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All-optical multiphoton absorption figures of merit: Polydiacetylene poly
(bis para-toluene sulfonate ) of 2,4-hexadiyne-1,6 diol

Fumiyo Yoshino,a) Sergey Polyakov,b) and George I. Stegeman
School of Optics/CREOL/FPCE, University of Central Florida, 4000 Central Florida Boulevard,
Orlando, Florida 32816-2700

(Received 5 March 2004; accepted 5 May 2004; published online 17 June 2004)

The all-optical switching figures of merit are reported for the single crystal PTS(polydiacetylene
poly (bis para-toluene sulfonate) of 2,4-hexadiyne-1,6 diol). Included are the effects of the
absorption mechanisms from linear up to four-photon over the wavelength range 1.2–2.2mm. ©
2004 American Institute of Physics. [DOI: 10.1063/1.1767276]

One of the fundamental limitations to the implementa-
tion of passive all-optical switching devices is absorption,
both linear and multiphoton. If absorption is too high at the
device operating wavelength and input intensity, it becomes
impossible to accumulate sufficient nonlinear phase shift to
operate an all-optical device. This problem has been ana-
lyzed for linear, two and three-photon absorption, and formu-
las for the respective figures of meritsFOMd exist.1–3 Unfor-
tunately, there are very few cases in which the required
nonlinear parameters have been measured, especially in non-
resonant regimes where linear absorption is sufficiently
small. Notable exceptions have been the two and three-
photon figures of merit in the semiconductor AlGaAs for
photon energies near and below half their band gap,2,3 and
the two-photon figures of merit for a number of organic ma-
terials including PPV (pphenylenevinylene), MEH-PPV
[poly 2-methoxy-5-s2-ethylhexyloxyd-1, 4-phenylene-
vinyleneg, and the single crystal polydiacetylene PTS
fpolydiacetylene poly sbis para-toluene sulfonated of
2,4-hexadiyne-1, 6 diolg in their low linear absorption
spectral regions.4–6

PTS in particular was one of the first polymeric materi-
als to exhibit large refractive nonlinearities and it has been
extensively studied at wavelengths at and below 1mm.6–8

The most recent has shown that the nonlinear loss in PTS is
more complex than just two-photon in origin, as assumed in
previous work.8 In fact, we have now measured the two-,
three-, and four-photon loss of PTS, as well as the dispersion
in its intensity-dependent refractive index coefficientn2 in
the region 1.2–2.2mm.9 This makes possible the evaluation
of figures of merit in this wavelength range based on all the
active nonlinear absorption mechanisms present there. These
results are reported in this letter.

The concept involved in all-optical figures of merit is
well known.1–3 All-optical devices require a nonlinear phase
shift given by DfNL =kvacn2ILeff for operation where
kvacs=2p /lvacd is the propagation wave vector in vacuum,
Leff is the effective length of the device, and the intensity
sId-dependent index change is given byDn=n2I. Most de-
vices requireDfNL .2p so that then2 ILeff /lvac.1 is

needed.1 Although both scattering losses and absorption
mechanisms can limitLeff, especially in waveguides, the in-
herent material limitation toLeff is absorption. In the highly
nonlinear materials needed for all-optical switching,Leff
<1/atotal where the total absorption is given byon=1

` anI
n−1

with n=1 corresponding to linear absorption,n=2 two-
photon absorption,n=3 three-photon absorption, etc. Thus, a
general FOM can be defined as

FOM =
n2I

lvaco
n=1

`

anI
n−1

s1d

with an FOM.1 required for a material to be useful.
All of the materials constants,n2, an vary with wave-

length. For materials like semiconductors it is possible, to
within some approximations, to calculate these parameters.10

In general for organic materials, however, it is necessary to
experimentally measure the wavelength dispersion inn2 and
the an. There are very few measurements of the spectral
dispersion inan for n.2. Fortunately the importance of
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FIG. 1. Wavelength dispersion of the overall figure of merit at three differ-
ent input intensities.(n) 1 GW/cm2; (s) 10 GW/cm2; (n) 30 GW/cm2.
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multiphoton absorption decreases with increasingn so that
usually only two-photon absorption plays an important role.
However, as the wavelength increases, higher order absorp-
tion processes can play progressively more important roles
because the nonlinear coefficientn2 also decreases with in-
creasing wavelength. To the best of our knowledge, the only
experiment to date on the wavelength dispersion inn2, a2,
a3, anda4 in a nominally transparent medium was reported
recently for single crystal PTS.9 The data can now be used to
estimate the inherent material limitations in the wavelength
range 1.2–2.2mm, and to identify the relative contributions
of the different multiphoton processes.

The overall FOM based on our measurements is shown
in Fig. 1 for three different input intensities. Up toI
=1 GW/cm2, the material is useful between 1.4 and 2.0mm.
(For lvac.2 mm, linear absorption from vibrational over-
tones is responsible for the FOM falling below unity.) As the
input intensity is increased, the spectral window for which
the FOM.1 decreases. For example, byI =10 GW/cm2 this
window is reduced to 1.7–2.2mm and for 30 GW/cm2 the
FOM,1 over the full wavelength range. This means that

insufficient nonlinear phase shift can be accumulated over
one absorption length at this input intensity for an all-optical
switch. This variation in the values of the FOM corresponds
to the dramatic difference in scenarios of nonlinear propaga-
tion in PTS depending on the input intensity.11 That is, atI
=1 GW/cm2, one observes strong self-focusing in the bulk
of PTS, versus atI =30 GW/cm2, the dynamics of nonlinear
propagation is largely dominated by higher-order multipho-
ton absorption.

The different multiphoton contributions to the FOM can
be obtained by re-writing the FOM as

FOM =
1

lvac

n2
o
n=1

`

anI
n−2

=
1

W−1 + T + V + U
, s2d

where theW, T, andV are the previously defined values of
the one-photon, two-photon, and three-photon absorption
figures of merit respectively.1–3 (By analogy, we define the
four-photon FOM asU=lvaca4I

2/n2.) The multiphoton con-
tributions are shown in Figs. 2–4 at the intensities 1, 10, and
30 GW/cm2. SinceW−1.1 above 2mm due to vibrational
overtones, its contribution is only shown in that wavelength
range. At 1 GW/cm2, the short wavelength limit is a conse-
quence of two and three-photon absorption. In fact, the two-
photon absorption is the long wavelength tail of the large
two-photon absorption line centered at 0.93mm so that for
wavelengths shorter than 1.2mm the overall FOM remains
smaller than unity right into the visible region of the
spectrum.8 As mentioned previously, it is the linear absorp-
tion due to vibrational overtones that blocks the region
lvac.2 mm. At 10 GW/cm2, it is the strong three-photon
absorption peak of unknown origin that limits the useful
spectral window below 1.7mm.9 At the highest intensity in-
vestigated, 30 GW/cm2, it is four-photon absorption that
now blocks out the region 1.7mm to beyond 2.2mm. This
four-photon absorption is enhanced via an accidental three-
photon resonant enhancement as discussed in detail in Ref. 9.

In summary, we have evaluated the all-optical figures of
merit for single crystal PTS and found them to be limited by
different absorption processes at different input intensities
over the spectral window 1.2–2.2mm. This material is defi-

FIG. 2. Wavelength dispersion of the figures of meritW−1 (n), T (s), V
(n), andU (L) at 1 GW/cm2.

FIG. 3. Wavelength dispersion of the figures of meritW−1 (n), T (s), V
(n), andU (L) at 10 GW/cm2.

FIG. 4. Wavelength dispersion of the figures of meritW−1 (n), T (s), V
(n), andU (L) at 30 GW/cm2.
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nitely useful for all-optical switching at intensities up to
1 GW/cm2 over the spectral window of 1.4–2.0mm.

This research was supported by the National Science
Foundation under Grant No. ECS-98-70759.
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