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R. R. Vanfleeta) and J. A. Simmons
Advanced Materials Processing and Analysis Center (AMPAC) and the Department of Physics,
University of Central Florida, Orlando, Florida 32816
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Free-standing wafers~50 mm diameter! of GaN were grown by halide vapor phase epitaxy on
lattice-matchedg-LiAlO 2 . We report a transmission electron microscopy study of defects and
defect densities in these wafers. The growth direction is@101I 0#. Stacking faults in the basal plane
are seen when viewing the specimen in the@12I 10# direction with an average spacing of less than
100 nm. Convergent beam electron diffraction measurements show no switch in the polarity and
thus the faults are proposed to be ABABACAC changes in the stacking. Threading dislocations are
found to have a correlated arrangement with a density of 33108 cm22 when viewing the@12I 10#
direction and widely varying~depending upon location! when viewing in the@0001# direction. These
dislocations act as ‘‘seeds’’ for postgrowth surface features that directly exhibit the correlated nature
of these threading dislocations. ©2003 American Institute of Physics.@DOI: 10.1063/1.1599962#

Nitride-based semiconductor products have burst onto
the scene in the last several years, and have now become a
major player in the optoelectronics market. Revenues from
the use of blue and green light-emitting diodes~LEDs! in the
home and commercial lighting business are predicted to
reach almost three billion dollars by 2009. Although the blue
laser diode~LD! optical storage market is presently still
small, it is predicted to reach over the two billion dollar level
by 2009. However, continued market growth is in some
doubt, because further increases in unit brightness levels for
LEDs, which would allow penetration into the illumination
industry, may not be possible because the quality of present
nitride materials is quite poor. It is difficult to coax even
marginal performance levels and operating lifetimes out of
the blue LDs, since their structures are filled with deleterious
dislocations. Therefore, we have undertaken an effort to pre-
pare low defect density gallium nitride substrates suitable for
the homoepitaxial growth of near defect-free device material.
We report here our progress in understanding the structural
defects which are found in our wafers.

We have used Czochralski grown1 g-LiAlO 2 as a start-
ing substrate for GaN growth.g-LiAlO 2 has an unusual
crystal structure consisting of tetrahedra which share edges
as well as vertices.2 Although the unit cell has square sym-
metry when looking down thec axis, thea–c ~100! plane
has the same atomic arrangement as the prismatic face
(101I 0) plane of the wurtzite structure. In fact, thec param-
eter of LiAlO2 , 6.268 Å, is close to 2 timesah56.378 Å for
GaN, while thea parameter of LiAlO2 , 5.168 Å, is basically
a perfect match toch55.165 Å for GaN. In addition, the
GaN hexagonal cell will be oriented sideways, with the polar
ch axis in the plane of growth, which will have profound
effects on polarization issues~Fig. 1!. In 1998, Keet al.,
deposited GaN films3 featuring the (101I 0) orientation4 by

metalorganic vapor phase epitaxy~MOVPE! on polished
g-LiAlO 2 . We note that conventional growth of GaN on
~0001! sapphire substrates gives material with a permanent
electric dipole along thec axis, leading to the quantum con-
fined Stark effect in GaN quantum well structures.5 This in-
ternal electric field leads to spatially indirect optical transi-
tions for UV-emitting LEDs, creating much dimmer devices.
It was recently demonstrated that growth of GaN on~100!
LiAlO 2 gives films with the (101I 0) orientation and, hence
brighter emission levels.6,7 Recent work using (11I 02) sap-
phire has renewed interest in placing thec, axis in the plane
of GaN which has the (112I 0) orientation.8

In recent years, a number of researchers have pursued
halide vapor phase epitaxy~HVPE! as a quasibulk technique
for the growth of thick ~.20 mm!, large-area GaN
substrates.9–11 Growth rates in the HVPE machines were
very fast, ranging as high as 200mm/h ~3–4mm/min!.12 The
thick layer growth is facilitated by the near-equilibrium
nature of the process, which can be exploited to generate
material with somewhat lower defect densities than other
methods.

a!Electronic mail: vanfleet@physics.ucf.edu FIG. 1. Atomic arrangement at the interface between LiAlO2 and GaN.
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Following established practices, Crystal Photonics has
designed and constructed a HVPE reactor for the rapid
growth of GaN films. The prepared LiAlO2 wafer is mounted
on a SiC-coated graphite chuck. The three furnace zones are
typically set at 875–875–850 °C. Nitrogen is set to flow
through all gas lines, except for the GaCl generation tube, in
which hydrogen flows. The chuck is spun at 60 rpm, the
ammonia flowrate is 1 slm, and the HCl flowrate is 20 sccm.
A run usually proceeds for 6 h. The growth rate is about 50
mm/h. The GaN wafers are at least 300mm thick. The result-
ing wafer has the GaNc axis in the plane of the wafer and
parallel to thea axis of the LiAlO2 as expected. The@101I 0#
GaN direction is normal to the wafer. Many analytical pro-
cedures have been undertaken in order to understand the
characteristics of these wafers. Results based on a transmis-
sion electron microscopy~TEM! study will be presented
herein.

TEM specimens were prepared using the focused ion
beam~FIB! ex situliftout method.13 In this method, the FIB
gallium ion beam is used to form and cut free a thin sliver
from a specific site of the specimen. This sliver is approxi-
mately 20mm long by 5 mm deep by;500 nm thick. A
micromanipulator is then used to remove the specimen and
place it on a carbon film for TEM observation. The Ga ion
beam creates a Ga implanted amorphized layer on the sur-
face along with redeposited material that at times obscures
areas of the final specimen. The abundance of these redepos-
ited features depends upon the details of the FIB processing.
Thus, with care and a little bit of luck, good specimens are
rapidly produced from specific sites on the wafer.

FIB liftout specimens from the top surface of (101I 0)
GaN can of course easily give any direction perpendicular to
this @101I 0# normal. Two convenient choices are@0001# and
@12I 10# which are looking into thec axis and looking per-
pendicular to thec-axis ~into thea-axis!.

TEM results have shown significant variability depend-
ing upon location on the wafer, first or last grown surface,
and wafer to wafer. However, several features have been
widely seen and appear to be consistent across specimens
and a range of processing conditions. Threading dislocations
are seen that are qualitatively similar to those commonly
seen with other samples grown on sapphire. Differing sig-
nificantly from what is seen on more traditional substrates,
we see a significant number of planar defects that we identify
as stacking faults. Such stacking faults have also recently
been identified for (112I 0) oriented GaN films grown on
(11I 02) sapphire substrates.14

These planar defects are only seen in the@12I 10# speci-
mens. When viewed directly on the@12I 10# axis the defects
are not visible, tilting about the@101I 0# growth direction to
put the basal planes at a small incline to the viewing direc-
tion makes them visible. Figures 2~a! and 2~b! shows an
example of these faults. Figure 2~b! shows a region where
the thickness of the specimen is increasing from right to left.
The single fringe that not only splits into several fringes but
increases in apparent width as the thickness is increased is
typical of the contrast expected from an inclined planar de-
fect in this approximately two-beam bright field imageg
5101I 0. These defects are absolutely parallel to each other
and run perpendicular to thec direction. The average spacing

between these defects is;100 nm. They are only seen when
the c axis is tilted relative to the viewing direction and are
never seen when the specimen is prepared to look down the
c axis. This data leads us to identify these as planar defects
confined to the basal planes.

The question of stacking fault~with no polarity inver-
sion! versus polar inversion domains is of practical impor-
tance. Polar inversion domains have been shown to have
different intensities in theg50002 two-beam imaging con-
ditions due to the underlying nonsymmetry in the crystal
structure.15 We saw no evidence for this contrast mechanism
in our specimens. This image contrast is, however, a weaker
feature that is usually only suggestive, with more conclusive
evidence coming from convergent beam electron diffraction
~CBED! methods. CBED is sensitive to the polarity of GaN
where an asymmetry in the intensity distribution of the
~0002! and (0002I ) diffraction disks is both predicted and
seen.16 However, in the symmetrical orientation of the~0002!
peaks required, these defects are not visible. Thus, we tilted
the specimen to identify a region with these defects, tilted
back to the on-axis condition and performed CBED line
scans across the identified region. The asymmetry of the
~0002! type peaks was evident, but no evidence for flipping
of that asymmetry was seen.

In the c-axis direction hexagonal GaN has an ABAB
stacking where each A~or B! layer is composed of both Ga
and N sublayers with a polarity built in. There is, however, a
C site that is equally acceptable and thus an ACAC or BCBC
stacking is also possible. There is physically no difference
between these variants~shifting the coordinate system will
map one into the other! and thus no reason to discuss them
unless they are found in the same specimen as we are sug-
gesting here. We propose to identify our observed planar
defects as stacking faults between these variants with an
ABABACAC stacking. They are thus atomically sharp pla-
nar defects that would be invisible if seen edge on. There is
no change in the polarity and no extended strain field, con-
sistent with our observations.

GaN when viewed down thec axis has a hexagonal sym-
metry with each of the hexagonal faces being^101I 0& direc-
tions. Thus, each new nucleation site on LiAlO2 can begin
with any one of these six faces as the growth direction as
well as in principle either orientation of thec axis. Uniform

FIG. 2. ~a! Stacking faults.~b! Viewed closer in a wedge shaped region.
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alignment of ‘‘arrowhead’’ features on the final wafer
surface17 and the lack of observed inversion domains imply
LiAlO 2 is able to fix thec-axis direction and suppress inver-
sion domain formation. The six̂101I 0& directions are not all
identical if seen in the same crystal. Three of those faces
would give ABAB stacking and the other three ACAC stack-
ing. This suggests random nucleation of the various^101I 0&
directions as a mechanism for the proposed stacking fault
formation.

Scanning electron microscopy~SEM! studies of the final
growth surface of these wafers show regions with ‘‘plowed
field’’ features as shown in Fig. 3. These surface features
consistently match with crystal orientation with the stripes
running parallel to the~0002! planes. Our TEM studies have
shown these surface features to be polycrystalline GaN that
has ‘‘seeded’’ or decorated subsurface features. Figure 4
shows a TEM image of a@12I 10# specimen~looking along
the rows! illustrating one of these surface features associated
with a threading dislocation. This implies that the threading
dislocations are correlated and predominantly confined to
lines that run perpendicular to thec axis. The initial nucle-
ation of these correlated dislocations has not been seen and is
not understood. However, once formed they would be con-
fined to move only perpendicular to thec axis by the ob-

served stacking faults. A further manuscript to discuss the
dislocations and their exact nature is in process.

Because the positions of these dislocations are corre-
lated, the exact location and direction in which they
are viewed is important. When viewing along the rows
(@12I 10# direction! we expect to see dislocations that match
the linear density of the rows. TEM estimates give 1.3
3104 dislocations/cm in reasonable agreement with SEM re-
sults of 1.63104 rows/cm. The average spacing between
rows is;0.6 mm. From those TEM images and the approxi-
mate thickness, the dislocation density per area is estimated
to be 33108 cm22. TEM specimens are 0.5mm or less in
thickness. When looking into the row or in thec direction,
we expect to get significant variation depending upon where
the TEM specimen was extracted. If the specimen is from a
row, then we would expect to see a higher dislocation density
than if the specimen is between the rows. When looking in
the c direction, with specimens from the plowed field re-
gions, we have seen dislocation counts as high as 109 cm22

to lower than 107 cm22.
We have observed by TEM GaN grown on LiAlO2 with

the c axis in the plane of the specimen and the (101I 0)
growth normal. Basal plane stacking faults are seen through-
out with approximate spacing of 100 nm. Threading disloca-
tions are seen that are correlated in their positioning, occur-
ring in rows that are spaced;0.6 mm apart.

Note added in proof. Recently, Sunet al. have discussed
stacking faults in M-plane GaN films grown by MBE on
LiAIO2.18

This work was partially supported by DARPA MTO un-
der the SUVOS program with Joseph Lorenzo of Air Force
Research lab as technical monitor.
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FIG. 3. SEM image of surface features.

FIG. 4. Cross section showing surface features and their correlation with
threading dislocations.

1141Appl. Phys. Lett., Vol. 83, No. 6, 11 August 2003 Vanfleet et al.


	Defects in m-face GaN films grown by halide vapor phase epitaxy on LiAlO2
	Recommended Citation
	Authors

	Defects in m-face GaN films grown by halide vapor phase epitaxy on LiAlO2

