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WEIGHTED EMPIRICAL LIKELIHOOD IN SOME TWO-SAMPLE
SEMIPARAMETRIC MODELS WITH VARIOUS TYPES

OF CENSORED DATA

BY JIAN-JIAN REN1

University of Central Florida

In this article, the weighted empirical likelihood is applied to a general
setting of two-sample semiparametric models, which includes biased sam-
pling models and case-control logistic regression models as special cases. For
various types of censored data, such as right censored data, doubly censored
data, interval censored data and partly interval-censored data, the weighted
empirical likelihood-based semiparametric maximum likelihood estimator
(θ̃n, F̃n) for the underlying parameter θ0 and distribution F0 is derived,
and the strong consistency of (θ̃n, F̃n) and the asymptotic normality of θ̃n

are established. Under biased sampling models, the weighted empirical log-
likelihood ratio is shown to have an asymptotic scaled chi-squared distribu-
tion for censored data aforementioned. For right censored data, doubly cen-
sored data and partly interval-censored data, it is shown that

√
n(F̃n − F0)

weakly converges to a centered Gaussian process, which leads to a consistent
goodness-of-fit test for the case-control logistic regression models.

1. Introduction. Consider the following two-sample semiparametric model:

X1, . . . ,Xn0 is a random sample with density f0(x),
(1.1)

Y1, . . . , Yn1 is a random sample with density g0(x) = ϕ(x; θ0)f0(x),

where the two samples are independent, and ϕ(x; θ0) is a known function with
x ∈ R and a unique unknown parameter θ0 ∈ R

q , while f0 and g0 are the density
functions of unknown nonnegative distribution functions (d.f.) F0 and G0, respec-
tively. This model (1.1) includes biased sampling models (Vardi [32]) and case-
control logistic regression models (Prentice and Pyke [22]) as special cases, for
which there has not been any published work dealing with censored data. In this
article, we study model (1.1) when at least one of the two samples is not completely
observable due to censoring. As follows, we use random sample X1, . . . ,Xn0 to il-
lustrate the censoring models under consideration here, while Examples 1 and 2
discuss biased sampling models and case-control logistic regression models, re-
spectively.

Received September 2005; revised February 2007.
1Research supported in part by NSF Grants DMS-02-04182 and DMS-06-04488.
AMS 2000 subject classifications. 62N02, 62N03, 62N01.
Key words and phrases. Biased sampling, bootstrap, case-control data, doubly censored data, em-

pirical likelihood, Kolmogorov–Smirnov statistic, interval censored data, likelihood ratio, logistic
regression, maximum likelihood estimator, partly interval-censored data, right censored data.

147

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/009053607000000695
http://www.imstat.org
http://www.ams.org/msc/


148 J.-J. REN

Right censored sample. The observed data are Oi = (Vi, δi),1 ≤ i ≤ n0, with

Vi =
{

Xi, if Xi ≤ Ci , δi = 1,
Ci, if Xi > Ci , δi = 0,

(1.2)

where Ci is the right censoring variable and is independent of Xi . This type of
censoring has been extensively studied in the literature in the past few decades.

Doubly censored sample. The observed data are O i = (Vi, δi), 1 ≤ i ≤ n0,
with

Vi =
⎧⎨
⎩

Xi, if Di < Xi ≤ Ci, δi = 1,
Ci, if Xi > Ci, δi = 2,
Di, if Xi ≤ Di, δi = 3,

(1.3)

where Ci and Di are right and left censoring variables, respectively, and they are
independent of Xi with P {Di < Ci} = 1. This type of censoring has been con-
sidered by Turnbull [31], Chang and Yang [4], Gu and Zhang [11] and Mykland
and Ren [17], among others. One recent example of doubly censored data was
encountered in a study of primary breast cancer (Ren and Peer [28]).

Interval censored sample.

CASE 1. The observed data are Oi = (Ci, δi), 1 ≤ i ≤ n0, with

δi = I {Xi ≤ Ci}.(1.4)

CASE 2. The observed data are Oi = (Ci,Di, δi), 1 ≤ i ≤ n0, with

δi =
⎧⎨
⎩

1, if Di < Xi ≤ Ci ,
2, if Xi > Ci ,
3, if Xi ≤ Di ,

(1.5)

where Ci and Di are independent of Xi and satisfy P {Di < Ci} = 1 for Case 2.
These two types of interval censoring were considered by Groeneboom and Well-
ner [10], among others. In practice, interval censored Case 2 data were encountered
in AIDS research (Kim, De Gruttola and Lagakos [16]; see discussion in Ren [26]).

Partly interval-censored sample.

“CASE 1” PARTLY INTERVAL-CENSORED DATA. The observed data are

Oi =
{

Xi, if 1 ≤ i ≤ k0,
(Ci, δi), if k0 + 1 ≤ i ≤ n0,

(1.6)

where δi = I {Xi ≤ Ci} and Ci is independent of Xi .
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GENERAL PARTLY INTERVAL-CENSORED DATA. The observed data are

Oi =
{

Xi, if 1 ≤ i ≤ k0,
(C, δi ), if k0 + 1 ≤ i ≤ n0,

(1.7)

where for N potential examination times C1 < · · · < CN, letting C0 = 0
and CN+1 = ∞, we have C = (C1, . . . ,CN) and δi = (δ

(1)
i , . . . , δ

(N+1)
i ) with

δ
(j)
i = 1, if Cj−1 < Xi ≤ Cj ; 0, elsewhere. This means that for intervals

(0,C1], (C1,C2], . . . , (CN,∞), we know in which one of them Xi falls. These
two types of partly interval-censoring were considered by Huang [12], among oth-
ers. As pointed out by Huang [12], in practice the general partly interval-censored
data were encountered in Framingham Heart Disease Study (Odell, Anderson and
D’Agostino [18]), and in the study on incidence of proteinuria in insulin-dependent
diabetic patients (Enevoldsen et al. [5]).

EXAMPLE 1 (Biased sampling model). In (1.1), let

ϕ(x; θ0) = θ0w(x), θ0 ∈ R,(1.8)

where w(x) is a weight function with positive value on the support of F0, and θ0 =
1/w0 is the weight parameter satisfying w0 = ∫ ∞

0 w(x)dF0(x). Then, (1.1) is a
two-sample biased sampling problem, for which the case with length-biased dis-
tribution G0, that is, w(x) = x in (1.8), was considered by Vardi [32], and the
empirical log-likelihood ratio for the mean of F0 was shown to have an asymptotic
chi-squared distribution by Qin [23]. More general biased sampling models were
considered by Vardi [33], Gill, Vardi and Wellner [9], who discussed various ap-
plication examples, and showed that the maximum likelihood estimator for F0 is
asymptotically Gaussian and efficient. For right censored samples in (1.1), Vardi
[33] gave an estimator for F0 based on the EM algorithm, but the asymptotic prop-
erties of the estimator were not studied. Below, we discuss practical examples of
biased sampling problem with censored data.

In Patil and Rao [20], the biased sampling problem is discussed in the context
of efficiency of early screening for disease. Using our notations in (1.1), if F0 is
the d.f. of the duration of the preclinical state of certain chronic disease, then the
first sample in (1.1) is taken from those whose clinical state is detected by the
usual medical care. If at a certain point in time some individuals in the preclin-
ical state begin participating in an early detection program, then such a program
identifies them by a length-biased sampling. In other words, the second sample
in (1.1) is taken from those who participated in the early detection program, and
G0 is a length-biased distribution. However, in reality a usual screening program
for “disease” is conducted by examining an individual periodically with a fixed
length of time between two consecutive check-ups. The data encountered in such a
screening program is typically a doubly censored sample (1.3); that is, the actually
observed data for the second sample in (1.1) is doubly censored. In statistical liter-
ature, examples of doubly censored data encountered in screening programs have
been given by Turnbull [31] and Ren and Gu [27], among others.
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EXAMPLE 2 (Case-control logistic regression model). In (1.1), let

ϕ(x; θ0) = eα0+β0x,
(1.9)

F0(x) = P {T ≤ x|Z = 0}, G0(x) = P {T ≤ x|Z = 1};
then under reparameterization by Qin and Zhang [24], model (1.1) is equivalent to
the following case-control logistic regression model (Prentice and Pyke [22]):

P {Z = 1|T = x} = exp(α∗ + β0x)

1 + exp(α∗ + β0x)
,(1.10)

where θ0 = (α0, β0) ∈ R
2, Z is the binary response variable (with value 1 or 0

to indicate presence or absence of a disease or occurrence of an event of inter-
est), T is the covariate variable, and (α∗, β0) is the regression parameter satis-
fying α0 = α∗ + ln[(1 − π)/π] for π = P {Z = 1}. Qin and Zhang [24] estab-
lished asymptotic normality of the semiparametric maximum likelihood estimators
(SPMLE) for (θ0,F0) in (1.9) with two complete samples in (1.1), and provided
a goodness-of-fit test for (1.10). Below, we discuss an example to illustrate the
situation with censored covariate variable T .

In the example of early detection of breast cancer considered by Ren and Gu
[27], T is the age at which the tumor could be detected when screening mammo-
gram is the only detection method, and based on series screening mammograms
the observed data on T are doubly censored. This example is part of a study on
the effectiveness of screening mammograms; see Ren and Peer [28] for precise
description of left and right censored observations. Here, to study the effects of
screening mammograms on survival, we consider those individuals who had breast
cancer, and let Z = 1 represent death due to breast cancer within 5 years of diagno-
sis; Z = 0, otherwise. Then under (1.9), for those “dead” (i.e., Z = 1) the second
sample in (1.1) is taken from the available screening mammogram records; thus
the actually observed data from G0(x) = P {T ≤ x|Z = 1} is a doubly censored
sample. Similarly, for those “survived” (i.e., Z = 0) the first sample in (1.1) is also
taken from screening mammogram records; thus also a doubly censored sample.
Fitting the logistic regression model (1.10) with these two doubly censored case-
control samples, we obtain P {Z = 1|T = x0}, which is the probability of “death”
for an individual whose tumor was detected by screening mammogram at age x0.

In this article, we apply weighted empirical likelihood (Ren [25]) to model (1.1)
with the following two independent samples for n = n0 + n1:

OX
1 , . . . ,OX

n0
is the observed sample for sample X1, . . . ,Xn0,

(1.11)
OY

1 , . . . ,OY
n1

is the observed sample for sample Y1, . . . , Yn1,

where OX
i ’s or OY

j ’s is possibly one of those censored samples described above,

and we denote F̂ and Ĝ as the nonparametric maximum likelihood estimators
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(NPMLE) for F0 and G0 based on OX
i ’s and OY

j ’s, respectively. Section 2 pro-
vides a heuristic explanation of the concept of weighted empirical likelihood. For
censored data (1.2)–(1.7) aforementioned, Section 3 derives the weighted empiri-
cal likelihood-based SPMLE (θ̃n, F̃n) for (θ0,F0), and establishes the strong con-
sistency of (θ̃n, F̃n) and the asymptotic normality of θ̃n, while Section 4 further
discusses Example 1 on biased sampling models, and shows that the weighted
empirical log-likelihood ratio has an asymptotic scaled chi-squared distribution.
For right censored data, doubly censored data and partly interval-censored data,
Section 3 also shows that

√
n(F̃n − F0) weakly converges to a centered Gaussian

process, while Section 5 further discusses Example 2 on case-control logistic re-
gression models, and provides a consistent goodness-of-fit test.

We note that the weighted empirical likelihood approach used in this article
can be adapted to deal with more general biased sampling models. Also note that
based on Ren and Gu [27], our results here on the case-control logistic regression
models can be extended to k-dimensional (k > 1) covariate T , where T contains
one component that is subject to right censoring or doubly censoring.

For interval censored data (1.4)–(1.5), the weighted empirical likelihood ap-
proach enables us to obtain the strong consistency of the SPMLE (θ̃n, F̃n), the
asymptotic normality of θ̃n, and the limiting distribution of the log-likelihood ratio
via the asymptotic results on the NPMLE F̂ or Ĝ for interval censored data by
Groeneboom and Wellner [10] and Geskus and Groeneboom [6], among others.
However, the techniques used in our proofs show that the weak convergence of F̃n

for interval censored data relies on that of F̂ or Ĝ for interval censored data, which
is now unknown.

2. Weighted empirical likelihood. For random sample X1, . . . ,Xn0 from
d.f. F0, the empirical likelihood function (Owen [19]) is given by L(F) =∏n0

i=1[F(Xi) − F(Xi−)], where F is any d.f. The weighted empirical likelihood
function in Ren [25] may be understood as follows.

For each type of censored data aforementioned, the likelihood function has
been given in literature, and the NPMLE F̂ for F0 is the solution which maxi-
mizes the likelihood function. Moreover, it is shown that from observed censored
data {OX

i ;1 ≤ i ≤ n0}, there exist m0 distinct points WX
1 < WX

2 < · · · < WX
m0

along with p̂X
j > 0, 1 ≤ j ≤ m0, such that F̂ can be expressed as F̂ (x) =∑m0

i=1 p̂X
i I {WX

i ≤ x} for above right censored data (Kaplan and Meier [15]), dou-
bly censored data (Mykland and Ren [17]), interval censored data Case 1 and
Case 2 (Groeneboom and Wellner [10]) and partly interval-censored data (Huang
[12]). Since in all these cases F̂ is shown to be a strong uniform consistent es-
timator for F0 under some suitable conditions, we may expect a random sample
X∗

1, . . . ,X∗
n0

taken from F̂ to behave asymptotically the same as X1, . . . ,Xn0 . If
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F ∗
n0

denotes the empirical d.f. of X∗
1, . . . ,X∗

n0
, then from F̂ ≈ F ∗

n0
we have

n0∏
i=1

P {Xi = xi} ≈
n0∏
i=1

P {X∗
i = x∗

i } =
m0∏
j=1

(P {X∗
1 = WX

j })kj

≈
m0∏
j=1

(P {X∗
1 = WX

j })n0[F̂ (WX
j )−F̂ (WX

j −)]

=
m0∏
j=1

(P {X∗
1 = WX

j })n0p̂
X
j ,

where kj = n0[F ∗
n0

(WX
j ) − F ∗

n0
(WX

j −)]. Thus, the weighted empirical likelihood
function (Ren [25])

L̂(F ) =
m0∏
i=1

[F(WX
i ) − F(WX

i −)]n0p̂
X
i(2.1)

may be viewed as the asymptotic version of the empirical likelihood func-
tion L(F) for censored data. When there is no censoring, L̂(F ) coincides with
L(F).

3. SPMLE and asymptotic results. This section derives the semiparametric
maximum likelihood estimator for (θ0,F0) in (1.1) using censored data (1.11), and
studies related asymptotic properties.

As general notations throughout this paper, let F̂ and Ĝ be the NPMLE for F0

and G0 in (1.1) based on observed censored data OX
1 , . . . ,OX

n0
and OY

1 , . . . ,OY
n1

in (1.11), respectively. From Section 2, we know that there exist distinct points
WX

1 < · · · < WX
m0

and WY
1 < · · · < WY

m1
with p̂X

i > 0 and p̂Y
i > 0 such that F̂ and

Ĝ can be expressed as

F̂ (x) =
m0∑
i=1

p̂X
i I {WX

i ≤ x} and Ĝ(x) =
m1∑
i=1

p̂Y
i I {WY

i ≤ x}(3.1)

respectively, for those censored data aforementioned. We also let

(W1, . . . ,Wm) = (WX
1 , . . . ,WX

m0
,WY

1 , . . . ,WY
m1

),

(p̂1, . . . , p̂m) = (p̂X
1 , . . . , p̂X

m0
, p̂Y

1 , . . . , p̂Y
m1

),(3.2)

(ω1, . . . ,ωm) = (ρ0p̂
X
1 , . . . , ρ0p̂

X
m0

, ρ1p̂
Y
1 , . . . , ρ1p̂

Y
m1

),

where m = m0 + m1, ρ0 = n0/n and ρ1 = n1/n.
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To derive an estimator for (θ0,F0) using both samples in (1.11), we apply
weighted empirical likelihood function (2.1) to model (1.1), and obtain(

m0∏
i=1

[F(WX
i ) − F(WX

i −)]n0p̂
X
i

)(
m1∏
j=1

[G(WY
j ) − G(WY

j −)]n1p̂
Y
j

)

=
(

m0∏
i=1

[F(WX
i ) − F(WX

i −)]n0p̂
X
i

)

×
(

m1∏
j=1

{ϕ(WY
j ; θ0)[F(WY

j ) − F(WY
j −)]}n1p̂

Y
j

)
.

Thus, from (3.2) the weighted empirical likelihood function for model (1.1) is
given by

L(θ,F ) =
(

m∏
i=1

p
nωi

i

)(
m∏

j=m0+1

[ϕ(Wj ; θ)]nωj

)

(3.3)
for pi = F(Wi) − F(Wi−),

and the SPMLE (θ̃n, F̃n) for (θ0,F0) is the solution that maximizes L(θ,F ). One
may note that the use of weighted empirical likelihood function (2.1) here provides
a simple and direct way to incorporate the model assumption of (1.1) in the deriva-
tion of likelihood function (3.3) for censored data. Also note that using the usual
likelihood functions for specific types of censored data would result in a much
more complicated likelihood function which is very difficult to handle.

To find (θ̃n, F̃n), we need to solve the following optimization problem:

maxL(θ,p) =
(

m∏
i=1

p
nωi

i

)(
m∏

j=m0+1

[ϕ(Wj ; θ)]nωj

)

(3.4)

subject to pi ≥ 0,

m∑
i=1

pi = 1,

m∑
i=1

piϕ(Wi; θ) = 1,

where the last constraint reflects the fact that ϕ(x; θ)[F(x) − F(x−)] is a dis-
tribution function. Note that the NPMLE for censored data (1.2)–(1.7) is not al-
ways a proper d.f. (Mykland and Ren [17]). But for the moment, we assume∑m0

i=1 p̂X
i = ∑m1

i=1 p̂Y
i = 1 in (3.1), which will not be needed later on for our main

results of the paper. To solve (3.4), we first maximize L(θ,p) with respect to
p = (p1, . . . , pm) for fixed θ , then maximize l(θ) = lnL(θ, p̃) = maxp lnL(θ,p)

over θ to find θ̃n. Noting that for Ui(θ) = ϕ(Wi; θ), constraints in (3.4) imply∑m
i=1 pi[Ui(θ) − 1] = 0, we know that θ must satisfy[

U(1)(θ) − 1
]
< 0 <

[
U(m)(θ) − 1

]
.(3.5)
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Using the Lagrange multiplier method, it can be shown that for any fixed θ satisfy-
ing (3.5), the convexity of lnL(θ,p) ensures that L(θ,p) is uniquely maximized
by L(θ, p̃) (see pages 90–91 and 164 of Bazaraa, Sherali and Shetty [1]), where

p̃i = ωi

1 + λ(θ)[Ui(θ) − 1] , i = 1, . . . ,m,(3.6)

with λ(θ) as the unique solution on interval (−[U(m)(θ)−1]−1,−[U(1)(θ)−1]−1)

for

0 = ψ(λ; θ) ≡
m∑

i=1

ωi[Ui(θ) − 1]
1 + λ[Ui(θ) − 1] .(3.7)

Thus, we have l(θ) = n
∑m

i=1 ωi ln p̃i + n
∑m

j=m0+1 ωj lnϕ(Wj ; θ).

For our examples, we have θ0 ∈ R or θ0 ∈ R
2 in (1.1), and that for some func-

tions h1(θ) and h2(x), the following assumption holds for ϕ(x; θ) with θ ∈ R or
θ ∈ R

2:

(AS0) ∇ϕ(x; θ) = ϕ(x; θ)h1(θ)(1, h2(x))� for ∇ = (∂/∂θ1, ∂/∂θ2)
�,

where 0 < h1(θ) ∈ R is twice differentiable for θ ∈ ; 0 ≤ h2(x) ∈ R is monotone
for x ≥ 0; in the case θ ∈ R, we have degenerating h2(x) ≡ 0; in the case θ ∈ R

2,
we always have strictly monotone h2(x) on the support of F0. Throughout this
paper, our notations mean that for the case θ ∈ R, only the nondegenerating
component in equations, vectors and matrices is meaningful. To minimize l(θ),
from (3.2), (3.6)–(3.7), ψ(λ(θ); θ) = 0 and constraints in (3.4), we obtain that
under assumption (AS0):

∂l

∂θ1
= −nλ(θ)h1(θ)

m∑
i=1

p̃iϕ(Wi; θ) + nh1(θ)

m∑
j=m0+1

ωj

= nh1(θ)[ρ1 − λ(θ)],(3.8)

∂l

∂θ2
= nh1(θ)

(
ρ1

m∑
j=m0+1

p̂jh2(Wj ) − λ(θ)

m∑
i=1

p̃iϕ(Wi; θ)h2(Wi)

)
,

where the use of ∇λ(θ) in deriving (3.8) can easily be justified by the theorems on
implicit functions in mathematical analysis. If θ̃n is a solution of ∇l(θ) = 0, then

λ(θ̃n) = ρ1 and
m∑

j=m0+1

p̂jh2(Wj ) −
m∑

i=1

p̃iϕ(Wi; θ̃n)h2(Wi) = 0.(3.9)

In the Appendix, we show that θ̃n is equivalently given by the solution of equa-
tion(s): ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
0 = g1(θ) ≡

∫ ∞
0

ϕ(x; θ)

ρ0 + ρ1ϕ(x; θ)
dF̂ (x) −

∫ ∞
0

1

ρ0 + ρ1ϕ(x; θ)
dĜ(x),

0 = g2(θ) ≡
∫ ∞

0

ϕ(x; θ)h2(x)

ρ0 + ρ1ϕ(x; θ)
dF̂ (x) −

∫ ∞
0

h2(x)

ρ0 + ρ1ϕ(x; θ)
dĜ(x),

(3.10)
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by which we always mean that θ̃n ∈ R is the solution of g1(θ) = 0 if h2(x) ≡ 0. For
our examples, the unique existence of solution θ̃n for (3.10) is shown in Sections 4
and 5, respectively, and it can be shown that θ̃n maximizes l(θ) over those θ satis-
fying (3.5) (the proofs are omitted). Thus, θ̃n is the SPMLE for θ0 in (1.1). Conse-
quently, replacing θ by θ̃n in (3.6), we obtain the following SPMLE F̃n for F0:

F̃n(t) =
m∑

i=1

p̃iI {Wi ≤ t} =
∫ t

0

1

ρ0 + ρ1ϕ(x; θ̃n)
d[ρ0F̂ (x) + ρ1Ĝ(x)].(3.11)

Since the equations in (3.10) only depend on the NPMLE F̂ and Ĝ, thus
for the rest of the paper, θ̃n denotes the solution of (3.10) without assumption∑m0

i=1 p̂X
i = ∑m1

i=1 p̂Y
i = 1 in (3.1), and is used to compute F̃n in (3.11). In the fol-

lowing theorems, some asymptotic results on (θ̃n, F̃n) are established under some
of the assumptions listed below, while the proofs are deferred to the Appendix.

(AS1) (a) ϕ(x; θ) is monotone in x for any fixed θ ∈ , where  = {θ1|a1 <

θ1 < ∞} if θ ∈ R;  = {(θ1, θ2)|ai < θi < ∞, i = 1,2} if θ ∈ R
2;

(b) ϕ(x; θ) is increasing in θ1 (and in θ2 if θ ∈ R
2) for any fixed x > 0;

(c) for fixed x > 0 (and fixed θ2 if θ ∈ R
2), ϕ(x; θ) → ∞(0), as

θ1 → ∞(a1);
(d) for θ = (θ1, θ2) ∈ R

2 and fixed x > 0, when −θ1/θ2 → γ with 0 ≤ γ ≤
∞: ϕ(x; θ) → 0(∞) if x < γ (x > γ ), as θ2 → ∞; ϕ(x; θ) → 0(∞) if
x > γ (x < γ ), as θ2 → a2;

(AS2) ρ0 = n0
n

and ρ1 = n1
n

remain the same as n → ∞;

(AS3)
√

n0
∫ ∞

0
[h2(x)]kϕ(x;θ0)
ρ0+ρ1ϕ(x;θ0)

d[F̂ (x) − F0(x)] D→ N(0, σ 2
F,k), as n → ∞,

√
n1 ×∫ ∞

0
[h2(x)]k

ρ0+ρ1ϕ(x;θ0)
d[Ĝ(x) − G0(x)] D→ N(0, σ 2

G,k), as n → ∞, where k =
0,1, and [h2(x)]0 ≡ 1;

(AS4) ‖F̂ − F0‖ a.s.→ 0, ‖Ĝ − G0‖ a.s.→ 0, as n → ∞;
(AS5)

∫ ∞
0 [h2(x)]k d[F̂ (x) − F0(x)] a.s.→ 0,

∫ ∞
0 [h2(x)]k d[Ĝ(x) − G0(x)] a.s.→ 0, as

n → ∞, with finite
∫ ∞

0 [h2(x)]k dF0(x) and
∫ ∞

0 [h2(x)]k dG0(x), where
k = 1,2,3;

(AS6)
√

n0(F̂ −F0)
w⇒ GF ,

√
n1(Ĝ−G0)

w⇒ GG, as n → ∞, where GF and GG

are centered Gaussian processes.

THEOREM 1. Assume (AS0)–(AS5). Under model (1.1), we have:

(i) θ̃n
a.s.→ θ0, as n → ∞;

(ii)
√

n(θ̃n − θ0)
D→ N(0,�0), as n → ∞;

(iii) ‖F̃n − F0‖ a.s.→ 0, as n → ∞.

THEOREM 2. Assume (AS0)–(AS6). Under model (1.1), we have that√
n(F̃n − F0) weakly converges to a centered Gaussian process.
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REMARK 1 (Assumptions of theorems). For our examples, (AS0)–(AS1) hold,
which will be discussed in Sections 4 and 5, respectively. From Gill [7], Gu
and Zhang [11], Huang [12], Huang and Wellner [13] and Geskus and Groene-
boom [6], we know that under some suitable conditions, (AS3) holds for censored
data (1.2)–(1.7) aforementioned. We also know that for these types of censored
data, (AS4) holds under some suitable conditions; see Stute and Wang [30], Gu
and Zhang [11], Huang [12] and Groeneboom and Wellner [10]. For right cen-
sored data, (AS5) holds under some regularity conditions (Stute and Wang [30]).
For other types of censored data, (AS5) is implied by (AS4) if the support of F0 is
finite. On the other hand, if weaker consistency result is desired in Theorem 1(i),
assumption (AS5) can be weakened. Moreover, from Gill [7], Gu and Zhang [11]
and Huang [12], we know that (AS6) holds under some suitable conditions for
right censored data, doubly censored data and partly interval-censored data. The
techniques used in our proofs show that the weak convergence of F̃n for interval
censored data relies on that of NPMLE F̂ or Ĝ for interval censored data, which
is now unknown.

4. Biased sampling models. For the biased sampling problem in Example 1,
this section discusses assumptions (AS0)–(AS1), shows the unique existence of
SPMLE θ̃n for θ0 ∈ R in (1.8), and studies the weighted empirical log-likelihood
ratio for w0.

Under (1.8), we have that in (AS0), h1(θ) = 1/θ for θ ∈  = {θ |a1 = 0 <

θ < ∞} and h2(x) ≡ 0, and that (AS1)(a)–(c) obviously hold for any monotone
weight function w(x), while (AS1)(d) does not apply. Since h2(x) ≡ 0, θ̃n ∈ R

is determined by the first equation of (3.10). Note that (AS1)(c) and the Domi-
nated Convergence Theorem (DCT) imply: limθ→0 g1(θ) = −Ĝ(∞)/ρ0 < 0 and
limθ→∞ g1(θ) = F̂ (∞)/ρ1 > 0. Thus, the solution θ̃n of equation g1(θ) = 0
uniquely exists because g′

1(θ) > 0 for θ > 0.

Weighted empirical log-likelihood ratio. From (3.3) and (3.6), we know
that under (1.8), the weighted empirical likelihood ratio is given by R̂(F ) =
L(θ,F )/L(θ̃n, F̃n) = (θ/θ̃n)

nρ1
∏m

i=1(pi/p̃i)
nωi , where F(x) = ∑m

i=1 piI {Wi ≤
x}, θ = 1/[∑m

i=1 piw(Wi)] and p̃i = ωi/[ρ0 + ρ1θ̃nw(Wi)]. Then, set S =
{∫ w(x)dF (x)|R̂(F ) ≥ c} may be used as confidence interval for w0, where
0 < c < 1 is a constant. Let

r(θ0) = sup

{
(θ0/θ̃n)

nρ1

m∏
i=1

(pi/p̃i)
nωi |pi ≥ 0,

(4.1)
m∑

i=1

pi = 1,

m∑
i=1

piw(Wi) = 1

θ0

}
.

It is easy to show that S is an interval expressed by S = [XL,XU ], and that
XL ≤ w0 ≤ XU if and only if r(θ0) ≥ c, where XL = inf{∫ ∞

0 w(x)dF (x)|F ∈ F }
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and XU = sup{∫ ∞
0 w(x)dF (x)|F ∈ F } for F = {F |R̂(F ) ≥ c,pi ≥ 0,

∑m
i=1 pi =

1}. We call [XL,XU ] the weighted empirical likelihood ratio confidence interval
for w0, and the limiting distribution of weighted empirical log-likelihood ratio for
those censored data (1.2)–(1.7) is given in the following theorem with a proof
sketched in the Appendix.

THEOREM 3. Assume (AS2)–(AS5) for model (1.8). Then, −2 ln r(θ0)
D→

c0χ
2
1 , as n → ∞, where 0 < c0 < ∞ is a constant and χ2

1 has a chi-squared
distribution.

5. Case-control logistic regression models. For the case-control logistic re-
gression model in Example 2, this section discusses assumptions (AS0)–(AS1),
shows the unique existence of SPMLE θ̃n for θ0 ∈ R

2 in (1.9), and provides a
goodness-of-fit test for model (1.10).

Under (1.9), we have that in (AS0)–(AS1), h1(θ) ≡ 1 for θ ∈  with a1 =
a2 = −∞ and h2(x) = x, and that (AS1) holds for ϕ(x; θ) = exp(α + βx) with
θ = (α,β) ∈ R

2. In the Appendix, we show that the solution θ̃n of (3.10) exists
uniquely.

Goodness-of-fit test. To assess the validity of logistic regression model as-
sumption (1.10) with censored data, note that there are two ways to estimate
d.f. F0 in (1.9) using censored data (1.11). One is the NPMLE F̂ based on the
first sample, and the other is the SPMLE F̃n based on both samples under model
assumption (1.10), that is, (1.9). Based on Theorems 1 and 2, we have the follow-
ing corollary on the asymptotic properties of F̂ and F̃n with proofs deferred to the
Appendix.

COROLLARY 1. Assume (AS2)–(AS5) for model (1.9). Then, as n → ∞:

(i) ‖F̃n − F̂‖ a.s.→ 0 under model (1.10);
(ii) ‖F̃n −F1‖ a.s.→ 0 when model (1.10) does not hold [i.e., g0(x)

a.e.= ϕ(x; θ0)×
f0(x) does not hold], where F1 �= F0;

(iii)
√

n(F̃n − F̂ ) weakly converges to a centered Gaussian process under
model (1.10) and assumption (AS6).

Thus, from Remark 1 we know that for right censored data, doubly censored
data and partly interval-censored data, we may use the following Kolmogorov–
Smirnov-type statistic to measure the difference between F̂ and F̃n, which gives a
goodness-of-fit test statistic for case-control logistic regression model (1.10):

Tn = √
n‖F̃n − F̂‖ = √

n sup
0≤t<∞

|F̃n(t) − F̂ (t)|.(5.1)
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Bootstrap method. To compute the p-value for test statistic Tn in (5.1), we sug-
gest the following n out of n bootstrap method. Since θ̃n = (α̃n, β̃n) is determined
by (3.10), it is a functional of the NPMLE F̂ and Ĝ, denoted as θ̃n = θ(F̂ , Ĝ);
in turn, (3.11) implies that F̃n(t) − F̂ (t) is a functional of F̂ and Ĝ, denoted as
F̃n − F̂ = τ(F̂ , Ĝ). Note that under model (1.1), θ0 is the unique solution of equa-
tion(s):

0 = g01(θ) ≡
∫ ∞

0

ϕ(x; θ)

ρ0 + ρ1ϕ(x; θ)
dF0(x) −

∫ ∞
0

1

ρ0 + ρ1ϕ(x; θ)
dG0(x),

(5.2)

0 = g02(θ) ≡
∫ ∞

0

ϕ(x; θ)h2(x)

ρ0 + ρ1ϕ(x; θ)
dF0(x) −

∫ ∞
0

h2(x)

ρ0 + ρ1ϕ(x; θ)
dG0(x),

by which we always mean that θ0 ∈ R is the solution of g01(θ) = 0 if h2(x) ≡ 0.
Thus, under (1.9) we have θ0 = (α0, β0) = θ(F0,G0); in turn, τ(F0,G0) ≡ 0,
which means Tn = √

n‖τ(F̂ , Ĝ) − τ(F0,G0)‖ under model (1.10). Hence, from
the formulation given in Bickel and Ren [3], the distribution of Tn under
model (1.10) can be estimated by that of T ∗

n = √
n‖τ(F̂ ∗, Ĝ∗) − τ(F̂ , Ĝ)‖, where

F̂ ∗ and Ĝ∗ are calculated based on the n out of n bootstrap samples, respectively.
For instance, F̂ ∗ is calculated based on the bootstrap sample OX∗

1 , . . . ,OX∗
n0

taken

with replacement from {OX
1 , . . . ,OX

n0
}. The p-value is estimated by the percent-

age of T ∗
n ’s that are greater than test statistic Tn. Note that the n out of n bootstrap

consistency for
√

n0(F̂ − F0) estimated by
√

n0(F̂
∗ − F̂ ) has been established

for right censored data, doubly censored data and partly interval-censored data by
Bickel and Ren [2] and Huang [12].

REMARK 2. The proposed test (5.1) can be used for any type of censored
data as long as (AS2)–(AS6) hold. When (AS6) does not hold, such as for interval
censored data, Corollary 1 shows that we may graphically check the model fitting
for (1.10) by comparing curves of F̂ and F̃n. Note that when model (1.10) does not
hold, statistic T ∗

n is still asymptotically a function of a centered Gaussian process,

but Tn
a.s.→ ∞ based on Corollary 1(ii). Thus, our proposed test is consistent. In

terms of computing (α̃n, β̃n), it can be done using the Newton–Raphson method
described on page 374 of Press et al. [21] to solve (3.10); a computation routine in
FORTRAN is available from the author. Although not presented here, our exten-
sive simulation studies on (α̃n, β̃n) and the comparison between the distributions
of Tn and T ∗

n give excellent results.

APPENDIX

PROOF OF “θ̃n IS EQUIVALENTLY GIVEN BY THE SOLUTION OF (3.10).” Under
assumption

∑m0
i=1 p̂X

i = ∑m1
i=1 p̂Y

i = 1, the first equation of (3.9) is equivalent to
ψ(ρ1; θ) = 0, which by (3.7) and (3.1)–(3.2), gives g1(θ) = 0 in (3.10). The proof
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follows from that (3.6) and λ(θ) = ρ1 imply that the second equation of (3.9) is
0 = −ρ0g2(θ). �

PROOF OF “UNIQUE EXISTENCE OF θ̃n IN EXAMPLE 2.” Let

Rn(θ) =
∫ ∞

0

1

ρ1
ln[ρ0 + ρ1ϕ(x; θ)]dF̂ (x)

(A.1)

+
∫ ∞

0

1

ρ0
ln

(
ρ0 + ρ1ϕ(x; θ)

ϕ(x; θ)

)
dĜ(x).

Since F̂ and Ĝ are step functions with finite jumps, we know that Rn(θ) is well
defined on R

2. From (A.1) and (3.10), we have ∇Rn(θ) = h1(θ)(g1(θ), g2(θ))�
and

�Rn,θ =

⎛
⎜⎜⎜⎝

∂2Rn

∂θ2
1

∂2Rn

∂θ2 ∂θ1

∂2Rn

∂θ1 ∂θ2

∂2Rn

∂θ2
2

⎞
⎟⎟⎟⎠

= (g1(θ), g2(θ))�(∇h1(θ))�
(A.2)

+ h2
1(θ)

∫ ∞
0

(
1 h2(x)

h2(x) h2
2(x)

)

× ϕ(x; θ)

[ρ0 + ρ1ϕ(x; θ)]2 d[ρ0F̂ (x) + ρ1Ĝ(x)].
Thus, ∇Rn(θ) = 0 is equivalent to (3.10) because h1(θ) > 0 by (AS0). For Ex-
ample 2, we have h1(θ) ≡ 1 and h2(x) = x, which imply that �Rn,θ is a positive-
definite matrix. Hence, Rn(θ) is strictly convex. Moreover, note that under (1.9),
we have in (A.1) Rn(θ) ≥ (lnρ0)/ρ1 + (lnρ1)/ρ0 for any θ = (α,β) ∈ R

2, and
that by a similar argument used in (6.5) of Ren and Gu [27], we can show:
limλ→∞ infRn(λe1, λe2) = ∞ for any e2

1 + e2
2 = 1. Hence, Rn(θ) has a unique

global minimum point which must be the solution of (3.10) (see pages 101–102 of
Bazaraa, Sherali and Shetty [1]). �

PROOF OF THEOREM 1(i). Let μ̂(x) = ρ0F̂ (x) + ρ1Ĝ(x); then (3.10) gives

F̂ (∞) =
∫ ∞

0

dμ̂(x)

ρ0 + ρ1ϕ(x; θ̃n)
≤ 1

ρ0
,

(A.3)

Ĝ(∞) =
∫ ∞

0

ϕ(x; θ̃n) dμ̂(x)

ρ0 + ρ1ϕ(x; θ̃n)
≤ 1

ρ1
,

where (AS4) implies F̂ (∞)
a.s.→ 1, Ĝ(∞)

a.s.→ 1, as n → ∞. As follows, we show
θ̃n = O(1) almost surely for case θ̃n = (θ̃

(1)
n , θ̃

(2)
n ) ∈ R

2 (the proof for case θ̃n ∈ R

is similar).
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Assume θ̃
(2)
n ≥ 0. If θ̃

(1)
n → ∞, then from integration by parts, the boundedness

of the integrand function, (AS1)(b)–(c) and the DCT, we have that in (A.3):

1 = lim
n→∞

∫ ∞
0

dμ0(x)

ρ0 + ρ1ϕ(x; θ̃n)
≤

∫ ∞
0

lim
n→∞

dμ0(x)

ρ0 + ρ1ϕ(x; θ̃ (1)
n ,0)

= 0,(A.4)

a contradiction, where μ0(x) = ρ0F0(x)+ρ1G0(x). Thus, θ̃
(2)
n ≥ 0 implies θ̃

(1)
n =

O(1) or θ̃
(1)
n → a1. Similarly, we know that 0 ≤ θ̃

(2)
n ≤ M2 < ∞ and θ̃

(1)
n →

a1 imply 1 = lim
∫ ∞

0 [ρ0 + ρ1ϕ(x; θ̃n)]−1 dμ0(x) ≥ ∫ ∞
0 lim[ρ0 + ρ1ϕ(x; θ̃ (1)

n ,

M2)]−1 dμ0(x) = 1/ρ0, a contradiction. Hence, if θ̃
(2)
n ≥ 0, then θ̃

(2)
n = O(1) im-

plies θ̃
(1)
n = O(1).

Assume θ̃
(2)
n → ∞,−θ̃

(1)
n /θ̃

(2)
n → γ with 0 ≤ γ ≤ ∞. Similarly as (A.4), (AS1)

gives

1 =
∫ ∞

0
lim

n→∞
dμ0(x)

ρ0 + ρ1ϕ(x; θ̃n)
= μ0(γ )

ρ0
,(A.5)

where we must have 0 < γ < ∞ to be inside the support of F0; a contradiction
otherwise. Also, if we let n → ∞ in the second equation of (3.10), then from
(AS4)–(AS5), Hölder’s inequality, the DCT and an argument similar to above, we
have

1

ρ1

∫ ∞
γ

h2(x) dF0(x) = 1

ρ0

∫ γ

0
h2(x) dG0(x).(A.6)

However, (A.5)–(A.6) contradict [G0(γ )
∫ ∞
γ h2(x) dF0(x) − F̄0(γ ) ×∫ γ

0 h2(x) dG0(x)] = ∫∫
x<γ<y[h2(y) − h2(x)]dF0(y) dG0(x) �= 0, which is im-

plied by (AS0). Thus, if θ̃
(2)
n ≥ 0, we must have θ̃

(2)
n = O(1); in turn, θ̃

(1)
n = O(1).

Similarly, we can show θ̃
(2)
n = O(1) and θ̃

(1)
n = O(1) if θ̃

(2)
n < 0. Hence, we have

θ̃n = O(1) almost surely.
Assume θ̃n → η0, as n → ∞. Then, from (3.10) and an argument similar to that

used in (A.6), we know that η0 is a solution of (5.2). Note that for nondegenerating
h2(x), to obtain the second equation of (5.2) for η0 we use (AS5) and the proof
of Lemma 3 of Gill [8], noticing that h2(x) is monotone and [ρ0 + ρ1ϕ(x;η0)]−1

is bounded and continuous. Hence, the proof follows from the uniqueness of the
solution for (5.2). �

PROOF OF THEOREM 1(ii). Here, we only prove the case θ̃n ∈ R
2, because the

proof for case θ̃n ∈ R is similar. For Rn(θ) in (A.1), we have that under model (1.1):

∇Rn(θ0) = h1(θ0)
([g1(θ0) − g01(θ0)], [g2(θ0) − g02(θ0)])�,

(A.7)
∇Rn(θ̃n) = ∇Rn(θ0) + �Rn,θ0(θ̃n − θ0)

� + 1
2(r1(θ̃n), r2(θ̃n))

�,

where g1, g2 and g01, g02 are given in (3.10) and (5.2), respectively; �Rn,θ is given
in (A.2); and from (AS5), Theorem 1(i) and straightforward calculation based
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on (A.2), we have ri(θ̃n) = op(θ̃n − θ0). From (A.7), (AS3), the independence
between F̂ and Ĝ, and page 4 of Serfling [29], we know that

√
n∇Rn(θ0) con-

verges in distribution to a normal random vector, while (A.2), (5.2) and a similar
argument in (A.6) imply

�Rn,θ0

a.s.→ �1 = h2
1(θ0)

∫ ∞
0

(
1 h2(x)

h2(x) h2
2(x)

)
ϕ(x; θ0) dμ0(x)

[ρ0 + ρ1ϕ(x; θ0)]2

(A.8)
as n → ∞,

where �1 is positive-definite. Hence, ∇Rn(θ̃n) = 0, (A.7)–(A.8) and Theorem 1(i)
give √

n(θ̃n − θ0) = −�−1
1

√
n∇Rn(θ0) + op(1).(A.9) �

PROOF OF THEOREM 1(iii). Here, we only prove the case θ̃n ∈ R
2, because

the proof for case θ̃n ∈ R is similar. For any t > 0, we let F̃n(t) ≡ g3(θ̃n) in (3.11);
then

F̃n(t) = g3(θ̃n)
(A.10)

= g3(θ0) + (θ̃n − θ0)∇g3(θ0) + 1
2(θ̃n − θ0)�g3,ξn(θ̃n − θ0)

�,

where ξn is between θ̃n and θ0, and

∇g3(θ) = −ρ1h1(θ)

∫ t

0
(1, h2(x))� ϕ(x; θ)

[ρ0 + ρ1ϕ(x; θ)]2 dμ̂(x),

�g3,θ =

⎛
⎜⎜⎜⎝

∂2g3

∂θ2
1

∂2g3

∂θ2 ∂θ1

∂2g3

∂θ1 ∂θ2

∂2g3

∂θ2
2

⎞
⎟⎟⎟⎠

= [h1(θ)]−1∇g3(θ)[∇h1(θ)]�(A.11)

− ρ1h
2
1(θ)

∫ t

0

(
1 h2(x)

h2(x) h2
2(x)

)

× ϕ(x; θ)[ρ0 − ρ1ϕ(x; θ)]
[ρ0 + ρ1ϕ(x; θ)]3 dμ̂(x).

From (AS5) and Theorem 1(i), we have that uniformly in t ,∣∣∣∣∂
2g3(ξn)

∂θ2
2

∣∣∣∣ ≤ ρ1

∫ ∞
0

ϕ(x; ξn)h2(x)[(∂2h1(ξn)/∂θ2
2 ) + h2

1(ξn)h2(x)]
[ρ0 + ρ1ϕ(x; ξn)]2 dμ̂(x)

= Oa.s.(1),

which also holds for other partial derivatives in (A.11). Thus, Theorem 1(ii) im-
plies that with (θ̃n − θ0)∇g3(θ0) = oa.s.(1), (A.10) can be written as

F̃n(t) = g3(θ0) + (θ̃n − θ0)∇g3(θ0) + Oa.s.(|θ̃n − θ0|2).(A.12)
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From (AS4) and integration by parts, we have |g3(θ0) − F0(t)| a.s.→ 0 for any fixed
t > 0; in turn, the proof follows from (A.12) and Pólya’s Theorem. �

PROOF OF THEOREM 2. Here, we only prove the case θ̃n ∈ R
2, because

the proof for case θ̃n ∈ R is similar. Let (v̂1, v̂2)
� = ∇g3(θ0) as in (A.11),

and let (v1, v2)
� = −ρ1h1(θ0)

∫ t
0 (1, h2(x))�ϕ(x; θ0)[ρ0 + ρ1ϕ(x; θ0)]−2 dμ0(x).

From (AS4) and integration by parts, we have |v̂k(t) − vk(t)| a.s.→ 0 for any fixed
t > 0, where k = 1,2. Since v̂k(t) and vk(t) are continuous and monotone in t ,
then from (AS5) and a similar argument used in the proof of Theorem 1(i) for
showing η0 as the solution of (5.2), we have ‖v̂k − vk‖ a.s.→ 0, as n → ∞. Thus, if
we let u0(x) = 1/[ρ0 + ρ1ϕ(x; θ0)], u1(x) = u0(x)ϕ(x; θ0), and λij the elements
of �−1

1 , then (A.7), (A.9), (A.12), (1.1) and Theorem 1(ii) imply
√

n[F̃n(t) − F0(t)]
= op(1)

(A.13)

+ √
n

(∫ t

0
u0(x) dμ̂(x) − F0(t) − (v̂1(t), v̂2(t))�

−1
1 ∇Rn(θ0)

)

= op(1) + √
n(ÛF − UF ) + √

n(ÛG − UG),

where for s1(t) = h1(θ0)[λ11v1(t) + λ21v2(t)] and s2(t) = h1(θ0)[λ12v1(t) +
λ22v2(t)], √

n[ÛF (t) − UF (t)]
≡ τ1

(√
n0(F̂ − F0)

)
= √

n

(
ρ0

∫ t

0
u0(x) d[F̂ (x) − F0(x)](A.14)

− s1(t)

∫ ∞
0

u1(x) d[F̂ (x) − F0(x)]

− s2(t)

∫ ∞
0

u1(x)h2(x) d[F̂ (x) − F0(x)]
)
,

√
n[ÛG(t) − UG(t)]

≡ τ2
(√

n1(Ĝ − G0)
)

= √
n

(
ρ1

∫ t

0
u0(x) d[Ĝ(x) − G0(x)](A.15)

+ s1(t)

∫ ∞
0

u0(x) d[Ĝ(x) − G0(x)]

+ s2(t)

∫ ∞
0

u0(x)h2(x) d[Ĝ(x) − G0(x)]
)
.
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As (A.14) is a linear functional of
√

n0(F̂ −F0), (AS6) implies
√

n(ÛF −UF )
w⇒

τ1(GF ), as n → ∞, where from pages 154–157 of Iranpour and Chacon [14],
we know that τ1(GF ) is a centered Gaussian process. Similarly,

√
n[ÛG − UG]

in (A.15) weakly converges to a centered Gaussian process τ2(GG). The proof
follows from (A.13)–(A.15), and that τ1(GF ) and τ2(GG) are two independent
centered Gaussian processes. �

PROOF OF COROLLARY 1. Note that part (i) follows directly from Theo-
rem 1(iii) and (AS4), while part (iii) follows from some minor adjustments in the
proof of Theorem 2. Thus, we only give the proof of part (ii) as follows.

Here, we have h1(θ) ≡ 1 and h2(x) = x; thus in (A.2) we have ∇h1(θ) ≡ 0.
From the proofs of the unique existence of θ̃n and Theorem 1(i), we know
that when model (1.10) does not hold, θ̃n is still well defined, and satisfies
|θ̃n − θ1| a.s.→ 0, as n → ∞, where θ1 = (α1, β1) is the unique solution of (5.2) for
ϕ(x; θ) = exp(α + βx). Applying this, (AS4) and integration by parts to (3.11),
we have ‖F̃n − F1‖ a.s.→ 0, where F1(t) = ∫ t

0 [ρ0 + ρ1 exp(α1 + β1x)]−1 dμ0(x).
It is easy to verify that F1 �= F0 when (1.10) does not hold [otherwise, we have
g0(x)

a.e.= ϕ(x; θ1)f0(x) with θ1 = θ0], and that the first equation of (5.2) implies
that F1 is a distribution function. �

PROOF OF THEOREM 3. For a simpler argument, we assume
∑m0

i=1 p̂X
i =∑m1

i=1 p̂Y
i = 1 in (3.1), which can be removed with some additional work in our

proof here. To get an expression of r(θ0), it can be shown by using the La-
grange multiplier method that the solution of the maximization problem in (4.1) is
p̄i = ωi/(1 + λ0Ui), 1 ≤ i ≤ m, where Ui = [θ0w(Wi) − 1], ωi is given in (3.2),
and λ0 is the unique solution of equation φ(λ) = 0 on interval (−U−1

(m),−U−1
(1) ) for

φ(λ) ≡ ∑m
i=1 p̄iUi = ∑m

i=1(ωiUi)/(1 + λUi). Thus, we have

ln r(θ0) = −n

m∑
i=1

ωi ln
(

1 + λ0Ui

ρ0 + ρ1θ̃nw(Wi)

)
− nρ1 ln(θ̃n/θ0).(A.16)

Using Taylor’s expansion on φ(λ), we have that from ψ(ρ1; θ̃n) = 0 in (3.7),

φ′(ξ)(ρ1 − λ0) = φ(ρ1) − φ(λ0)

=
m∑

i=1

(ωiUi)/(1 + ρ1Ui)

(A.17)

=
m∑

i=1

ωi[θ0w(Wi) − 1]
ρ0 + ρ1θ0w(Wi)

−
m∑

i=1

ωi[θ̃nw(Wi) − 1]
ρ0 + ρ1θ̃nw(Wi)

=
m∑

i=1

ωiw(Wi)(θ0 − θ̃n)

[ρ0 + ρ1ξiw(Wi)]2 ,
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where ξ is between ρ1 and λ0, and ξi is between θ0 and θ̃n. From (AS4), integration
by parts and Theorem 1(i), we know that (A.17) implies

(ρ1 − λ0) = (θ0 − θ̃n)

(
1

φ′(ρ1)

m∑
i=1

ωiw(Wi)

[ρ0 + ρ1θ0w(Wi)]2 + op(1)

)
.(A.18)

Also using Taylor’s expansion, we have

ln[ρ0 + ρ1θ0w(Wi)]
= ln(1 + ρ1Ui) = ln(1 + λ0Ui) + Ui

1 + λ0Ui

(ρ1 − λ0)(A.19)

− U2
i

2(1 + λ0Ui)2 (ρ1 − λ0)
2 + U3

i

6(1 + ηiUi)3 (ρ1 − λ0)
3,

ln[ρ0 + ρ1θ0w(Wi)]
= ln[ρ0 + ρ1θ̃nw(Wi)] + ρ1w(Wi)

ρ0 + ρ1θ̃nw(Wi)
(θ0 − θ̃n)

(A.20)

− [ρ1w(Wi)]2

2[ρ0 + ρ1θ̃nw(Wi)]2
(θ0 − θ̃n)

2

+ [ρ1w(Wi)]3

6[ρ0 + ρ1ζiw(Wi)]3 (θ0 − θ̃n)
3,

− ln(θ̃n/θ0)
(A.21)

= θ0 − θ̃n

θ̃n

− (θ0 − θ̃n)
2

2θ̃2
n

+ (θ0 − θ̃n)
3

6ζ
,

where ηi is between ρ1 and λ0, while ζi and ζ are between θ0 and θ̃n. Since (A.18)
and Theorem 1(ii) imply (ρ1 − λ0) = Op(n−1/2), then from

∑m
i=1(ωiUi)/(1 +

λ0Ui) = 0 and θ̃n

∑m
i=1[ωiw(Wi)]/[ρ0 + ρ1θ̃nw(Wi)] = ∑m

i=1 p̃iϕ(Wi; θ̃n) = 1,
and by applying (A.19)–(A.21) to (A.16), we obtain

ln r(θ0) = Op(n−1/2) − n(ρ1 − λ0)
2

2

m∑
i=1

ωiU
2
i

(1 + λ0Ui)2

(A.22)

− n(θ̃n − θ0)
2

2

(
ρ1

θ̃2
n

−
m∑

i=1

ωi[ρ1w(Wi)]2

[ρ0 + ρ1θ̃nw(Wi)]2

)
.

Hence, the proof follows from Theorem 1(ii) and applying (A.18) to (A.22), where
the limits of the coefficients of n(θ̃n − θ0)

2 are handled similarly to (A.8). �
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