hinger1@jku.at
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a large complete photonic band gap forE-polarized light
~i.e., with the electric field parallel to cylinders!. It is very
intriguing to note that the spectral position of the PBG for
our choice of cylinders is almost unchanged for different
types of lattices: It lies in the wavelength interval 1.95a,l
,3.15a for the triangular lattice and in the interval 2.15a
,l,3.1a for the square lattice.

This fact brings up the question: Which other stretching
and shearing lattice transformations keep the band gap in the
same frequency interval? To clarify this issue, we present in
Fig. 2 the band-gap map for various uniform lattice transfor-
mations in the systems of periodically arranged dielectric
rods. We consider shearing transformation which vary the
angle f between the lattice vectorsa1 and a2 within the
interval 60°,f,90°, and the stretching transformations
leading to variations in the lattice constanta that do not
exceed about 15%. This map demonstrates that the funda-
mental band gap forE-polarized light is retained in the in-
terval of wavelengths 2.15a&l&3.1a for all lattice transfor-
mations considered. Therefore, one can expect that any
smooth transformationswhich keep the distance between
nearest-neighbor cylinders close toa should retain the pho-

tonic band gap in the entire curvilinear-lattice PC.
One example of such an ‘‘allowed’’ curvilinear-lattice

PC structure is shown in Fig. 1~c!. Here, the cylinders are
positioned at a sequence of circles with radii varying froma
to 6a, keeping the radial and tangential distances between
cylinders close toa. The rods in the third circle are carved
out, creating a waveguide with an arbitrary-angle waveguide
bend. Due to the construction algorithm, each local sur-
rounding in Fig. 1~c! is very close to one of the lattices
considered in Fig. 2. A careful inspection of Fig. 1~c! reveils
several smooth transitions between regions of an almost-
square lattice~e.g., those indicated by full arrows! and re-
gions of an almost-triangular lattice~e.g., those indicated by
dashed arrows!.

However, one can harbor natural doubts as to whether
the ‘‘smooth’’ transitions between square and hexagonal lat-
tices in Fig. 1~c! are really smooth for accepting the argu-
mentation based on the analysis of Fig. 2. A crude estimate
for this moot point is provided by the localization
criterion:1,9 The penetration depthlenv of the electromag-
netic field into the photonic crystal can be calculated within
a parabolic approximation of the bands near the PBG as
lenv5ua/(vedge2v)u1/2. Here, v5(2pc/l) is the fre-
quency of light inside a photonic band gap whose band edge
is at vedge, and a5(]2v/]k2)ukedge

is the inverse effective
photonic mass at the band edge with wavevectorkedge

5k(vedge). Finally, c is the speed of light in vacuum. The
calculations for the square and triangular lattices predict that
the field penetration depth at the center of the band gap is
less than 0.75a. Therefore, although the lattice transitions ex-
ploited in Fig. 1~c! occupy only about two lattice constants,
they may be considered as sufficiently smooth.

Of course, such semiquantitative arguments need to be
substantiated by a quantitative assessment for the quality of
PBGs inside nonperiodic structures. This assessment can be
most naturally provided by calculating the local density of
states~LDOS!, r~r ,v!, which has been recently employed, in
particular, for studies of complete PBGs in PQCs.8 In Fig. 3
we present LDOS calculations for our curvilinear-lattice
waveguiding structure that are based on the numerically ex-

FIG. 1. Top views of photonic structures with different arrangements of
dielectric cylinders:~a! square-lattice structure;~b! triangular-lattice struc-
ture; ~c! curvilinear-lattice structure with an embedded waveguide which
allows one to construct anarbitrary-angle waveguide bend. Due to the
construction principle, the local symmetry of the curvilinear lattice trans-
forms between an almost-square~indicated by full arrows! and an almost-
triangular~indicated by dashed arrows! lattices.

FIG. 2. Photonic band-gap map forE-polarized light in a perfectly periodic
PC made of dielectric rods~with radius r 50.16a and refractive index
n53.4! under various uniform lattice transformations, calculated byBAND-

SOLVE ~Ref. 12!. The fundamental band gap is retained in the wavelength
interval 2.15a&l&3.1a for all lattice transformations presented here.

FIG. 3. ~a! Local density of states~LDOS! calculated forl52.5a for the
curvilinear-lattice structure with embedded waveguide shown in Fig. 1~c!;
~b! LDOS profile along the line marked in~a! by the dashed white line.
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act multiple multipole expansion technique.10 The LDOS is
indeed very small everywhere inside the curvilinear-lattice
PC except for its waveguiding region.

One of the most attractive applications of PCs is their
usage for the creation of high-density integrated photonic
circuits. Consequently, it is very important to verify that the
curvilinear-lattice structures suggested in this letter can be
used for an efficient guidance of light. In Fig. 4 we plot the
results of finite difference time domain~FDTD!11 calcula-
tions for the transmission spectrum ofE-polarized light
through the curvilinear waveguiding structure shown in Fig.
1~c!. These simulations have been performed using theFULL-

WAVE commercial software12 with spatial and temporal dis-
cretization steps of 0.01a and 0.007a/c, respectively. In the
inset to Fig. 4, we plot the electric field distribution at wave-
lengthl52.5a, for which the power transmission is almost
perfect. As we see, in spite of the absence of a long-range
periodicity in this structure, it guides anE-polarized light
very efficiently: the transmission coefficient is close to unity
over a very broad interval of wavelengths, 2.1a&l&3a.

In conclusion, we have introduced a fresh subclass of
PBG materials—curvilinear-lattice photonic crystals. We
have shown that when adhering to some restrictions in the
lattice transformations, one can achieve omnidirectional
PBGs within these structures. The corresponding restrictions
can be derived from the analysis of the band-gap maps for
stretching and shearing transformations~similar to what we
presented in Fig. 2! together with an analysis of the corre-
sponding localization lengths. Obviously, these restrictions
are different for different PBGs and different geometries of
the individual scatterers, and extensive further investigations
are still required to determine the most successful parameters
for practical applications.

From our point of view, the most interesting applications

of the curvilinear-lattice PCs are related to the creation of
ultracompact integrated PC circuits. Until now such circuits
are usually designed by embedding into PCs various types of
defects, while leaving the local lattice symmetry untouched.
This approach has been successfully applied to designing of
many simple PC devices such as waveguide bends, splitters,
and so forth. However, to be successful this approach often
involves embedding additional defects with very small
radii13 which are difficult to fabricate with acceptable accu-
racy. In contrast, our approach of using curvilinear transfor-
mations of a PC lattice provides designers with an additional
degree of freedom which can be exploited in numerous
ways, e.g., for avoiding the usage of small-size defects.
Moreover, as we demonstrate in Fig. 4 by the example of an
efficient arbitrary-angle waveguide bend, the curvilinear-
lattice PCs can also be employed for creation of original
types of nanophotonic devices. In addition to arbitrary-angle
waveguide bends and splitters, they can include various
types of topological defects, arbitrary-radius circular resona-
tors, whispering gallery mode devices, etc.
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FIG. 4. Transmission spectrum for the waveguide bend embedded into the
curvilinear-lattice photonic crystal as it is shown in Fig. 1~c!. In the inset we
plot the distribution of the electric field atl52.5a.
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