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Curing temperature effects on liquid crystal gels
Fang Du and Shin-Tson Wua)

School of Optics/CREOL, University of Central Florida, Orlando, Florida 32816

~Received 28 March 2003; accepted 17 June 2003!

The curing temperature is found to greatly affect the operating voltage, contrast ratio, hysteresis, and
response time of the reversed-mode liquid crystal~LC! gels. For the gels using E48 LC host, the
optimal curing temperature is around 40–50 °C. An LC gel with contrast ratio exceeds 2000:1~at
;2° collection angle!, operating voltage lower than 7Vrms, and response time of about 20 ms is
demonstrated. Potential applications of such LC gels for optical switches, displays, and switchable
polarizers are emphasized. ©2003 American Institute of Physics.@DOI: 10.1063/1.1602152#

Liquid crystal ~LC! gels1,2 ~or called polymer-stabilized
LC!3 exhibit an anisotropic light scattering behavior and can
be used as a variable optical attenuator~VOA! for telecom-
munication, reflective display, and switchable polarizer for
sensor protection.4 Different from polymer dispersed liquid
crystals5 in which polymer matrix is optically isotropic, the
LC gels are optically anisotropic. Both reversed and normal
mode gels have been developed. In a reversed-mode LC gel,
a low concentration~,10%! of diacrylate monomer is dis-
solved in an LC host and then injected to an empty cell with
homogeneous alignment. A weak UV light is used to induce
photopolymerization. In the voltage-off state, the polymer
networks and LC molecules have the same orientation and
thus the cell is highly transparent. With applied voltage, the
polymer networks resist LC directors from being reoriented
by the electric field. As a result, microdomains are formed
and threshold voltage increased. The light polarization paral-
lel to the rubbing direction is scattered and the orthogonal
polarization is transmitted. On the other hand, the normal-
mode gel is polymerized with a bias voltage.6 It scatters light
in the voltage-off state and transmits light in the voltage-on
state.

The major shortcomings of the LC gels are inadequate
contrast ratio, relatively high operating voltage, and notice-
able hysteresis. For active matrix addressed flat panel dis-
plays, the maximum operating voltage should be lower than
7 Vrms. To improve contrast ratio, one could use a thicker
cell gap. The tradeoff is that both driving voltage and hys-
teresis are increased. There is an urgent need to develop
methods for enhancing contrast ratio, reducing operating
voltage, and suppressing hysteresis.

In this letter, we report a two-stage elevated temperature
curing process that leads to a high contrast ratio, low oper-
ating voltage, and small hysteresis. By controlling the curing
temperature and LC/polymer composition properly, we have
demonstrated a transmissive reversed-mode LC gel with con-
trast ratio over 2000:1 and operating voltage as low as;0.87
V/mm. These results are at least one order of magnitude bet-
ter than the previously published data.1,4

To fabricate LC gels, we mixed a few percent of bisphe-
nol A dimethacrylate monomer in a Merck E48 LC mixture
(Dn50.23 atl5589 nm). The LC/monomer mixture was

injected into an empty cell with homogeneous alignment.
The pretilt angle of the buffed polyimide alignment layers is
about 3°. The sample cell was then exposed to a weak UV
light ~100 mW/cm2! to induce polymerization. Being influ-
enced by the surface rubbing effect, the polymer networks
basically follow the same LC alignment direction. In our
two-stage curing process, for the first half an hour the cell
was kept at an elevated temperature during UV exposure. In
fact, this procedure would slow down the polymerization
rate7 and create larger dispersion of polymer and LC.8 The
coarser polymer networks produce larger microdomain sizes
in the voltage-on state. As a result, the dark~light scattering!
state voltage is reduced. After the first 30 min of UV expo-
sure at elevated temperature, the sample was moved away
from heating stage and left at room temperature. The UV
exposure continued for another 5.5 h at room temperature to
further stabilize the polymer network. We have studied the
curing temperature effect from room temperature to 70 °C.

To characterize the gels performance, we measured the
voltage-dependent transmittance using a linearly polarized
He–Ne laser beam. A wide dynamic range photodiode detec-
tor ~with 1 cm diameter! was set at 30 cm from the sample
holder~equivalent to;2° collection angle!. The laser polar-
ization axis is parallel to the LC cell’s rubbing direction. The
voltage-dependent light transmission was recorded by a
computer-controlled LabVIEW system. During our experi-
ments, we measured normalized transmittance. All the opti-
cal losses from substrate reflections were neglected. In the
voltage-off state, the sample is highly transparent. When the
applied voltage is increased, the laser beam is scattered by
the micron-sized domains and the gel acts as a linear polar-
izer.

Figure 1 plots the normalized transmittance of the 8mm
LC gels prepared at different curing temperatures~from right
to left: 23, 32, 50, and 70 °C!. As the curing temperature was
increased from 23 to 70 °C, the dark state voltage was re-
duced linearly from 11.9 to 5.5Vrms. The high temperature
curing process slows down the polymerization rate and pro-
duces coarser polymer networks. As a result, the electric field
induced domain sizes are larger which, in turn, reduces the
dark state voltage. Such a low operating voltage enables the
LC gels to be addressed by the amorphous silicon thin-film-
transistors for display or two-dimensional VOA array appli-
cations.a!Electronic mail: swu@mail.ucf.edu
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From Fig. 1, the dark state transmittance is strongly af-
fected by the curing temperature. Figure 2 shows the curing
temperature-dependent maximum contrast ratio of the 8mm
E48 LC gels with 4% monomer concentration. For the case
of room temperature curing, the maximum contrast ratio is
;70 for the 8mm LC gel. This result is consistent to that
reported in Ref. 4. As the curing temperature is increased to
;50 °C, the contrast ratio reaches 2000:1 and the dark state
voltage remains lower than 7Vrms. The contrast ratio is im-
proved by;303. It is commonly known that the contrast
ratio of a light scattering device is greatly dependent on the
collection angle. As the collection angle increases from 2° to
6°, our measured contrast ratio drops by 53. In fiber-optic
communications, the collection angle is usually less than 2°.
As the curing temperature continues to increase, the domain
size becomes too big in comparison to the laser wavelength.
Although the dark state voltage is further reduced, the light
scattering capability is weakened which results in a lower
contrast ratio.

We also studied the curing temperature effect on hyster-
esis and response time. The measured results are depicted in
Figs. 3 and 4, respectively. The hysteresis widthdV is de-
fined asVdown2Vup where Vdown and Vup are the voltages
corresponding to 50% transmittance for the forward and re-
verse voltage scans. From Fig. 3, the hysteresis width is sup-
pressed by nearly 33 as the curing temperature increases
from 23 to 70 °C. For optical switch applications, the major
performance criteria are high extinction ratio, low voltage,
and fast response time; hysteresis is not a big concern. How-
ever, for gray scale display and VOA devices, hysteresis is
undesirable and should be minimized.

Although high temperature curing lowers the dark state

voltage, enhances the contrast ratio and suppresses the hys-
teresis width, it has a drawback in slower response time.
Figure 4 shows the measured rise and decay time of the 8
mm and 4 wt % E48 LC gels at various curing temperatures.
Both turn-on and turn-off times increase with the increased
curing temperature. In general, the response time of a LC gel
is affected by the LC viscosity, cell gap, and microdomain
sizes. Benefiting from the driving voltage effect, the rise time
shown in Fig. 4 is faster than the decay time. The slower
decay time in the higher curing temperature implies that the
network is coarser. This is consistent with the lower dark
state voltage observed for the higher curing temperature, as
shown in Fig. 1.

To improve response time, we chose to use a thinner cell
gap as an example. For a 5mm E48 LC gel cured atT
550 °C, its rise and decay times were measured to be 6.4
and 11.8 ms, respectively, and the contrast ratio at 4.5Vrms

was 1000:1. The reason that we do not see improvement on
the rise time of the 5mm gel is due to its lower dark state
voltage. The rise time of an LC device is dependent on the
ratio of the on-state voltage over the threshold.9

Monomer concentration is another important factor af-
fecting the gel performance. From Fig. 2, the optimal curing
temperature for the E48 gels occurs atT;40– 50 °C. Thus,
we prepared five samples with 2, 3, 4, 5, and 6 wt % mono-
mer concentrations at 50 °C curing temperature. The cell gap
is 8 mm. Results are shown in Fig. 5. From Fig. 5, the dark
state voltage increases from 5.5 to 9.5Vrms as the monomer
concentration increases from 2% to 6%. The increased
threshold and dark state voltages for a higher polymer con-
centration originates from the smaller domain sizes. For the
2%–4% gels, the device contrast ratio remains as high as

FIG. 1. The voltage-dependent transmittance of the E48 LC gels at 23, 32,
50, and 70 °C curing temperatures~from right to left!. Cell gapd58 mm,
monomer concentration 4 wt %, laser wavelengthl5633 nm, and measure-
ment temperatureT523 °C.

FIG. 2. The curing temperature dependent contrast ratio of the E48 LC gels
containing 4% monomer concentration. Cell gapd58 mm, l5633 nm, and
T523 °C.

FIG. 3. The curing temperature dependent hysteresis of the E48 LC gels
containing 4% monomer concentration. Cell gapd58 mm, l5633 nm, and
T523 °C.

FIG. 4. The curing temperature dependent rise time~open circles! and decay
time ~close circles! of the 8mm E48 LC gels with 4% monomer concentra-
tion. For each cell, the rise and decay times were measured betweenV50
and the corresponding dark state voltage shown in Fig. 1.

1311Appl. Phys. Lett., Vol. 83, No. 7, 18 August 2003 F. Du and S.-T. Wu



2000:1, but drops rapidly to 170:1 as the monomer concen-
tration increases to 6%. In a high monomer concentration LC
gel, the domain sizes are too small to effectively scatter the
He–Ne laser light.

We also measured the light scattering loss for the laser
polarization which is orthogonal to the cell rubbing direction.
The loss was less than 5%, similar to that reported in Ref. 4.
This indicates that the gel’s light scattering behavior is in-
deed very anisotropic. The turn-on and -off times for the 3%,
4%, 5%, and 6% gels were measured to be~6, 26!, ~4, 21!,
~3, 12!, and~2, 8! ms, respectively.

In conclusion, we have developed a two-stage elevated
temperature curing method for achieving LC gels with high
contrast ratio, low operating voltage, small hysteresis, and
reasonably fast response time. These LC gels will find useful
applications in variable optical attenuators for telecom, trans-
missive and reflective displays, and scattering polarizer for
sensor protection.

The authors are indebted to Dr. Hongwen Ren for his
technical assistances and discussions. This work is supported
by AFOSR under Contract No. F49620-01-1-0377.
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FIG. 5. The voltage-dependent transmittance of E48 LC gels with 2, 3, 4, 5,
and 6 wt % ~from left to right! monomer concentrations. The first-stage
sample curing temperature is 50 °C. LC cell gapd58 mm, operating tem-
peratureT523 °C, andl5633 nm.

1312 Appl. Phys. Lett., Vol. 83, No. 7, 18 August 2003 F. Du and S.-T. Wu


	Curing temperature effects on liquid crystal gels
	Recommended Citation

	Curing temperature effects on liquid crystal gels

