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Second Harmonic Generation,
Beam Dynamics

and Spatial Soliton Generation
in Periodically Poled KTiOPO,

H. Kim, L. JANKOVIC AND G. STEGEMAN

School of Optics/CREOL, University of Central Florida, USA

S. CARRASCO AND L. TORNER

Institute of Photonic Sciences, University Politecnica de Catalunya

Barcelona, Spain

M. KA1z AND D. EGER

Electro-Optic Div., Soreq NRC, Israel

Spatial solitons were investigated in periodically poled KTiOPO4 under
conditions of second harmonic generation and many new features associ-
ated with soliton generation in quasi-phase-matched samples were observed.
The effects on the second harmonic generation tuning curves of the beam
narrowing mechanisms responsible for soliton generation were found to be
dramatic. It was demonstrated experimentally that the mutual collapse of
the fundamental and harmonic beams is a complex phenomenon.

PACS numbers: 42.65.Jx, 42.65.Ky, 42.65.Tg

1. Introduction

The family of spatial solitons, i.e. beams of finite cross-section which propa-
gate without diffraction has grown substantially in the last decade [1]. Quadratic
spatial solitons are unique members of the soliton family because they require
the co-existence of two (or even three) frequency components mutually coupled
through the second order nonlinearity dgjzl)c [I—3]. They have been observed in
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both waveguides and bulk media and many of their properties are now well un-
derstood [4-10]. The threshold intensities for spatial soliton generation depend
inversely on the effective nonlinearity used, dgf). It is well known in the nonlinear
optics community that the most efficient frequency conversion is obtained with
periodically poled materials, with LiNbO3 (PPLN) for which d((jf) > 15 pm/V and
indeed the lowest quadratic soliton thresholds have been reported in PPLN. How-
ever, LiNbOg suffers from photorefractive damage and usually requires operation
at temperatures > 100°C, especially when high intensities are used for soliton
studies where temperatures in excess of 150°C are needed [5].

Another ferroelectric, namely KTiOPQO4, does not suffer from photorefrac-
tive damage, even at room temperature. It has been periodically poled (to produce
periodically poled KTiOPO, (PPKTP)) and second harmonic generation (SHG)
has been reported [11-13]. The optical quality of such crystals is excellent and
SHG experiments have yielded large conversion efficiencies. This should lead to
reasonably low soliton thresholds of a few GW /cm?. Here we review our experi-
ments on the properties of quadratic solitons in PPKTP and their impact on SHG
efficiency and tuning curves.

2. Samples and experimental apparatus

KTP 1s a biaxial ferroelectric crystal. Its ferroelectric domains, and hence
the second order nonlinearity were periodically reversed along the z-axis at Soreq
using the low temperature poling technique [11]. When z-polarized light is propa-
gated along the crystal’s z-axis, phase-matching can be achieved when the pe-
riodicity A satisfies the wave vector matching condition Ak = 0 with Ak =
2k(w) — k(2w) + 2ma /A, where m is an integer, and k(2w) and k(w) are the
wave vectors at the harmonic and fundamental frequencies respectively. The ef-
fective nonlinear coefficient has been measured to be 9.5 pm/V (dg? = ng?/ﬂ')

which corresponds to a dg? = 14.9 pm/V [12, 13]. The sample was 1 c¢cm long
and the width and thickness of the PPKTP were 4.5 mm and 0.5 mm (along z)
respectively. The measured SHG band width was 0.2 nm, in good agreement with
theory and an indication that phase-matching is realized over the full length of
the crystal [12, 13].

Because both the propagation and polarizations lie along the crystal axes of a
biaxial crystal, the phase-matching is non-critically-phase-matched (NCPM). This
is indicated in Fig. 1 where the effect of the QPM is to move the appropriate cut
of the fundamental refractive index surface to tangency with the second harmonic
one, case (b). For a poling period of 8.99 pum and m = 1, phase-matching for
a 1064 nm fundamental beam occurs around 42.7°C [14]. At temperatures lower
than the phase-matching temperature (T < Tpum, Fig. 1a), there are two directions
symmetrically displaced in angle from the z-axis at which phase-matching occurs,
whereas for T° > Tpy the interaction cannot be phase-matched at any angle.
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Let us note that for on-axis propagation, there is no spatial walk-off between the
fundamental and harmonic beams. However, for propagation at an angle 8 from
the z-axis, the walk-off is dominated by the QPM condition giving an angular
walk-off ¢ = sin™'[sin @ 27 /k(2w)A] [15].

Fig. 1. Cuts of the index ellipsoids in the z—y plane for the z-polarized FW and SH. The
dashed line is meant to simulate approximately the effect of the nonlinear QPM grating
on phase-matching. Part (a) is for temperatures below Tpm, (b) is at the phase-matching

temperature, (c) T > Tpm.

Nd:YAG 1064 nm
25 or 50 ps, 10 Hz

N
b
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Imaging Heat T
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Fig. 2. Measurement apparatus and the parameters for the laser system and beams.

The experimental system used is shown schematically in Fig. 2. The laser
source was an EKSMA Nd:YAG 10 Hz system. Pulse energies of only a few pJ
were required for the experiments. The output beam from the laser was spatially
filtered giving a measured Gaussian beam quality factor M? of 1.0 & 1.1. The
laser’s full-width half maximum spectral band width was measured to vary from
0.11 (50 ps pulses) to 0.14 nm (25 ps pulses), about a factor of two smaller than
the SHG band width.

The fundamental beam was focused onto the input crystal facet by lenses
to minimum beam waists wg = 40 (for approximating the plane wave limit) and
rz 16—18 pum (for the narrow beam experiments), as measured by the knife-edge
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method. A minimum waist of 16.4 ym gives 6.9 diffraction lengths of propagation
at M? = 1. The individual beams emerging from the back face of the crystal were
directed onto a camera and a detector to measure their pulse energy and spatial
distribution.

3. Physics of SHG beam dynamics

In order to understand the SHG and soliton generation at high intensities,
it 1s necessary to first understand how the combination of beam nonlinearity and
propagation affects the beam shape. As the input intensity is increased, two dif-
ferent nonlinear beam narrowing (or broadening) “mechanisms” come into play.
The first is the universal narrowing mechanisms associated with all nonlinear wave
mixing interactions [16]. In brief summary, in nonlinear optics the nonlinear po-
larization induced is always due to the product of fields. When the fields have
finite cross-section, the nonlinear polarization derived from products of the fields
is by definition narrower than the mixing fields and hence the electromagnetic
waves generated are also narrower. For SHG by Gaussian beams for example,
the generated harmonic (up-conversion) is /2 narrower than the fundamental.
For down-conversion, which also always occurs, the regenerated fundamental is
also narrower than either the fundamental or harmonic. Therefore this mechanism
leads to both beams narrowed in space. If this mutual focusing is more effective
than the usual diffraction, both beam cross-sections are reduced on propagation.

The second “mechanism” is called “cascading” [16, 17]. Tt is based on the
difference between the fundamental and harmonic phase velocities which, in the
case of ideal plane waves, occurs away from phase-match. On this regard, let us
note that finite beams contain a continuous spectrum of plane waves, thus with
finite pump beams cascading occurs also at nominal phase-matching. As energy
flows back and forth between the two waves, the phase front of the slower wave
retards that of the faster wave and effectively slows down the faster wave, i.e. it
induces an additional phase shift. Since the amount of energy exchange depends
on the local input intensity, the phase shift varies along the beam’s transverse
distribution, i.e. intensity profile. The resulting phase front becomes either concave
or convex, leading to either a self-defocusing or self-focusing effect; respectively.
Although in actual fact there i1s no refractive index change associated with this
nonlocal effect, it can be interpreted as an effective nonlinear refractive index
ng, l.e. Ny g with an equivalent index change Ancg = ny oqI(r), where I(r) is
the radial dependence of the beam intensity. For Ak > 0, self-focusing occurs
and with Ak < 0 defocusing takes place. Thus for Ak > 0 beam narrowing is
enhanced, whereas for Ak < 0 the two “mechanisms” tend to interfere with one
another. Let us notice that the simple picture sketched above obviously holds only
in the limit where a large fundamental frequency signal interacts very weakly with
its small second-harmonic, under conditions where the energy conversion between
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them is negligible. Otherwise, the above self-focusing self-defocusing picture does
not hold. For example, under conditions of a second-harmonic comparable to the
fundamental, self-focusing takes place at both sides of phase-matching, as was
observed experimentally in the first observation of quadratic solitons [4].

It i1s now well understood that spatial solitons consisting of coupled funda-
mental and harmonic beams exist [1-3, 16, 17]. They are the nonlinear eigenmodes
in the limit in which the diffraction length Lgq = 7win/Ayae is comparable to or
larger than the parametric gain length Ly, = en/[wd2g|E(w, 2 = 0)]]. Stable soli-
tons for type I phase-match consist of n phase fundamental and harmonic com-
ponents, with a specific harmonic to fundamental field ratio which depends on the
input intensity and the initial wave vector mismatch [1—3, 16—19]. Because they
are the nonlinear eigenmodes, above a threshold intensity any input will evolve
with distance into a quadratic soliton [20, 21]. Typically only a fundamental input
is used and the second-harmonic is allowed to evolve with distance under the influ-
ence of the usual coupled mode equations which describe SHG [4]. These equations
lead near the input facet of the crystal to an SH beam which is #/2 out of phase
with the fundamental. Thus both the relative phase as well as the relative am-
plitudes of the FW and SH need to evolve into values appropriate to a quadratic
soliton. This means that the well-known plane solutions for the FW and SH, for
example SHG tanhz(z/Lpg) on phase-match, are no longer valid. Instead the
field amplitudes undergo oscillatory behavior which damps out with distance as
the soliton properties are approached asymptotically. A typical example is shown
in Fig. 3. Let us note that the exchange of energy occurs with distance between
the FW and SH on phase-match. This process is not inherently adiabatic and the
excess FW and SH energy is radiated away making the soliton generation efficiency

less than 100%.

= \Rapid energy change and relative phase rotation
| : FW
)
: HW
1
: 10 200 30 40 5.0
Lpg Diffraction Lengths

Fig. 3. Typical evolution of the intensity of a FW and a SH beam with propagation
distance when only the FW is input.

The beam waist also undergoes more complex dynamics than monotonic nar-
rowing of both beams [22]. Shown in Fig. 4 are the measured fundamental and har-
monic beam waists at the output facet of the sample for various phase-mismatches
[23]. The overall beam narrowing is clear. However, depending on the sign of the
wave vector mismatch, the beam waist of one of the two beams initially becomes
larger before it narrows down [22, 23]. Let us note that the freely diffracting fun-



112 H. Kim et al

damental is expected to have a width of & 90 um at the end of the crystal. The
incident intensity at which both beams, FW and SH, reach a plateau with widths
comparable to the input beam width i1s defined as the spatial soliton threshold
[24]. For PPKTP on phase-match it occurs at a peak intensity of & 3 GW /em? for
an input 1/e? beam size of 16.4 ym. However, let us note that the threshold for
the nonlinear beam dynamics to set in is an order of magnitude smaller, of order

0.4 GW/cm?, or less.
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Fig. 4. FW and SH output beam sizes (FWHM) as a function of input intensity.

(a) Fundamental, (b) second harmonic. In both (a) and (b), squares: T = 49.0°C
(AL = —2.4m), circles: T = 42.7°C (AkL = 0), triangles: T' = 37.5°C (AkL = 2.0m).
Conditions: wo = 18.4 um, pulse width 50 ps, M? = 1.0.

Away from phase-match, the details depend on whether the narrowing mech-
anisms interfere constructively or destructively,i.e. Ak > 0 or Ak < 0, respectively.
Let us note that for Ak > 0 solitons are formed at about the same threshold as
for on phase-match, whereas for the equivalent |AkL| with Ak < 0 solitons are
not formed over the intensity range investigated. This i1s verified by both the in-
tensity dependence of the harmonic output, and the output beam profiles. This
behavior for negative phase-mismatch has been attributed to third order effects,
Kerr nonlinear refraction and two photon absorption in KTP [23].

4. SHG tuning curves and soliton generation

The simplest experiment, usually the first one done with any nonlinear crys-
tal, 18 to measure the SHG tuning curve at low input powers. Because the wave-
length of the laser is fixed in the present case, the two options are to either vary
the incidence angle at the phase-matching temperature, or to vary the temper-
ature for incidence along the z-axis. These two tuning curves will give different
results because the first exhibits symmetry about the z-axis, whereas the second
has no symmetry about the phase-matching temperature, see Fig. 1. The unique
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aspect of the present experiments is that the input intensities used here are suffi-
ciently large, and the input beam diameters small enough, to get significant beam
narrowing over the length of the crystal and the complex beam dynamics that
accompanies it.

4.1. SHG temperature tuning curves

When the input beam diameter is large enough so that the crystal length
L 1s at least one diffraction length long, the low power tuning curves resemble
the usual sinc?(AkL/2) response for both cases. The temperature tuning result
is shown in Fig. ba. However, when the input beam diameter is reduced, the
difference in SHG response due to the different phase-mismatch conditions shown
in Figs. 1a and c is evident. For T' < Ty, there are two, symmetrically displaced
with angle, phase-matching conditions. The angular spectrum associated with a
narrow input beam has components which can therefore be phase-matched so that
the SHG tuning curve has a broader response towards lower temperatures, again
as exhibited in Fig. ba. This asymmetry effect has been known since the early days
of nonlinear optics [25, 26].

SH

[
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@ (b

0.8 1

0.6

SH (normalized)
5: >
A

0.4+

N
-
L

0.2 1
0.2+

0.0 1

: : 0.0 bl
30 35 40 45 50 55 30 35 40 45 S50 55 60 65
Temperature ("C) Temperature (°C)

Fig. 5. Tuning curves for SHG obtained by temperature tuning around the low intensity
phase-match temperature (42.7°C). (a) Input intensity of 11 kW /cm? for two different
input beam widths (solid line: 16.4 um, dotted line: 41 pum). (b) Different input intensity:
1—0.02 GW/cm?, 2 — 2.0 GW/cm?, 3 — 6.1 GW/cm?, 4 — 12.0 GW/cm?.

The SHG tuning curve on phase-match as a function of increasing input
intensity is shown in Fig. bb. The most salient feature is the broadening of the
response curves with increasing intensity. The reason is caused by the self-phase
modulation induced by cascading below the threshold for soliton formation and by
the generation of spatial solitons above the threshold. Once a soliton is formed, it
propagates unchanged to the end of the sample. Hence the SHG occurs effectively
not over the whole sample, but over the distance required to establish a soliton.
This requires a few parametric gain lengths L,z . Thus the effective length, at least
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as far as SHG 1s concerned, decreases with increasing intensity and becomes less
than L. Hence the band width becomes larger than in the small conversion limit.
This has been verified by detailed modeling [14].

When Ak < 0, the situation is considerably more complex. As discussed
before, L, continues to decrease with increasing intensity. This leads to a pro-
gressively more rapid exchange of energy between the fundamental and harmonic
with distance. Below the threshold for soliton formation, the two mechanisms,
nonlinear optical beam narrowing via wave mixing and beam spreading due to
cascading, compete with one another. Furthermore, the interference is different
over different parts of the beam profile which leads to the large amount of “noise”
on this side of the tuning curve relative to Ak > 0 region. This results in very
complex beam profiles. Let us note that at the highest input intensity recorded,
this chaotic region actually leads to a maximum in the SHG which equals the
on-phase match value for which soliton generation occurred.

-
o
=1

SH/Input (%)
E]

=
=3
1

40 —l/.\

20

0 4 8 12 16 20
Input intensity (GW/cmz)
Fig. 6. SHG pulse energy efficiency versus input fundamental intensity at the QPM
temperature &~ 42.7°C.

The variation in the SHG efficiency on phase-match is shown in Fig. 6. (The
tuning curves discussed previously were normalized to the same maximum value.)
The maximum SHG efficiency peaks at about 50%), at about the soliton threshold.
Let us note however that the SHG efficiency drops after it achieves its peak value.
This is an indication that the conversion efficiency into solitons decreases once the
soliton threshold is crossed and the excess fundamental electromagnetic energy is
radiated away and not converted into spatially localized second harmonic.

4.2. Angle tuning curves

As mentioned previously, the z-axis being a crystal axis is also a symmetry
axis. Thus for angle detuning away from the z-axis in one of the principal planes
z—y or x—z, the SHG properties, including quadratic solitons should be symmet-

rical about the z-axis. Results are shown for Ak = 0 (Fig. 7), Ak < 0 (Fig. 8) and
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Ak > 0 (Fig. 9). The response curves all exhibit symmetry about the z-axis, as
expected. They also all exhibit increases in angular band width for SHG with in-
creasing input intensity which occurs for the same reasons as discussed previously
for the temperature tuning case. Figure 7 indicates that at large input intensities
on phase-match the band width opens up to about +8° (external angle of inci-
dence). Let us note, however, that as indicated in Fig. 6, the SHG efficiency drops
with increasing intensity so that there is an efficiency-band-width trade-off.
Similar broadening etc. occurs for Ak < 0, see Fig. 8. The most interesting
aspect of these curves is the minimum in the SHG that occurs along the z-axis

SH (normalized)
= F

g
N
1

0.4
0247

0.0 LMW

0 2 4 6 8

External Angle (degree)

Fig. 7. SHG tuning curve versus incidence angle in the z—y plane at 42.7°C
(T = Tpm). 0° angle corresponds to phase-match. Input intensity: 1 — 0.02 GW/cm? ;
2 — 0.2 GW/cm?, 3 — 2.0 GW/cm?, 4 — 6.1 GW/cm?, 5 — 19.7 GW /cm?.

SH (normalized)

0 2 4 6
External Angle (degree)

Fig. 8. SHG tuning curve versus incidence angle in the z—y plane at 47.7°C (T > Tpm).
0° angle corresponds to the z-axis. Input intensity: 1 — 0.2 GW/cm? ;2 — 2.0 GW/cm?,
3 —6.1 GW/cm?, 4 — 19.7 GW/cm?.
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at a relatively low input intensity of 2.0 GW/cm?. At this intensity strong beam
distortion has already set in and there is again an interplay between the cascading
and wave mixing mechanisms so that energy oscillates between the fundamental
and harmonic over distances comparable to the sample length. This interplay leads
to the minimum along the poling axis at that particular input intensity. Let us
note that there is no spatial soliton generation occurring at this intensity.

=
=
1

SH (normalized)
>
1

g
a
1

0.4

0.2

Fig. 9. SHG detuning curves at room temperature for different fundamental input in-
tensities. 1 — 0.02 GW/cm?,2 — 0.9 GW/cm?, 3 — 6.45 GW/cm?, 4 — 12.9 GW/cm?.

8.8° 9.2° 9.4°
Fig. 10. Various output beam profiles, upper FW and lower SH, on the original
phase-matching peak (8.8°), the secondary peak (9.4°) and in the minimum between

the two peaks (9.2°) for angle tuning at room temperature. The fundamental input in-
tensity is 9.7 GW/cm?.
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0.95 GW/em’ 1.1 GWiem® 6.67 GWiem’ 127 GWiem® 184 GWien®
Fig. 11. A sampling of output beam profiles, upper FW and lower SH, for different

input intensities on the phase-matching peak (8.84°) at room temperature.

Angular detuning corresponding to the scenario in Fig. 1a is shown in Fig. 9,
i.e. Ak > 0 along the z-axis. As expected, there are two maxima at £8.8° cor-
responding to the two phase-matching conditions in Fig. la. Increasing input in-
tensity again leads to broadening of the SHG response curves, a universal feature
for all these results. At the highest intensities, the angular (external) band width
for SHG is in excess of £10 degrees. One of the more interesting features in these
curves is the splitting of the peaks into doublets which occurs around 9.7 GW /cm?
input intensity. The output beams profiles obtained near the two peaks, and in
the minimum between them, shown in Fig. 10, give some clues as to what is hap-
pening. As indicated previously, the QPM-induced walk-off occurs away from the
z-axis, and the internal walk-off angle is about 0.15 degrees at these peaks. In fact
it is clear from Fig. 10 that in the minimum region the fundamental which carries
most of power is split spatially by the walk-off into two halves, and at the peaks
it 1s a single beam.

The effects of the walk-off, the energy exchange between the fundamental
and harmonic and finally soliton generation are clear in Fig. 11. At low intensities
there is energy exchange between the beams and the walk-off leads to two FW and
SH beams. The beam narrowing mechanisms tend to pull the different beams into
a common spatial propagation direction [27]. This ultimately results in the genera-
tion of well-localized spatial solitons with a threshold of about 4 GW /cm? with the
occasional exception where the peaks are split as discussed previously.

5. Summary

The combination of high intensities of multi-GW/cm? and beams with waists
in the 10’s of microns leads to large changes in the output beam intensity distri-
butions for harmonic generation in PPKTP. The threshold for soliton formation
which occurs due to a balance between beam narrowing and normal diffraction is
about 4 GW/cm? at NCPM for 16.4 micron beam waists, Gaussian beam qual-
ity factor M2 = ]\4y2 ~ 1.1, at the input. Prior to and during soliton formation,
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there are a number of contributing mechanisms including diffraction, beam nar-
rowing due to nonlinear wave mixing and cascading, wave vector mismatch and
QPM-induced walk-off. The result is complex beam dynamics for both the funda-
mental and second harmonic.

The SHG efficiency peaks at about 50% on phase-match due to soliton gener-
ation and then falls with increasing intensity as the efficiency of soliton generation
decreases slowly. The band widths of the SHG tuning curves always increase with
increasing intensity since the parametric gain length which varies inversely with
the input field limits the length over which the SH signals grow.
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