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Broadband optical limiter based on nonlinear photoinduced anisotropy
in bacteriorhodopsin film

Yuhua Huang, Georgios Siganakis, M. G. Moharam, and Shin-Tson Wua)

College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816

(Received 10 May 2004; accepted 4 October 2004)

Nonlinear photoinduced anisotropy in a bacteriorhodopsin film was theoretically and experimentally
investigated and a broadband active optical limiter was demonstrated in the visible spectral range.
A diode-pumped second harmonic yttrium aluminum garnet laser was used as a pumping beam and
three different wavelengths atl=442, 532, and 655 nm from different lasers were used as probing
beams. The pump and probe beams overlap at the sample. When the pumping beam is absent, the
probing beam cannot transmit the crossed polarizers. With the presence of the pumping beam, a
portion of the probing light is detected owing to the photoinduced anisotropy. Due to the optical
nonlinearity, the transmitted probing beam intensity is clamped at a certain value, which depends on
the wavelength, when the pumping beam intensity exceeds 5 mW/mm2. Good agreement between
theory and experiment is found. ©2004 American Institute of Physics. [DOI: 10.1063/1.1828590]

An optical power limiter(OPL) is a nonlinear optical
device in which its transmittance depends on the incident
light intensity. In the low intensity region, the output beam
intensity is linearly proportional to the input intensity. How-
ever, as the input intensity increases the output intensity
gradually saturates. It is a useful device for protecting human
eyes and optical sensors from being damaged by lasers. Vari-
ous materials with large optical nonlinearity and high stabil-
ity have been extensively investigated for optical limiting
applications.1,2 In addition to organic and inorganic crystals,
biological molecules have also been explored for such appli-
cations. Among them, bacteriorhodopsin(bR), a photo-
chromic protein in the purple membrane of halobacterium
halobium, has attracted the most attention because of its
unique optical properties such as large optical nonlinearity
and excellent thermal- and photostabilities. Several tech-
niques, e.g., nonlinear absorption,3 self-diffraction,4 and non-
linear birefringence,5 have been used to demonstrate the op-
tical limiting behavior in a bR film. However, these devices
are narrow band. With continuous development of wave-
length tunable and high power laser sources, broadband op-
tical power limiters are needed.

Two types of OPL have been developed: passive and
active. For a passive OPL, only one laser beam is involved.
The transmittance of the OPL decreases as the incident beam
intensity increases. However, for an active OPL the device
could be controlled by a second beam(pump-probe system)
or by an applied voltage. In this letter, we demonstrate a
broadband active OPL using the nonlinear photoinduced an-
isotropy in a bR film. Unlike other approaches, the active
OPL based on photoinduced optical anisotropy in bR can be
used in the whole visible spectral range. The reason is that
photoinduced anisotropy is comprised of photoinduced di-
chroism predominating around the absorption peak and
photoinduced birefringence predominating in the off-
resonance region. Since bR exhibits a broadband absorption
in the visible range, as shown in Fig. 1, its photoinduced
anisotropy covers the whole visible region. We theoretically
and experimentally investigate the nonlinear performance of

photoinduced anisotropy in bR at red, green, and blue wave-
lengths. Good agreement between theory and experiment is
obtained.

To understand the photoinduced anisotropy in bR, we
need to consider its photophysical processes after the illumi-
nation of a linearly polarized light. Initially, molecules are
randomly distributed in the bR film, as shown in Fig. 2(a).
Upon excitation of a linearly polarized light, those bR mol-
ecules(darker color) with the dipole moment aligned close to
the polarization direction of the illumination beam are
pumped to the excited state and produce photoisomerization
from all trans to 13-cis.7 Then the excited molecules go
through several spectroscopically distinguished intermediate
states(K, L, M, N, and O) and the corresponding excited
states, and relax back to the initial state spontaneously.7,8

Due to the change of molecular structure, the refractive index
and absorption coefficient of the bR molecules along the
pump beam polarization axis change with the formation of
each intermediate state, however, those in the perpendicular
direction do not change. Therefore, macroscopic anisotropy
of the bR film is induced by the illuminating light. Since the
Br andM states have much longer lifetimes than other inter-
mediate states in the photocycle, we could only consider Br
and M states and their corresponding excited states,9 as
shown in Fig. 2(b). Here we regard the intermediateM state
asMG and the corresponding excited state asME. To analyze

a)Electronic mail: swu@mail.ucf.edu FIG. 1. The optical density of a bR film.d= ,80 mm.
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the photoinduced anisotropy in bR films, linearly polarized
pumping and probing beams are assumed. In Fig. 2(c), we
define the polarization direction of the pumping beam as
horizontal axis and that of the probing light at an angleb.
For those molecules at anglew, the population of a Br state
can be described as follows:

dNBrswd
dt

= − SsBr−probeA
B→MIprobe

hnprobe

+
sBr−pumpA

B→MIpump

hnpump
DNBrswd

+
NMG

tMG

+
NMG

swd

tME

. s1d

In Eq. (1), NBrswd, NMG
swd, andNME

swd are the population
density of the Br, ground, and excitedM state alongw direc-
tion, respectively,h is the Planck constant,ni =C/li is the
probing and pumping beam frequency, andAB→M =0.64 is
the quantum efficiency for the transition from Br ground
state to the excited state,6 sBr−probe, sM−probe, sBr−pump, and
sM−pumpare the effective absorption cross section of bR’s Br
and M states at the probing and pumping wavelengths, re-
spectively. They can be described as follows:10

si−j = si−j
i cos2sw − bd + si−j

' sin2sw − bd, s2d

where si−j
i and si−j

' present the parallel and perpendicular
absorption cross section of each state at the probing and
pumping wavelengths, respectively,i represents the Br and
MG states, andj represents the probe and pump beams, re-
spectively.

According to the energy-level theory, the total popula-
tion densityN of the bR film and the population density of
the Br, MG, andME states should satisfy the following rela-
tionship:NBr+NMG

+NME
=N. Similarly, the relationship ofN

and the population density of each state at anglew should be
NBrswd+NMG

swd+NME
swd=N/2p. Since theME state has a

much shorter lifetime than the Br andMG states, fewer popu-
lations can stay in theME state. As a result, theME state
population can be ignored and the population of theMG state
can be simplified asNMG

=N/2p−NBr.
The photoinduced birefringence and dichroism can be

generally described as follows:

Dn = DnBrE
0

2p

NBrswdscosw − sinwddw

+ DnMGE
0

2p

NMG
swdscosw − sinwddw, s3d

DD = d logsedFssBr−probe
' − sBr−probe

i dE
0

2p

NBrswd

3scos2 w − sin2 wddw + ssMG−probe
' − sMG−probe

i d

3E
0

2p

NMG
swdscos2 w − sin2 wddwG . s4d

In Eq. (4), DD represents the effective photoinduced dichro-
ism. Dn, DnBr, andDnMG

present the effective photoinduced
birefringence, the photoinduced birefringence per molecule
of the Br andMG states, respectively. Considering the photo-
induced dichroism and birefringence, the corresponding
transmitted probe beam intensityIout can be generally written
as

Iout = I in10−DDsin2s2bdsin2spDnd/lprobed

3exp−ssBr−probe
i

NB+sMG−probe
i

NMdd, s5d

where I in is the incident probe beam intensity,lprobe is the
probing beam wavelength, andd is the film thickness.

Figure 3 shows the experimental apparatus. A linearly
polarized diode-pumped Nd-Yttrium aluminum garnet
(YAG) lasersl=532 nmd was converted to circularly polar-
ized light by a quarter-wave plate and then split into two
beams by a beam splitter. One of the green beams was used

FIG. 2. An illustration interpreting(a) photoselection of molecules under
linearly polarized light,(b) simplified energy-level mode, and(c) angle con-
figuration of the bR molecules and the pumping and probing beams.

FIG. 3. Experimental apparatus for investigating photoinduced anisotropy in
a bR film. P1, P2, and P3 are polarizers: P2 and P3 are crossed, P1 is at 45°
with respect to P1. ND: neutral density filter.
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as a pumping beam. A linear polarizerP1 was used to select
the desired polarization state. The other green beam, a blue
He-Cd laser sl=442 nmd, and a red diode lasersl
=655 nmd were used as probing beams. The pumping beam
overlaps with the probing beam at the bR film which was
sandwiched between a pair of crossed Glan-Thompson po-
larizersP2 andP3. The polarization direction of the pumping
beam selected byP1 is inclined at 45° with respect toP2.
The bR samples were purchased from Munich Innovative
Biomaterials GmbH(order number WT1N3). Its thickness is
,80 mm and optical density is 3 atl=570 nm.

Without pumping beam, the probing beam could not
transmit the analyzerP3 because the bR film is isotropic.
With the presence of the pumping beam, the analyzerP3
transmits a portion of the probing light due to the photoin-
duced anisotropy in the bR film. The transmitted probing
beam intensity highly relies on the pumping beam intensities,
as shown in Fig. 4. Figure 4 shows the pumping beam inten-
sity dependent on transmitted probing beam intensity when
the probing beam(l=442, 532, and 655 nm) intensity was
set at 0.45, 0.28, and 0.39 mW/mm2, respectively. In the low
pumping intensity regime, the transmitted probing beam in-
tensity increases almost linearly with the increasing pumping
beam intensity. However, as the pumping intensity reaches
,5 mW/mm2, the transmitted probe beam intensity starts to
saturate. In the higher intensity regime, the probing beam
intensity is clamped to a saturation level. The response time
is about 200 ms.

Using the theoretical model described above, we can
simulate the experimental results. Based on the absorption
spectra published in Ref. 11, we estimated thatsBr

i =0.1, 1.6,
and 0.2310−16 cm2, and sM

i =0, 3.8310−18, and 0.4
310−16 cm2 at l=655, 532, and 442 nm, respectively. In our
simulations, we assume the dichroic ratio of the Br andM
states issi

i /si
'=10. Varying the dichroic ratio from 10 to

100 does not affect the calculated results noticeably. In ad-
dition, from our experiment we foundtMG=0.2 s. The life-
time of the excitedM state is commonly known to betME
,1 ns.6 The simulation results are shown as the solid lines
in Fig. 4. The agreement between theory and experiment is
good.

From Eqs.(3)–(5), the transmitted probe beam intensity
is determined by the photoinduced anisotropy which is pro-
portional to the number of the excited bR molecules. Since

the number of the excited state molecules is linearly propor-
tional to the pumping beam intensity in the low intensity
regime and saturates in the high intensity regime, the trans-
mitted probe beam intensity should have the same trend.
Since bR has a larger absorption cross section atl
=532 nm than that at 442 and 655 nm, the perpendicular
transmittance of the probe beam atl=532 nm is lower than
that at 442 and 655 nm. Equation(5) also indicates that the
transmitted probe beam intensity increases with the incident
probe beam intensity. Therefore, different applications can be
realized at different incident probe beam intensities. For ex-
ample, by choosing a proper incident probe beam intensity,
the device can be used for laser eye protection. This is an-
other advantage in comparison with the previously proposed
optical limiters using bR material besides the aforementioned
broad bandwidth. Using Eq.(5), we calculated the photoin-
duced birefringence to beDn,1.79, ,1.3, and ,4.87
310−4 at l=655, 532, and 442 nm, respectively. These data
are the same order of magnitude as those reported in Refs. 5
and 12.

For optical limiter applications, the device should be
able to respond immediately to the environmental condition.
The response time of our sample is slows,200 msd due to
the longM-state lifetime but it can be improved by changing
the temperature, humidity, or pH value. It is known that the
bR response time in water solution is,10 ms. Our studies
on the temperature effect indicate that the response time de-
creases with the increasing temperature. At,50 °C, the bR
response time in water solution is reduced to,3 ms, which
is much faster than other organic photochromic materials
such as fulgide.13

In conclusion, we have investigated the nonlinear photo-
induced anisotropy in bR film and demonstrated an active
optical limiter based on it. The device can be used in the
whole visible region. By choosing a suitable incident probing
beam intensity, the device can be used for laser eye protec-
tion. The device response time is slows,200 msd, which is
due to the long lifetime of theM state. TheM-state lifetime
can be significantly reduced to,3 ms by changing the tem-
perature, pH value, and humidity during fabrication process.

This work is supported by DARPA under Contract No.
W911NF04C0048.
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