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We report on experimental evidence for the formation of a two dimensional Si/Au(110) surface

alloy. In this study, we have used a combination of scanning tunneling microscopy, low energy

electron diffraction, Auger electron spectroscopy, and ab initio calculations based on density

functional theory. A highly ordered and stable Si-Au surface alloy is observed subsequent to

growth of a sub-monolayer of silicon on an Au(110) substrate kept above the eutectic temperature.
VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4735310]

Although widely used in electronic device and nanowire

technology, the eutectic of the Au-Si binary phase diagram is

not yet completely understood. Over the last few decades,

the non-equilibrium phases of this system have been investi-

gated; for example, an amorphous Au-Si alloy was produced

by splat quenching, providing the first observed metallic

glass phase.1 Metastable bulk crystalline phases were then

obtained through different methods and exhibit a wide vari-

ety of stoichiometrices (10% to 30% at. Si) and crystal

structures.2–6

More recently, a stable two-dimensional (2D) gold sili-

cide has been evidenced following surface crystallisation of

the eutectic Au82Si18 liquid above the eutectic temperature

TE¼ 359 �C.7 It was shown to have an Au4Si8 composition

and a rectangular crystal structure, stable up to 371 �C.8 This

2D crystalline silicide phase has also been obtained under

ultra high vacuum (UHV) conditions following deposition of

a 3 nm Au layer on a Si(100) substrate and subsequent

annealing above the eutectic temperature (TE).9 Other Au/Si

alloys were also obtained in UHV conditions either at room

temperature (RT)10–12 or by annealing thicker Au films (10-

100 nm) deposited on a Si substrate.4,5 At RT, an Au-Si sur-

face alloy was obtained with an estimated stoichiometry of

Au3Si or Au3Si2 (Refs. 10–12), but no evidence of any crys-

talline structure was found, whereas annealing the thick Au

films (10–100 nm) produced crystalline bulk phases with a

thickness in the range of 0.2 to 0.9 nm.5

In general, the growth of Au on silicon substrates has

been extensively studied, however, only very few investiga-

tions have been performed on the reverse system (silicon on

Au substrates).13,14 Indeed, the reversal of the deposition

sequence semiconductor/metal instead of metal/semiconduc-

tor can have a significant influence on the interface,15 as in the

case of Si and Ge deposited on silver substrates16–36 where

new structures have been observed such as Si and Ge

tetramers16–19,22–24,36 or silicene nano-ribbons and sheets.25–36

In this Letter, we report our results on the formation of a

2D Si-Au surface alloy obtained by growth, under UHV con-

ditions, of a sub-monolayer (ML) coverage of silicon on a

bare Au(110) substrate kept at a temperature above the

eutectic temperature (between 360–500 �C). A 2D surface

alloy is formed and is stable at RT and presents two mirror-

symmetric domains with respect to the high symmetry axes

of the substrate.

The apparatus in which the experiments were performed

are equipped for surface preparation and characterization: an

ion gun for surface cleaning, a low energy electron diffrac-

tometer (LEED) for structural characterisation, a RT scanning

tunnelling microscope (STM) for surface characterization at

the atomic scale, and an Auger electron spectrometer (AES)

for chemical surface analysis and the calibration of the silicon

coverage. The experiments were performed on the same crys-

tal in two different chambers in ISMO-Orsay (Ref. 37) and at

the University of Zurich.38

The Au(110) sample was cleaned with several sputtering

cycles (600 eV Arþ ions, P¼ 5� 10�5 Torr) and annealing

at 450 �C until a sharp p(2� 1) LEED pattern, reminiscent

for the Au(110) missing row reconstruction, was obtained.

Silicon, evaporated by direct current heating of a piece of Si

wafer, was deposited onto the Au(110) surface held at tem-

peratures above the eutectic temperature.

Figure 1(a) shows the p(2� 1) LEED pattern character-

istic of the bare Au(110) surface reconstruction. During sili-

con deposition on the Au(110) substrate at 400 �C, the 2� 1

starts to disappear while a new superstructure appears,

a)Authors to whom correspondence should be addressed. Electronic addresses:
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becoming sharp at a Si coverage of �0.2 monolayer (ML).

The LEED pattern corresponding to this new superstructure

(Figure 1(b)) shows two symmetrical domains with respect

to the [001]* and ½�110�* directions of the substrate and

presents a two-fold symmetry. The unit cells corresponding

to the substrate and to the two domains are indicated. The

real-space vectors of the two domains can be extracted from

the experimental LEED pattern in the form of two matrices:
�
�
�
�

10 �1

�2 4

�
�
�
�

and

�
�
�
�

10 1

2 4

�
�
�
�
. The agreement between the

observed LEED pattern in Figure 1(b) and the simulated one

in Figure 1(c) using the reciprocal vectors corresponding to

these matrices is remarkably good.

Figure 2 displays an atomically resolved filled-state

STM image of the bare Au(110) surface. The missing-row

structure of the Au(110)-(2� 1) reconstruction is clearly

observed, matching the LEED pattern in Figure 1(a). Figure

3 displays an atomically resolved filled-state STM image of

the first stage of Si growth on Au(110) equivalent to a Si

FIG. 1. (a) LEED pattern corresponding to the (2� 1) reconstruction of the
bare Au(110) surface (Ep¼ 55 eV), with the unit cell marked. (b) LEED pat-
tern corresponding to the superstructure obtained after the deposition of
�0.2 Si ML on Au(110) kept at 400 �C. Unit cell vectors corresponding to
two mirror-symmetric domains of the surface alloy are indicated by the blue
and red arrows, and the rectangular p(1� 1) unit cell of the Au(110) sub-
strate is drawn in black (Ep¼ 55 eV). (c) A simulation of the LEED pattern
corresponding to the superstructure with two mirror-symmetric domains.
Again, the unit cell vectors corresponding to two mirror-symmetric domains
of the surface alloy are indicated by the blue and red arrows and the rectan-
gular p(1� 1) unit cell of the Au(110) substrate is drawn in black.

FIG. 2. Atomically resolved filled-states STM image corresponding to the

bare Au (110) showing the Au(110)-2� 1 reconstruction (V¼�80 mV and

I¼ 2.2 nA). The unit cell is indicated with a rectangle.

FIG. 3. Atomically resolved filled-states STM image recorded after the first

stage of Si adsorption (<0.1 Si ML), (V¼�1.5 V and I¼ 1.7 nA). The unit

cells of the two mirror-symmetric domains are indicated in blue lines.

021605-2 Enriquez et al. Appl. Phys. Lett. 101, 021605 (2012)



coverage <0.1 ML. We observe a coexistence of the bare

Au(110)-2� 1 surface and a superstructure composed of two

domains (1) and (2). The oblique unit cells corresponding to

the matrices

�
�
�
�

10 �1

�2 4

�
�
�
�

and

�
�
�
�

10 1

2 4

�
�
�
�
, respectively, are

marked, showing their orientations with respect to the ½�110�
direction. In both domains, the�2 periodicity of the bare

Au(110) disappeared, suggesting that Si adsorption is driven

by a strong interaction between the silicon and gold atoms.

Figure 4(a) shows an atomically resolved filled-state

STM image recorded at �0.2 Si ML showing one domain

with the

�
�
�
�

10 �1

�2 4

�
�
�
�

superstructure. The oblique unit cell of

this superstructure is indicated. The STM topography reveals

the atomic-scale pattern of the superstructure with the same

two-fold symmetry as observed in the LEED pattern and

indicated by the unit cell in Figure 4(a). Annealing this struc-

ture up to 500 �C, neither changes the LEED pattern nor the

STM images of the superstructure indicating a high thermal

stability. This also supports the idea of a strong interaction

between Au and Si atoms.

Figure 4(b) shows a line profile along the line “A”

drawn on Figure 4(a). The very small z-corrugation

(� 0.04 nm) suggests that the superstructure contains only

weak roughness. Therefore, we can assume that all atoms in

the unit cell are in the same average plane. The STM images

recorded at negative and positive sample biases display

the same contrast, which probably implies that we observe

the atomic geometry rather than any electronic effect. On

this basis, assuming that each spot corresponds to one atom,

the pattern in the unit cell can be described by four similar

entities. Each entity is composed of three atoms as high-

lighted in Figure 4. Furthermore, the observed difference in

contrast in the STM image indicates one bright atom and two

less bright atoms per entity.

In order to propose an atomistic model for the Si adsorp-

tion structure starting from the LEED periodicity, the atomi-

cally resolved STM topography, and the AES calibration

(�0.2 ML Si), we performed density functional theory

(DFT)39 calculations. We systematically studied plausible

arrangements of Si atoms on Au(110) in the surface unit cell

determined above. Since a single layer of Au(110) in that

unit cell contains 38 gold atoms, we chose to investigate con-

figurations containing 8–12 Si atoms. We used the VASP

code40 for the calculations with the projector augmented

wave method42 and expanded the orbitals in plane waves up

to an energy cut-off of 245 eV. We employed the Perdew-

Burke-Ernzerhof (PBE) generalized gradient approxima-

tion41 as the exchange-correlation term.

As stated above, the LEED and AES measurements at

the coverage �0.2 ML of Si on the Au(110) surface no lon-

ger show the 2� 1 reconstruction. Therefore, we used a non-

reconstructed layer at the surface of the unit cell. The slab

geometry consisted of five layers of substrate, each contain-

ing 38 Au atoms, and two lowest layers were kept fixed. We

used a DFT-PBE lattice constant of 4.17 Å for Au and

sampled the surface Brillouin zone using a 2� 4 mesh of k

points. In the simulations of STM images, we applied the

Tersoff-Hamann method with an s-like tip.43

We first explored several configurations having the

2-fold symmetry observed in the experiments by adsorbing

an even number of silicon atoms without removing any Au

atoms. Since the number of similar entities within the unit

cell is a multiple of 4, we adsorbed 8 and 12 silicon atoms at

different sites (hollow, short-bridge, long bridge, and top)

into the large unit cell on the Au(110) surface in agreement

with the AES calibration. After relaxation, each configura-

tion ended up with every silicon atom adsorbed on a hollow

site. The contrast in the calculated STM images for all these

configurations was not in agreement with the one observed

in the experimental images. In other words, Si atoms

adsorbed only on 4-fold sites do not introduce the necessary

corrugation in the electronic density to reproduce the experi-

mental STM images. Note that during Si adsorption, the Au

surface is at high temperature, so diffusion of silicon atoms

into the subsurface region may occur. With this in mind, we

considered configurations including Si atoms located below

the topmost gold layer. In Figure 5, we propose a configura-

tion where 8 silicon atoms occupy hollow sites and 4 silicon

atoms are sitting just below 4 gold atoms. After an initial

relaxation of the system, the “elevated” Au atoms are shifted

slightly from their ideal position on top of the silicon atoms

and are located 0.1 nm above the other gold surface atoms,

producing the corrugation necessary to explain the bright

FIG. 4. (a) Atomically resolved filled-states STM image recorded at �0.2

Si ML showing a

�
�
�
�

10 �1

�2 4

�
�
�
�

superstructure (V¼�1.4 V and I¼ 2.3 nA).

The unit cell and the two-fold symmetry are indicated. (b) Line profiles

along the line “A”. An entity made of three atoms is indicated by the ellipse.

021605-3 Enriquez et al. Appl. Phys. Lett. 101, 021605 (2012)



spots in the entities observed in the experimental STM image

(Figure 4), the less bright spots being assigned to the Si

atoms in the hollow sites. In Figure 6, we present a simulated

STM image of the configuration shown in Figure 5. To make

the comparison, the calculated STM image has the same size

and bias voltage as the experimental one in Figure 4. The

protrusions form the same entities in both the experimental

and simulated images, indicating that the model reproduces

the experimental image very well.

We stress that we have tested several atomic configura-

tions and only the model proposed in Figure 5 gives a good

agreement between the experimental and simulated STM

images. We later noticed that this model is metastable and

after a full relaxation, the elevated gold atoms move toward

the nearest 4-fold site. We believe that in the real system, the

surface stress, which is not taken into account in our calcula-

tion because of the small size of the unit cell, could stabilize

the proposed structure.

The results show strong interactions between Si and Au

atoms. Indeed, the Si atoms within the unit cell are bound

only to Au. This is a sign that an ordered surface alloy is

formed; the alloy has a stoichiometry of Au38Si12.

The role of the annealing above the eutectic temperature

in the formation of an ordered alloy needs to be underlined.

Indeed, alloy formation has been reported for a few ML of

Au deposited at RT on Si (111) with stoichiometry of Au3Si

or Au3Si2, but no order was observed.10 Another study based

on a grazing incident diffraction (GIX) showed that anneal-

ing above the eutectic temperature was mandatory to form

an ordered alloy structure after the deposition of Au on

Si(100) at RT.9 In our experiment, we show that the eutectic

temperature must be also reached in the case of Si/Au(110)

to obtain an ordered surface alloy.

In conclusion, deposition of a sub-monolayer of Si on

Au(110)-(2� 1) removes the (2� 1) periodicity of the bare

Au substrate indicating a phase transition from a 1D

missing-row structure to a 2D structure. We have proposed a

model for this 2D structure with a stoichiometry close to

Au3Si. We have shown that this 2D structure is very stable

up to temperatures of 500 �C, indicating a strong interaction

between silicon and gold atoms, and the formation of an or-

dered surface alloy.

This work was partially supported by the Project SILI-

CENE of the Triangle de la Physique program (AO 2010-2).
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