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BILIN 

. A BILINEAR TRANSFORMATION COMPUTER 
PROGRk~ A~ID ITS APPLICATIONS 

BY 

JOHN DANA GREER 

ABSTRACT 

Given a transfer function for a differential 

equation model, an approach for obtaining a solution is by 

way of the bilinear transformation. The bilinear transform 

approach is a numerical integration scheme which gives a 
..• 

discrete approximation to the differential equation solu-

tion. BILIN applies a series of polynomial transfer-

ma-tions to the transfer .function H(s). As a result, H(s) 

is mapped into the complex z plane obt~ining the discrete 

transfer functiotl H{ z). From H( z), .the difference equa-

tion is obtained whose solution y(nT) approximates the 

actual differential solution y{t). Hence, BILIN provides a 

means for obtaining discret·e transfer functions for the 

design of digital filters and/or solving linear time-

Jinvariant diffqreritial equations. 

rt 
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PROBLEM DEFINITION 

Many enginering problems involve real-time simu

lation of "real world" dynamic systems using computer 

software and/or specialized hardware models. Typically, 

these dynamic models are based on a differential equation 

system model. For purposes of system analysis, it is 

often desired to obtain the transient solution to the 

differential model. 

Rise time, percent oversho.ot, settling time and 

other important system response characteristics can be 

extracted from the transient response (solution) to evalu

ate and/or · predict system performance. Typically, the 

system transient response is with respect to a unit impulse, 

unit step, or unit pulse input. 

If the differential. equation model is linear time

invariant, the transient solution can always be obtained 

via Laplace transform provided the input is Laplace trans

formable, · which is usually the case. The solution, i.e., 

the output, y(t), for a single-input single-output differ

ential equation model can be obtained via inverse Laplace 

transform: 

y(t) = ~ -l [Y(s) 1 (1) 

where 
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Y(s) = H(s) X(s) (2) 

X(s) = ~[x(t)} , the input (3) 

H(s) =-;t_[h(t)] , the transf'er :function (4) 

A Laplace transf'orm solution of' (2) using a compu

ter would require programs which factor the denominator 

polynomial, partial fraction expand Y(s), determine the 

residues and obtain the inverse Laplace transform of the 

resulting expression. Considering the different cases 

(real, imaginary, or complex roots; simple or multiple 

roots) and lengthy difficult calculations (e.g., itera

tive algorithms for finding roots of greater than fourth 

order polynomials), any program which took this approach 

would be inefficient in terms of speed and memory require

ments.1 

Another possible approach to obtaining a solution 

of (2) would be to generate a difference equation from (2) 

in an optimally efficient manner, whose solution, y(nT), 

can be shown to yield: 

y ( nT ) :::: y ( t ) l 
t = nT (.5) 

where y(t) is the actual differential equation solution. 

Such an optimized approach was taken by Dr. F. 0. Simons, 

Jr., P.E. and Dr. R. c. Harden, P.E., Professors of 

Engineering of the Department of Electrical Engineering at 

the University of Central Florida in their published paper 

"Differential Equation Solutions for Up to lOth Order 
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System Theory Models with HP-67 Compulators." Their 

approach is optimal with respect to the nm1ber of opera

tions used in obtaining the difference equation coeffi

cients from the differential equation coefficients. Their 

paper contains an algorithm (originally discovered by 

Simons) which provides the basis for BILIN and is of· 

second order accuracy. 1 

The authors• basic approach was to take H(s) and, 

through a series of polynomial transformations, map the 

transfer function into the complex z plane obtaining H_( z). 

From the numerator and denominator coefficients o:f H(z), 

the difference equation, whose solution is y(nT), is 

directly obtained. Hence, any differential equation solu

tion which can be obtained via Laplace transform can also 

be solved using Simons' and Harden's approach. More 

important is that these transformations allow f'or a direct 

real-time simulation o£ dynamic systems. A theoretical 

basis for their approach follows. 

Theoretical Basis 

Consider 

y(nT) :!: y(t)] 
t = nT 

where y(t) is the actual differential equation solution 

and T is the sample time period. The differential 

equation expressed by: 

(6) 



w(t) ~ y•(t) = dy{t) 
dt 

can be expressed in terms of the first order backward 

difference given by: 

w(nT) ~ ~~nT) T ~(nT-T) + el 

or the first order forward difference given by: 

w(nT-T) ~ ~(nT) T ~{nT-T) + e2 

4 

(?) 

(8) 

(9) 

From the Mean Value Theorem of Calculus, it can be con -

eluded that e1 and e 2 tend to be opposite in sign. A 

simple arbitrary sketch of y(t) versus t can be used to 

interpret this conc.ept. Thus, taking the z transform of 

(8) and (9), the following equations can be obtained: 

W(z) = Y{z) T z-lY{z) + El(z) 
(10) 

(11) 

Adding (10) and (11) and solving for W(z), the result is~ 

~~ ( z) 
: 2 1 - z -1 y ( z ) + El ( z ) + E2 ( z ) 

T 1+ z-1 1 + z-1 {12) 

Therefore, 

w(nT) = y• (nT) 

where 

(14) 

i.e., the total cumulative error in the approximation of 

the differential equation solution is the cumulative sum 



of the forward and backward difference errors. Since 

these errors tend to be opposite in sign, they tend to 

cancel. Hence, w1 (nT) represents a more accurate 

approximation than does (8) or (9). This result is the 

basis for Simons' and Harden's approach which is the 

well known bilinear transform approach consisting of: 

Step 1. From the differential equation 

N dlly(t) M. dmx(t) 

5 

l a -- - = l b ____ .......... _.-...-_ 
0 n dtn 0 m dtm (15) 

obtain the Laplace transform model 
M 

l b sm 
Y(s) : g m n X(s) 

loans {16) 

for which the transfer function 
M m 

H(s) - Y'sl - lobms - - N X(s) l n 
Oans 

Step 2. Generate H(z) defined via 
M 

6. l b sm 
H(z) = 0 m 

N n 
l a s 0 n 

2 1-z-1 2 z-1 
8 =; l+z_ 1 =T z+l 

is 

(17) 

(18) 

Step 3. Solve the difference equation defined by 

Y(z) = H(z)X(z) (19) 

for y(nT) ~ y(t) with t = nT as follows: 
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From step 2, H(z) is obtained in the form 
M=N -m 

lo dm z 
H(z) -- N c z-n 

lo n {20) 

Next, H(z) is put into the form 
M=N 

f z-m lo =ru+ H(z) - m - N X z 
1 + l enz-n 

(21) 1 

where fm = dm/co and en - en/co. It -
follows that 

M N 
Y(z} = l t: z-mx(z) - l enz-Ily(z) 

0 m 1 {22) 

Taking the inverse z transform, the 

corresponding system output is 
M=N N 

y(nT) =l fmx(nT-kT) - l eny(nT-kT) 
0 1 (23) 

The solution obtained has errors no larger than third 

order. 1 

An Efficient Algorithm for Generating H(z) from H(s) 

The program BILIN implements the bilinear approach 

for obtaining an approximate solution for a given 

differential equation on the VAX 11/780. The key to the 

efficiency of this program, i.e., its small memory 

requirements and "short" execution time is Simons• 

algorithm for generating H(z) from H(s) (step 2 of the 



bilinear transrorm approach). The scale factor (2/T) 

in (18) can be handled by 

and 

7 

(24) 

(25) 

i.e., replace each coefficient by itself multiplied by a 

~crresponding power of (2/T). Having taken care of the 

(2/T) term, a means is needed for generating the dm and 

en coefficients of 

from 

M=N 
l d z-m 

H(z) ~ .N.{_ti - 0 m 
DTZ) - N c z-n 

\ n 

H(s); i.e., 

M 
l b sm 

H(z) = ~ m 

l ~sn 
0 

--

s -= 

M m 
l b (z-1) 

0 m z+l 
N z 1 n 

l an( z+1) 
0 

z-1 
z+l 

M 
_ 1

0 
bm(z-l)m(z+ 1)-m 

- N 

(26) 

(27) 

(28) 

l an(z-l)n(z +1)-n 
0 (29) 

Multiplying (29) by (z+l)N/(z+l)N, it follows that 
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(JO) 

for which the numerator is also of order N, as originally 

indicated £n (26). Also, H(z) may be put into the 

equivalent forml: 

(31) 

( 32) 

In order to verify the algorithm :for obtaining N(z) 

and D(z), consider just D(s) = D(z) j 
z=s 

definitions: 

Then 

D(s) ~ (s+l)NX( 8 - 1 ) 
s+l 

E(s) ~ X(s-1) 

F ( s) ~ sNE ( l) 
s 

G(s) ~ F(s+i) 

J(s) ~ sNG(~) 

D(s) = J(2s) 

and the :following 

' ( 33) 

(J4) 

(J5) 

(36) 

(37) 

(38) 

The algorithm will be verified by showing that the D(s) 
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of (38) is equal to the D(s) defined in (3J), obtained 

from the application of transformations (34) through 

(38) to X(s). These transformations represent the 

algorithm discovered by Simons for generating H(z) from 

H{s). Hence, starting with 

~ 
D(s) = J(2s) 

D(s) = J( s' I 
s=2s 

- {2s)NG(L) - 2s 

- (2s)NF(s+~) ls=-1 -
2s 

- (2s)NF{_1 + 1 ) - 2s 2 

- (2s)NF{s+l) - 2s 

- (2s)N [sNE(~)J ls:s+l -
2s 

- (2 )N(~}~(£2._) - s 2s s+l 

- { s+l)NX( s-1) ] - _2s s--s+l 

- (s+l)Nxc!!1 - 1) -
- (s+l)NX(§.':l) : 

D(z)lz=s - s+l 
(39) 

it can be concluded that the defined transformations 
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are equivalent to the bilinear transformation of (27). 

Therefore, by applying the given transformations to Y(s) 

and X(s), the coefficients of H(z) are obtained. 1 

The algorithm based on these transformations 

consists of the £allowing steps: 

1. Replace the coefficients of X(s) and Y(s) of 

H{s) by the same coefficients multiplied by 

corresponding powers of (2/T). 

2. Translate X(s) and Y(s) one unit to the 

right (which can be done by using an 

algorithm consisting of a series of 

th t .. d. . . ) 2 syn e ~c ~v1s1ons . 

J. Reverse the order of the coefficents of 

X(s) and Y(s). 

4. Translate X(s) and Y(s) one half unit to the 

left (as in 2). 

5. Reverse the order of the coefficients of 

X{s) and Y(s) again. 

6. Finally, multiply the ith coefficient of X(s) 

i and Y{s) ~y 2 • 
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SAMPLE APPLICATION OF BILIN 

Consider the evaluation of the step response of the 

dynamic system model specified by: 

H(s) = --z--~1~0~0~---
s + lOs + 100 

= ~10} 2 
s2 + 2(1/2)10s 

2 
~ wn -

s2 + 2qw +w n 

(40) 

+ (10) 2 
(41) 

2 
n (42) 

the step response, i.e., the analytic solution is: 

where 

r(t) 

1 
2 2 

sin ( w n ( 1-q ) t + ¢) t > 0 ( 4 3 ) 

1 
2 2 

~ = arctan (1-q ) /q. 
1 

Hence, 

r(t) = 1- (.75)-2 exp(-5t) · 
1 

sin ( 10 ( • 7 5 ) 2 t + ~) 

1 

t> 0 (44) 

where ~ = arctan 2( .75'}"2 • 

To obtain an H(z) for a given sample time which 

corresponds to the above H(s), the following data is read 

in: 

N cE-2, M ~ 0, T ~ 0.1Tn = 0.1(2 Jt/10) 

B(l) ~100., B(2) f- 0., B(J) ~0. 

A( 1) ~ 100., A{2) ~ 10., A(3) ~ 1. 
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The following transfer function is obtained: 

H (z) : 0.06985522794(1 + 2z-1 + z-
2

) 
1 

1 - 1.275861690z-1 + 0.555284602lz-2 

To obtain the difference 8quation (corresponding to 

H1 (z)) step response which gives a discrete approximation 

of the analytic solution, the following data is read in: 

NPT ~ 100, YnT(l) ~ O, YnT(2) f- O. 

XnT(l) ~ 0., XnT(2) f- 0., XnT( 3) f- 1. 

Xn T ( 4 ) f- 1 • , • • • , Xn T ( 10 0 ) f- 1 • 

To compare the difference equation step response 

with the system step response, a FORTRAN plotting 

subroutine {this part of the program is not given 1n the 

program listi~~) was used. By passing to the subroutine 

the difference equation response and the exact response 

"sampled" at nT, O<n<99, the graph in Figure 1, page 14 

was obtained. For this graph, y(nT) is plotted versus 

t/Tn. Note that the "exact solution" starts at y(nT) = O, 

but the "approximate solution" starts at some value of 

~nT) greater than 0 (this value is the value of f 0 in (21) 

through (23) for this case). 

For a more accurate approximation of the system 

step response, a sample time of T = .02Tn was used to 

obtain: 

Hz(Z) : 0.003700709159(1 + 2z-1 +_~-2 ) 
1 - 1.867399926z-l +· -o.882202763lz-2 

The corresponding difference equation step response and 
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"sampled" exact response are shovm in the plot in Figure 

2, page 15. The amount of error introduced by using the 

shorter sample period is almost indiscernible on the 

graph. 
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CONCLUSION 

With this algorithm, a means o:f generating a differ

ence equation solution which approximates the continuous 

system model response, i.e., the differential equation 

solution, has been established. The errors introduced (no 

larger than third order) should be negligible in most cases 

if the sample time period is chosen small enough with 

respect to the systems natural frequency period or the 

magnitude of the systems smallest eigenvalue. 

As implemented on the VAX 11/780, BILIN is quite 

suitable to be used in the design and analysis of digital 

filters. Since Simons• algorithm is equivalent to the 

widely used bilinear transformation, BILIN may be used to 

transform an analog filter design, i.e., an H(s), into a 

digital filter design, i.e., an H(z), and to observe the 

digital filter response for a given input and set of ini

tial conditions. This is quite useful since digital 

filters are used in telecommunications; radar and sonar 

signal processing; speech, image, and audio signal 

processing and other related areas. 

If BILIN is used in the design of digital filters, 

the user should be aware that transforming an analog filter 

into a digital filter using the bilinear transformation 

is .accompanied by a distortion called frequency warping. 

Except for one matched frequency which is chosen by the 



17 

designer, critical frequencies such as cutoff, passband, 

and stopband frequencies will occur at different frequen

cies for the analog and digital filters. Also, the 

envelope or group delay of the digital filter will be 

different than the analog filter as a result of the bilin-

iar transformation. However, if these distortions cannot 

be tolerated, the analog filter may be "predistorted" in 

the design of the filter to compensate for either of these 

phenomena.3• 4 

In general, BILIN may be used as a discrete model of 

any linear time-invariant system which may be represented 

by a H(s). If the comments and data input checks were 

deleted, the system models input and output were read in 

and output via a FORTRAN loop, and possible other minor 

modifications were made, BILIN could be used in real-time 

simulation of linear time-invariant dynamic systems. Also, 

if BILIN was modified slightly to allow· periodic updating 

of the coefficients of H(s), it could be used in the simu

lation of linear time-variant systems. In each case, BILIN 

can be used in place of hardware. 

Overall BILIN is easy to use, reasonably accurate, 

requires little memory, executes quickly, and can easily be 

adapted to time-variant systems. These characteristics, 

especially its high efficiency, could allow BILIN to be 

used for implementing real-time software models. Also, the 
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H(z) coefficients generated by BILIN provide a numerical 

specification in the design of digital filters or real-time 

simulation hardware models. Hence, it can be seen that 

BILIN is a powerful tool in such areas as systems analysis, 

digital signal processing, control systems and dynamic 

system simulation. 
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BILIN ACCEPTS THE COEFFICIENTS OF H(s) AND 
GENERATES THE APPROXIMATE TIME RESPONSE Y(nT) 
FOR THE DYNAMIC SYSTEM MODEL • 
Y(nT) IS OBTAINED AS FOLLOWS: 

(1) GENERATE H(z) FROM H(s) BY A SERIES OF 
TRANSFORMATIONS EQUIVALENT TO THE BILINEAR 
TRANSF ORl"VVAT I 0 N 

(2) OBTAIN COEFFICIENTS OF DIFFERENCE EQUATION 
CORRESPONDING TO H(z). 

{J) GENERATE Y(nT), THE SOLUTION TO THE 

DIFFERENCE EQUATION, FOR THE CORRESPONDING 
SYSTEM INITIAL CONDITIONS AND DISCRETE

TIME INPUT X(nT) 
DIMENSION A(2l),AR(2l),BR(2l),B(2l),YnT(210) 

& ,XnT(210) 
A(N+l),AR(N+l),BR(N+l),B(N+l) ALLOWS BILIN TO 

HANDLE UP TO A Nth(20th) ORDER DYNAMIC MODEL 
DOUBLE PRECISION A,AR,B,BR,T,SF,YnT,XnT 
READ (4,*) N,M,T 
N =ORDER OF DENOMINATOR OF H(s), M: ORDER OF 
NUMERATOR AND T IS THE SAMPLE TTI~ PERIOD 
WRITE (6,100) N,M,T 

100 FO&~AT(I2,I2,Gl7.10) 

Nl=Ni-1 

N2=N+2 

~ READ IN COEFFICIENTS OF TRANSFER FUNCTION 
! [ A ( l ) , • • • , A ( Nl } ] AND [ B ( 1 ) , • • • , B ( Nl ) ] ARE 

[A 0 , ••• , AN ] AND [ B 0 , ••• BM , BM + 1 , ••• , B N ] 

! THE DENOMINATOR AND NUMERATOR COEFFICIENTS, 
! RESPECTIVELY, OF H(s) 

' . 
IF fll {NUMERATOR ORDER) LESS THAN N , READ IN 0 

FOR B(M+2) THRU B(N+l ), i.e., BM+l & ... & BN=O 
READ (4,*) (B(I),I=l,Nl),(A(J),J=l,Nl) 
WRITE ( 6 , 2 0 0 ) ( B ( I ) , I= 1 , Nl ) , (A ( J ) , J = 1 , Nl ) 



' • 

' . 

' . 
• . 
' . 

200 

1 

2 

FORMAT(' ',5(5Gl7.10/)) 
(1) 

SF=2./T 
SF = SCALE FACTOR 
DO 1 L=l,N 
A(L+l)=A(~l)*SF**L 

DO 2 K=l,lYl 

B{K+l)=B(K+l)*SF**K 
TRANSLATE MThffiRATOR & DENOMINATOR OF H(s) ONE 
UNIT TO THE RIGHT BY A SERIES OF SYNTHETIC 
DIVISIONS 
K=N 

DO 33 J=l,N 
DO J I=l,K 
A(Nl-I)=A(Nl-I)-A(N2-I) 

3 B(Nl-I)=B(Nl-I)-B(N2-I) 
33 K=K-1 

~ REVERSE ORDER OF COEFFICITI:NTS OF NUI't1ERATOR & 

DENOMINATOR OF H(s) 
DO 4 L=l,Nl 
AR(L)=A(N2-L) 

4 BR(L)=B(N2-L) 
: TRANSLATE NUMERATOR & DENOMINATOR OF H(s) 1/2 
! UNIT TO LEFT 

K=N 

DO 55 J=l,N 
DO 5 I=l,K 
AR(Nl-I)=AR(Nl-I)+.5*AR(N2-I) 

5 BR(Nl-I)=BR(Nl-I)+.5*BR(N2-I) 

55 K=K-1 
! REVERSE ORDER OF COEFFICIENTS AGAIN 

DO 6 L=l,Nl 
A(L) =AJZ( N2-L) 

6 B(L)=BR(N2-L) 

21 



' • 

' . 
' • 
' . 
' • 
' . 

' • 
' • 
' . 
' . 

t . 
t . 
f 
• 

' • 

' • 

7 
(2) 

8 

MULTIPLY ith COEFFICIENT BY 2 TO THE ith POWER 
DO 7 I=l,N 
A(I+l)=A(I+l)*2**I 
B(I+l)=B(I+l)*2**I 

PUT H(z) IN "NORMALIZED" FORM BY DIVIDING BOTH 
THE }roMERATOR & DENOMINATOR OF 
H( z ): [DO+ ••• +DN*z**( -N)] /(CO+ ••• +CN*z**( -N) 1 
BY THE CO COEFFICIENT 
DO 8 J:l,Nl 
B(J)=B(J)/A(Nl) 
A(J)=A(J)/A(Nl) 
WRITE (6,300) (B(N2-I),I=l,Nl) 

JOO FOIDdAT ('O',llGl?.lO) 
WRITE ( 6 , 30 0 ) ( A ( N2-I ) , I: 1 , Nl ) 
READ ( 4 , * ) NPT , ( Y nT ( I ) , I: 1 , N) 
NPT : NUMBER OF DISCRETE-Tll~ OUTPUT VALUES. 
[YnT(l), ••. ,YnT(N)] ARE RESPECTIVELY, 
[ Y ( -NT ) , ••• , Y ( - T } ] , THE N INITIAL 
OUTPUT CONDITIONS 
WRITE (6,400) NPT,(YnT(I),I=l,N) 

400 FORr~AT ('0',IJ,lOG17.10) 
NPTN=NPT+N 

500 

9 
(3) 

READ (4,*) (XnT(J),J=l,NPTN) 
[xnT(l), .•• ,XnT(N)] ARE RESPECTIVELY 

[x(-NT), ••• ,X(-T) ],THEN INITIAL INPUT 
CONDITIONS AND [ XnT(Nl), ••. ,XnT(NPTN)] ARE 
RESPECTIVELY, [ X ( 0) , ••• , X(( NPT-1) T)] 
WRITE (6,500) (XnT(I),I=l,NPTN 
FORMAT ('0',25(5Gl?.lO/)) 
DO 9 L=Nl,NPTN 
YnT( L) =o. 

SOLVE DIFFERENCE 3QUATION FOR Y(n'l'), n=O, NPTN-1 

22 



' . 
• • 

' • 

12 

13 
' . 
' . 

14 

' . 

15 
• . 
16 

DO 16 K=Nl,NPTN 

INITIALIZE XnT(Nl) TO "PRESENT" INPUT, X(nT) 
XnT(Nl)=XnT(K) 
SOLVE FOR OUTPUT,Y(nT),CORRESPONDING TO 
"PRESENT" INPUT 
DO 12 I=l,Nl 
YnT( K) =YnT{K )+B( I) *XnT( I) 
DO 13 J=l,N 

YnT(K)=YnT(K)-A(J)*YnT(J) 
"MOVE FORWARD" IN TIME ONE SMIIPLE PERIOD 

LET X((n-l)T)=X(nT) 
DO 14 L=1,N 
XnT(L)=XnT(L+l) 
LET Y((n-l)T):Y(nT) 
DO 15 M=l,N-1 

YnT(M)=YnT(M+l) 

23 

LET Y( (n-l)T)=Y(nT), THE LAST CALCULATED OUTPUT 

YnT(N)=YnT(K) 
WRITE (6,500) (YnT(I),I=Nl,NPTN 
STOP 
END 
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