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Second-harmonic generation tuning curves with narrow, high-intensity
beams for quasiphase-matched potassium titanyl phosphate

Hongki Kim,a) Ladislav Jankovic, and George Stegeman
CREOL/School of Optics, University of Central Florida, 4000 Central Florida Boulevard, Orlando,
Florida 32816

Mordechai Katz
Electro-Optic Div., Soreq NRC, Yavene, 81800, Israel

Silvia Carrasco and Lluis Torner
Universitat Politecnica de Catalunya, Departamento of Signal Theory and Communications,
08034 Barcelona, Spain

~Received 24 June 2002; accepted 16 August 2002!

The tuning curves with temperature and incidence angle for second-harmonic generation were
asymmetrically distorted and broadened with increasing intensity for narrow input fundamental
beams in periodically poled KTiOPO4. Multiple phenomena including mutual self-focusing of the
fundamental and harmonic, cascading, quadratic soliton generation, and artificially induced walk-off
~for light incidence away from the poling axis! contribute, in good agreement with theory. ©2002
American Institute of Physics.@DOI: 10.1063/1.1512941#

Second harmonic~SH! generation~SHG! has become a
very versatile techniques for extending the frequency range
of lasers.1 It has been enhanced by the invention of
quasiphase-matched~QPM! periodically poled~PP! struc-
tures which allow noncritical phasematching~NCPM! for
SHG at virtually any wavelength.2 Very efficient SHG has
been reported in bulk PP–LiNbO3 ~PPLN! and PP–
potassium titanyl phosphate~PPKTP!, see Refs. 3 and 4.
Furthermore, the distortion of the SHG tuning curves, pre-
dicted for NCPM for narrow beams with broad distributions
in incident wave vector,5 has been reported.6,7 However, at
high enough intensities, second order nonlinear effects such
as mutual beam narrowing and cascading of the fundamental
~FW! and harmonic produce additional beam distortions,
leading under appropriate conditions to the generation of
quadratic spatial solitons~QSSs!.8,9 QSSs have been reported
in PPLN, with an intensity threshold of a few GW/cm2 for
beam waists of tens of microns.10 Here we show that all of
these phenomena have a large impact on SHG tuning curves
in NCPM PPKTP for narrow, high intensity input beams.

The equations associated with the interaction between a
FW $a1(y,z)exp@i(vt2k1x)#% beam and it is copolarized SH
$a2(y,z)exp@i(2vt2k2x)#% near phase matching are well
known. For general light propagation they can be written as
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where Dk52k12k2 , G(x,y) changes sign periodically
along the polingx axis with periodL52p/k, uGu}deff

(2) , and
deff

(2)52d 33
(2)/p for PPKTP. For propagation along the poling

axis, the phase mismatch is Dw52v(n12n2

1pc/Lv)L/c. If the QPM contribution is added to the fun-
damental’s refractive index surface, the cuts of the index
surfaces for phase matching in thex–y plane are shown in
Fig. 1. For off x axis incidence, an artificially induced
‘‘walk-off’’ of the FW from the SH occurs at an anglec
given by sinc5sinu k/k2 for internal incidence angleu
from thex axis.2,11 This extra walk-off is the main difference
between QPM and birefringence NCPM.

Solving these coupled wave equations yields the detailed
dynamics of the interacting beams and the output SHG con-
version efficiency. In the absence of diffraction the spatial
profile of the SH is proportional toa1

2 and therefore is nar-
rower in space than the FW.9 Similarly, downconversion by
which photons return to the FW from the SH is proportional
to a2a1* so that the regenerated FW is narrower than the
original FW.9 In addition, ‘‘cascading’’ produces nonlinear
phase shifts that vary across the beam due to the differential
phase velocity between the FW and SH off phase match and

a!Electronic mail: hongki@creol.ucf.edu

FIG. 1. Cuts of the index ellipsoids in thex–y plane forz-polarized FW
~inside solid lines! and SH~outside solid lines!. The dashed line simulates
approximately the effect of the nonlinear QPM grating.~a! T,TPM (Dk
.0); ~b! T5TPM (Dk50); ~c! T.TPM (Dk,0).
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also contributes to beam focusing.9 Such contributions are
different for Dk.0, andDk,0. It is this beam dynamics
that deviates the high-power SHG tuning curves from their
well-known low power predictions.

The generation of QSSs, a stationary balance between
diffraction and beam narrowing also affects the SHG tuning
curves. Soliton fields exhibit different properties from those
of standard SHG. For efficient SHG on phase match the
fields arep/2 out of phase and energy flows from the FW
into the SH with distance. Off phase match, the relative
phase between the fields rotates with distance and there is a
periodic energy exchange between the fields. In contrast to
this, the two soliton components,a1 anda2 , have both con-
stant amplitude and relative phase with distance, irrespective
of the initial Dk. Once the soliton is formed no further SH is
generated. Almost all soliton generation experiments to date
have had FW only inputs and initially the SH field grew out
of phase with the FW. These fields evolve nonadiabatically
over a few parametric gain lengths@ l pg5uGa1(0)u21# into a
soliton and the excess FW and SH energy is radiated away.
In this limit, the SHG efficiency depends on the energy shar-
ing soliton properties,12 the radiation fields generated and the
sample length plays no role.13,14

Because full (311)D spatiotemporal simulations are
very time consuming, and because the pulses are too long to
produce group velocity mismatch problems between the fun-
damental and harmonic, most of the numerical simulations
were performed for cw excitation in order to identify the
essential physics associated with high intensity, narrow beam
inputs. Numerical results for the cw SHG tuning curves on
NCPM phase match@Fig. 1~b!# were obtained for increasing
input intensity, Figs. 2~a!–2~c!. In Fig. 2~d!, an example of
full (3 11) spatiotemporal simulation is shown for compari-
son with the (211) case. The gross cw tuning features with
deep minima and maxima are ‘‘averaged’’ out so in general
one would not expect sharp maxima or minima to occur with

pulsed excitation. The response curves broaden with increas-
ing intensity, taking on multipeak structures far from the
classical plane wave and narrow beam modified sinc2 re-
sponse. This occurs becausel pg decreases with increasing
input intensity. At very high intensities, the response curves
for Dk,0 exhibit a great deal of detailed structure which
changes rapidly with increasing intensity because of strong
competition between beam narrowing and cascading. cw nu-
merical results for angle tuning in the geometry of Fig. 1~a!
are shown in Fig. 3, for different temperatures and input
powers. Although the tuning curves remain symmetric about
the poling axis, the two phase-matching peaks broaden
asymmetrically with increasing power for the reasons dis-
cussed previously so that SHG in the region between the
peaks rises dramatically.

The PPKTP samples were fabricated using the low tem-

FIG. 2. Calculated SHG tuning curves for temperature detuning from phase
match for an 18mm input beam waist and a crystal length of 1 cm. Solid
lines: cw simulations for a low intensity,;0.22 MW/cm2. d: cw simula-
tions for input intensities of~a! ;88, ~b! ;550, and~c! ;2.6 GW/cm2. In
~d!, a full 311 spatiotemporal simulation is shown for a peak input inten-
sity of ;550 MW/cm2 and 20 ps pulses.

FIG. 3. Calculated angle tuning SHG for cw excitation of an input beam of
18 mm and a crystal length of 1 cm. In~a! low input intensity,
;90 kW/cm2; d—T(42.7 °C)5TPM and s—T(30.0 °C),TPM . In ~b!
T(42.7 °C)5TPM ; d—low input intensity, ;90 kW/cm2 and s—high
powers of;225 MW/cm2. In ~c!, T(30.0 °C),TPM ; d—low intensities
;90 kW/cm2 ands—high intensities;1 GW/cm2.

FIG. 4. Observed tuning curves for SHG obtained by temperature tuning
around the low intensity phase-match temperature (42.7 °C). 1—0.02,
2—2.0, 3—6.1, 4 – 12.0 GW/cm2.
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perature periodic poling which gave adeff(52d33/p) of 9.5
pm/V.15 For L58.99mm, phase matching occurred at
42.7 °C. The 1 cm long sample had a previously measured
low-power SHG bandwidth@full width at half maximum
~FWHM!# of 0.2 nm, in good agreement with theory, indi-
cating that phase matching is realized over the full length.15

An EKSMA Nd:YAG laser-amplifier with 25 ps width at 10
Hz provided a highly symmetric laser beam that was im-
proved further by spatial filtering to giveM2 of 1.1–1.2 with
a FWHM bandwidth of 0.11–0.14 nm, sufficient to resolve
the low intensity SHG side lobes for broad input beams. The
z-polarized 1064 nm beam was focused by lenses to a mini-
mum beam waistw0516.4mm as measured by the knife-
edge method, giving 7.5 diffraction lengths of propagation
along thex axis.

The experimental results for temperature tuning withx
axis incidence are shown in Fig. 4. As predicted, massive
broadening and distortion occurs in the tuning curves at high
intensities. On phase match the energy conversion of the FW
input into SH peaks at 48% around 2 GW/cm2 of FW inten-
sity, and then decreases with input intensity to 1/2 of the
peak value at 20 GW/cm2. The output beam profiles in Fig. 5
show strong narrowing of both the FW and SH around a few
GW/cm2, coincident with maximum SHG. At lower input
intensities~not shown!, the energy oscillates between the FW
and SH due to successive up- and downconversion cycles.9

Single soliton generation occurs around 3.5 GW/cm2 and
solitons dominate the output profile for further increase in
intensity. Once solitons are formed, the fraction of SH in the
soliton becomes constant with distance. Increasing the input
intensity leads both to an increase in the SH content of the
soliton,12–14 and a smaller conversion of the input into the
soliton energy due to increased radiation losses with the lat-
ter dominating the SHG efficiency.

The output beam profiles forT,TPM resemble those at
phase-match because the contribution due to cascading aug-
ments the beam narrowing process forDk.0. For T.TPM

(Dk,0) the soliton threshold rises rapidly with
detuning.13,14 The output beams shown in Fig. 6 (Dk
522p cm21) contain no solitons and exhibit complicated
shapes due to the combination of up- and downconversion,
cascading, and beam narrowing which lead to the oscillations
in the response curves.

In summary, the SHG tuning curves in PPKTP have been
studied with narrow input beams at high input intensities.
The largest impact on SHG was the mutual beam narrowing
of the FW and SH. On phase match, the SHG efficiency
peaks when beam narrowing is strong and at higher intensi-
ties the SHG efficiency decreases with input intensity, a re-
sult probably due to the increased radiation losses and high
two-photon absorption exhibited by KTP at harmonic inten-
sities .10 GW/cm2. The detuning curves exhibit large
intensity-dependent broadening and intensity-dependent
asymmetry between theDk.0 andDk,0 sides due to cas-
cading.
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