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HARDWARE AND SOFTWARE CONSIDERATIONS FOR IMPROVING 

THE THROUGHPUT OF SCIENTIFIC COMPUTATION COMPurERS 

by 

Glenn Allen Sullivan 

ABSTRAcr 

In this paper, hardware and software techniques are pre-

sented for improving the Throughput (defined as Computations per 

dollar) of computing systems which are oriented towards high-

precision floating point computations. The various improvements 

are referenced to a baseline of the PDP 11/20, the NOVA 1200, and 

the TI 960A, all 16 bit minicomputers. The most beneficial hard-

ware improvement is the inclusion of a Floating Point Processor, 

which yields up to 200X Throughput increase over a software 

floating point package. The inclusion of a cache high speed local 

memory and the availability of Polish Notation format instructions 

are shown to provide less than a SX increase each. The use of 48 

bit data paths, numerous registers devoted to various processor 

functions, instruction lookahead, a system I/O controller which 

frees the processor from I/O work, and partitioned main memory, 

result in a combined Throughput increase of 5.9X. 

Director of 
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I. INTRODUCTION 

-.-
This· researCh paper is concerned with several hardware and 

software approaches to improving the Throughput of number-crunChing 

minicomputers, i.e., the primary task of the minicomputer is the 

execution of high-precision arithmetic operations, typically with 

32 to 48 bits resolution. 

The intent is to provide guidelines for an examination of 

available computers, and not to exactly specify the characteristics 

of the computer. Thus while a 48 bit word (configured as in Figure 

1) is frequently used in the examples, some other word size may be 

available and best suited for the projected applications. 

32 

t 
resolution 

sign of 
resolution 

~ 

14 

i 
exponent 

Fig. 1. Configuration of 48 bit Floating Point Word 
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of 
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Despite the frequent discussion of details such as cycle time, 

memory size; I/O channels, etc., the basis for comparing compyter 
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systems can best be a matter of economics--how much computation per 

dollar, herein referred to as Throughput. (Foster (1) suggests that 

Throughput per unit of time be used, while neglecting cost.) The 
~--

phrase "computation per dollar" is preferred to "instructions exe-

cuted per dollar" since a fast but poorly-considered computer could 

easily appear superior to a somewhat slower computer with a well-

considered instruction set, although the slower computer may equal 

or surpass the faster on a "computation per dollar" basis. 

A. APPROACHES TO PROBLEM 

Throughput may be enhanced by improving the efficiencies of 

the two basic computer operations: (1) moving data, and (2) opera-

ting on data. One solution is to move data as little as possible, 

and to use generous amounts of hardware to achieve largely parallel 

data operations. 

Accordingly, Section II examines the number and type of 

registers available to the programmer, the number of buses internal 

to the processor, and the necessity for a separate I/O controller 

and a Floating Point Processor (FPP) as well as other hardware fea-

tures. 

Section III, software considerations, examines the need for 

variable length instructions, compound operation instructions, and 

the I/O controller. 
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B. RESULTS OF THE VARIOUS PROPOSALS 

For typical scientific computations such as trigonometric 

function generation, matrix inversion or numerical integration, with 
* -- -

a big percentage of the actual computations being high-precision 

operations, the usage of a hardware FPP is easily justified; there 

may be as much as a lOOX improvement in Throughput as the time to 

execute floating point multiplications is reduced from 500 usee 

with software execution, to the range of 3 to 15 usee with various 

hardware execution techniques. 

By using a high-speed local-store memory with 75 nanosec 

effective access time, compared to typical main memory times (core 

or MOS) of 400 to 700 nsec effective access times, and with both in-

structions and operands contained in local-store memory, the time to 

execute the shorter arithmetic and logic instructions can be reduced 

by as much as 80%. By using compound instructions, such as the Data 

General Nova computer family instructions which combine arithmetic 

or logic operations with condition testing and branching, the time 

to execute the shorter instructions can be further reduced by 50%. 

Thus, depending on the instruction mixture, with a baseline 

of the PDP-11 or Nova series computers, we can expect from 4X to 

200X improvement in Throughput as a result of implementing the 

various proposals of this report. Figure 2 illustrates the various 

system elements. 



Main 
Memory 

I/O 
Controller 

1 

------~-~- ~-- ------------~-----------~~---BUS 
Processor 

Cache Memory 
Instruction Lookahead i 

Working Register Files 
Index and Base Register Files 
Arithmetic/Logic Unit 
Floating Point Processor 
2 buses 

Fig. 2. Computer System Elements 

C. BACKGROUND MATERIAL 

4 

The investigative phase of the report development was con-

cerned with becoming familiar with the instruction set characteris-

tics of the Data General Nova 1200 (2), the Digital Equipment 

PDP-11/20 (3), and the Texas Instruments TI-960A (4), all 16 bit 

minicomputers. 

Assembly language codings were generated for fixed point 16 

bit divide and Floating Point 32 bit addition and multiplication. 

It was immediately obvious that the PDP-11 and TI-980 offered an 

advantage with their 6 and 8 registers, respectively, which are 

undedicated and therefore available for 32 bit computations. 

The Nova 1200 required much more register-memory-register 

activity which completely negated the benefits of its compound 
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instructions. 

As the report development continued, it was realized that 

it was folly to not have a Floating Point Processor. Further 

reflection inspired the inclusion of a number of working registers, 

so as to minimize the need for register-memory swapping, also 

improving I/O interrupt handling or switching from Worker to Super

visor mode. 

The result is the realization that simply defining a better 

"set of instructions" for a scientific minicomputer will not yield 

the desired result, which is a significant improvement in Through

put as compared to the three minicomputers examined. 

The proper approach is a combination of hardware and soft

ware (or instruction set) improvements. These improvements are 

presented in Sections II and III. 



II. HARDWARE CONSIDERATIONS 

The key to good hardware performance is determined by the 

results of the two dominant computer operations, moving and 

operating on data. The overall goal is to keep data and instruc

tions coming to and going from the data operation modules, where as 

much parallel processing is done as is affordable. 

Guidelines for aChieving this are presented in Section II A 

(Moving Data) where the dominant theme is to move data and/or in

structions as little as possible but move them quickly when needed, 

'and in II B (Data Operations) where parallel processing is inter

preted to mean not just one-step clockless multiplication, but the 

elimination of certain instruction execution approaches which par

ticularly penalize the less complex instructions. 

A. DATA MOVEMENT 

Improving Throughput requires that the processor be able to 

move da~a when needed, not when the I/0 peripherals so permit. 

Accordingly, two types of data paths are defined: (1) a BUS, which 

major system elements use to transfer among themselves, and (2) a 

bus, which is a data path within the processor. 

1. BUSES and buses 

The number of data Buses greatly influences the system 

Throughput. Systems which need simultaneous I/O and processor exe

cutions must be configured so as to minimize conflicts between the 
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two; if there is only one wideband data path within the system, con-

flicts will be unavoidable. 

For a system with multiple processors, multiple I/O con-
---

trollers and numerous I/O devices, it certainly makes sense to have 

several BUSes; the BUS priority hardware may be simplified, Through-

put should be enhanced, etc. But for a one-processor system, where . 

processor execution might be inhibited while main memory is us.ed for 

I/O connnunication, only one Bus can be readily justified. 

Thus most computing systems can only justify one BUS; par-

titioned main memory and an I/O controller can :require and justify 

more than one BUS. 

The buses within the processor itself are a different matter, 

although subject to the same reasoning. A processor has numerous 

data sources and sinks, such as the main memory port(s), cache mem-

ory, registers, and data operators. · 

One obvious choice is to have !!£ special processor bus, but 

to extend the BUS inside the processor. This choice is economical 

because no BUS switch is needed to link a processor bus to the BUS; 

however, one common BUS will reduce Throughput because of being 

able to move only one word at a time and because memory-to-I/O 

operations inhibit transfers involving any processor units (note 

that processor units such as the Floating Point Processor should 

be working while the BUS is busy elsewhere). 

A second choice is to have one BUS and one bus, which allows 

independent I/O and memory-reference-free processor functioning but 
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does require a Bus switch between the BUS and the bus. 

However, two buses will permit providing two operands to 

those units which can operate on two operands, without having to 

load one operand in a register and then provide the second. Two 

buses do require twice as much driving and receiving logic to inter

face to processor units. But the time saved and the ability to 

access two different operands simultaneously are strong favorable 

arguments. In addition, the bus interface circuitry is often de

signed into contemporary TRI-STATE output Integrated Circuits, 

therefore, only bus control logic need be designed, not bus driving 

circuitry. (A typical unit is SN74S200 (5), a 256 bit TRI-STATE 

memory.) 

Three buses are even better, because of being able to pro

vide two operands to a unit and then move the answer to its storage 

location. But unless the processor register files are able to 

supply two operands and receive the result, which implies three data 

ports for the files, the three buses will not be simultaneously busy 

and thus two processor buses are enough. 

Figure 3 summarizes the points of each choice. 

Thus, for a s~ientific machine, a good choice is one BUS and two 

buses, for these reasons: 

1. Minimum of conflict between I/O and the processor 

2. A scientific machine which is not highly parallel may be 

slow enough that two processor buses can provide sufficient bandwith 
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3. Two buses can move in parallel, two operands from regis-

ters or memory and allow the execution of one-step operations from 

the buses instead of a temporary holding register. 

We must-include a dedicated bus from the instruction look-

ahead circuitry to main memory, as shown in Figure 6 on page 21 of 

this report. Hellerman (6) further discusses the need for various 

buses. 

II buses 

I/O -
processor 
conflict 

speed of 
moving 
operands 

financial 
cost 

micro
programming 
cost 

temporary 
register 
cost 

0 

maximum 

1 

low 

low 

high 

1 2 3 

only over memory usage 

2 

low 

low 

high 

3 

some 
more 

little 
more 

medium 

4 

even 
more 

and 
more 

lowest 

Fig. 3. Processor Buses strongly influence processor 
Throughput. 

How many bits wide should the BUS and the buses be? Since 

the human-interface devices typically use 7 bit ASCII codes and the 

industry standard mass-storage data word is an 8 bit byte, 8 or 16 

bits . might be adequate. But if the processor and main memory size 

-
is 48 bits, then a 48 bit wide system BUS sounds good. 
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Considerable logic circuitry will be wasted in multiplexing 

48 bit words onto a 16 bit BUS and then demuxing irito 48 bit regis-

ters, and transferring 48 bit words will take 3 times as long as one 

16 bit word, probably 300 nsec versus 100 nsec. 

An alternative approach is to realize that once a block of 

data has been transferred to the processor, and operations have begun, 

then there will be only infrequent demand for other data words until 

a whole new block of data is needed, and a 3-step transfer is accep-

table, for occasional demands. Unfortunately, if this occasional 

demand for memory access occurs in the middle of an iterative execu-

tion, then Throughput suffers. Again a 48 bit BUS is needed. 

The final point is the continually increasing speeds of main 

memory technology. A 1 usee access time core memory is only 

slightly worsened by a 300 nsec transfer time, while modern dynamic 

MOS RAM memories, with 400 nsec effective access times, certainly 

justify a 48 bit wide BUS. 

The processor buses can be examined with the same criteria 

in mind, but transferring data from FPP to registers to cache mem-

ory or Arithmetic-Logic-Unit or Main Memory. Again, 48 bit buses 

are needed. 

In summary, partial word transfers seriously degrade system 
~ 

Throughput, and as will be seen in the rest of Section II, the re-

commended hardware is best utilized with full-width data paths. 

Figure 4 illustrates system configuration at this point. 
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Main I I / O Peripherals 
Memory and Mass Storage , 

If\ -- ~~ 

, t.f BUS 
'~ ) \ . 

48 bit s 
wide 

, I/ 
I 

Processor 

two 
~- - - - - --- - - - -- -~ 

buses I 

~ -
I - - - - --- - -- --- ~ 
I 

48 bits wide, each 

Fig. 4. System Data Paths 

2. PROCESSOR REGISTERS 

Now that the system can move data quickly when r equired, we 

need to minimize the movement of data (and i ns tructions) by inclu-

ding, within the processor, the following accumulator s / registers. 

1. Registers used to hold data bef ore and after operation; 

for generality of use, the width should be ~ 48 bi t s , they should be 

available by either of two ports, so that two operands can come from 

the same register file and the file should hold at least 8 registers 

so t hat the r egister specification field in t h e instruction word is 

of non-tr i vial width; suggested source is SN74172 , 3-port register . 

file 

2 . To save t ime in computing memory addresses, there should 

be separate regis ters which act as index registers for list ac-
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cessing and as base registers for relocatable instruction accessing; 

by having these registers separate from the 48 bit registers, they 

can be pe~nently wired to parallel adders and the Program Counter, 

thus allowing rapid address computation; suggested length is 32 bits, 

allowing a main memory of 4 Megawords, although the base registers 

will typically be referring to blocks of words of 512 word size or 

larger and something less than 32 bits would suffice; suggested 

source is SN74170 4WX 4 bit register file. The need for at least 8 

working registers (including index) to allow the writing of 

position-independent code is discussed in a book from General Auto

mation (7). Lorin (8) shows that index or base registers are 

needed for multiprogramming activity. 

3. A third set of reg!sters will be used whenever the pro

cessor is forced to switch from number-crunching to managing the 

system, as defined by the Operating System Program (OSP). These 

registers will be 48 bits wide, so as to be able to handle any size 

word. To minimize register-memory swapping while executing the OSP, 

8 registers will be provided. 

4. A fourth set of registers is in the FPP, so as to fur

ther minimize the movement of operands. These will be discussed in 

Section II Bl. 

Lest the reader be appalled by the numerous registers in the 

processor, remember that registers are relatively cheap, less than 

$.2 per bit. Adding extra registers is one hardware technique 

which greatly ·. improves Throughput because the data can be available 
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within 50 nsec instead 400 nsec, and the use of fewer bits to select 

a register than to specify a main memory word allows shorter instruc

tions. 

Speaking of instructions, why can't they be in registers as 

well? 

3. HIGH SPEED LOCAL STORAGE (CACHE MEMORY) 

In computers with only a few registers the instruction exe

cution cycle most often requires two main memory accesses: one to 

fetch the instruction and a second to locate the desired operand. 

Having data in registers reduces the frequency of second accesses. 

Likewise, having the instructions in fast store/registers would re

duce or eliminate first accesses. Having the instructions in fast 

store would reduce the instruction execution time by nearly 40% be

cause of having a 50 nsec register access time replacing a .4 

usecond memory access. 

Storing the entire program in fast store would be con~ 

siderably more expensive than using conventional memory, although 

the Throughput would increase considerably. Programmed loops, which 

will fit into the available fast store, can be executed at a very 

fast pace without requiring the main memory to be nearly as fast. 

Lorin (8) discusses this under '~oving a Single Processor System 

to Its Limit." 

To permit the use of fast storage, two conditions must be 

satisfied. These are (1) the loop must fit within the available 

fast storage, and (2) instructions must exist for loading the loop 
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instructions into fast storage and for switching the processor to 

and from execution of the fast storage loop. The first condition is 

satisf~ed by -purChasing a suitable block of fast storage (less than 

$.2 per 16 bit word for 75 nsecond access) and by allotting suffi

cient bits in the instruction words to select any one word of fast 

storage, which can be avoided by using a Cache Program Counter. 

Thus 1024 bits of fast storage requires 10 bits to select any one 

word. 

The second condition cannot be satisfied by purchasing com

ponents; instead two new instructions must be defined. Multiple 

Fast Transfer (MFT) is intended to load several words into sequen

tial storage locations. Before executing MFT, an index register 

could be initialized as an autoincrementing pointer to the desired 

data block. MFT contains the two essential numbers of (1) the 

first word of the data block, and (2) the number of words to be 

transferred to fast store or to main memory. 

The second new instruction is Conditional Control Transfer; 

program control is handed from the regular program counter to a 

Fast Store program counter, or vice versa, if a specified processor 

state exists. 

The Throughput improvement provided by Cache Memory is il-

lustrated with a software implementation of the Booth algorithm f or 

multiplication, which goes as follows: 

1. Logical-shift the multiplier and the partial product 
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2. Add the multiplicand to the partial product if the mul-

tiplier LSB is a 1 

3. Go to 1 unless finished 

This operation is executed as follows: 

1. Load the multiplier and multiplicand into the proper 

registers, clear the register wherein the product will appear, and 

load a down counter with 1710 

2. Load an autoincrementing index register with the address 

of the first instruction of the add-shift loop 

3. Execute a MFT of the add-shift loop into a block of fast 

store 

4. Execute a CCT--unconditionally transferring control from 

the program counter to a fast storage program counter 

The loop is executed requiring 0.5 usecond per instruction, 

until a CCT is satisfied (after 16 loop iterations) and control is 

transferred baCk to the program counter. 

With the following add-shift loop 

[ 
multiplier here 

A [ B I 
double length product appears here 

._ ___ c ____ _.l (._, __ one factor here 



LOOP: Shift right A 

Shift right B 

CGT_(if counter= 

Skip (if carry = 

Add (A+C into A) 

Decrement counter 

Jump (to LOOP) 

NEXT: next instruction 

0) 

0) 

in the program 

loaded into 
fast store 

16 

conventional execution (with instruction CCT changed to a condition-

al Jmp TO NEXT) requires the following execution times: 

1. Load multiplicand and multiplier into B and C registers, 

clear A register, and load 1710 into a down counter (these initiali

zations are identical for both cases and thus are neglected) 

2. 16 interations of the loop from Shift A through Jump 

(to LOOP) requiring 16 iterations times 7 instructions times 1.5 

useconds ·(the 1.5 usee is composed of 1 usee instruction fetch time, 

and 0.5 usee execute time because all operands are in registers) per 

instruction, or 168 useconds 

3. Execution of Shift A, Shift B, and then Jump to NEXT 

which ends the loop--4.5 useconds 

for a total of 172.5 useconds. 

A similar execution, using fast store, required the fol-

lowing times: 

1. Initializations 

2. Load an autoincrementing index register--2.5 usee, and 
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execute a MFT (of 7 words)--1 usee to fetch plus 7 transfers 

times 1.5 usee or 11.5 usee 

3. Transfer program control to a fast storage program 
... - - -

counter--CCT--1.5 usee 

4. Execute loop--16 iterations times 7 instructions times 

0.5 usee or 56 usee 

5. Execution of Shift A, Shift B, and CCT--1.5 usee 

for a total 11.5 + 1.5 +56+ 1.5 or 70.5 usee; this is ~ · 40% of con-

ventional execution times. 

Thus execution of loops requiring many iterations-where 

the critical number of iterations is inversely proportional to the 

loop length-will reduce program execution time. For combinations 

of long loops and many iterations, the execution time is bounded by 

limits of 60% and 20% of conventional execution times, where 60% 

results from instructions being in cache memory and the operands in 

main memory, and 20% results from instructions in cache and all 

operands in registers. This assumes that all data massaging occurs 

in 500 nsec, no matter what the operation. 

The program requires three additional instructions: 

1. To initialize an index register 

Q. MFT 

3. CCT 

It is felt that the additional instructions will prove useful, MFT 

for restoring register contents after a POWER FAIL INTERRUPT (indeed 

if the entire processor state were contained in registers one MFT 
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would suffice to restore the processor state) and both MFT and CCT 

for changing processor states and reassigning processor control in 

a multiuser/~ultiprogramming/multiprocessor/time-shared computation-

al environment. 

For consistency, if nothing else, it is necessary to make 

the cache memory word size 48 bits. To determine the necessary num-

ber of words in the memory requires more effort, but an examination 

of several program loops (see Appendix A) showed that a 1K word 

cache memory is adequate. Besides, Section III shows how to pack 

several instructions in one 48 bit word, so there is t he capability 

of holding quite large loops in a lK cache memory. 
, 

A possible source is the SN74S200, a 256 bi t RAM. Probable 

cost is greater than $500 for a 48 bit memory. 

4. INSTRUCTION LOOKAHEAD 

It was previously mentioned that the processor needs to keep 

data and instructions coming to and going from the data operation 

modules. With the inclusion of several types of registers and the 

cache memory, the data and instructions are available faster than 

the processor can finish one instruction and move to the next. 

For example, with data and instructions in cache memory, and 

assuming 25 nsec to compute the next instruction address, 75 nsec 

cache memory access time for the instruction, 100 nsec instruction 

decode time and 75 nsec to access the new operands from either re-

gister or cache memory, then a 100 nsec execution t i me ( a rea-
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sonable value for fully parallel operations such as ADD, COMPARE) is 

totally swamped by the 275 nsec instruction setup time. This flow 

of operations follows: 
. 

1. Compute next instruction address--0~150 nsec; 0 typi-

cally, 150 nsec if different index register is used; allow 25 nsec 

2. Access next instruction in cache memory--75 nsec 

3. Clock instruction into holding register and decode--100 

nsec 

4. Locate new operands and prepare to gate them onto pro-

cessor buses--75 nsec 

5. Gate operands onto buses and execute instruction--100 

nsec 

6. Return to 1 

By adding extra logic to implement an Instruction and Data Lookahead 

module, then these 5 operations can be split into 2 parallel activi-

ties as illustrated in Figure 5. 

(a) 

(b) 

(c) 

compute address 
25 nsec 

.J, 
access instruction 

75 nsec 
~ 

decode instruction 
100 nsec 

~ 
wait if current 
instruction could 
cause a branch 

(d) locate new operands 

(e) 

75 nsec 

l 
execute instruction 

100 nsec 

L ~ '""x--- wa1.t 

Fig. 5. Flow of Instruction Lookahead 
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This parallel flow reduces the typical execution time to 250 

nsec from 375 nsec, and is well worth the extra circuitry, which will 

mainly consist of logic to allow the locating of operands to have 

priority over instructions, especially desirable if two operands are 

sequentially pulled from the cache memory, and logic to halt the in

struction sequence (steps a, b .& c) if the present instruction could 

result in a program flow branch and thus invalidate the address that 

would have been computed. It should be noted that a branch within 

the boundaries of cache memory results in much less time delay (be

fore returning to pipelined execution) than does a branch to main 

memory. 

To expedite instruction transfer from the cache, a dedicated 

path exists between the cache and the lookahead unit, as shown in 

Figure 6. 

5. I/O CONTROLLER 

After improving the Throughput by adding the hardware sugges

ted in Section II A1 to A4, it is necessary to ensure that the pro

cessor will not be bothered by the need to handle the I/O devices. 

We particularly do not want the processor to have to handle data 

transfers to and from mass storage. 

By using an I/O Controller to handle all interrupt servicing 

and block data transfers, and to buffer I/O device data transfers 

to/from memory, the processor can be isolated from most of the prob

lems that I/O devices inflict upon a computing system, particularly 
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where the cache memory is reading in a block of data and an I / 0 ser-

vice routine memory access would delay the beginning of a computation 

loop. 

Figure 6 presents the hardware suggestions of Section II 

A.l-5. 
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Human 
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' Instruction .L __ 
' ~. ~+-~~~ Lookahead 

Meinory 
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~--------------
Program 
Counter 

Fig. 6. System Configuration 
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6. MAIN MEMORY PARTITIONING 

One way to prevent processor and I/0 conflict over main 

memory is to par~~t~on main memory into sections, each with its own 

memory address and data registers and bus controller interface. Data 

awaiting I/O action would be available in one section while the other 

section(s) could simultaneously provide memory service for the pro

cessor. 

There is a peculiarly interesting benefit if the number of 

memory sections available to the processor is a binary integer 2n, 

n > 1. This benefit appears as a l/2n reduction in effective memory 

access time when referencing sequential memory locations, as when 

transferring blocks of memory words to the processor cache memory. 

For example, if there are 4 memory sections for the proces

sor, and if words are written into these sections in a 4 word paral

lel fashion (e.g., word N in section 1- location M, word N+l in sec

tion 2 - location M, N+3 in section 4 - location M, word N+4 in sec

tion 1 - location M+l, etc.) as illustrated in Figure 7, then by 

accessing 4 words in parallel, the effective memory access time be

comes 100 nsec instead of 400 nsec. 

Keep in mind that to access any word takes 400 nsec but that 

once the Memory Buffer registers are filled, the effective word rate 

is 10 MHz instead 2.5 MHz. Once data is in the cache memory, how

ever, the word rate rises to 13 MHz. 

As was discussed in section II A, part 1, the inclusion of 

partitioned memory may justify two BUSes, with the I/O controller 
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moving I/0 data to and from the processor portion of memory, and with 

the processor dumping I/O commands into an I/O controller parallel 

port, without dire~ly talking with any I/O devices. 

Section 
Word 
Address 

' ' ' ' 
M 

M+l 

M+2 

MAR* 

BUSS 

# - # 

Section 
1 

' ' ' 
N 

N+4 

N+8 

' ' ' ' 

MBR** 

Section 
2 

' ' ' ' 
N+l 

N+S 

N+9 

' ' ' ' 

MBR 

Section 
3 

' ' ' ' 
N+2 

N+6 

N+lO 

' ' ' ' 

MBR 

Fig. 7. Parallel Storage Increases Memory 

* MAR = Memory Address Register 
** MBR = Memory Buffer Registers 

B • DATA OPERATIONS 

Section 
4 

' ' ' ' 
N+3 

N+7 

N+ll 

' ' ' ' 

MBR 

For best processor Throughput, the data operations need to 

be as parallel or one-step a procedure as is feasible. 

1. FLOATING POINT PROCESSOR (FPP) 

One of the key points of this report is that a scientific-

computation-oriented minicomputer needs to have a hardware Floating 
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Point Processor to handle the high-precision arithmetic operations. 

Since the FPP can provide a lOOX Throughput improvement, either the 

computer system should have one from the start, or one should be de

signed and built by some graduate students as a research project. 

But if there is no FPP, there is no reason to implement the other 

proposals of this report, since the FPP gives such a big benefit. 

The following parameters need to be considered when speci

fying the FPP: 

1. Is it an integral part of the processor or is it treated 

as an I/O device with the attendent data movement delays 

2. How many full width registers are included in the FPP, 

whiCh provide needed storage to minimize the moving of data at 

inopportune moments 

3. Is the FPP expandable to wider words and greater preci

sion by a control instruction, or must triple-word (48 bit re

solution) operations be executed by software or software-hardware 

combinations at a serious Throughput penalty 

4. What degree of parallelism should the FPP provide for 

the multiply operation 

For best Throughput, the FPP should be an integral part of 

the processor, with immediate access to the processor buses, regis

ters, and cache memory. Particularly for Floating Point Addition 

and Subtraction, where the majority of the instruction execution 

time will be spent in aligning the decimal points before parallel 

add or subtract and the additional time needed to move two operands 
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to an I/O device and move the result back to the processor register 

files compares with the actual execution time, keeping the FPP in 

the processor is j~tified. In addition, the BUS is then less 

needed by the processor, and I/O data movement is enhanced. 

The second FPP parameter is the number and size of registers 

it retains for its own use. Since maximizing Throughput requires 

keeping the FPP as busy as possible without delaying operations be

cause the operands are not available, at least 6 registers, 48 bits 

wide, are needed to hold the operands and results of two successive, 

completely separate arithmetic operations whiCh were executed while 

the processor buses or caChe memory were busy with other activities. 

Therefore, the SN74172 dual-port register file is suggested, sup

plying 8 words X 2 bits in each integrated circuit, and being able 

to drive two buses with different operands. 

The third FPP parameter, expandability, is determined by 

the size of the adders and shift registers of the FPP. One-step 

addition and subtraction requires a 32 bit adder (which assumes 32 

bit resolution) as does the iterated steps multiply and divide, so 

including the capability for 48 or 64 bit resolution computation 

merely requires 4 or 8 more 4 bit adders and 1 or 2 lookahead logic 

functions (whiCh is used to keep the time to add 64 bit operands 

down to 2 or 3 times the delay of a single 4 bit adder). The mul

tiply and divide functions also will require a 96 or 128 bit shift 

register, whiCh is 16 SN74198 ICs. By including at least 13 more 

ICs, the FPP can be expanded to 64 bit arithmetic operations, thus 
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avoiding obliging the programmer who needs more than 32 bit opera-

tions to fall baCk to software implementation or a (M + N) (a + b) 

partial product approach. 
---. 

The fourth FPP parameter, degree of parallelism of the ac-

tual act of multiplication, is determined mainly by affordability. 

Secondary considerations are space and power, which at least for 

earth-bound computer-systems, still reduce to a matter of cost. 

The cheapest implementation, the add-the-multiplicand-to-the-

partial-product-if-the-next-multiplier-LSB-is-1, can easily yield 

step times of - 150 nsec/bit, or 4.8 usee for the basic operation 

plus 0.5 usee instruction setup time (with the sign and exponent 

of the product being computed during the 4.8 usee) which yields 

5.3 usee for 32 bit multiplication. 

The use of clockless multiply ICs such as the Fairchild 

9344 (9) will give a 32 bit product, truncated from 54 bits, in 

750 nanoseconds. An expansion of 64 bit. operands requires 4 times 

as many ICs and power, or --- of the 9344 ICs. 

A third approach uses the Advanced Micro Devices AM25LS14, 

(10) a one-cloCk-pulse per bit of product serial multiplier func-

tion, which enables the use of 4 ICs for a 32 bit multiplier. One 

operand is presented in parallel to the 8 inputs of each of the 

ICs, and the other operand is clocked serially into the end of 

each of the multipliers. The allowable clock rate for 32 bits is 

6 MHz, or 10.2 usee for a 32 bit multiplication. By using 16 of 
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the ICs to generate 4 partial products, with only 32 clock cycles, 

and then adding the partial products with 3 adders, the time for 

a complete 32 bit multiply is 0.5 usee setup+ 5.6 usee partial 

multiply +.2 usee addition, a total of 6.3 usee, no speed improve-

ment over the first approach, the Booth algorithm, mainly because 

32 clock pulses are required. 

The non-parallel version of this approach is readily ex-

panded to 48 or 64 bit operands by simply using 6 or 8 multiplier 

chips and thus is recommended if more than 32 bit operations are 

likely. 

The most reasonable pseudo-parallel approach is a partial 

product approach using Medium Scale Integration logic which yields 

partial products in 8 clock pulses instead of 32, requiring about 

40 ICs. If used with a 10 MHz clock rate, it would result in par-

tial products in 0.8 usee and complete results in 0.5 usee setup 

+0.8 usee multiply +0.2 usee addition, totaling 1.5 usee. This 

approach is diagrammed in Figure 8. By reconfiguring the shift 
' 

registers and adders, 64 bit multiplications can be performed in 

0.5 usee setup + 3.2 usee multiply +0.2 usee addition, totaling 

3.9 usee. 

This last technique, because of its inherent parallelism, 

speed, and expandability, is recommended for use in a scientific 

computing system. 
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8 bits each 

A3 ~ Al Ao 

-- -

B 

32 bits 

A3 X B 40 bits 

A2 x B +j l 
Al X B + [ I l l 
·Ao X B + [ l l l I 

Fig. 8. Pseudo-Parallel. multiplication also allows effec
tive execution of double-precision multiplication by reconfiguring 
the shift registers and adders. 

2. ARITHMETIC-LOGIC-UNIT OPERATIONS 
.. 

(INTEGER ARITHMETIC) 

The ALU, which provides one-step 32 bit operations such as 

add, subtract, OR, AND, COMPLEMENT AND SHIFT, can execute its oper-

ations in well under 100 usee for all but multiple shifts. 

By executing these operations from the two processor buses, 

the additional time delay of synchronously clocking the operands 

into holding registers is avoided. Since the Qperand access time 

is 75 nsec and the transfer time is 100 usee, with (for example) 
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the maximum 32 bit add time of 60 nsec, the operations can be exe

cuted in 2 cycles of the 10 MHz clock instead of 3. 

Figure 9 illustrates this execution time reduction, particu-

larly valuable when linked with instruction lookahead. 

I I 
Decode 

I Strobe 

Access Latch 

Operands t Store 
Transfer Result 
to ALU 

+ Execute 

Standard Timing 

Store 
Result 

Decode 

~ 
Access, Transfer 

and Execute 

Compressed Timing 

Fig. 9. Execution from Buses speeds One-Step Operations 

3 • COMPOUND OPERATIONS OF ALU 

As has been repeatedly emphasized, one of the techniques 

used to enhance Throughput is to move data as little as possible, 

mainly by keeping data near where it is used, not out in memory. 

By making available compound instructions such as Add-and Branch-

if-Zero, the processor can avoid having to set-up the operands for 

two instructions. 

For example, to add two numbers and change program flow 
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based upon the sum by using the PDP-11/20 instruction set requires 

two instructions: 

ADD (A + B .::r B) . - -

BEQ B,J (branch if equal to J) 

while the Nova 1200 allows the following 

ADDZ A,B, szc 

(skip next instruction if A = B) 

Granted that the Nova instruction cannot reference memory or I/O 

devices nor can the skip action directly yield large changes in the 

addresses (although Program Counter relative addressing could be 

used) but the intent of this report is to have the operands in re-

gisters and the instructions in cache memory so there is no need for 

lArge addressing fields. Thus if the instruction is executed in one 

continuous flow, there is no need to load the intermediate results 

in temporary registers and even this slight delay can be avoided. 

To summarize, if we take advantage of the operands being 

in registers and use compound instructions as permissible, then the 

ADDZ,A,B and BEQ B,J execute times with the operands stored in main 

memory (needing 7 read or write operations or - 3 usee) can be re-

duced to (75 nsec get instruction, 100 nsec decode, 25 nsec get A 

and B, 75 nsec add A to B, 50 nsec compare sum, . 75 nsec get J, 75 

nsec add J to Program Counter and load in PC) a total of 475 nsec, 

or a Throughput improvement of 6 times. 



III. SOFTWARE CONSIDERATIONS 

In this portion of the report, section IIIA determines how 

the software can best utilize the capabilities of the available 

hardware, presumably that suggested under Hardware Considerations. 

In Section IIIB . and C we look for special contributions to Through

put that certain other software features, mainly variable instruc

tion length, can provide. 

A. SYSTEM BUSES 

The software will not be directly concerned with the BUS(es) 

and processor buses. '!he BUS assignments will be handled by the I/O 

controller, with short processor requirements, such as a 4 memory

words-in-parallel-transfer, given priority. This reversal of the 

usual priority hierachy is possible because of the buffering capa

bilities of the I/O controller. 

Nor will the software be concerned about the processor 

buses, as their usage will be handled by processor control logic, 

which will probably be either conventional logic or a highly

parallel control word microcontroller, so as to support system speed 

requirements. 

1. REGISTERS 

It is intended that all processor working registers be 

accessible by the same instruction type, while the Supe-rvisory Mode 
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registers use still another instruction which is restricted to being 

used by the Operating System (OS). By using only one instruction to 

access a number of registers, although in separate register files of 
---~ 

possibly different sizes, the assembler and compiler are simplified 

and the logic circuitry needed to select the different files is not 

increased over that needed by separate instructions. 

Also all of the I/O controller registers and data files 

should be accessible by the OS, so that they may be transferred to 

or from memory in response to a Power Fail Shutdown or Restart. 

2 • CACHE MEMORY 

The processor's cache memory is supported by three special 

instructions. The first is Multiple Fast Transfer, which guides the 

block transfer of data from one point in the system to another, not 

just to cache memory. The second is Conditional Control Transfer, 

used to transfer control of the processor instruction decode logic 

from the main memory PC to the cache PC or vice versa, to switch to 

and from Supervisory mode and to force the processor to operate in 

the fixed-length instruction mode instead of the variable-length 

mode. 

The third instruction is the type of main memory reference 

instruction which occurs when the processor is executing instruc~ 

tions from ·cache memory and suddenly needs to go outside cache 

memory boundaries. The uniqueness comes by the address of the ac-

tual main memory location being computed from the base register for 

that program, the index register for the particular page of the 
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program, and the sum of the CPC and the memory address displacement 

supplied by the memory reference instruction. The capability must 

exist for this type of addressing. 

If the cache is large enough to hold several program seg

ments, with the execute time of any particular segment being long 

enough to load the cache with the next program segment, then the 

flow of execution will keep rolling around the cache boundaries; 

this continual flow of execution can only_ be implemented by using 

base and index registers, and the associated "memory" referencing 

instructions. 

3. I/O CONTROLLER 

The intent of the I/O controller is to free the processor 

from having to guide I/O activity, and to add certain hardware fea

tures which software is too slow to handle anyway, such as disc and 

tape error detection and correction, and the buffering of high speed 

data block transfers. 

The OS needs to be able to guide the I/O controller, either 

by direct communication on the system BUS or by presenting commands 

at a special parallel controller port. Instructions need to be able 

to handle the following demands: 

1. Modify priorities of peripherals as their importance to 

a program or different programs changes, by a command from OS 

2. Be able to acknowledge or ignore peripheral interrupts 

during preventive maintenance or equipment failure, so that the sys

tem is not paralyzed by uncompleted data transfers 
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3. Be able to handle the discovery of a parity error, or 

worse, resulting from an I/O transfer or a file read, so far as 

initiating a retransmit or a reread, or by recording the device and 

data address where the fault occurred so as to facilitate repair 

The last requirement implies that the I/O controller should 

handle I/O error checking and system error record-keeping in error 

status registers. Since hardware logic can be more cost effective 

in finding/correcting I/O and memory errors than can the OS, the · 

only error checking done by the processor should be monitoring for 

processor errors, but again with hardware. The OS may periodically 

monitor the error status registers. 

4. MAIN MEMORY PARTITIONING 

Physical partitioning of main memory was presented as a 

technique for obtaining rapid transfer of blocks of data. It is 

also useful for maintaining separation of tasks in a time-shared 

environment where it is advantageous to keep at least part of the 

OS in memory as well as user programs awaiting data from mass 

memory or from special devices such as Fast Fourier Transform mo

dules, where disc swapping would be ineffectual. There is a need 

for the OS to be able to reconfigure the memory for a better task 

fit. This falls under the domain of memory management, and· should 

be linked with what is actually . resident in the cache memory. 

A similar situation occurs when a separate Task-Scheduling 

processor is concerned with keeping the scientific processor fully 

occupied with number crunching while it handles the execution of the 



OS, as does the B6500 of the ILLIAC IV system (11). 

5. FLOATING POINT PROCESSOR 

There are two basic types of instructions which guide the 

FPP. The first, as may be expected, are those which specify the 

various floating point operations and the registers wherein the 

operands are located. The operations are: 

1. add 

2. subtract 

3. multiply 

4. divide 

5. invert 
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The invert operation is included because it provides a 

useful function, which is often used in matrix operations, without 

requiring the initialization of a register with 0001 to serve as a 

dividend. 

The second type of instruction is concerned with the expand

ability of the FPP. The actual technique used to expand the charac

teristic size from 32 bits to 48 or 64 may be selected from Section 

II.B.l. With expanded precision, the 48 bit registers will not hold 

all of an operand, thus it will be necessary to specify six 48 bit 

registers (4 operand, 2 for the result) instead of only 3. 

The expanded precision instruction should also indicate 

whether 48 or 64 bits (or other) is being used, as each extra bit 

of precision requires an extra 100 nsec. One field of the instruc-
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tion could contain a binary count of the precision, which is loaded 

into a down-counter in the FPP, where a Borrow output from the 

counter halts the computation. 

6. MEMORY REFERENCE CAPABILITY 

OF COMPOUND INSTRUCTIONS 

One area of software support required by compound instruc

tions comes from the need to be able to execute these operations 

with the operands contained in either processor files or main memory. 

Unlike the FPP instructions, which take from ~ 500 nsec for an 

addition with no decimal point alignment needed, to as long as ~ 30 

usee for an extended-precision 64 bit multiplication, and where the 

instruction lookahead has time to access the operands for the next 

operation and move them from main memory if needed, the compound 

operations are so short (<100 nsec execution time, using instruction 

lookahead) that using separate instructions, to access the operands 

and store the result back in main memory, is a considerable waste of 

processor time and memory space. This is illustrated in Figure 10, 

where the different parts of an instruction execution sequence are 

assigned typical operate times. 

Another advantage occurs where the cache memory branches to 

main memory for some flag status check or update; if the necessary 

activity can be pulled from memory in the form of one long instruc

tion, then the system can avoid the Throughput penalizing need of 

multiple memory accesses. 
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Place A in processor file 400* Locate operand B (main 
memory) 

100 Execute operation 

400 Store result in memory 
1.675 usee 

100 Place B in Processor file 

Non-Memory Reference 

75 Locate instruction for operand A (cache) 

100 Decode 

100 Compute address of operand A 

400 Locate operand A (main) 

100 Place A in processor 

Locate operation instruc
tion (cache) 

Decode 

1 100 Execute operation 

Locate instruction for 

operand B (cache) 

Decode 

Compute address for 
operand B 

400 Locate operand B (main) 

100 Place B in processor file 

Locate instruction for 
storing result (cache) 

100 Decode 

100 Compute address 

400 Execute store 
1.975 usee 

Fig. 10. Memory Reference Capability Speeds Compound 
Instruction Execution. 

*This can be reduced to < 100 nsec if A and B are pulled from memory 
by a 4 words-in-parallel memory access, which reduces the total 
to 1. 375 usee. 



A third advantage is that if the processor is given a few 

general-purpose registers which the user programs cannot directly 

access, then execution of these status monitor functions (or what

ever) can proceed without the need for the programmer to move data 

from registers to cache or memory to make temporary working space. 

These three advantages also apply for the other operations 

of the ALU. 

B. SPECIAL SOFTWARE CONTRIBUTIONS 
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The bulk of the Throughput-improving fac·tors presented by 

this report have been in the hardware. There is, however, one 

software factor which can significantly affect Throughput. This is 

the availability and proper application of variable-length instruc

tions. 

The benefit arises by not having to force the processor con

trol statements (instructions) into fixed word lengths. It has been 

shown in Section II.A.3 that a MFT instruction has wide applicabili

ty, even though it will need 45 bits of the available 48 allocated 

as follows: 

1. op code--6 bits . 

2. cache starting address--10 

3. cache or registers--3 

4. Number of words to be transferred--10 

5. Starting location of memory block--16 

However, the bulk of operations, particularly when execu-

ting instructions from cache memory, do not need to be 48 bits long. 
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By using cache PC relative addressing, the address displacement can 

be limited to 10 bits. Register specification can be limited to 2 

or 3 fields of 5 bits or less, so 16 or 24 bit instructions are cer

tainly reasonable and thus justify double-or-triple packing in a 48 

bit word. 

The following section presents an even denser packing of 

instructions, coupled with a highly structured operand movement 

technique; the intent is to minimize both operand movement and in

struction access and decode time, mainly by employing very simple 

instruction formats. 

C. POLISH NOTATION EXECUTION 

This paper has repeatedly emphasized that a computer should 

be judged primarily by its Throughput. A previously mentioned 

approach to improving Throughput is that of reducing the instruction 

execution time by storing the program in cache memory. Here we 

examine another approach of simplifying the instruction format to 

permit packing two or more instructions per memory word. Obviously 

it will be difficult to implement memory referencing in small 

instructions (8 to 24 bits long); indeed, it is even difficult to 

specify different registers. Perhaps this new approach may be best 

described as having the operands automatically moved into position-

no explicit operand selection. This technique of implicit operand 

selection corresponds to the technique of Polish Notation--PN. 

An example of conventional algebraic notation, requiring 
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explicit operand selection/location, is 

(a+b) * (c-d)/f 

This expression could be evaluated as follows: 
-- -

1. Evaluate a+b and store in g 

2. Evaluate c-d 

3. Multiply g times c-d and 

4. Divide product by f 

PN would rearrange the previous expression as 

ab+cd-*f/ 

which would be evaluated as previously done, with the difference 

being that the storage location g is not required. This assumes 

that a subtract sign means c-d, not d-e subtraction sign/opcode 

would also be useful. 

It is recognised that the following operations are needed: 

1. Addition of two numbers a+b 

2. Subtraction of two numbers a-b or b-a 

3. Multiplication a X b 

4. Division a/b or b/a 

5. End of PN execution list 

The processor will be responsible for the actual data 

operations; it must manage the operand mo~ement and the airthmetic 

operations as required by the PN op code (at this point the size of 

the PN op code is undefined). 

The previous operations 1 through 5 are actually 7 distinct 

instructions. It may be argued that the order-dependent operations 
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of subtraction and division do not have to be bipolar; the Algebraic-

to-PN conversion program could be written so that only order-

independent operations need be available. However, it is felt that 

the provision fQr order-dependent execution will cause little if 

any time penalty but will permit a simplification of the Algebraic-

to-PN conversion program and a considerably easier task of manual 

conversion. 

Another arguable point is the need for inclusion of logic 

operations. To "resolve" both arguements, it has been decided to 

set the PN op code at 4 bits, thus allowing a considerable expan-

sian of the set of 7 previously discussed. 

A third consideration is ''why has not PN become popular?" 

One answer is provided by the article ·~croprogramming, Stack Ar-

chitecture Ease Minicomputer Programmer's Burden" in the February 

15, 1973 issue of Electronics (12). To quote, 

"In addition, the stack concept is convenient for writing 
the compiler. Proof is that compiler writers using con
ventional computers create stack environments in software. 
Thus, from the standpoint of any user the availability of 
a minicomputer with a stack architecture makes it cheaper 
to obtain a compiler for the particular high-level language 
that suits his application." 

And the answer is--stacks are popular (with enhanced PN execution a 

main reason) but a stack which operates without software assistance 

does require a considerable amount of hardware--an amount comparable 

to a small computer of several years ago. Figure 11, excerpted 

from the Burroughs B5000 manual (13), presents the stack components. 
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Perhaps the most straight forward stack implementat~on would 

be a shift register with the properties: 

1. N-bits wide (N is the size of the operands) 

2. Very long or deep 

3. Left and right shiftable 
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4. At least the top 2 elements visible to the processor 

This hardware element does not exist. Indeed, the author is not 

aware if even a finite length by m-bits wide shift register exists. 
-- -

However, such a stack could be implemented with large quantities of 

8-bit-long shift registers (e.g. SN74198). 

A slightly different approach uses IC &&~ such as the 

SN7489, a 16 words of 4 bits memory. At current per-bit prices, 

the 7489 is - 75% cheaper than the 74198 but is slower in that a 

Read/Write cycle is required rather than a simple shift. Figure 12 

presents the operation of a RAM implemented stack, which is execu-

ting the function 

The action codes are as follows: 

N. PUSH operand onto stack 

F. POP operand from stack 

A. Add top to second element 

M. Multiply top and second element 

D. Divide top element by second element 

E. Divide second element by top: element 

s. Subtract top element from second element 

T. Subtract second element from top element 

H. Execute next cache word as a conventi nal instruction 
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I N N N N N N M M D A T I Action Code 

I 
A B c D E F G H I J K I Top element 

A A A A E A A 

B B B B B B B 
RAM 

c c c c c 
D D D 

0 0 1 2 
4 4 3 2 

3 4 3 2 2 

1 0 0 1 2 

1 0 0 

3 4 4 

RAM level 
RAM vacancies 

A A 

0 0 0 0 0 1 1 1 1 0 0 0 

as execution progres ses 

Main memory 

Main memory 
level 

Fig. 12. Typical Stack PUSH, POP, and Execute Activity 

The general philosophy is one of (1) be hesitant to move 

words from RAM to ·main memory (move only when RAM is full, or when 

a PN op code says to) and (2) be quick to move words from main 

memory to RAM (do so whenever the RAM is less than half full, unless 

inhibited by a PN op code) but do not fill up the RAM. 

At this point it is assumed that a stack has been imple-

mented, via the cache memory and cache PC. It is now necessary to 

develop additional PN instructions; this is done by observing the 



PN implementation of a series evaluation. 

For real values of X 

sin x = x1 - x3 + x5 - x7 + 
1! 3! 5! 7! 

• • • • • • • • • • 

(X in radians ) 

which may be rewritten as (using the first 4 terms ) 

sin X = X ~ - 3~ ~ \!! ~ - 7~))) 
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This could be programmed in the fol lowing fashion, beginning 

with the innermost operations 

OPERATION/ CODE(8 bit word) NEW TOP ELEMENT 

Push X 

Push 1 

Push 1/6 

Push x2 

Push 1 

Push 1/20 

Push r 
Push 1 

Push 1/42 

Push r 
M x!-/42 

s l - x2/42 
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M x2 (1-x2 1 42) 

M <x2 120) (1-x?-I 42) 

A l+(~I20)(1-X2 142) 

M y}(l+(X2120)( ••• )) 

M (X216)(1+(X2120)( ••• )) 

s 1-(x2 16) ( ••••• ) 

Pop top element of previous 
work 

The significant addition is the PUSH command, used to load 

operands onto the stack, and the POP command which is used to remove 

the answers from the stack and store them in a register; a conven-

tiona! Data Move instruction could be used to access the answer (if 

the Top Element could also be treated as a register) for use else-

where but would not remove the answer from the stack. 

It is not possible to contain PUSH and POP within the pre-

viously mentioned 4 bit op code. Both commands must specify a 

register to be the operand source or sink, respectively. It is 

possible to have PUSH and POP communicate with only one register, 

but there is a more effective approach. Notice that the sin X 

evaluation PUSHes 6 different operands and if only one register were 

available, the program would have had to End PN Execution, load the 

register and commence PN execution on 6 different occasions. 

The better approach is to initialize a group of registers 

with the necessary operands--for example x2, 1142, 1, 1120, 116, X--
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and then PUSH the operands onto the Stack when needed, without having 

to exit and return PN execution. Of course several bits will be 

needed to indicate which register holds the operand (or is to receive 

the operand, if POP is commanded). How many bits will suffice for 

most PN programs? Another example will help. 

Another example is that of Matrix Inversion, with the 

matrices stored in cache. 

A-1 A -- I -- A A-1 A A-1 I f d ; , , o or er n 

1 0 
= 

0 1 

By Gaussian Reduction of the A matrix we have 

1 0 c D 
= 

0 1 E F 

requiring n divisions and 1/2 n(n+l) multiplications and additions. 

For matrices containable in the available processor files, autoin-

crementing index registers could be used to point to the operand-

holding register (with the incrementing triggered by the index 

register being used to compute a cache address). 

For matrices which must remain in main memory, autoincre-

menting index registers will point to the memory word. The key 

idea is the use of autoincrementing index registers. 

Remember the point of discussion is how many registers to 

make available to the PUSH and POP instructions; or how big is the 
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register specification field of the PN instruction? A consideration 

of the data base addressing requirements shows that 16 registers, or 

a 4 bit field, should be adequate. However, since there is 8 bits 

- -
in the instruction, the # of accessible registers is increased to 

32, or a 5 bit register select field, to allow referencing most, if 

not all, of the processor registers. This requires that the PUSH 

and POP instructions be recognized by 3 bit op codes. How should 

these 32 available registers be used. 

Several should be autoincrementing index registers. The 

others will be conventional working registers, used to hold con-

stants--such as 1, or to hold pointers which are used to reinitialize 

the autoincrementing index registers after a matrix has been inverted 

and a new matrix is ready for inversion. 
. 

This analysis results in the following PN instructions, 8 bits 

wide: 

1. ADD A+ B + A 

2. SUBTRACT A - B + A 

3 • SW TRACT B - A + A 

4. MULTIPLY A X B + A 

5. DIVIDE A I B + A 

6. DIVIDE B I A + A 

1. PUSH cache (reg xxxxx) 

8. POP cache (reg xxxxx) 

9. End of PN Execution (next 48 bit wor should be inter-

preted as a conventional instruction) 



IV. CONCLUSIONS 

Although th-e-·bulk. of the proposed Throughput enhancements 

have been hardware oriented, they result in dramatic software 

changes as well. To make best use of the new hardware resources, 

the software needs to be equally carefully considered. 

We have shown that the most important feature, hardware or 

software, is the inclusion of a Floating Point Processor; by using 

a pseudo-parallel approach, as much as a 200X Throughput improve

ment can be gained, as compared to a software floating point pack

age. 

The next most significant position should be shared by the 

cache memory, which can provide at least a SX improvement in effec

tive memory access times with a lesser Throughput improvement, and 

by the Polish Notation teChnique of structuring data and permitting 

simple instructions. The other features all together boost the 

Throughput by smaller amounts as estimated below: 

(a) wide buses -- 1.25X 

(b) numerous registers -- 2X 

(c) instruction lookahead 

(d) I/O controller -- l.SX 

1 .25X 

(e) partitioned memory -- 1 . 25X 

The product of these factors is 5. 9X, a very nice Thro put en

hancement for any computer, but especially effective when coupled 



with the three previously mentioned features. 

The result is a computer with a maximum of 3 or 4 Mega 

Instruction per Second execution rate, and capable of 600,000 

floating point multiplications per second. 
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APPENDIX 

How _Large Should The Cache Memory Be? 

The following example is excerpted from a Fortran program 

that was written to compute and graph the spectral content of var

ious waveforms, which the program also generated. The excerpt is 

the Fourier Transform computation routine. 

Fortran Statements 

00 115 N=l,NW 

H=N 

W=H*DW 

RT=.O 

GT=.O 

DO 112 K=l,NT 

H=K 

T=AT+H*DT 

(NW=lOO) 

(NT=200) 

R=A(K) *DT*CPS (W*T) 

RT-RT+R 

G=A(K) *DT*SIN(W*T) 

GT=GT+G 

112 CONTINUE 

Memory Words per Statement 

8 

2 

4 

2 

2 

8 

2 

5 

43 

4 

43 

4 



AMP=SQRT(RT*RT+GT*GT) 

DATA(N)=AMP 

115 CONTINUE 

CALL GRAFTU(DATA,NW) 

TOTAL 

30 

1 

158 

The outer loop (loop counter N) computes 100 spectral 

points, while the inner loop (loop counter K) uses the 200 time 

function points to compute each spectral point. 
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In estimating the number of conventional machine level 

instructions to equal this Fortran excerpt, we assume that A*B+C 

(for example) requires 4 instructions (A to (P)rocessor, B to (P), 

A*B, C to (P) +A*B) and that a sin(X) or cos(X) function with 

.0000001% accurate result needs xl7/17! as the last term, with 3 

instructions (1/N! to (P), (l/N!)*X2, 1+~/N!, with~ and 1 con-

tained in registers per term, needs about 35 instructions including 

setup operations. 

The total number of instructions is 158, with approximately 

50 operand storage locations plus an array of 100 locations and 

another of 200, requiring 408 words of high speed storage. 

To allow for even bigger computation loops (the example is 

admittedly simplistic) and to minimize the need for swapping arrays 

from cache to main memory as various sections of the arrays are 

needed by the program, at least 1K word of cache memory should be 

available. 



LIST OF REFERENCES 

1. Foster, C. Comp~ter Architecture. New York: Van Hostrand 
Reinhold, 1970. 

2. How to Use the NOVA Computers. Southboro, MA: Data General 
Corporation, 1971. 

3. Processor Handbook PDP11/20-15-r20. Maynard, MA: Digital 
Equipment Corporation, 1971. 

· 4. Programmers Reference Manual for the Model 960A Computer. 
Dallas, TX: Texas Instruments Incorporated, 1971. 

5. The TTL Data Book for Design Engineers. Dallas, TX: Texas 
Instruments Incorporated, 1973. 

6. Hellerman, H. Digital Computer System Principles. New York: 
McGraw-Hill, 1967. 

53 

7. The Value of Power. Anaheim, CA: General Automation Inc., 1973. 

8. Lorin, H. Parallelism in Hardware and Software (Real and 
Apparent Concurrency). Englewood Cliffs, N.J.: Prentice 
Ha-l, 1972. 

9. TTL Data Book. Palo Alto, CA: Fairchild Semiconductor Inc., 
1972. 

10. Mick, J., ed. Digital Signal Processing Handbook. Sunnyvale, 
CA: Advanced Micro Devices, Inc., 1976. 

11. Bell, G. and Newell, L. Computer Structures: Reading and 
Examples. New York: McGraw-Hill, 1971. 

12. '~croprogramming, Stack Architecture Ease Minicomputer 
Programmers Burden." Electronics 46 (February 15, 1973): 
95-101. 

13. Burroughs B6700 Information Processing Systems Reference 
Manual. Detroit: Burroughs Corporation, 1972. 


	Hardware and Software Considerations for Improving the Throughput of Scientific Computation Computers
	STARS Citation

	TITLE PAGE
	i

	ABSTRACT
	ii

	ACKNOWLEDGEMENT
	iii

	TABLE OF CONTENTS
	iv

	I. INTRODUCTION
	01
	02
	03
	04
	05

	II. HARDWARE CONSIDERATIONS
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30

	III. SOFTWARE CONSIDERATIONS
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48

	IV. CONCLUSIONS
	49
	50

	APPENDIX
	51
	52

	LIST OF REFERENCES
	53


