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ABSTRACT

In this thesis, the investigation of asymptotic stability of the series DC motor
with unknown load-torque and unknown armature inductance is considered. The
control technique of recursive, or backstepping, design is employed. Three cases are
considered. In the first case, the system is assumed to be perfectly known. In the
second case, the load torque is assumed to be unknown and a proportional-integral
controller is developed to compensate for this unknown quantity. In the final case,
it is assumed that two system parameters, load torque and armature inductance, are
not known exactly, but vary from expected nominal values within a specified range.
A robust control is designed to handle this case. The Lyapunov stability criterion
is applied in all three cases to prove the stability of the system under the developed

control. The results are then verified through the use of computer simulation.
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CHAPTER 1

INTRODUCTION

For this paper, a robust control law is developed for the series DC motor using the
recursive design, or backstepping approach. Initially the system is examined under
the assumption that all system parameters, variables, and states are known explicitly.
This is, admittedly, an unrealistic view, but it is quite useful since it provides a
baseline for further analysis and serves to confirm the validity of the design approach.
This analysis is then followed by a more practical one in which it is assumed that
certain variables associated with the motor are unknown. However, it is also assumed
that these unknown variables have known bounding functions. A suitable robust
control is then designed. As an additional point of interest, a control is developed
utilizing the PI approach for comparison when it is assumed that the load torque is

unknown.

Motors

Motors are devices which convert electrical energy into mechanical energy. In
its most basic form, a motor consists of a loop of wire in a magnetic field to which
current is applied. The torque acting on the current carrying loop causes it to rotate.
Useful mechanical work can be done by attaching the rotating armature to some
external devices. A DC motor is one in which the armature windings are on the
rotor with current conducted from it by means of carbon brushes. The rotor of a
DC machine is often referred to as the armature. The field winding is on the stator
and is excited by direct current. DC motors are the most common choice when a
controlled electrical drive operating over a wide speed range is specified [13]. They
have excellent operational properties and control characteristics [13].

DC motors are classified as shunt, series, or compound according to the method

of field connection. A discussion of these motors and their system models may be



found in variety of sources, including [8, 12, 17, 25]. In a series motor, the field
circuit is connected in series with the armature circuit, while in the shunt motor, the
two circuits are connected in parallel. One of the major differences between the two
motors is that the shunt motor is wound with a large number of turns which makes the
resistance quite high. The fewer number of turns found in a series motor minimizes
the voltage drop across it. In some cases the two configurations are combined to
produce the compound motor. For the no load condition, this motor behaves much
like shunt motor. At higher loads, the characteristics more resemble the series motor.
Elaborate circuits are required to control compound motors [16].

Due to the configuration of the series DC motor, the electromagnetic torque pro-
duced by this motor is proportional to the square of the current. The flux in a series
DC motor depends on the armature current, and thus varies with the load. As a
result, the series-connected DC motor produces more tortjue per Ampere of current
than any other DC motor [6]. Therefore, the series motor is used in applications
where high starting torque is required and an appreciable load torque exists under
normal operation [11]. Such applications include locomotives, trolley buses, cranes,
and hoists [27]. In fact, the series motor is the most widely used DC motor for elec-
tric traction applications [6]. The DC motor provides easily adjusted speed, high
efficiency, and great flexibility [27]. On the other hand, the mechanical commutator
which restricts the power and speed of the motor, increases the inertia and the axial
length and requires periodical maintenance [13].

The DC machine is the most straightforward to analyze of all electric machines
[11]. However, the mathematical model of the series DC motor is nonlinear. As
with all physical systems, the modeling of the series DC motor for feedback control
invariably involves a trade-off between the simplicity of the model and its accuracy
in matching the behavior of the physical motor [14]. Usually, the model obtained is
close to describing the actual system, but some error will always exist.

The motor examined is that which was presented in a paper by J. Chiasson [6].
The motor equations used in the paper may also be found in the text by Leonhard
[13]. The analysis of the motor is broken into two cases based upon the motor’s

speed: above base speed and below base speed. When the motor is above base speed,



it operates in the field-weakening region. The field current is less than the armature
current, and thus the flux is less than it would be with full armature current. The
purpose of field weakening is to raise the speed at reduced loads [13]. It is a valuable
means of increasing the speed in the low torque region. Below the base speed, field
weakening is not present, and the field current equals the armature current.

Various control laws have been developed over the years for the series DC motor,
although it would appear that few new results have been presented recently, especially
in the area of nonlinear control. Still, there are several papers worth noting. In [19],
the author uses feedback linearization to develop a control law valid for most operating
points. In particular he finds that the series DC motor is input-to-state linearizable
and input-output linearizable at all points except when the armature current is zero.
In [2], an adaptive controller is developed for a DC drive operating under varying
load conditions. The authors successfully develop a robustlself-tuning controller with
an adaptive integral-proportional structure.

In several papers,.Chia,sson has studied both the series DC motor and the shunt
motor. For the shunt motor [5], he considers feedback linearization, generalized con-
troller canonical forms, and input-output linearization. His results indicate that
input-output linearization is the simplest and least restrictive method for develop-
ing a nonlinear control. The series motor is treated in [6], in which the nonlinear
differential-geometric technique is employed. With the use of an observer to estimate
the speed and load torque based on current measurements, his results are quite good
when all other system parameters are assumed to be known.

The approach in this paper is to utilize the recursive design approach to design
a nonlinear robust control law. Such an approach allows the design of a control law
capable of handling significant variations in system parameters. Although only two
parameters are assumed to be uncertain, the method could be easily extended to

handle additional uncertain terms.



Robust Control

In this paper a robust control law for a series DC motor is developed using the
robust control methodology. The robust control problem is to design a fixed con-
trol system which guarantees the design requirements in the presence of significant,
bounded uncertainties. Robust control design is divided into two stages. First, one of
the nonlinear design methods is employed to stabilize the nominal system, the known
part of the dynamic system, and to achieve the prescribed performance. Second, a
robust control law is developed which maintains the prescribed goal for all uncertain-
ties under a given bound. A controller satisfying these requirements is said to be
robust with respect to the prescribed class of uncertainties.

Robust design can utilize either frequency domain or time domain approaches.
As to be discussed, use of the time domain approach leads naturally to the use of
Lyapunov’s direct method. This can also be seen from the procedure from which a
robust control is designed. First, stability analysis is done with respect to the nominal
system by setting all uncertainties in the system to zero. With the nominal system
now perfectly known, its stability can be determined. If it stabilizable under conven-
tional control, the existence of a Lyapunov function is guaranteed by the converse
theorem. Second, a robust control is designed by using the same Lyapunov function
for the uncertain system.

Robust control is currently a very popular topic in the literature and many re-
cent articles may be found covering a wide variety of topics. Qu has investigated ro-
bust control for nonlinear systems which satisfy the Generalized Matching Conditions
[23] and for nonlinear systems which do not satisfy the conditions [24]. Bonivento,
et. al. [3] have investigated robust control and the problems associated with its syn-
thesis as applied to uncertain dynamical systems. Wu and Willgoss [29] have also
addressed the problem of robust stabilization for a class of uncertain nonlinear dy-
namical systems. In [7], Dote discusses some of the applications of robust control
theory to motor control.

General background information on robust control is presented in [9]. A math-



ematical description of robust control is presented later in the section where robust

control is applied to the series DC motor problem.



CHAPTER 2
MATHEMATICAL PRELIMINARY

We cover some of the basic mathematical tools required to develop nonlinear
control laws. As a first point, the various definitions of stability for nonlinear systems
are presented and contrasted to the definitions applicable to linear systems. We
then present some information concerning matrices, their properties, and commonly

applied functions. Finally, the powerful and versatile Lyapunov Theory is presented.

Stability Theory

The definitions, lemmas, and theorems presented here are adapted from class
notes [21, 22] and a text on nonlinear systems by Khalil [10].

As stated, the goal of this paper is to design a control law to stabilize a particular
system. The concept of stability, while seemingly straightforward, does require some
explanation and analysis. In fact, stability theory plays a central role in systems
theory and engineering and there are different kinds of stability problems that arise
in the study of dynamical systems [10]. For linear systems, stability may be classified
as either stable, unstable, or marginally stable. For nonlinear systems, however,
these three terms alone are inadequate to describe the stability possibilities. More
specific descriptions such as asymptotic stability or exponential stability are needed.
Furthermore, these descriptions may apply either locally or globally.

The choice of stability utilized in a design depends upon the requirements of the
design and the amount of information available on the system to be stabilized. For
the sake of convenience, all definitions and theorems of stability may be stated for the
case when the equilibrium point is at the origin. There is no loss of generality in doing
this because any equilibrium point can be shifted to the origin through a change of
variables. Stability definitions related to the simpler case of autonomous systems are
considered first, and then we extend the concepts presented to the nonautonomous

case.



Consider the autonomous system

i = f(z) (2.1)

where f : D — R" is a locally Lipschitz! map from a domain D C R" into R".
Suppose Z € D is an equilibrium point of (2.1); that is

(&) = 0.

Then, the following definition may be stated.
Definition 1:

The equilibrium point z = 0 of the system (2.1) is
o stable, if for each € > 0, there is § = §(€¢) > 0 such that

lz(0)] <é=[lz(¥)]| <e, VE20

e unstable, if not stable

e asymptotically stable, if it is stable and § can be chosen such that
l|lz(0)|| < 6 = tlirgloz(t) =0

O
The concept of a “hyper-ball” is sometimes used to describe stability graphically.

The following equation shows the basic form:
llz(@)I| < e = z(t) € B(0,¢).

The equation B(0, €) represents the “hyper-ball” with a center at 0 and radius €. If §
can be chosen arbitrarily large for an arbitrary value of € then the system is globally
stable. Otherwise the system is locally stable.

This initial definition of stability may be further extended to provide additional
classifications of stability. For example, when the origin is asymptotically stable, we

are often interested in determining how far from the origin the trajectory can be

1The Lipschitz condition is used to show existence and uniqueness and may be stated as follows:

£, 2) — £(t, 9| < Li|z - vl|



perturbed and still converge to the origin as ¢ — oo; that is, how large can € and §
become? A discussion of nonlinear systems and their sensitivity to such perturbations
may be found in [26, 28].

For now, consider the nonautonomous system,

si=ilt,z) (2.2)

where f : [0,00) x D — R" is piecewise continuous in ¢ and locally Lipschitz in z on
[0,00) x D, and D C R" is a neighborhood of the origin z = 0. Then the origin is an
equilibrium point for (2.2) at 0 if

f(t,0)=0, Vt>o.

It should be noted that while the solution of an autonomous system depends only
on (t — to), the solution of a nonautonomous system may depend on both ¢ and {,.
Therefore, the stability of the equilibrium point will, in general, be dependent on t,.
The origin z = 0 is a stable equilibrium point for (2.2) if for each ¢ > 0 and any
to > 0 there is § = 6(e,to) > 0 such that

lz(to)ll <& = [lz(t)]l <& V2= to.

The constant § is, in general, dependent upon the initial time 2.

Before we introduce additional stability definitions for the nonautonomous case,
we present several special scalar functions which will help us characterize and study
the stability behavior of nonautonomous systems.

Definition 2:

A continuous function « : [0,a) — [0, c0) is said to belong to class K if it is strictly

increasing and «(0) = 0. It is said to belong to class Ko, if a = co and a(r) — oo as

r — 00. O

Definition 3:

A continuous function A3 : [0,a) x [0,00) — [0,00) is said to belong to class KL
if for each fixed s the mapping S(r, s) belongs to class K with respect to r, and for
each fixed r the mapping A3(r, s) is decreasing with respect to s and B(r,s) — 0 as

s — 00. O



Lemma 1:
Let o;(+) and a3(-) be class K functions on [0,a), as(-) and a4(-) be class K

functions, and f(-,-) be a class KL function. Denote the inverse of a;(-) by a7 ().
Then,

e o' is defined on [0,;(a)) and belongs to class K.
e ;' is defined on [0,00) and belongs to class K.
® ;0 belongs to class K.

® (30 o4 belongs to class K.

o(r,s) = a1(B(az(r),s)) belongs to class KL. ]
Now we may present the definitions of stability for a nonautonomous system.
Definition 4:
The equilibrium point z = 0 of (2.2) is
e uniformly stable, if there exist a class K function «(-) and a positive constant c,

independent of gy, such that
lz®)Il < afllz()ll), Yt=t 20, V|z(t)|l<c

o uniformly asymptotically stable, if there exist a class KL function f£(-,-) and a

positive constant ¢, independent of to, such that
lz(®)[] < B(llz(o)ll,t —t0), VYE21020, V|z(t)||l<c (2.3)

e globally uniformly asymptotically stable, if inequality (2.3) is satisfied for any

initial state z(%o).

e exponentially stable, if inequality (2.3) is satisfied with
Blris)=kre=2 k> 0,0 iy 20

O
When a system contains a nonvanishing perturbation, the origin z = 0 may no
longer be an equilibrium point of the perturbed system. In that case, we may need

to use the concept of boundedness rather than that of stability.
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Definition 5:
The solutions of = f(t,z) are said to be uniformly ultimately bounded if there
exist constants b and ¢, and for every a € (0,c) there is a constant 7" = T'(a) such

that
llz(to)|| < @ = ||z(t)|]| < b, Vt>te+T.

They are said to be globally uniformly ultimately bounded if the equation holds for
arbitrarily large a. )

There are several relations between the various forms of stability which are worth
noting. For example, asymptotic stability implies stability which implies bounded-
ness. Stability implies ultimate boundedness if € = ||z(t = to)||. Finally, exponential
stability implies asymptotic stability.

Now we present the definition of the region of attraction.
Definition 6:

Let ¢(¢;z) be the solution of (2.1) that starts at initial state z at time ¢ = 0.

Then, the region of attraction is defined as the set of all points z such that
im0 9(t; ) = 0.

O

In practice, finding the exact region of attraction analytically might be difficult or
even impossible. However, Lyapunov functions, to be discussed shortly, can be used
to estimate the region of attraction. With the region of attraction now defined, we
may present a stronger definition of stability.

Definition 7:
Let z = 0 be an equilibrium point for (2.1). Let V : R* — R be a continuously

differentiable function such that

V(0)=0 and V(z)>0, Vz#0
||z]] = 00 = V(z) — o0

V(z) <0, Vz#£0

then z = 0 is globally asymptotically stable. O
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- Matrix Theory

It is often convenient to rewrite system equations in a matrix form. To that
end, some basic information on matrices is presented here. A good reference for this
material is found in the linear systems text by Chen [4].

Definition 8:

Let A be a linear operator that maps (C™,C) into itself. Then a scalar A in C is
called an eigenvalue of A if there exists a nonzero vector x in C" such that Ax = Ax.
Any nonzero vector x satisfying Ax = Ax is called an eigenvector of A associated
with the eigenvalue . O

In order to find an eigenvalue of A, we write Ax = Ax as
(A-ADx=0

where [ is the unit matrix of order n. The equation has a nontrivial solution if and
only if det(A - AI) = 0. It follows that a scalar A is an eigenvalue of A if and only if
it is a solution of A(X) £ det (MI—A) =0. A(A) is a polynomial of degree n in A
and is called the characteristic polynomial of A. In other words, the eigenvalues of A
are the roots of the characteristic polynomial of A.

As an example, consider the matrix
1 -1
A [ o ] .

det (\I— A) = det [ /\__21

The eigenvalues may be found as

\ i i ] — AL
The eigenvalues are imaginary, namely A = +z.

Another important concept in matrix theory is the norm of a matrix. The con-
cept of norm can be extended to linear operators that map (C",C) into itself, or
equivalently, to square matrices with complex coefficients. The norm of A is defined

in terms of the norm of x. For example, if ||x||; is used, then
Allz = (Amaz(A"A))2

where A* is the complex conjugate transpose of A and A,..(A*A) denotes the largest

eigenvalue of A*A.
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- Lyapunov Theory

The analytical method used in nonlinear robust control is the direct method of
Lyapunov. Of the different analysis and design approaches for robust control, the
direct method of Lyapunov is of central importance. The reasons are twofold. First,
time varying or nonlinear uncertainties can be easily bounded in the time domain.
Second, time varying and nonlinear uncertain systems can be treated by Lyapunov’s
direct method.

Lyapunov was the Russian mathematician and engineer who first developed the
approach which now bears his name. One of the most important aspects of Lyapunov’s
approach is that the stability of a system may be determined without explicitly finding
the solution of the system equations. This is achieved through the use of the Lyapunov
function, which often takes the form of an energy function. Finding such a function,
however, is usually quite difficult.

There is no systematic method for finding a Lyapunov function. In many cases,
finding an appropriate function is a matter of trial and error. One helpful approach is
to search backward for a Lyapunov function. That is, the derivative of the Lyapunov
function is chosen first, and then the function itself is chosen to achieve the desired
dissipative property. The function under consideration is referred to as a Lyapunov
function candidate if for a given system the time derivative of the candidate along
the trajectory of the system has a certain type of dissipative property.

There are several important features of Lyapunov’s method. One is that Lyapunov
stability implies uniform boundedness. Another is that the Lyapunov theorem’s con-
ditions are only sufficient, not necessary. In fact, Lyapunov’s method sometimes
provides very conservative stability conditions [15]. Thus, failure of a Lyapunov func-
tion candidate to satisfy the conditions for stability or asymptotic stability does not
mean that the equilibrium point chosen for study is unstable. It only means that the

chosen function can not be used to establish the stability property.

Lyapunov’s Theorem for Nonautonomous systems may now be stated. The proofs

of Lyapunov’s various methods are presented in Khalil [10] and elsewhere.
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Theorem 1:

Let z = 0 be an equilibrium point for (2.2) and D = {z € R" | ||z|| < r}. Let
V :]0,00) x D — R be a continuously differentiable function such that

a(||z]]) < V(¢ z) < as(]l<]]) (2.4)

ov. oV

Ao < —

.+ 9L f(t,2) < ~es(llal) (25)
Vt>0,Yze D, where o4(-), o2(-), and as(-) are class K functions defined on [0, 7).
Then z = 0 is uniformly asymptotically stable. O

A function V/(t,z) satisfying the left inequality of (2.4) is said to be positive def-
inite. A function satisfying the right inequality of (2.4) is said to be decresent. A
function V/(¢,z) is said to be negative definite if —V/(¢,z) is positive definite. With
the use of these terms, we may state that Lyapunov’s theorem proves the origin is
uniformly asymptotically stable if there is a continuously differentiable, positive defi-
nite, decresent function V(t,z) whose derivative along the trajectories of the system
is negative definite. Lyapunov’s theorem may be expanded to two global versions.
Corollary 1:

Suppose that all the assumptions of the theorem are satisfied globally (for all
z € R") and o;(-) and a;(-) belong to class K. Then z = 0 is globally uniformly
asymptotically stable. O

Corollary 2:

Suppose that all the assumptions of the theorem are satisfied with «;(r) = k;r®,
for some positive constants k; and ¢. Then =z = 0 is exponentially stable. Moreover,
if the assumptions hold globally, then z = 0 is globally exponentially stable. o

As mentioned, Lyapunov’s theorem can be described using sign definiteness. A
class of functions for which sign definiteness can be easily determined is the class of
functions of the quadratic form

V(z)=2"Pz = Zn:ipijwﬂj
i=1 j=1
where P is a real symmetric matrix. In this case, V(z) is positive definite (positive
semidefinite) if and only if all the eigenvalues of P are positive (nonnegative), which

is true if and only if all the leading principle minors of P are positive (nonnegative).
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One application of the properties of quadratic functions is the so called Lyapunov

equation. Consider the linear time-invariant system
T =VAT.
The derivative of V along the trajectories of the linear system is given by

V(z) = 2TPi+ TPz
= zT(PA+ ATP)z

= —z7Qz

where () is a symmetric matrix defined by

PALATP - ) , (2.6)

If @ is positive definite, we can conclude by the Lyapunov theorem that the origin is
asymptotically stable, that is Re); < 0, for all eigenvalues of A. Stability in terms of

the solution of the Lyapunov equation may be stated in the following theorem.

Theorem 2:

A matrix A is a stability matrix, that is, Re); < 0 for all eigenvalues of A, if
and only if for any given positive definite symmetric matrix ) there exists a positive
definite symmetric matrix P that satisfies the Lyapunov equation (2.6). Moreover, if
A is a stability matrix, then P is the unique solution of (2.6). O

Lyapunov’s theorem may be restated in an inverse form known as the converse
theorem. The converse theorem takes two forms, one for when the origin is an ex-
ponentially stable equilibrium and one when the origin is uniformly asymptotically
stable.

Theorem 3:

Let z = 0 be an equilibrium point for the nonlinear system

z = f(t,z)

where f : [0,00) x D — R" is continuously differentiable, D = {z € R" | ||z||, < r},
and the Jacobian matrix [0f/0z] is bounded on D, uniformly in ¢. Let k,~, and 7o
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be positive constants with 7o <'r/k. Let Do = {z € R" | ||z||]2 < ro}. Assume that

the trajectories of the system satisfy
llz(t)||2 < K||z(to)]|l2e~ %), V z(to) € Do, Yt > to > 0.
Then, there is a function V : [0,00) X Dy — R that satisfies the inequalities:

allz|l; < V(t,2) < cllell3
ov. oV

2
+ f(t,z) < —csl|z

o > lell

for some positive constants ¢;, ¢z, c3, and ¢s. Moreover, if r = co and the origin is

< cqllz]]2

globally exponentially stable, then V(¢,z) is defined and satisfies the above inequali-
ties on R™. Furthermore, if the system is autonomous, V' can be chosen independent

of t. 0
Theorem 4:

Let z = 0 be an equilibrium point for the nonlinear system
& = f(t, )

where f : [0,00) x D — R™ is continuously differentiable, D = {z € R™ | ||z|| < r},
and the Jacobian matrix [0f/0z] is bounded on D, uniformly in t. Let B(-,-) be a
class KL function and rg be a positive constant such that £(r¢,0) < r. Let Dy =

{z € R" | ||z|| < mo}. Assume that the trajectory of the system satisfies

llz(®)]] < B(llz(to)ll,t — o), ¥ z(to) € Do, V' 210 2 0.
Then, there is a function V : [0,00) X Dy — R that satisfies the inequalities:

a(|lz]]) < V(tax) < ao(|l=]])

8V 8V
S+ 5o/ (t9) < aa(llel)

H D
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where a1(-), aa(-), as(-), and as(-) and class K functions defined on [0,7]. If the
system is autonomous, V' can be chosen independent of . ]

These theorems prove that, if the origin is asymptotically or exponentially stable,
then there exists a Lyapunov function which satisfies the conditions of the Lyapunov
theorem. Although these theorems do not help in the practical search for an auxiliary
function, they at least provide the knowledge that a function exists. The theorems
are also helpful in using Lyapunov theory to draw conceptual conclusions about the
behavior of dynamical systems.

Since the Lyapunov equation will be used later in the control design of the series

DC motor, a simple example of its use is presented here.

Example 1:
Let

0 -1 10 . P11 P12
A= s - shiandy e
[1—1] % [01] ; [pmpzz]
where, due to symmetry, p;2 = p2;. The Lyapunov equation (2.6) can be written as

iy o B e

P21 P22 ! — P21 P22
So,
2p12 = -1
—p11—p12+p2 = 0
—2p12 —2p2 = -1
or

O 2 0 P11 —1
-1 -1 1 P12 = 0
0 —2 —2 P22 —1

The unique solution of this equation is given by

P11 1.5
piz | = | =05
P22 1.0

The matrix
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RN
e [ ~0.5 140 ]

is positive definite since its leading principal minors (1.5 and 1.25) are positive. Hence,
all eigenvalues of A are in the open left-half complex plane. )
As another example, the use of the Lyapunov theorem in proving stability is given

below.

Example 2:

The linear time-varying (i.e. nonautonomous) system
z = A(t)z (2.7)

has an equilibrium point at z = 0. Let A(t) be piecewise continuous for all ¢ > 0.
Suppose there is a piecewise continuously differentiable, symmetric, bounded, positive

definite matrix P(t), that is,
Ol Pl al, 'V1=20
which satisfies the matrix differential equation
—P(t) = P(t)A(t) + AT(t)P(t) + Q(¢)
where Q(t) is continuous, symmetric, and positive definite; that is
Q) 2l >0, Vt>0.

Notice the slightly different form of the Lyapunov equation for the nonautonomous
case.

Consider a Lyapunov function candidate
V(t,z) = 2T P(t)z.
The function V (t,z) is positive definite and decresent since

allzll; < V(t,z) < ellz]f3-
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Moreover, it is radially unbounded? since the function ¢;||z||? belongs to class K.

The derivative of V(¢,z) along the trajectories of the system (2.7) is given by

V(t,z) = zTP(t)z +zTP(t)z + 2T P(t)z
= zT[P(t) + P(t)A(t) + AT(t)P(¢)|z
= —27Q(t)r < —calzlf3.

Hence, V(t,z) is negative definite. All the assumptions of theorem 1 are satisfied

globally with o; = ¢;r2. Therefore, the origin is globally exponentially stable. m

2V(z) — o0 as ||z|| =



CHAPTER 3
DESIGN OF CONTROL LAW FOR SERIES DC MOTOR

Recursive Design

The design methodology we chose to be applied to the problem of controlling a
series DC motor is the backstepping approach. This approach, developed in the six-
ties, works systematically for multiple-integrator systems. Extension of this method
to nonlinear control, adaptive control, and robust control has only been accomplished
in the past several years [22]. Mathematically, the design procedure can be general-
ized and applied to nonlinear systems because it basically forms a sequence of state
transformations, that is, a recursive mapping [22]. A recursive nonlinear mapping
involving norms and differentiation operators is required for robust control design
and is referred to as recursive design.

For the purposes of increased readability, many of the intervening steps in the
derivation of equations have been omitted from the body of the thesis. Instead, these

steps are included in separate appendices located at the end of the thesis.

Background

Recursive design may be applied to cascaded systems. A system in the following

form:
i:l = f1($1,t)+Af1($1,'U1,t)+91($1,$27'01,t)
z; = fi(-’rh---’xi,t)+Afi($l>-~-3$i’vi7t) S G B1;5 -ors Tty Tig1, Ds5 L)
Tm = fm(xl,...,xm,t)+Afm(x1,...,:rm,vm,t)+gm(x1,...,:z:m,u,vm,t)

where u is the control and v; are the time-varying uncertainties, is said to be cascaded

if these conditions are true:

f,—(ml,...,.r,-,t) = fi(x,-,t)
Af;(:rl,...,:c,-,vg,t) — Af,'(.’r,',v,',t)

gi($1’ cees Liy Tit1, Uiy t) = gi(l?i, Tit1, iy t)

19



20

A cascaded system consists of a sequence of cascaded nonlinear uncertain subsys-
tems. With such a system, the recursive approach may be used to design a robust
control. The recursive approach can also be applied to feedback linearizable systems
to design adaptive control and robust control. As will be discussed later, cascaded
systems are actually a special case of the generalized matching conditions.

At each step of the recursive approach, the design contains a change of coordinates
and the construction of a fictitious robust control law. Based on the structure, the
state variable z; is the system output. The variable z¢ represents the desired output
trajectory of the system. The objective in every step is to define a new state z; =
z; — z¢, choose the bounding function p and the Lyapunov function V;, justify the
choice of z¢,; and derive the expression for Vi. A fictitious control is designed such
that it is differentiable.

A simple example of the backstepping design a,pproach‘is presented below.

Example 3:

Consider the second order system,
i =27 To =

This system consists of two cascaded integrators. We can see that u can control z; to

anywhere. We also see that if z, were a control variable, then we could control z; to

anywhere. Such a control, for example z, = —z;, also written as 2% = —z, is called
a fictitious control. Let us rewrite the first equation as #; = —z; + (z2 + z;1). If the

term (z2 + z;) can be made to go to zero, then z; = —z; is stable.

This can be done by introducing the new variable z; as z, = z, + z;. Then
Zy = T9 + Z1 = u + z,. If we choose the Lyapunov function V = z? + 27 and the
control u = —z,— (z2+ 1), then we can show that the origin of the system is globally

asymptotically stable. O
Application of Recursive Design to the Problem

We begin our analysis of the design of a control law for the series DC motor by
assuming that all variables and quantities are known. We use the recursive design

approach discussed above with the exception that, since all values are assumed to be
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known, we do not need to develop a bounding function, p. Our examination of the
motor is split into two cases, due to the fact the equations describing the system are
slightly different when the motor operates above base speed than when it operates
below base speed.

We follow the pattern used by Chiasson in his paper [6], that is the first case
examined is the motor above base speed and the second is the motor below base
speed. The equations as presented by Chiasson for the first case (i.e. the motor above

base speed with R, < co) are:

Ldiidt = ViR = Ry = f oG (3.1)
dés/dt = —Ryis+ Rp(ta —15) (3:2)
Jdw/dt = I{mqbf(if)ia — Bw—1y. . (33)

As mentioned, these equations are valid for the series-wound DC motor in the field-
weakening region. That is, at high speeds (above the so-called base speed) the switch
is closed (R, < o0) so that the field current 7 is less than the armature current ¢,.
Before applying the recursive design approach, the system must be transformed
into the cascaded form. This may be accomplished by making the following variable

transformation:

A= ¢5(i5) Lota. (3.4)

Taking the derivative yields:

57 I RN
d\/dt = A= 6;(is)Lata + = [Lata]ds(is)
= —LoRgiais + RpLa(ig — isia) + Vé5(is) — Raiady(is)

—Ry(ia — i5)85(i5) — Kmd7(ig)w.

The system equations are then:

Jdesldte = KAyl B (3.5)
d/\/dt = —LaRfiaij + RpLa(iZ — ifia) + VQS}(Z}')
R, + ) . .
~ M+ Ryiss(is) — Kmd3(is)w. (3.6)

L,
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Let 21 =w, 22 = A, and w=V. Then,
K. B TL

T = 7 2 T e (3.7)
Tz = =—L.Rjiais+ RpLa(iZ —ipl,) — Km¢§(if)$1
S -
+Rps(is)is — —7 R*’zz + ¢5(is)u. (3.8)

The system is now in the proper cascaded form required for recursive design.

Suppose we wish to control z; to the speed wy. We may introduce the new variable:

21 =21 — :t:‘li (3.9)

with :z:‘li =i, 21 = %1, and 2y = 2 - :c'f. The first system equation in the new
variable is then:
B B G TL

Zi= == Wt ) S

J J JL, g

We now wish to select the appropriate value for 2% such that the following terms go

to zero:

Syt e S,
which yields
L,
T8 = - (71 + Buwyp). (3.10)
Introduce the new variable zj:
z3 = Ty — T5. (3.11)

Thus, 7, = 7 and z; = 23 + z%. The second system equation in the new variable is

then:

. : . R
5 = —Kndi(i5)z1 — Kmd?(ig)wo — Laszz
_Ra; R"xg — LoRyigis + RyLo(32 — isia)
+R,05(i5)is + ¢5(25)u. (3.12)

Replacing z; in the the first system equation and rewriting yields:

Ko Kn
2:1 = —EZI = E(.l.)() + —".'Eg 29 — T_L’ (313)

J J JL, JL, J




23

To design the control, choose the following Lyapunov function:

1 1
Vilz) = -2—zf B 523 (3.14)
Then,

V(Z) = 212'1 + 222.2
: B B K K TL
V(Z) = —723 == 7(.0021 -+ m2122 + JLa.’Dgzl == 721

5 A Ra +

— m¢§(lf)2122 = Km¢§—(2f)w°22 — szg

L,
R, 4 : o
— Z_Rp:cgzg — LyRyigt522 + R,,La(zz — 1414)22

+Ry¢5(i5)isz2 + 05(i5)20u

Grouping terms and substituting for the value of z¢ yields,

B Ra + 2 ;
—jzf - Laszg + zg[—Km¢§(zf)wo

il (7, + Buwo) — Lo Ryigis + RyLa (32 — i5i)

iR
e SR |
+R,d5(is)is + LA Knd$(if)z1 + ¢5(is)u].

To cancel terms, choose the following control:

b . HLR
b e

Ky .
—RpLa(iz —ista) — Bpds(1s)is — 5721 + K ¢3(ig)z).

Such a choice gives:

(TL + Bwo) + LaRfiaif

V(2)

2
29

B, R+R

Thi g 75
=0

which shows that the derivative of the Lyapunov equation is negative definite; thus

the system is globally uniformly asymptotically stable.

Rewriting u for z; = z; — wp = w — wy yields:

R [RG+R1,

(TL - ch) - LaRfiaif

¢5(ts) L Km
—R, L (2 — isia) — Rpds(is)is
im0 — w) + K3 (3.15)

=T
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This is the final form of the control for the motor when it operates above base speed.
We now turn our attention to the second case, when the motor is operating below
base speed.

In this case the switch is open, i.e. R, — o0, and field weakening is not present.

Therefore 7y = ¢, = 7, and the equations are

Lodifdt = V — Ryt — Kp¢s(t)w (3.16)
dés/dt = —Ryi (3.17)
Jdw/dt = K,¢s(i)t — Bw— 7. (3.18)

We again make the following variable substitution:

A = ¢¢(2)Lqt.
Taking the derivative yields:

0 ATy
d\it = il
= F(—R;i— Kndi(t)w+V),

where i
F5,61(6),064(9)/06) = 2200i 4 4,6, (3.19)
The system equations are then:
Jdw[dt = Knés(1)i— Bw—T1L (3.20)
d\/dt = F[—Rg — Kn,¢:(1)w+ V]. (3.21)

Let 2; =w, 2 = A, and u = V. Then,

HE B TL
JLaIEg = ‘—]—.’131 — 7‘ (322)

dy = F[~Rui— Knés(i)z1+ ). (3.23)

$.1=

This system is now in the proper cascaded form for recursive design.
As in the first case, we wish to control z; to the speed wy. We introduce z; and
2, as before. The first system equation in the new variable is then:

. B B Km T,
G e [etien 00 -+ Lo—= =

J J JLg J




25

The term z§ is the same as was found before, namely

d
S K

)-

The second system equation in the variable z, is then:
Zo=F[—Rgt — Kn¢s(i)z1 — Kindys(1)wo + u). (3.24)

Replacing z; in the the first system equation and rewriting yields:

. B B K Ko
Z1=——2z — —wo+ s zg — Ly (3.25)

J J 77 JL, J

To design the control, we might choose the same Lyapunov function as for the

case of the motor above base speed, namely,

1
2
_22 .

1

Viz) = 5

However, after attempting several simulations through a trial and error approach, it

was discovered that a better choice of Lyapunov function is

1 L,
V(z) = izf + ?zg (3.26)

Then,

V(Z) = 212'1-*-L4222:2
B B K, B

V(Z) = ——72? —_— 7(.0021 =+ JL —_—ldi2 Tt = JL ngI
_leizl — FLaRaZZQ == FLaI{m¢f(Z)zlz2

—F L, Kn¢g(t)wozz + F Lyzou.

Grouping terms and substituting for z§ yields,

: B B B
Vi{z) = —7zf — JWoz1 — %—zl - Fwoz1
Ko :
+a + 2l 751~ FLKndy (i)

—FL,R,i — FL, K., ¢4(i)wo + F Lyul.



26

Rewrite the equation by factoring out the coefficients F and L, :

V(z) = —721 + FLaZ2[FJL2 Km¢f(z)21
T e

To cancel terms, choose the following control:

I G
U= ———=2z1+ Knds(i)z1 + Rai + K ¢s(2)w 72

CFJL?

We introduce the term FLLGZQ in order to generate a negative definite term in the
second variable, z,, for the derivative of the Lyapunov function. Without such a term,
the control may not be characterized as being asymptotically stable. We choose to
let G = Gl% where (G is a gain we may vary in the simulation to produce the best

results. Therefore, such a choice gives:

B

—721 GZ2

V(z)

< 0.

Rewriting u for 2; = z; —wp = w —wy, 22 = T2 — 2%, and G = Gl-?, yields:

Ko e
T E mds(i)w + Roi = o7 (95(0)Lai = 73).  (3.21)

Ue—
The final control law is now completely known.
Simulation

The results from both case 1 and case 2 were combined to simulate the DC motor
under the control law when all quantities are assumed to be known. The control law
changes as the motor moves from below base speed to above base speed. Base speed
was chosen as wpese = 200.0 rad/s.

Below base speed (case 2), the control law is

Ko
FJL,

(w—wo) + Kinds(i)w + Raz — ﬁ&a(¢f(i)L°i - a:g)

U=

with

094(2) .

F=—02"i+¢i) and 3=
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and above base speed (case 1), the control law is
1 [Ra + R,
¢1(i5) L Km

B K 2
~ By s{is)is + Fh-(0 =) + Kndir)o].

(TL + Bwo) + LaRfiaif - &La(iz - ifia)

The load torque, 7z, was given in Chiasson [6] as

0 Nm 0 <t<5
7 =4 1250(t —5)/5 Nm 5<t<10 .
1250 Nm 10<¢

The parameters related to this motor are the armature inductance (L,), the re-
sistance of the field windings (Ry), the parallel resistance of field weakening (R,), the
resistance of the armature windings (R, ), the viscous friction (B), the torque/back-

emf (K,,), and the moment of inertia (J). The values of these parameters are

L= 0.0014 H

Ry = 0.01485 Q

Tty = 0.01696 2
o= 0.00989 Q

15 = 0.1 Nm/rd/s
K, = 0.04329 (Nm)/(Wb- A)
S — 3.0 K,m?

The reference speed was chosen to start from 0 and go up to 520 rad/s in 20

seconds. It is simulated as a hyperbolic function:

322 t<5h
34.0 - (t — 5) + 80.0, 5<ti<15
—4.0-(t—20.0)24+520.0, 15<t<20 °
520.0, t > 20

Wy =

The flux, ¢¢(is), was derived from figure 4 of Chiasson.

The system was simulated using SIMNON. Several different simulations were at-
tempted by varying the value of the control gain constant, G;. As G is increased, the
error during the first few seconds settles down and the control law becomes smoother.
Past a certain value, however, the error begins to increase during the first few seconds
without any improvement in the control law. The effect of varying GG; on the error

and control law is presented in the figures in the appendix. For the best choice of G,
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figures of various system parameters are presented below. An additional figure is in-
cluded which shows the effect of a 10% perturbation in the load torque and armature

inductance on the steady state error.
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Figure 3.1: Plot of reference speed for the motor
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Figure 3.2: Plot of error for G; = 20.0
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Figure 3.3: Plot of the combined control law for G; = 20.0

Figure 3.4: Plot of both actual motor speed and reference speed for Gy = 20.0
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Figure 3.5: Plot of armature current for G; = 20.0
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Figure 3.6: Plot of field current for G; = 20.0
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Figure 3.7: Plot of flux versus field current for G; = 20.0
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Figure 3.8: Plot of error for 10% perturbation in 7z and L,



31

PI Control

We now consider the case when the load torque in the equation for the DC motor
is unknown. By using a PI control, we eliminate the need to know the load torque ex-
plicitly, and thus overcome this problem. However, since PI control can be somewhat
destabilizing, we extend the control development to also include a PD term. Such
a term helps to reduce the destabilizing effect of the PI term. Due to the nonlinear
nature of the system under study, the resulting control is also nonlinear. We first
present background information on the PI control approach, then address the issue of
designing a PI control for the series DC motor, and finally present some simulation

results.

Background

The background information on PI controllers presented here was taken from a
text on feedback control systems [20]. Another source of information on PID con-
trollers is available in [1]. Examples of the application of PI control to DC machines
may be found in [2].

The PID controller is probably the most commonly used compensator in feedback
control systems. The proportional term gives the controller output a component that
is a function of the present state of the system. The integrator term provides an
output which is determined by the past state of the system. The differentiation term
provides a prediction of the future state of the system.

One or more of these terms, P, I, and D, are inserted into the feedback loop and
their values adjusted to provide the best control. Each term affects the system in a
slightly different way.

The PI controller introduces phase lag. It has the following properties:
The system low frequency characteristics are maintained or improved.
Stability margins are maintained or improved.

High frequency noise response is reduced.

The system type increases by one.

The system response slows down and the settling time increases.

o ok W N

Some systems can not be stabilized using this control.
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The PD controller introduces phase lead. It has the following properties:
Stability margins are improved.

High frequency performance is improved.

It is the only control applicable to certain systems.

Rate feedback is easy to implement in some systems.

May accentuate high frequency noise problems.

DRI SRR

May generate large signals at the plant input.

Combining the two yields a PID controller. If the gains are chosen properly, then
the stabilizing properties of both can be maintained while the destabilizing properties
are decreased. Generally speaking, PD control improves the transient response of the
system while PI control improves the steady state response. Usually, the gain for
I control is chosen to be smaller than the P and D gains. For motors, controls are

implemented electrically, so gains as high as 50 or so are not a problem.

Application of PI Control to the Problem

We first consider the system when the motor operates above base speed, that is
R, < oo. The initial steps involved in this case are similar to those for the case
without PI control. Recall, the system equations in terms of w and A for the motor

above base speed are:

e e
e g e T
A o ; yt :
% — —LaRazalf + -RpLa(zg i ZfZa) + u¢j('l_f)
R, + ; : s
__L_R';,\ + Ryiss(is) — Kmdt(is)w.

For this case, z; will be defined differently than in the previous case. Let

Ty = W —Wwo
WO =T g
Z; = w—uwp.

z, will be the same as before, namely z, = A. Thus, the systems equations are now
B B o L

IE'] = l=a=01 — = + oy e e w.g (328)

J J JL, J
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gy = —LoRyisis+ RyLa(i? —ifis) + Rpds(is)is

—Kmd3(i5)z1 — Km¢3(i5)wo — R“; R”xz + ¢5(i5)u. (3.29)

For the additional step of designing a PI control we will introduce the following
equation:

To= 1. (3.30)

The PI control can be inserted into equation (3.28) by adding and subtracting

the terms kozo (integral part) and k;z; (proportional part). By doing so, the need to

know 77, is eliminated:

1 = —koro—kiz1 — ?wo — TTL — Wy
+§{£; [xz o+ 2&?(%% + k121 — gml)] .
Thus,
B = —aloo+ (1/ko)(re/T)] = ki + (K /T L) — D — s
= —kozo — k11 + (Kin/J Lo)z2 — gwo — Wo

where 2o = [z0 + (1/ko)(71/J)], and 22 = 22 + (J Lo/ Kn)(kozo + k121 — (B/J)z1).
Thus, if z; — 0, then z; is stable. Note, although the equation z; is only marginally
stable, the system [z z;]7 is stabilizable.

To show this, we need to choose kg and k; such that the following system is stable:

HIRIE
I I

with

0 1
She v

and

To show stability, choose
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o=[41]

Pl= P11 P12
P21 P22

where, by symmetry, p;2 = ps1, and solve PA+ ATP = —Q :

P11 P12 0 1 n 0 —ko By gt =l 0
P21 P22 ko —k 1 -k P21 P22 0 -11°

The following four equations result:

and

—kop12 — kopa1 = -1
P11 — kipar — kopez = 0
P11 — kipiz — kopaz = 0
P12 + pa — 2kipee = —1.

From this we obtain

=

2ko k1 2—5
e Lo
2kg 2koky

kQ"’ +ko +k21 1 :I

If ko and k; are chosen both greater than zero, then P is positive definite.

When a system is rewritten in a form which includes the matrix P, it provides the
following advantages [21]:
1. A closed form solution for either analytical proof or analysis;
2. Ability to use the Lyapunov approach which is applicable to linear time-varying
systems; the eigenvalue test is not;
3. Ability to use the Lyapunov approach to analyze or design control for nonlinear

systems with a linear part.

Choose Vi(z) = 2T Pz. Then V; = —zTQxz, and the first system is stable:
‘/1 — [Zo $1]P [ ;(1] ]

V, = —[z0 1)@ [ 2 ] + 2[z9 z1] PBz,.

Z|
T
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Now we wish to find V;(z;) such that z, is stable. That is, by finding a proper choice
for u, we can force zo — 0. Then, from these equations, we may derive suitable values
of ko, k1, and ko, where k; is the D gain term of the PID controller. One choice is
the function V(z;) = %zg Then Vg(zg) = zpZ5. Since the derivation is complicated,
it will be presented step by step.

We begin with the 2z, equation and its derivative:

Jilig
29 = X2 + —[koxo + (kl B/J)(L‘l]

X JL .
29 = .'L‘2 + ——[kol‘o + (kl B/J).’El]

We must rewrite zo, 1, and Z, in terms of z. Recall, o = z;. Let z; = z;. Then,

AN S e Koo 3B
L= 020 T on Wo
= —kozo — Km =3 Ewo — Wo
JL, J
€, = —LoRgiais + RpLa(i; — isia) + Rpts(is)is + ¢5(is)u
_chbfe(if)zl - Km¢§'(if)w0 - Ra; RPIQ
Recall,
Jlis
Tatta s e (ky — B/J)z]
1 = 2

and note that we do not rewrite zg in terms of z5. So,

% g3 JLak _I_BL,z
o = 29 — K. _—Km 121 _Km 21,
and
R, R -
= .Z,R?“ 5 LaRp Km(R i

J B
K — (R, +Rp)k121—K—(R + R,)z

The expression for Z, is then

gy = —LoRysiats + RpLo(i2 —ifis) + Rp¢f(if)if + ¢5(i5)u — Kmd3(is)z1
! R, + R,,
_I{m¢?f(zf)wo — La ) -+ F(Ra + Rp)ko.’to

J B
I{ (R + Rp)k121 ]{m (Ra -+ 1?1,)21.
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Upon substituting these expfe;sions for Zo, #1, and Z, into the following equation
JL 2
22 — .'132 -+ _[kol'o -+ (kl B/J)l']]

and multiplying by z5, the result is

227y = —LoRytaiszo + RpLa(i2 — i5ia)z2 + Rpds(is)isze
: : R,
+b1(is)uzs = Kn$ilis)ar7s = Km$(ishwozs — 223127
T J
+K—(Ra + Rp)k0$022 + K_(Ra = }zp)klzlzZ
B : JL. nar
7 K, o e
JE. T T
g A% + k125 — ¢ i
Bl BL,
+ I74 kozoza + X “kyz12 — (B/J)
+BzLa’ , Ble
T R

Grouping terms and rewriting for the Lyapunov function yields,

; R, B
e = — (BB )2
B . IL
T2 [km % ( B k. kl)
+( l e R
T T
B I
—Kn#}lis) = = (Fa+ By) = T ) -
B’L, BIL, %
+ (JKm s s )) s

FRyLa(i2 — igia) + Bydyigliy — LaRyisis + 7 (Ra + Ry )hozo
BL: Il
(K K )‘“’”‘bf(zf)u]

The term k22 is added and subtracted to the expression for Va(22).

. R, + B
Valz). o (—L—R" +5) 3 = ki
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n [k1z2 A (lj{i o f{i kokl) -

+ (%(Ra + Rp)k1 + ‘;(Lm ko + i—i’kl

~Kndilig) ~ (Rt By) — T2

e A

+RpLo(i2 — ifia) + Rods(i5)is — LaRyiaiys + %(Ra + Rp)kozo
1 (‘?{i“ - %k1> o - ¢f(z'f)u] .

The method of compensating the z, terms is presented later. For now, put those
terms aside and cancel the other terms by choosing an appropriate u. As a further

step for clarification, rewrite V, as

. R, + B BL, JL,
%(22) = — ( LaRp -+ 7) 23 — kgzg + ( ko — T k‘okl) 2022

e
J Jily BL,
+22 [klz2 + kozp + (K—m(Ra + R,k + X, ko + X ky

Tl
7 kf) =

) B
~Knd}(i) = 3 (Fa+ By) -

B2L, BIL, .
+<BLG_JLak) ;
T7ei A )

+RyLa(ig — isia) + Rpos(is)is — LaRyiaiy
+ (B + By oo + 61(ig)u].

Now, choose u to cancel the terms within the square brackets above:

]
. Dty
S e
BN JL,
+ (End3in) + g (Ba + By) + 28
J SE Rt
Rt b ke S kl) A

BL, ; Bl
1 ( o ki + Km¢2}(if) = m) wo
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+LaRyiais — RypLa(i5 — ifia) — Rps(if)i
JL, BLa | J
(K En ) o - ol By oo

Then

: R, + B BL, I,
Va(z2) = — ( LaRp + 7) 22 (K ko — K. kok1> 2022

which is stable for z; > 0, assuming that the z terms can be compensated. Rewriting

u in terms of the original variables,

1
u = —— [=(ky + k2) Laiats (i) + LaRyiais — RpLa(iZ — ii,)
¢s(is)
R (B e Rk R
fQs)s OK R,)zo o( 1 2)Km$o

Bl B L
(k2 s R ( “+R”)_k1k21{m

J JL,
b (R + By) — ) (w = wn)

L, BL,Y .
ol ( 3 )wo

Ko B
BL, B4L;
R [

+Km ¢4 (if)w + (k1 (3.31)

We now show that the terms associated with zo are compensated by the combined
Lyapunov functions without including the terms in the equation for the control, u.

Combining the derivatives of the two Lyapunov functions yields,

Vi+V, = —[20 21]Q [ ] + 2[z0 21]PBz,

BRRE B Bl ot
'( I B¢+7>z§_k2 2 (K SR k°k1)z°z2'

Rewrite as

Vi =1 ‘/2 = —[Zo .’L‘l]Q |: @ ] + 2[20 Jfl]PBZz

[ (Bako - &akokl) }

7)

+2(z0 73 22

5 (k2+
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Take norms of the right hand side and rewrite as an inequality to yield:
Vit Ve < —lllz0 21]lPAmin(Q)
1(BLgj _ JLg
+2||[z0 z1]||||22]| o maz (PB + [ 2 (K,,, ko — %2 kok1) D

0
R.+R, B ;
(o B )

where we have taken the minimum value of the matrix @) since it is associated with a

negative term and the maximum value of the other matrix since it is associated with

a positive term. Note that

Amin(@) =1

(_I__Igm)

2ko JLq

(54) |
2koky JLa

At this point, it is helpful to introduce the following relationship known as the

and

PB =

triangular inequality:

a’ +b% > 2ab:
Let
@ = Zl[z0 22l PAmin (@)
and

b2 = k|2 |?.

Solving this will give us a condition for k; such that the derivative of the Lyapunov

function is negative definite

A+ V 1 R, + B
itV < —3lllz0 2]l*Amin(Q) - < s 7) [EAlk
1 (BLal _ JLg
+{2||[zo 331]” < ||22||amax (PB 4 [ 2 (Km ko i kokl) ])

Ll 21l PAmin (@) = hallal )

<4

Consider the terms
PB + [  (Rrko — f2kok) } :
0
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Denote this as the matrix W and write as

1 K BLg JL
W = W Sy (JLako Km ko — ?,':kokl)
W, kotl Ky x

2kok1 JLQ

The norm of this matrix is

oo [} = e (931 )

Sl W2 WiW,
\ e | W, WE |

To find eigenvalues, take

AT e
det()J—W):[/\ i Wle]

—WiW, A — W2

det = X\ — (WZ+W2)\
Amaz = MA—WZ—W2) =0

wo = [L(Kn_, BLeko _ ILokoky ¢
wi = (Fot1Kn 2.
2koky J L,
Therefore,
/\maz: =0
or

Nonai = Wk Wea,

The result A, = 0 is meaningless. Instead we will use the second result A,,.. =
W2+ W2. Any choice of ko and k; will yield a value of A4, such that A, > 0. The

formula used to calculate A,qz is then

Y i PSS - 0 SREOUS 1 0 U DR TR R e
=l e Sl )

S 3.32
TR K sty JL, (350)

When choosing values for ko, k1, and k; it is important to recall that, in general, the

contribution of a PD controller is stabilizing while the contribution of a PI controller
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is destabilizing. As stated, ko is the integral gain, k; is the proportional gain, and k;
is the derivative gain. The value of kg is chosen to be less than the values chosen for
ky and k,.

For example, for a choice of kg = 5 and k; = 5, ez = 1.56007 and

T = N A= 12240

By the triangular inequality,
aL = 00b

1
2ab = 2120 2]l V|||

[k
2 52 Z 20maz

kz Z 20’2

max

ky > 3.12.

Therefore, with kg = 5 and k; = 5, k2 must be chosen to be greater than 3.12. Such
a choice guarantees stability by the proof above.

With a control law designed for the case when the motor is operating above base
speed, we now turn our attention to the case when the motor is operating below base

speed, that is B, — oo. Recall that for this case the system equations are:

T | A R TL
E = 7 ¢f(2)2 . 7w Ty J
% = F[-Rai — Knds(i)w + 1]

and the system equations in terms of z; and z, are then

. B B 1567 TL i
e g 1 g g iy

7 J T
Sy = Fl—R.i— Kudi6)z:+1)

where

_ 004(2) . ;
Pi= 5 + ¢4(2).
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The steps of proving stability for the first system are exactly the same as before. We
present the steps required to prove that the second system may be stabilized.

Rewriting 2o, 21, and z5 in terms of z yields

.’150=.’L‘1=21

il = 020 121 JLazz on Wwo
To = F[—Rai — Kpnds(1)z1 — Kmds(1)wo + u).
Recall,
il
g = 22—K [ko$o+(k1—B/J)$1]
7, = Zz1.

Upon substituting these expressions for o, #1, and &, into the following equation

JL,
K

and multiplying by z;, the result is

[koZo + (k1 — B/J)z4]

2o =Tz +

222,"2 = —FRaiZQ —_ FKm¢f(i)2122 = FKmqbf(i)wozg
Jel JL,
+Fuz, + X, koz1z; — e koky 2023
JL, BL, Jhs s
— I{m k122122 + klzg o Kklwo = Km k1w0
+BLak zy + BLak 2129 — §z2
T 02022 eh 12122 722
+BzLa + Bl
T
Grouping terms and rewriting for the Lyapunov function yields,
. B
Va(z2) = —723
JL, BL,
+29 [klzg + (— . koky + 7 ko) 20
JL, BIL, ol
g (Km foitiae - Phetill Sop kf) o
B B !
+ (JKm = ky — FI{m¢f(Z)) wo
Blig il 4 :
( — k1> R A
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We then add and subtract the term k,22,

B

Va(z2) = —jzg — ka2;
+25 [klzg + kozo + (— jé: ki + iia ) 20
(';{1: ko + ?é:h — FEnés(i) — ‘;{I:: 1> z
(fli - Tk - FKmasf(z')) o
i (?{iﬂ 2 ‘;i )wo _ FR.i+ Fu.

The method of compensating the terms associated with zg is presented later. For
now, to cancel the other terms, choose

1
u = —[—klzz—kzzz-i-FRi

Iy B
(FI mds(8) + 17— e kl) a2t

; (JLa ‘ BL) .
K, e

BL, BiL,

Rewrite u in terms of the original variables

5 = jln'[—(kl + k2)¢5(2) Lot — (k1 + k2)i{La 2 g)(w e

: Tl T R R
+FRui + <FKm¢f(z) i e kl) (=)
- (JLak BL,,) K

K., IRy Ry

BL, B?L,
5 ( K. ~ky + FEméy(i) — ) wo)

J Ko
JL,
— [ kl + kz ¢f(2) aZ = kO(kl — kZ) I(
JLq JL, BL,
k12 I{ (w —w0) St k1k2 Km (U) = WQ) + Km kl(w _ wo)

BL JI; ;
— % ko (w — wo) + k2 2w = wo) + FKondy (i) (e — w)
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BL, s e T BL,
= I(m kl(w — LUQ) — I{m ko(w = wo) + I{m klwo
, B*L, JL, BL,\ .
+FKnds(2)wo — TE.“° + <_Km ky — K. )wo

which reduces to

1L W oy, :
Lo s f[—(kl + k2)¢s(2)Lat — ko(k1 + k2) zo+ F R,

K,
QU B e
(‘klk"’ F i k") )

: JL, BL,\ .
i e (Km o )“’0
Bl B4l
o g ( R ki— JI{m) wWo- (3-33)
Inserting this control law into the Lyapunov function then yields
. B BL, JL,
‘/'2(22) = —723 — kgzg + <I{m ko — I{m kokl) 2022

which is stable for z; > 0, assuming that the zo terms can be compensated.
The proof of the compensation of the zy terms for this case is similar to that pre-
sented for the case when the motor operates above base speed. Writing the combined

Lyapunov function derivatives yields

Vi+Ve = —[z0:]Q [ 2 ] + 2[zp 21| PBz,
—(? + kp)22 + (i’; o= “}én koky ) 202,
which we may then rewrite as
Vi+ Ve = —[z202]Q { ;‘i ] +2[20 1)PBz,
+2[z0 z1] [ : (Rko —0- Keskoh) ] z3

B
— (kz + —J—> Z%.

Taking norms yields

VitV = —|llzozillPAnac(@)
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] 1(BLgj _ JLg
+2||[2z0 z1)||||22||omaz (PB A [ 2 (Km ko Ko kok1) ])

0
B
= (kz + 7) ||z2| %,

where as before we have taken the minimum value of the matrix @ since it is associated
with a negative term and the maximum value of the other matrix since it is associated
with a positive term.

Again let

a2=

[I{z0 z1]|[*Amin(Q)

DN | —

and
b* = ks||zo|[*.

Solving this will give us a condition for k, such that the derivative of the Lyapunov

function is negative definite:

; 3 ] B
i+Ve < —§||[Zo 21)||*Amin(Q) — 7||~’f2||2

1 (BLgj _ JLg
+{2H[z0 xl]” ¢ ”Z2||ama:c (PB+ [ g (Km 2 0 Kom kokl) ])

1
—5lllz0 21]IPAnin(@) — alleal
=0

Values for the control gains, ko, ki, and k,, similar to the first case, may now be

found.

Simulation

The results for the two different cases were combined to simulate the DC motor
under the PID control law when all quantities are assumed to be known except for
the load torque. The control law changes as the motor moves from below base speed
to above base speed. As before base speed was chosen as wp,se = 200.0 rad/s.

Below base speed (case 2), the control law is

JL,
o

u = %[—(kl + k2)¢f(Z)LaZ — ko(kl — kg)

.’Co+ FRai
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J 'L‘,{+ BL, JLa

8 &
( = o kot k°) i)

HF Ky (i) + (2h = 22 ) i

ky —
+ k wo

K /G

e kK
with
0¢(2) . .
I = -—afT)z + ¢f(2),
and above base speed (case 1), the control law is
u = . [—(kl + ko) Latady(is) + LoRysinis — RpLa(i2 —ifig)
¢5(is)
s J JL,
—Robs(i)is — ko (Ra + Bp)zo — ko(ks + k2) 720
Bl B Jib;
+ (kz e + I—{'m—(Ra + Ry) — kika R

J JL,
k(R4 By) — b ) (w0 — o)

+<JLak _BLa) :
R e

BI B
2/ a a
e (kl K JKm) “’°] '

Using the relationships developed previously, values of ky and k; were chosen and
then the appropriate range of values for k, was calculated. For example, for the
choices of kg = 7 and k; = 16, we find that k, must be chosen greater than 44.

Simulations were attempted for several different values of kg, k;, and k; and the
results are presented in an appendix to provide an indication of the effect of the
variation of the three gains on the stability of the system. Generally, the gains should
be chosen in the range of 1 to 50. However, we examined some cases for choices of
ky; up to 200. These larger values produced better simulation results, but are more
difficult to physically implement. For the best values of the gain constants, figures of

various system parameters are presented below.
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Figure 3.9: Error plot for k0 = 1.0, k1 = 8.0, k2 = 50.0
Figure 3.10: Error plot for k0 = 11.0, k1 = 11.0, k2 = 60.0

Figure 3.11: Error plot for k0 = 7.0, k1 = 16.0, k2 = 50.0
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Figure 3.12: Plot of the combined PID control law for k0 = 7.0, k1 = 16.0, k2 = 50.0
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Figure 3.13: Plot of actual motor speed for k0 = 7.0, k1 = 16.0, k2 = 50.0

Figure 3.14: Plot of armature current for k0 = 7.0, k1 = 16.0, k2 = 50.0
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Figure 3.15: Plot of field current for k0 = 7.0, k1 = 16.0, k2 = 50.0

Robust control

In this final section in the chapter on designing control laws, we address the situa-
tion more commonly encountered in real life, that is, the system under study contains
significant but bounded uncertainties. The background information on this approach
includes a discussion of the generalized matching conditions and their importance in
developing a robust control law. The theory is then applied to the system equations
for the two cases of motor speed. Finally, simulation results are presented which help

to show the validity of this approach.

Background

In order to apply the robust control method to this problem, we must show that
the system meets the so-called Generalized Matching Conditions (GMC’s) [22]. One
important requirement for a system to meet the GMC’s is that the only type of
interconnections between the subsystems may be that of feedback. That is, the

system must be written in the following form:

£ = fi(z1,t) + Afi(z1,v1,t) + g1(21, 22,01, 1)

1:'2 = f2(31,$27t) e AfZ(xlyx% UZat) + g2($1’$23 uaI27t)'
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In the equations above, f;() denote local dynamics of subsystems including feedbacks
from subsystems j, where j < 7. g;(-) denote the cascaded structure within the system.
v;, = = 1,2 represent the uncertainties in the subsystems.

The GMC’s include as special cases many physical systems which are series con-
nections of nonlinear subsystems. The GMC’s were originally introduced for lin-
ear uncertain systems but were later extended to nonlinear uncertain systems. The
GMC’s are important in the robust control design because, as shown in the GMC
proof, those systems which contain unmatched uncertainties satisfying the GMC’s
can be fully compensated by a properly designed robust control.

The GMC’s include five major conditions:

1. Controllability condition.

2. Condition to avoid singularity problem.

3. Condition to reduce the effort of finding a robust control.
4. Condition for simplicity of mathematical development.

5. Condition requiring uncertainties to be bounded.

As previously mentioned, a cascaded system is a special case of the generalized
matching conditions. For our problem of the series DC motor, it has been shown
that the system may be transformed into a cascaded system. We may then apply
the recursive design approach in developing a robust control law for the system with
time-varying uncertainties with the assurance that, for a properly designed robust

control, the uncertainties may be fully compensated.

Application of Robust Control to the Problem

As before, we first consider the situation when the motor is operating above base
speed and R, < oco. However, we need to modify the system equations for this case.
Recall that we previously chose to introduce the variable z, = A = ¢4(i5)L,%,. Since
we now assume that L, is not known exactly, we must redefine z; as ¢(i5)is.

The original system equations are

din s ol AR e R
E’ YO La V La la La (Za 7,f) La ¢f(2f)w
dos

e Rysig+ Rp(ia —iy)
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dw Rt B TL
B0y
Using the new definition of z, along with the original definition of z;, namely, z; = w,

we may write

dA 7 ‘ S dZa, o
s Pr(is)ia + = b5(25)
i . R 1 ) R, Wit
= —Ryisia + Ry(i2 — iaiy) + T V65(ir) = T-91(is)ia

Gt sl e
— 2 lia = 88 ir) - T8

Then the system equations in terms of z; and z, with u =V are:

5 B TL

.'17'1 = T.’Eg — 7.’1)1 o 7 (334)
3 e ) b5 YT
£2 = —Ryiais + Rp(id — tais) — I $3(i5)z1
Re i o e b Bal ki Ry (i)
+Z¢f(2f)lf = L—a'.’L‘g + —fL—a—u. (335)
Let 2, = 27 —wp and rewrite the first equation in terms of z; for the desired speed
wp to yield
o L vy

We now wish to select the appropriate value for 22 such that the following terms go
to zero:
B 134
L

J J J

However, in this case, unlike the previous cases, we do not know the load torque
71, or the inductance L, exactly. Instead, we must use expected nominal values in
proceeding with the nominal control design and then include a robust control term
to handle the unknown quantities.

The nominal values are
La = [Lao .o 51,Lao o 1 61] TL = [TLO T 627 TLo + 52]

where §; = k1L,, and 6, = ka7L,, 0.0 < K1,k2 < &, with £ < 1.0. Typical values

for the variations, , include k; = 0.1 and &k, = 0.1. That is, we may reasonably
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expect up to a 10% variation in the nominal value of armature inductance and a 10%

variation in load-torque. Therefore we choose

Il
:Eg = F(Bwo + 7r,) + YRy, - (3.36)

We choose 7z, since it is the middle value of the uncertainty range. This is done
to make the robust control term as small as possible. By choosing the middle value,
the most deviation that can occur is €. If we were to choose the upper bound and
the term was actually closer to the lower bound, then we would have a deviation of
nearly 2e. As a further explanation, consider the system represented by 7 = a + u.
Inserting a robust control term changes the system to a + u = (a + u?) + (u — u?)
where ug = (u — u?). If we make |u + u?| as small as possible, then ug is small.

The term ug,, is the robust control term, designated by the subscript R. The
subscript 11 indicates that the control is for the first equation for the first case. Later
in this case will we introduce the term ug,,. Then, when we consider the motor below
base speed, which has been designated as case 2, we will introduce the terms ug,,
and ug,,, where it will be seen that ug,, is simply equal to ug,,.

Replacing z, with z; + z2 in the the first system equation yields:

B R s
= —Ezl — —wp+ —zl 4+ 2y — ity (3.37)

J . J J J
To design the robust control ug,,, we first chose the following Lyapunov function:

1 1
V(z) = 5212 + 523

However, the resulting computer simulations, while verifying stability, revealed that
the control law based upon this particular Lyapunov function has a very poor time
response. The transient error is quite large and the time to reach stability is signifi-
cant. Thus, a variation of the previous Lyapunov functions is chosen. By comparing
the initial results of the robust design to the control law developed for the related case

when perfect knowledge was assumed, we can select the following Lyapunov function:

1 =
V(z) = 52? + -2—23 (338)
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Then,
V(Z) = 212:1 + L2222'2.

We begin by examining the first half of the Lyapunov equation, z;z;. This product

yields,
) B S SR !
2121 —72‘? + '—T [K(TLO + BW()) + URH] 21
B TL Ko
o e g 7 A%

where we have substituted for the value of zd. For now, we drop the term %mzlzg
from our analysis. This term is compensated for by the second robust control term,

URdys
Thus we are left with:

121 7 122 = 7 1 7 on
I{m B T
TuRu = "j(.do o= 7] 21. (339)

Substituting for 77 with nominal value and combining terms yields

LHS of (3.39) = ——?—zf + %[m(l — (1 £ £2)) + Kmug,, )21

The coefficients which contain uncertainties are:
%[1 — (£ x3)).

Select the bounding function, p;, to be equal to the worst case, i.e. the largest possible

uncertainty (largest possible numerators and smallest possible denominators),

pr=—[1—(1-k)]= %52-

With the bound so chosen, we use the robust control term ug,, to compensate
for the uncertainties. Since p; represents the maximum value, we must change the
equation to an inequality and write

B 1
LHS of (339) S —7212 + 7 (p1|21| + Km‘URuZ]) .



54

One control law which might appear to be appealing at first is

up, = ——sgn(z)
Ru = ~gsgn(z)pr.
Such a choice would yield
- S |
LHS of (3.39) < ~ 54 + 7 (p1]z1] — sgn(z1)p121)
< -—ng

Unfortunately, this control is not differentiable. It is also very difficult to physically
implement. Instead, we attempt to design a control law which behaves similarly, but
which is differentiable and capable of implementation.

We choose the robust control law

1 1
URy, = —E(gpf)zl (3.40)
where €; is an indication of the accuracy of the control. Typical values include 1 and
0.1. Making these changes and taking the absolute value of z; for the term with the

coeflicient p,

B, 1 3 4
LHS of (3.39) < ——2F + <p1|zl| - Kmm(apf)zﬁ .

This reduces to,

Byl 1
LHS of (3.39) < ——f+ (pllzl |- gpfzf>
B €1
RE el e e
T

where we have made use of the triangular inequality,
a® + b > 2ab

with
1 3
a=—=plal, b=§-

&

We must wait until we complete the entire control design for this case before we may

discuss the stability implications of the expression above.
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Although there are better choices of robust control laws than the one chosen, this
particular law produces a control which is both adequate to compensate the desired
terms and easy to differentiate. The second property is a major consideration due to
the fact that the derivative of this first control must be included in the design of the
second control.

The derivative of the first robust control term is

: Lol

L
Since this term will be needed later, we rewrite it in a more complete form:

UR = __1_ (lpf) (_éml =+ _Igﬂmz = T_L) ;
K, \g J J i
With a part of the system stabilized, we turn our attention to designing a control to
handle the remaining terms.
Introduce the new variable 2, and consider the second half of the Lyapunov func-

tion. With z, = 2z, — :cg, then, z, = £y — UR,, and zo = 2, + xg. The second system

equation in the new variable is then:

I K R, + R,

2'2 = - La ¢§(if)21 = L—;n¢2}(if)wo — La z9

R, ot A

= ; R,,mg — Ryiais + Ry(ig — iaig)

#2244 0ig)ig + 2y i, (3.41)
L, L,

and the second half of the Lyapunov function plus the term dropped before is
S : .
ngzzg + 721:;2 = —I{mLa¢§(lf)2122 - KmLa¢§(zf)wozg — (R, + Rp)LazZ

—(Ro + Ry)Lozl2; — Ry L2141 520 + R, L2(32 — i4ig) 2y

+R,Lats(is)isza + ¢5(is)Lauzy — Liig,, 22
K.

+—J-2122. (3.42)
Factoring out L, and rearranging the terms yields:
LHS of (3.42) = —(R.+ R,)L.z% + zzLa[—I{m¢§(if)zl — Km¢§(if)wo
—(Ra + Ry)z3 — RyLaiais + RyLa(iy — iaiy)
K

+R,05(i5)is + 65(if)u — Latir,, + JT"‘zl].
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Replace z§, ur,,, and ug,, in the equation with their actual values to rewrite (3.42)

as:
LHS of (342) = —(Ra + Bp)Lazl + Laza—Kndi(is)zs + 22 I;LR*’ (ei) pin
1
~RyLaisis + By Lol = i) + Bydy(iz)iy + 32

B (1) 1, (1)
‘]I{ pl 1 J & p1$2

L, R, + :
K (") i ‘—KmR?(Bwo +7L0) + 65 (is)ul.

Collect the terms which contain uncertainties:

—LoRjigis + RyLo(32 — iaig) +

o 2 L.t <1) 9
5% (el)”lxz T Nep) o8

First consider the term with the uncertainty in the denominator, that is Jﬁﬁzl.

i, BI, (l) 5
TR A I Y i

The uncertain coefficient, Ll_,,’ may be rewritten and bounded as follows:

BN LA
La Lao La. Lao
1 K1
e :
Lao (Lao(l i "31))

Thus the term JALmzl may be rewritten as the sum of two terms, a known term and

an uncertain term:

Kn _ Kn . K
JE =g s

Similarly, the other terms with uncertainties may also be split into known and un-

21.

known terms.
Bound the uncertainty above and the remaining uncertainties with the function
p2 by setting the uncertain terms equal to their maximum values and by taking the

absolute value of sign varying terms:
3k ; Bial
P2 = LGOK‘I [szazf"‘Rp(ZZ_ azf)+JK ( )pll ll

s 7L, (1 + K2) ( ) 2 K k1 ,
N TolltK2) (1 (3.4
+€1 p1|22l] g Lao(]' 5 nl) .]I{m € £1 9 g JLao(l 2, nl) Izll (3 3)




ST

Note that it is not necessary to take the absolute value of the term (i, — is). From
Chiasson [6] we know that above base speed 7, > 7. Substituting p, into the second
half of the Lyapunov equation yields

T
LHSOE (342) < (B B L+ ke [—I(m¢§(z PSR e ] TR

K.
R, +
( e R,,)( )P121+Rp¢f(2f)zf
Ko BL
T RS g o “°<)2x
0 f 3j ‘R’P O( f) JLa.o JK pl 1
J S| i
+—piTs + ¢f(2f)u] + Lapz|2a.

J €

Choose a control, u, to cancel terms, recalling that only nominal values may be

used for L, and 77:

N R.+R,
e L o

S I;Lquo) (61> pizy — Ryds(is)is

T Ko BL,
+RfLa02a’Lf — JLao z1 + 7K. 0 ( ) p%zl
s

1 R g
7 (g) p?xz iy R’PLao(za - zazf) =t UR;;]

(Bwo - TLo)

and replace z, z;, and xz,

u = ¢( )[I{mqsf(zf) aI;-me

(R +Rp) (€l>pl(w wo) — Rpds(is)iy

(Bwo + 7L,)

K.,
S I( BLa 1
+RsLaglats — T (w—wp) + JK,: (_> P2w
Ll Y e
= o ('6_1) p1¢f(zf)2a = RPLGO(ZZ — ZGZf) - uRn]- (344)

Then
LHS of (3.42) < —(R, + Ry)Laz2 + La[p2|22| + ury,22).

The following is a commonly used robust control term which is basically an ap-

proximation of the signum function previously discussed (i.e. —sgn(u)pz):

#+662t

uR12 — |#|3 + 636_3ﬁt”p2
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where p = pyz;. This function is only differentiable if 3 is chosen to be zero. Thus

the control law becomes
URi2 = —7.13 { 3HP2- (3.45)
2

Substituting this robust control back into the equation yields,

2+62

LHS of (3.42) < —(Ra + By) Loz + La | pa|2a| — ﬁgﬂpzzz :
2

We need to determine the result of introducing the robust control law. We may

proceed with our analysis by making use of Holder’s inequality [18]:

1 1
p q U e
P q
where 1 < p < oo and %-{—%:1.
Find the common denominator of the term:
e ptre
p2|22 ———lﬂlg, I 6;23#,02 2
&5lp| — elp/?
3 23 ©
lul® + €

Split the fraction into two halves and examine each one separately. First consider the
term —C%J% . Write the fraction as
[l +e5
ab €2
? P K 2
and solve for a, b, p,q, and C;.
Choose a = |u| and p = 3. Then ¢ = 3/2 and

ab____lub__, _dlul
a =i [ .
ot Sl e g o i e
2
Choose b = (%) * €2. Then
2 2
|u|(2)3 3 ()% |ule2
2 3 g 1 1
P +2((3)3€3)2) sllel +2- ;€]
2
@Il _ o leld
HlpP + €] P+
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1\3
ci=3(3) -
Application of the triangular inequality shows

ab Al Al 1
= 2 <1]l= | sl GG <=
e uP+ g~ P+ € = G

p q9

The second fraction,
2
ENEh e
ul® + €&’
may be treated in a similar fashion. In order to use Holder’s inequality, however, we
must examine the fraction in its positive form, namely, ﬁ%ﬁ% Once again we choose
2
p = 3 which implies ¢ = 2. We then choose a = ¢; and b = (%)§|ﬂl2_ Solving for C,
in the equation
ab e2u?
2P C2 3 37
=4 Ul + €

p q

yields C; = C; = 3(2)5.

Rewrite the original expression and incorporate these results to yield:

2 2
Gl —alf (1, 1) 2

e e = g
PEES Ml oAy Sl O

2

Combine these two results for the two halves of the Lyapunov equation:

. WPl ; L

V(z) = =z — 72122 + 2929 + 72122
st Ba e o [ 21- ’e]
i il Bp)Lazs tighg) e

V(z) 2171 + 2222 < —?zl (R, + R,)Loz2 + (1.308267) L, ¢s.

We introduce an additional theorem to interpret the stability result of this expression.

First noting that, in general, (R, + R,)L, < -?, we rewrite the stability equation as

V(z) = z1z1+4 227,
< —-?zl (Ra + R,)Laz2 + (1.308267) L, €,
< —(R.+ R,)Lo(z} + 23) + (1.308267) L, €,

—2(R, + R,)LaV (2) + (1.308267) Lo ;.
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Theorem 5:

Suppose V. is the Lyapunov function defined as
V. = knz! Pz,

where P is a symmetric positive definite matrix, and that its time derivative may be

expressed as
Ve < =AVe —ee™?

Then V, converges to zero exponentially and so does the state z.. O

In our case, B = 0. Therefore, the theorem proves asymptotic stability.

We now consider the case when the motor operates below base speed. For this
case, R, — oo and ¢, = ¢y = ¢. As previously mentionéd, the system equations
in terms of the variables z; and z, need to be modified for the case when there
are uncertain terms. z; may be defined as before, namely z; = w. For the second
variable, z,, we use the transformation z, = A = ¢¢(7)2.

Again, the original equations are

T AR o

E = LGV—EZ-— La ¢f(z)w
s . n
T et
i iy e S0
oA R e
Then,
d\ 0 nade
> niive E[dﬂ(z)l]a
R, iRy J 1%
— F[_fa-z— L ¢f(z)w+z:]
where e
F(G, 64(6), 084(3)/08) = 22283 1 4,5).

o1
In terms of z; and z, the system equations are then

oo
T (3.46)

J J J
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S Km
L,

Rewriting the first equation in terms of z; for the desired speed wy yields

: B B Ko
2= —===21 = =0 + et H5 M E (348)

J J J J

Ty =

i)r s Liau]. (3.47)

We now wish to select the appropriate value for z3 such that the following terms go

to zero:

As before, we need to replace the unknown values L, and 7, with nominal values:

Il
2y = E(Bwo + TL,) + UR, -

Several Lyapunov function candidates were considered in the attempt to design
a control law for this case. Based upon the results of the case when the system
was assumed to be perfectly known and through simple trial and error, the following

Lyapunov function was chosen:

Vi(z)= 5% - —2522 (3.49)

Then,
V(z) = 2121 + L322,

We can approach the control design by examining the Lyapunov equation in parts.
Examination of the first part of the Lyapunov equation, namely, z;z; has already been
completed for the previous case when the motor operates above base speed. Therefore,
the analysis does not need to be repeated. Instead, we simply restate the main results.

The first robust control term is

[ |
UR; = URy; = I{ ( pl) 21-
With this stated, we now need only to examine the second part of the equation.
Introduce the new variable z, = z, — z3. Thus, Z, = & — Ug,, and =3 = z, + z3. The

second system equation in the new variable is then:

1Lz 1 e i L G (3.50)

2’2=F[

L,
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The second part of the Lyapﬁnov equation including the term discarded from the

first part is

Ko :
L2222'2 + 72122 = F[—RGLZZ = I{mLZ¢f(Z)$1
12 Ko

2 .
+Lju — 2R, |2e + —212.

F J

Factor out the term L2 and bring the term %mzlzg inside the brackets:

Kn

J

L;?;Zzz.z + 2129 = LzF[—Ra'I/ — Kmqbf(z)a:l

L, . Ky
+u — 7 URa + mZﬂZg. (3.51)

Replace ug,, with its actual value:

Eiae s b _&[__1_ (i 2)] -
FuRZI i F Km Elpl 21

and rewrite the equation as

; . L 1
LHS of (3.51) = FLY~Rui = Kndy(is)es = 35 (;) P
i BL, (l) 2r +£<l) 2 +_Km e ]z
TR e L e L e ek
Gather the terms which contain uncertainties:
5 Bl <i> i L
BTR \ep ) Ty gy

A Lq7r, (l) 2 4 K. :
FiKa\a/ 2 PIp™

First consider the term with an uncertainty in the denominator, %’,nzl. The uncer-
a

tainty may be rewritten and bounded as follows:

Labaib g i@ <L 1 )
L L3, \1; L,
2
< 1 + 22n1 + K3 :
L,, Lo A — K )?
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Thus the term ﬁ'}jz—zl may be rewritten as the sum of two terms, a known term and

an uncertain term:

Bli, s Kom 5 (21 + £2) K 5
FIL2 ™~ FILE " " (1= )oFJLs,

Bound the uncertain term above and the remaining uncertainties with the function
p2 by taking the maximum value of the uncertain terms and taking the absolute value

of sign varying terms:

. BLaonl( > I I ag K1 (i) 2|$l
P =R PSS FJ el
K (26, + K3) 1 1
T e+ LaelLH ) e+ ) (£) e G652

Then,

LHS of (3.51) < L2F[—Rui— Knos(i)z:

‘BL., (1) Iy (1)

CFIR AL
K4

FJL2 ————21 + uzy + FL2py|2,|.

Choose the following control term

. . BL, 1
u = Rui+ Knds(if)z1+ - ( )pl z1

FIK,
il e G
FJ ( )”1 alies FJLgozl T URn ~ T

where once again we include a term of the form —Gz; in order to generate a negative

definite term in the second variable. Replace z;, z2, and z; to yield,

U= Raz'—i-I(m(ﬁf(if)w
BL., /1 LA s
tFIK, ( )”1 FJ (el)”1(¢f(z)’)
G

K.
Lam s 2. (3.53)
FJL?,

(w N wO) + URy, —

F
Then, &
222.2 S FLZ[p2|22I + UR,, 22 — f22].
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As before choose the robust control law

AT
_ K +e
URy, = |/"l3 18 egﬂp2
which yields
LHS of(3.51) < FIL? : s€; — GL222.
3(3)*

And the complete Lyapunov result is

: B
V(z) < —jzf — GL?2 + L2F

o
1T3@E) 7

Note that if G is chosen to be less than 10° then GL? < ? and the equation may be

g0
17333 "

for which asymptotic stability may be proved through the use of the theorem as

written as

V(z) < —=2GL2V(z2) + L2F

before.

Simulation

Due to the fact that the control for this case contains several gain parameters,
the simulation is more complicated than in previous cases. In general, ¢; should be
chosen greater than €, and the value of G should be chosen to be within a reasonable
range. The simulation must also be altered to test the robustness of the control.

After several simulations, the following values for gain were chosen:
€11 = 25.0 €12 = 0.1 €1 = 50.0 €0 = 0.3 G = 20.0

In the simulations, the values of L, and 71, were varied within the specified limits
of 10%. The first few figures show the results using the robust control law when no
perturbations exist. The last two figures present results when minor perturbations

occur.
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Figure 3.16: Plot of motor speed for nominal values
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Figure 3.17: Plot of error for nominal values
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Figure 3.18: Plot of control law for nominal values
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Figure 3.19: Plot of armature current for nominal values
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o =3 10 1S 20 2s 30
secs

Figure 3.22: Plot of error for 10% decrease in 77, and 10% increase in L,

Comparison

In order to demonstrate the true power of the robust control law, simulations
were performed which included perturbations from the nominal values of two system
parameters. Many nonlinear systems are highly sensitive to changes in system pa-
rameters, as discussed in [28]. It is through the use of robust control, then, that we
hope to compensate for this sensitivity.

First, the actual load torque was perturbed 10% from its nominal value using the
same equation as before. The resulting error is shown in the first three figures for
the three different cases considered. Then, a load torque with dynamic perturbation
was chosen. The final three figures show the error for this load torque. In addition to
perturbing the load torque, the value of the armature inductance (L,) was perturbed
by 10% as well. As can be seen, the robust control law performed very well.

It should be noted that the spikes in the control law for the robust case are artifacts
of the algorithms used in SIMNON to simulate the system and reduce the error in

calculations, and not an indication of an error in the equations of the control law.
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Figure 3.23: Plot of error for perfect knowledge case
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Figure 3.24: Plot of error for PID control case
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Figure 3.25: Plot of error for robust control case
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Figure 3.26: Plot of load torque with dynamic perturbation
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Figure 3.27: Plot of error for perfect knowledge case
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Figure 3.28: Plot of error for PID control case
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Figure 3.29: Plot of error for robust control case
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Figure 3.30: Plot of combined control law for robust control case



CHAPTER 4
CONCLUSIONS

It has been shown that the recursive design approach may be successfully applied
to the problem of designing a robust control for the nonlinear model of a series DC
motor.

Initially, the system was examined under the assumption that all system parame-
ters were perfectly known. After transforming the system into a cascaded structure,
we were able to easily apply the recursive design approach. The resulting control
law when simulated produced excellent results. The maximum error was seen to be
approximately 7 rad/s and occurred when expected, namely during a change in both
load torque and in the control law during the transition through base speed. The
final speed of the motor almost exactly matched the reference speed for nearly zero
steady state error.

In the second case, the system was examined under the assumption that no in-
formation was available concerning the load torque. Use of the proportional-integral
technique enabled the development of a control law without the need to know the load
torque. In addition, a proportional-derivative control term was included to reduce the
destabilizing effect of the PI controller. Once again the results were quite promising.
A maximum error of 8.5 rad/s occurred during the expected time when load torque
was changing and the motor passed through base speed. The steady state error was
once again nearly zero.

In the third case, the system was examined under the assumption that two of
its parameters were unknown. However, it was assumed that the parameters varied
within a certain percentage of expected nominal values. Several cases were simu-
lated to test the robustness of the control law. The law performed well when the
uncertainties fell within the designed range.

Finally, the three control laws were applied to the case when the load torque

contained dynamic perturbation. It was in this application that the robust control

71
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law proved its strength. The perfect control law was unable to compensate for the
continually varying load torque, while the robust control law was able to minimize
the error quite well.

Although we only considered the cases when load torque and armature induc-
tance were unknown, the approach as presented could be easily extended to handle
additional uncertainties. Further research could be conducted by including additional
nonlinear terms in the system equation. Or one might choose to consider the possi-
bility of the existence of uncertainties in other terms such as the moment of inertia
or flux. In any case, the superior performance of the robust control law demonstrates
its value in design theory and application.

As manufacturing standards continue to demand greater precision and perfor-
mance from robots and other computer controlled mechanisms, the need for more
precise, robust control laws becomes greater too. The moré complete the model of a
system, the greater the precision that can be achieved. Such modeling usually requires
that the system be represented by nonlinear equations which may contain uncertain
terms. This, then, provides our motivation for continuing to develop and refine tech-
niques of nonlinear control and to apply these techniques to physical systems. As
shown, the recursive design approach may be used to develop a robust control law for

the series DC motor with generally acceptable results.
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The System is Perfectly Known

The original motor equations are

Lodiafdt = V — Ruia — Ry(ia —is) — Kmos(is)w

dos/dt = —Rysis+ Rp(ia —iy)
de/dt = I{m(ﬁf(if)ia — Bw — TL -

The equations must be rewritten in cascaded form in order to apply recursive

design. We introduce the following variable transformation:
AN=dslry)Lta
Taking the derivative yields:

: . d
d)\/dt = = ¢f(if)Laia + a[Laia]qu(if)

o d : NG
¢5(25) = % = —Ryis + Rp(ta — 1)
Al _ y _ Rute = Bylia — is) — Knsli)e
dA : " . ;
= = Latal=Byis + By(ia = if)] + ¢5(i5)[V — Rata — By(ia = is) = Kmds(is)w]

= —LoRyiais + RyLa(3; —ifia) + Vs(iy) — Ratads(iy)
—Ry(ia — i5)$5(is) — Km3(is)w-
The complete steps involved in writing the derivative of the Lyapunov equation

are presented below.

V(Z) = 212.1 + 222.2

; B B Ko K, -
V(z) = —723 = ‘740021 =k JTzlzg =t JTZ:ng — "TLZI
y - Ra =
—Kniis)m122 — Kn}(ig)ozs — — L
Bt R

282y — LoRyiaiszo + RyLa(i2 — ifia)22

a

+Ry05(is)iszo + 05(is)2ou.



Grouping terms yields,

; B Ra +
V)= —?I-zf - L—Rp

+Z2[_I{m¢.2f(if)w0 o5

B o
Z% = 7(.0021 = '7;T—L21 -+ .]ngzl
R. + R,

L,

; =1 FUE K.
+R, Lo (22 — igia) + Rpds(is)is + T
—Kn¢3(i5)z1 + 5 (is)ul.

iL‘g — LaRf’l:aif

Rewrite equation by substituting the value for zg:

. B R, + B TL, B TL
Vi) = —jzf - TRE-zg — W = T2 - Fwoz - 52
. R, + Sl
+z2[—Km¢?f(zf)wo Bl RP(TL + Bwg) — Lo Ryi,iy
K

+RpLa (33 — ifia) + Rpds(if)is + 7L A
—Kn¢3(is)z1 + 65(i5)u]

B R, + :
—7212 St szg + 22[-—Km¢§(zf)wo
—Ra; RT(TL =+ Bwo) — LaRfiaif + RpLa(iZ — ifia)
Ko

+Rp85(is)is + 572 — Kmd5(is)21 + 65 (i )u)-
The derivation of the control law involves the following steps:

1 Ve R,+ R, 5
s 5 3 B LaoRst,
u 00 [Kmd)f(zf)wo + X, (71 + Bwo) + flalf
K.

~RyLa(i2 — igia) = Rysli)is — 7121 + Km6}(is) )

Rewriting u for z; = z; — wp yields:

R.+ R,
Ko

u = ——1. [Km &% (i 5)wo + (12 + Bwo) + Lo Ryiqty
¢5(i5)
K K

_RPLa(iZ =F; Zfla) P -Rp¢f(7'f)zf hy JLaxl + JL";wO
+I{m¢§-(2f)$1 — I{m¢§(2j)w0]
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Finally, replacing z; with w:

I ARE R &
u — = T + Bw + LaR a
T e e

—R,L,(i5 — ifia) — Rodbs(is)is

K,, :
—JLa (w—wo) + Km¢§(zf)w].

For the second case, when the motor operates below base speed,

Lydifdt = V —Ryi— Kpnds(i)w
L e
Jdw/dt = Kp¢s(i)t — Bw— 7L.
Let
A = ¢5(2)Lt.

Taking the derivative yields:

0 ki e
dNdt = S[ps(i)illa

[3¢5Z.(i)i i g%bf(z‘)] (V= Rai = Kny(i)w)
= |20 4s)| (v = Rui = Kot i1),

7

The additional figures below reveal the effect on the system error for different

values of (3;.
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Figure A.1: Plot of error for G; = 1.0
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Figure A.2: Plot of the combined control law for G; = 1.0
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Figure A.3: Plot of both actual motor speed and reference speed for G; = 1.0
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Figure A.4: Plot of error for G; = 5.0
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Figure A.5: Plot of the combined control law for G; = 5.0
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Figure A.6: Plot of error for G; = 10.0
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Figure A.7: Plot of the combined control law for G; = 10.0

Figure A.8: Plot of error for G; = 100.0
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Figure A.9: Plot of the combined control law for G; = 100.0



Load Torque is Unknown; PI Control is Used

Solve PA 4+ ATP = —@:
P P12 el i 0 —ko || P P12 | _ [ —1
pa1 P22 | | —ko —k1 | 1 —k | [P P22 20

—kop1z p11 — kipr2 & [ —kopa —kopa2 1 [ —1
—kopz2  p21 — kip2s [P kipa1 pi2 — kip2z

The following four equations result:

—kop12 — kopa1 = -1
p11 — kipa1 — kopzz = 0
p11 — kipiz — kopee = 0

P12 + pa1 — 2kip; = —L
From this we obtain
kg 4 ko + k3
it _——2k0k1
1
Piz = m
1
P21 = '270
kbl
L o

So
P =

2ko k1 2ko
e ko+1
2ko 2ko k1

kn2 +ko +k2] 1 :I

Rewriting #; and Z; in terms of z yields

; Ko B y
£y = —kozo—kiz1+ ‘_Tf—zz = 70)0 — Wwo
Ko B i

= —kozo— k121 + 5722 — —Wo — W

JL, J



2 = —LaRyiais + RyLa(i3 — ifia) + Rpds(iy)i
2/ 2. R, + R, :
—I{m¢f(2f)$1 —_ Km¢f(2f)LUO e Ty + ¢s(if)u

= —LoRjiais + RyLa(i2 — i5ia) + Rpds(is)is + ¢5(if)u

: ; Rs +
_Kqu?f(zf)zl - Km¢§(zf)w0 2 LaRpmz

The steps to rewrite z, are

L. JL,
7ok K (k1

Jilig Il
ST e (k121 — (B/J)z1)

JL, JL, BL,
k121

R K. K,

—B/J)Zl

Ty = Zo—

21.

So

R a
+Rpa:2 == —R;RPZz+Ki(Ra+Rp)ko$o

J

B
+E(Ra + Ry)k121 — E(Ra + Ry)z

Calculating the control law involves the following steps.

Rewrite u in terms of x,

1
3:(i7) [—(k1 + ka)zo — ko
JL

~(hn + k) T2 = B[ 7)o + (Kni) + 1 (R + )

Jib; 9 JL BL,
+ K — b (Ba + By) - - )

BL, B*L,
( “k1 + Km¢f(2f) ) wo

R JK,,
(JLa BLa) b
T Lt

J

~koms—(Ra + Ry)2o + LaRgiaiy — RyLa(iZ — isia) — Rydy(is)iy]

Ko

and then rewrite in terms of the original variables,

) [~ (k1 + k2) Lutads(is) + LaRyiniy — RyLa(i2 — igia)

82
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—R,é;(if)is — :

( ki(k1 + k2)

J;
koK—(Ra —+ Rp).’l:o

IL: BL,
e (ke

B 0, J
+T{:(Ra i }?77) g kl I( kl I{ (Ra W RP)

JLa BLa, a a .
k k >(w—wo)+(JL kl—BL>wo

i I{m¢f(zf)

o K. Kn K
BIL, T o]
-} ( Km kl - I{m(ﬁ?(l_f) L JKm ) wo} .
Finally,
u = ——— [~ (k1 + ko) Latads(is) + LaRyiais — RpLa(i2 — igis)
b5(2s)
J JLo
—Ryds(is)is — ko F (Ra + Rp)zo — ko(ky + k2) %
BL- B JL.
+ (kz e+ (Bat B) — b
J oL
by (R + By) — b ) (w0 = wo)
; <JL g BL,,) :
K, T
, Bl. B,
Retllinhe+ (72 - 52

For the case below base speed, the steps are similar.
The additional figures presented below provide an indication of the effect of vary-

ing the P, I, and D gains in the control law on the steady state error.
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Figure A.10: Error plot for k0 = 17.0, k1 = 12.0, k2 = 190.0
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Figure A.11: Error plot for k0 = 7.0, k1 = 10.0, k2 = 50.0
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Figure A.12: Error plot for k0 = 7.0, k1 = 16.0, k2 = 45.0



Uncertainties Exist
Apply the triangular inequality to the following expression:
: B 1
z121 < —'72? + p1|z1| — EP%Zf-

The steps involved are:

a? + b2 > 2ab
with
1 €
a=%p1|z1|, b=%
1 €
a® = —P1|21|72 b = 1 2= (7P1|21|> \/7— = p1lz].
Therefore,
a?+b* > 2ab= 2ab—a® < b?
1 €
p1lz1] — ;Pﬂzllz <
and
x B €
2121 < —-jzf - T
The second half of the Lyapunov function plus the term dropped before is
L2272 Km = —KnL. (i KL #2 (i R Do
2?2?22 T 72122 = e Ly a¢f(z_f)zlz2 —Am a¢f(lf)w022 — (Ra + Rp)Laz;

—(Ra + R,)Lowb2s — Ry L2isi 523 + RoL2 (32 — iais)2a
+RyLogs(is)is2zz + ¢5(i) Lauze — Litp,, 2o
Ko

+—"72.

J

Factoring out L, and rearranging the terms:

LHS of (342) = —(Ra+ Rp)Eazk + 22La[~Kndi(is)21 — Knd?(ig)wo
—(Ra + Ry)2d — RyLaiais + RyLa(i2 — isi)
oy y . Ko
+R,p5(is)is + ¢5(is)u — Lotip,, + f]Tz‘}'
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Replacing z¢ in the equation with its actual value yields:

LHS of (3.42) = —(Ra+ Rp)Lazj; + z2La[—Kmd?(if)z1
! R, +
~Kndliphn — LT (B 4 71) — (o4 Ry,
—RjLatats + RpLa(d — iais) + Rpds(is)is + é5(is)u
: Kn
—LauRu + -ﬁzl].

Replace tup,, with its actual value:

. e
~Lainy = Lo |-~ () (-
g Biby Y L1, Lt (1) 9
3 JKﬁ(q)pﬂl+¢quﬁ2 TR N
Replace up,, with its actual value:
1
~(Ra+ Rp)umy, = —(Rat By) [

B (2

Combining all of these substitutions we may rewrite (3.42) as:

; fts 1
LHS of (3.42) = —(Ra+ Ry)Laz; + Laza[—Knd}(is)z1 + I:- Fy (6—> P2z
m 1

B
JL

—R¢Latais + RpLa(i; — taif) + Ryds(is)si

e (o) stm+ 3 (5) e
I R piz2

LaT 1 Ra -+ .
_JK: <—> G Kme (Bwo + 710) + ¢5(i)ul.

First consider the term with the uncertainty in the denominator, that is

K

The uncertain coefficient, Zl—;, may be rewritten and bounded as follows:

Al 1 4 1 1
P 7

L%—L>

= ——+

( LaLao

yep —La = 1))
S + ag 0

e
<
= +(L%1—nﬂ>
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Thus the term %zl may be rewritten as the sum of two terms, a known term and

an uncertain term:

Kn _ Kn . mKn
s b )

All of the steps in finding the common denominator are

21.

2 2

u?+ e
p2|z2| — m#lhzz
— _‘iti#Z
|ul® + €
_ lult + Elpl = |pl — @4
|uf? + €
I I e
|uf? + €
_ Elul e,
P+ -

Below base speed, consider the term with an uncertainty in the denominator,

%?zl. The uncertainty may be rewritten and bounded as follows:

1 NS R
T T e
a agp a ao

1 (Lgo - Lg)
= +

Iz T\ I,

2 _ r2 )3
< L1 i (L?a,,(lLfSl;Lz:) )
= 1+(1"(1+'€1)2)

2, P\ T (i=—my
<

1 4 ( 2k1 + K2 )
La.o Lzo(l — K.l)z ;
Thus the term %f—z-zl may be rewritten as the sum of two terms, a known term and

an uncertain term:

Koo B (O W2
FIRZ = FILRR. " (1 —m)PFJLE, "




APPENDIX B

SIMNON FILES



The System is Perfectly Known

89

The following SIMNON file was used to simulate the case when it assumed that

the system is perfectly known.
CONTINUOUS SYSTEM dcperf

“lal = armature current for case 1

“1a2 = armature current for case 2

“if = field current; if < ia above base speed
4 if = ia below base speed
“w = speed

“phi = flux

“iphi = current associated with flux

“u = control

STATE ial ia2 if w

DER dial dia2 dif dw

TIME t

OUTPUT u e phi iphi iia wref

“Electrical dynamics

“Case 1 — over base speed

dial = IF ABS(w) > wbase THEN ialh ELSE iall
dif = IF ABS(w) > wbase THEN ifh ELSE ifl

“Two different equations are required to handle the armature current
“for casel. The h subscript indicates above base speed, the 1
“subscript indicates below base speed.

ialh = (u - Ra*ial - Rp*(ial - if) - Km*phi*w)/La

iall = (u - Rf*ial - Ra*ial - Km*phi*w)/(dphidi + La)

“Two different equations are required to handle the field current
“for casel

ith = (-Rf*if + Rp*(ial - if))/dphidi

ifl = (u - Rf¥f - Ra*if - Km*phi*w)/(dphidi + La)

“Case 2 — under base speed

“For this case, armature current equals field current (ia = if)
dia2 = (u - Rf*ia2 - Ra*ia2 - Km*phi*w)/(dphidi + La)

“The equation for armature current changes at base speed

iia = IF ABS(w) < wbase THEN ia2 ELSE ial

“The current associated with the flux depends upon whether the mot<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>