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Nanowire grid polarizer for energy efficient and wide-view liquid

crystal displays
Zhibing Ge and Shin-Tson Wu®

College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, USA
(Received 20 August 2008; accepted 3 September 2008; published online 22 September 2008)

We report a liquid crystal display (LCD) using a nanowire grid polarizer (NWGP) to replace the
bottom sheet linear polarizer (LP). The top LP and bottom NWGP configurations enable backlight
recycling for enhancing optical efficiency while keeping a high contrast ratio and wide viewing
angle. The electro-optic performance of this device configuration is studied based on the
effective-medium theory and 4 X 4 matrix method. Results show that this configuration exhibits a
100:1 contrast ratio over 75° viewing cone in a film-compensated multidomain vertical alignment
LCD and 10:1 over 65° viewing cone in a fringe-field switching LCD without any compensation
film. © 2008 American Institute of Physics. [DOI: 10.1063/1.2988267]

Liquid crystal displays (LCDs) have been widely used in
high definition televisions, computer monitors, and mobile
devices. In a conventional LCD, the LC cell is sandwiched
between two crossed absorption-type sheet linear polarizers
(LPs) in order to obtain high contrast ratio (CR>2000:1). A
LP is usually made of a stretched polyvinyl alcohol film with
two protective triacetyl-cellulose films, whose total thickness
is ~200 wm. Such a LP has strong absorption over the entire
visible wavelengths along the stretched direction. When two
such LPs are used together, the maximum transmittance is
only ~40% for an unpolarized backlight, which means more
than 60% of the backlight is absorbed. How to enhance
LCD’s optical efficiency for reducing its power consumption
is an urgent issue.

To avoid the absorption loss from the bottom sheet po-
larizer, a reflective polarizer, e.g., 3M’s dual brightness en-
hancement film'? and subwavelength gratings such as nano-
wire grid polarizers (NWGPs)>™ have been considered. A
reflective polarizer transmits one polarization (say, p-wave)
of the incident light while reflecting the s-wave back for
recycling. The recycling efficiency of 50%-70% has been
achieved.” In the past, the transmission CR of a reflective
polarizer is inadequate for display applications and thus a
bottom sheet LP (sitting between LC layer and reflective
polarizer) is still required in order to keep a high CR. This
configuration has two shortcomings: (1) the bottom LP still
absorbs light and reduces the optical efficiency, and (2) the
display thickness is increased. As the nanoimprinting tech-
nology advances,*™® the transmission CR of NWGP-based
reflective polarizers has been improved substantially. There-
fore, replacing the conventional bottom sheet LP with a
NWGP for backlight recycling and thickness reduction be-
comes feasible. These features are very important for achiev-
ing a brighter, thinner, and lighter LCD, especially for mo-
bile displays. Meanwhile, the removal of a sheet LP helps to
reduce the display cost.

In this letter, we report a high optical efficiency, high
CR, and wide-view LCD using a top absorptive LP and a
bottom reflective NWGP. Two commonly employed wide-
view LC modes, multidomain vertical alignment8 (MVA)
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and fringe-field switching (FFS),>' are investigated based
on the effective-medium theoryll’12 and 4 X4 matrix
method."*'* Results show that the LP-NWGP combination
not only enables backlight recycling but also preserves the
wide-view characteristics as the conventional LCD using two
crossed sheet LPs.

Figure 1 shows the device configuration of the proposed
LCD. The LC cell is sandwiched between a top sheet LP
and a bottom NWGP with their optic axes crossed. A
detailed structure of NWGP is shown in Fig. 2, where thin
metal wires with a width w are periodically formed on a
glass substrate with a pitch p. When the pitch p is far
smaller than the incident wavelength A, which is known as
the quasistatic limit (p/\ —0), WGP functions as a reflective
polarizer.7’“’12 As shown in Fig. 2, for an unpolarized inci-
dent light, those components with electric fields parallel to
the metal wires (s-polarization) will stimulate the free move-
ment of electrons along the wires, which then emit a re-
flected wave. For the light with electric fields perpendicular
to the wires (p-polarization), the electron movement is con-
fined by the gap, thus only a small amount of energy is lost
and the light transmits through the metal wires.

The fabrication of a NWGP typically involves imprint,
demolding, and pattern transfer using reactive ion etching
technology.s’6 More specifically, first, a thin layer of alumi-

Top LP

Glass substrate
LC layer

Glass substrate
Bottom NWGP

Diffuser Il
Prisms (V+H)
Diffuser |

Light guide plate

Reflector

FIG. 1. (Color online) Device structure of the LCD using a top sheet LP and
a bottom NWGP for light recycling.

© 2008 American Institute of Physics
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FIG. 2. Device structure of a NWGP and its equivalent optical model.

num is coated on a glass substrate, followed by coating of a
thin SiO, layer on its surface to function as a hard mask for
aluminum etching later on. Then an imprint resist layer is
spin coated on the SiO, surface and a nanoimprint silica
stamp with a predesigned wire grid pattern is used to repli-
cate the pattern onto the imprint resist. After demolding the
stamp, a series of reactive ion etchings are applied to remove
the residual layers (such as the patterned imprint resist and
the SiO, layers) on the aluminum surface and finally the
aluminum layers in the replicated pattern. Thus the wire grid
pattern from the stamp is transferred to the aluminum layer.

In Fig. 1, the light from the source such as a cold cath-
ode fluorescent lamp or light emitting diodes is coupled out
toward the viewer by the light guide plate (LGP). The light
after passing diffuser II is basically unpolarized and only the
p-wave can penetrate the NWGP. The s-wave is reflected
back to the LGP, becomes sufficiently depolarized after pass-
ing through the diffusers, and then bounces back to the
NWGP again. This light recycling process repeats internally
for several times before the light is absorbed or scattered
away.

To validate the device concept, we calculated the electro-
optic performance of the LCD configuration using finite-
element method" for the LC director distribution and the 4
X 4 matrix method for the optical characterization thereafter.
The 4 X 4 matrix method solves the exact solution of Max-
well’s equations for light propagation in birefringent media
such as a LC cell. To include the NWGP into the optics
modeling based on 4X4 matrix method, we take the
effective-medium theory to model the NWGP. Under the
effective-medium theory,”’12 the NWGP shown in Fig. 2
could be equivalently modeled as a uniaxial birefringent
layer with its ordinary and extraordinary refractive indices
n, and n, as

ni:n%y+n§<l —K), (1)
p P
1 1w 1 w
—2:_2—+_2<1—_>. (2)
n, nlp ny p

Here n, and n, are the refractive indices of the metal and the
material filled in the gap. Effective-medium theory provides
sufficient accuracy and a good prediction of the performance
of NWGP when p<<\. To obtain a better accuracy, more
rigorous simulation methods such as rigorous coupled-wave
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FIG. 3. (Color online) Wavelength dependent light leakages from two
crossed sheet LPs, and from a top LP plus a bottom NWGP at normal
incidence.

theory7’12 should be used. Nevertheless, NWGPs with a fine
pitch lenégth of ~100 nm were demonstrated by several
groups.47 As the nanolithography technology progresses, we
believe a finer pitch resolution could be obtained to further
satisfy the quasistatic limit (p/\ —0), making the effective-
medium theory a better fit to the realistic situation.

For the NWGP discussed here, the fill-in factor w/p is
set at 0.5. The metal for wire grids is aluminum with refrac-
tive index n,;=0.895+i6.67 at A=550 nm,'® and the gap is
filled with air with refractive index n,=1. Accordingly, the
effective ordinary and extraordinary refractive indices of
NWGP are n,=0.6400+i4.6641 and n,=1.4295+i0.0043,
and n,, is along the wire grid direction. The thickness of the
NWGP is taken as 200 nm which is within present lithogra-
phy capability. Based on these values, NWGP functions as a
metallic reflector for the incident light polarized along the n,
axis, and as a dielectric media for the light polarized along
the n, axis. Because the thickness of the NWGP is only
200 nm, light transmitting along the n, axis will only expe-
rience a small amount of absorption. More importantly, for
an unpolarized light, the transmitted light leakage polarized
along the n, axis is tiny based on the above values, thus a
high transmission CR can be obtained.

Figure 3 plots the wavelength dependent light leakage at
normal incidence from the crossed top sheet LP and bottom
NWGP. For a reference, the light leakages from merely two
crossed sheet LP are also depicted. The sheet LP has a thick-
ness of 210 um with n,=1.50+i3.26X 107> and n,=1.50
+i2.0753 X 10~% at A=550 nm. Material dispersions for other
wavelengths are also considered in Fig. 3. For a single LP
employed here, the transmission for the wave polarized
along the n, axis is ~78.8% and is ~4.366 X 107> for the
wave polarized along the n, axis. For two crossed LP, the
light leakage for an unpolarized light is estimated to be
~3.733X 107 (roughly equal to 2X1/2X4.366X 107
X 78.8%). For the NWGP here, the transmission for the
p-wave (polarized along the n, axis) is about 90% and the
leakage for the s-wave (polarized along the n, axis) is sev-
eral orders below 107, Thus for an unpolarized light passing
through the bottom NWGP and the top sheet LP, the p-wave
has a larger leakage out of the top LP (roughly
~1/2%X4.366X 107X 90%) than that from two crossed LP
(~1/2%4.366% 107> X 78.8%). However the output from
s-wave is much more suppressed. Overall, the combination
of a NWGP and a sheet LP produces a lower light leakage
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FIG. 4. (Color online) Isocontrast plots for a film-compensated MVA LCD
under (a) two crossed sheet LPs and (b) a top sheet LP and a crossed bottom
NWGP.

(2.14x107°, which is roughly equal to 1/2X4.366X 107
X 90%) for an unpolarized incident light. Similar results are
also obtained for other wavelengths, indicating that a high
CR is attainable using this configuration.

We further investigate the viewing angle performance of
this LP-NWPG configuration applied to the present main-
stream wide-view LCD technologies: MVA and FFS LCDs.
Similarly, we also plot the viewing angle of the same LCDs
under merely two sheet LPs as a reference. For the MVA
LCD, a negative dielectric anisotropy (—Ag) LC mixture
MLC-6608 is employed with its physical properties listed
as follows: extraordinary and ordinary refractive indices
n,=1.5625, n,=1.4786 (at A=550 nm),"” parallel and per-
pendicular dielectric constants g,=3.6, e, =7.8, and elastic
constants K;;=16.7 pN and K3;3=18.1 pN. The cell gap is
4 pm and LC directors are initially aligned perpendicular to
the substrates. Usually to suppress the off-axis light leakage
from MVA cells, compensation films are required. Here we
employ two positive A-films and negative C-films proposed
by Hong et al. for the MVA LCD." For such a compensation
scheme, the retardation value of each film can be analytically
solved as described by Zhu et al. in Ref. 19. Based on the
calculation, each negative C-film with its refractive indices
n,=1.4929 and n,=1.5028 at A\=550 nm is designed with a
film thickness d~8.29 um, and the thicknesses of each posi-
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tive A film with n,=1.5110 and n,=1.5095 at A=550 nm is
designed at 61.38 pum.

Figure 4(a) shows the isocontrast plot of the MVA cell
using a white light source. The viewing cone of the 100:1 CR
(the white lines) extends to over 75°. However for the
LP-NWGP configuration, we find the optimized parameters
for the compensation films need to be slightly adjusted. The
optimum thickness is 8.5 um for the negative C-film and
69.5 um for the positive A-film at A=550 nm. Similarly as
shown in Fig. 4(b), the 100:1 CR can also be obtained over
75°. Here as discussed before, stronger light leakage sup-
pression along the n, axis of the NWGP yields a wider view-
ing cone along the 90° azimuthal direction in the polar plot.

We also extend this LP-NWGP configuration to FFS
LCD, which is another commonly used wide-view technol-
ogy. In a FFS cell, all the electrodes are formed on the same
bottom substrate and LCs are mainly reoriented in the hori-
zontal plane by the fringe fields. A major advantage of FFS
mode is its inherently wide viewing angle without any com-
pensation film. For the isocontrast plots, we used the follow-
ing parameters: LC material MLC-6608, cell gap d=4 um,
surface pretilt angle is 2°, and rubbing angle is 80° with
respect to the stripe electrodes of the FFS cell.? Results (not
shown here) for both polarizer configurations are very simi-
lar: for a white light source, the CR>10:1 is over 65° view-
ing cone without any compensation films.

In conclusion, the proposed LP-NWGP configuration not
only provides a wide viewing angle comparable to the exist-
ing mainstream LCD technologies but also enables addi-
tional advantages such as high optical efficiency through
backlight recycling and thin profile. Its potential applications
for energy efficient and wide-view LCDs are foreseeable.

The authors are indebted to the financial support from
Chi-Mei Optoelectronics, Taiwan.
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