
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

1977

Hardware and Software Considerations for Improving the Hardware and Software Considerations for Improving the

Throughput of Scientific Computation Computers Throughput of Scientific Computation Computers

Glenn Allen Sullivan
University of Central Florida

 Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Sullivan, Glenn Allen, "Hardware and Software Considerations for Improving the Throughput of Scientific
Computation Computers" (1977). Retrospective Theses and Dissertations. 382.
https://stars.library.ucf.edu/rtd/382

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Frtd%2F382&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/382?utm_source=stars.library.ucf.edu%2Frtd%2F382&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

HARDWARE Al~D SOFTWARE CONSIDERATIONS
FOR IMPROVING THE THROUGHPUT OF

SCIENTIFIC COMPUTATION
-.- COMPUTERS

BY

GLENN ALLEN SULLIVAN
B.S.E. Florida Technological University, 1971

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Engineering

in the Graduate Studies Program of the College of Engineering
of Florida Technological University

Orlando, Florida
1977

HARDWARE AND SOFTWARE CONSIDERATIONS FOR IMPROVING

THE THROUGHPUT OF SCIENTIFIC COMPUTATION COMPurERS

by

Glenn Allen Sullivan

ABSTRAcr

In this paper, hardware and software techniques are pre-

sented for improving the Throughput (defined as Computations per

dollar) of computing systems which are oriented towards high-

precision floating point computations. The various improvements

are referenced to a baseline of the PDP 11/20, the NOVA 1200, and

the TI 960A, all 16 bit minicomputers. The most beneficial hard-

ware improvement is the inclusion of a Floating Point Processor,

which yields up to 200X Throughput increase over a software

floating point package. The inclusion of a cache high speed local

memory and the availability of Polish Notation format instructions

are shown to provide less than a SX increase each. The use of 48

bit data paths, numerous registers devoted to various processor

functions, instruction lookahead, a system I/O controller which

frees the processor from I/O work, and partitioned main memory,

result in a combined Throughput increase of 5.9X.

Director of

iii

ACKN CJalLEDGEMENT

I would like to recognize the guidance, urging and patience
... ---

of Dr. Benjamin Patz, who I consider to be not only a teacher and

advisor, but also a friend.

TABLE OF CONTENTS

.. -
ACKNOWLEDGEMENT. • • •

I. INTRODUCTION •
II.

III.

HARDWARE CONSIDERATIONS.

SOFTWARE CONSIDERATIONS.

IV. CONCLUSIONS •••

APPENDix·· • • . • • •

.

.

.
.

LIST OF REFERENCES

iv

iii

1

6

31

49

51

53

I. INTRODUCTION

-.-
This· researCh paper is concerned with several hardware and

software approaches to improving the Throughput of number-crunChing

minicomputers, i.e., the primary task of the minicomputer is the

execution of high-precision arithmetic operations, typically with

32 to 48 bits resolution.

The intent is to provide guidelines for an examination of

available computers, and not to exactly specify the characteristics

of the computer. Thus while a 48 bit word (configured as in Figure

1) is frequently used in the examples, some other word size may be

available and best suited for the projected applications.

32

t
resolution

sign of
resolution

~

14

i
exponent

Fig. 1. Configuration of 48 bit Floating Point Word

t
sign
of

exponent

Despite the frequent discussion of details such as cycle time,

memory size; I/O channels, etc., the basis for comparing compyter

2

systems can best be a matter of economics--how much computation per

dollar, herein referred to as Throughput. (Foster (1) suggests that

Throughput per unit of time be used, while neglecting cost.) The
~--

phrase "computation per dollar" is preferred to "instructions exe-

cuted per dollar" since a fast but poorly-considered computer could

easily appear superior to a somewhat slower computer with a well-

considered instruction set, although the slower computer may equal

or surpass the faster on a "computation per dollar" basis.

A. APPROACHES TO PROBLEM

Throughput may be enhanced by improving the efficiencies of

the two basic computer operations: (1) moving data, and (2) opera-

ting on data. One solution is to move data as little as possible,

and to use generous amounts of hardware to achieve largely parallel

data operations.

Accordingly, Section II examines the number and type of

registers available to the programmer, the number of buses internal

to the processor, and the necessity for a separate I/O controller

and a Floating Point Processor (FPP) as well as other hardware fea-

tures.

Section III, software considerations, examines the need for

variable length instructions, compound operation instructions, and

the I/O controller.

3

B. RESULTS OF THE VARIOUS PROPOSALS

For typical scientific computations such as trigonometric

function generation, matrix inversion or numerical integration, with
* -- -

a big percentage of the actual computations being high-precision

operations, the usage of a hardware FPP is easily justified; there

may be as much as a lOOX improvement in Throughput as the time to

execute floating point multiplications is reduced from 500 usee

with software execution, to the range of 3 to 15 usee with various

hardware execution techniques.

By using a high-speed local-store memory with 75 nanosec

effective access time, compared to typical main memory times (core

or MOS) of 400 to 700 nsec effective access times, and with both in-

structions and operands contained in local-store memory, the time to

execute the shorter arithmetic and logic instructions can be reduced

by as much as 80%. By using compound instructions, such as the Data

General Nova computer family instructions which combine arithmetic

or logic operations with condition testing and branching, the time

to execute the shorter instructions can be further reduced by 50%.

Thus, depending on the instruction mixture, with a baseline

of the PDP-11 or Nova series computers, we can expect from 4X to

200X improvement in Throughput as a result of implementing the

various proposals of this report. Figure 2 illustrates the various

system elements.

Main
Memory

I/O
Controller

1

------~-~- ~-- ------------~-----------~~---BUS
Processor

Cache Memory
Instruction Lookahead i

Working Register Files
Index and Base Register Files
Arithmetic/Logic Unit
Floating Point Processor
2 buses

Fig. 2. Computer System Elements

C. BACKGROUND MATERIAL

4

The investigative phase of the report development was con-

cerned with becoming familiar with the instruction set characteris-

tics of the Data General Nova 1200 (2), the Digital Equipment

PDP-11/20 (3), and the Texas Instruments TI-960A (4), all 16 bit

minicomputers.

Assembly language codings were generated for fixed point 16

bit divide and Floating Point 32 bit addition and multiplication.

It was immediately obvious that the PDP-11 and TI-980 offered an

advantage with their 6 and 8 registers, respectively, which are

undedicated and therefore available for 32 bit computations.

The Nova 1200 required much more register-memory-register

activity which completely negated the benefits of its compound

5

instructions.

As the report development continued, it was realized that

it was folly to not have a Floating Point Processor. Further

reflection inspired the inclusion of a number of working registers,

so as to minimize the need for register-memory swapping, also

improving I/O interrupt handling or switching from Worker to Super

visor mode.

The result is the realization that simply defining a better

"set of instructions" for a scientific minicomputer will not yield

the desired result, which is a significant improvement in Through

put as compared to the three minicomputers examined.

The proper approach is a combination of hardware and soft

ware (or instruction set) improvements. These improvements are

presented in Sections II and III.

II. HARDWARE CONSIDERATIONS

The key to good hardware performance is determined by the

results of the two dominant computer operations, moving and

operating on data. The overall goal is to keep data and instruc

tions coming to and going from the data operation modules, where as

much parallel processing is done as is affordable.

Guidelines for aChieving this are presented in Section II A

(Moving Data) where the dominant theme is to move data and/or in

structions as little as possible but move them quickly when needed,

'and in II B (Data Operations) where parallel processing is inter

preted to mean not just one-step clockless multiplication, but the

elimination of certain instruction execution approaches which par

ticularly penalize the less complex instructions.

A. DATA MOVEMENT

Improving Throughput requires that the processor be able to

move da~a when needed, not when the I/0 peripherals so permit.

Accordingly, two types of data paths are defined: (1) a BUS, which

major system elements use to transfer among themselves, and (2) a

bus, which is a data path within the processor.

1. BUSES and buses

The number of data Buses greatly influences the system

Throughput. Systems which need simultaneous I/O and processor exe

cutions must be configured so as to minimize conflicts between the

7

two; if there is only one wideband data path within the system, con-

flicts will be unavoidable.

For a system with multiple processors, multiple I/O con-

trollers and numerous I/O devices, it certainly makes sense to have

several BUSes; the BUS priority hardware may be simplified, Through-

put should be enhanced, etc. But for a one-processor system, where .

processor execution might be inhibited while main memory is us.ed for

I/O connnunication, only one Bus can be readily justified.

Thus most computing systems can only justify one BUS; par-

titioned main memory and an I/O controller can :require and justify

more than one BUS.

The buses within the processor itself are a different matter,

although subject to the same reasoning. A processor has numerous

data sources and sinks, such as the main memory port(s), cache mem-

ory, registers, and data operators. ·

One obvious choice is to have !!£ special processor bus, but

to extend the BUS inside the processor. This choice is economical

because no BUS switch is needed to link a processor bus to the BUS;

however, one common BUS will reduce Throughput because of being

able to move only one word at a time and because memory-to-I/O

operations inhibit transfers involving any processor units (note

that processor units such as the Floating Point Processor should

be working while the BUS is busy elsewhere).

A second choice is to have one BUS and one bus, which allows

independent I/O and memory-reference-free processor functioning but

8

does require a Bus switch between the BUS and the bus.

However, two buses will permit providing two operands to

those units which can operate on two operands, without having to

load one operand in a register and then provide the second. Two

buses do require twice as much driving and receiving logic to inter

face to processor units. But the time saved and the ability to

access two different operands simultaneously are strong favorable

arguments. In addition, the bus interface circuitry is often de

signed into contemporary TRI-STATE output Integrated Circuits,

therefore, only bus control logic need be designed, not bus driving

circuitry. (A typical unit is SN74S200 (5), a 256 bit TRI-STATE

memory.)

Three buses are even better, because of being able to pro

vide two operands to a unit and then move the answer to its storage

location. But unless the processor register files are able to

supply two operands and receive the result, which implies three data

ports for the files, the three buses will not be simultaneously busy

and thus two processor buses are enough.

Figure 3 summarizes the points of each choice.

Thus, for a s~ientific machine, a good choice is one BUS and two

buses, for these reasons:

1. Minimum of conflict between I/O and the processor

2. A scientific machine which is not highly parallel may be

slow enough that two processor buses can provide sufficient bandwith

9

3. Two buses can move in parallel, two operands from regis-

ters or memory and allow the execution of one-step operations from

the buses instead of a temporary holding register.

We must-include a dedicated bus from the instruction look-

ahead circuitry to main memory, as shown in Figure 6 on page 21 of

this report. Hellerman (6) further discusses the need for various

buses.

II buses

I/O -
processor
conflict

speed of
moving
operands

financial
cost

micro
programming
cost

temporary
register
cost

0

maximum

1

low

low

high

1 2 3

only over memory usage

2

low

low

high

3

some
more

little
more

medium

4

even
more

and
more

lowest

Fig. 3. Processor Buses strongly influence processor
Throughput.

How many bits wide should the BUS and the buses be? Since

the human-interface devices typically use 7 bit ASCII codes and the

industry standard mass-storage data word is an 8 bit byte, 8 or 16

bits . might be adequate. But if the processor and main memory size

-
is 48 bits, then a 48 bit wide system BUS sounds good.

10

Considerable logic circuitry will be wasted in multiplexing

48 bit words onto a 16 bit BUS and then demuxing irito 48 bit regis-

ters, and transferring 48 bit words will take 3 times as long as one

16 bit word, probably 300 nsec versus 100 nsec.

An alternative approach is to realize that once a block of

data has been transferred to the processor, and operations have begun,

then there will be only infrequent demand for other data words until

a whole new block of data is needed, and a 3-step transfer is accep-

table, for occasional demands. Unfortunately, if this occasional

demand for memory access occurs in the middle of an iterative execu-

tion, then Throughput suffers. Again a 48 bit BUS is needed.

The final point is the continually increasing speeds of main

memory technology. A 1 usee access time core memory is only

slightly worsened by a 300 nsec transfer time, while modern dynamic

MOS RAM memories, with 400 nsec effective access times, certainly

justify a 48 bit wide BUS.

The processor buses can be examined with the same criteria

in mind, but transferring data from FPP to registers to cache mem-

ory or Arithmetic-Logic-Unit or Main Memory. Again, 48 bit buses

are needed.

In summary, partial word transfers seriously degrade system
~

Throughput, and as will be seen in the rest of Section II, the re-

commended hardware is best utilized with full-width data paths.

Figure 4 illustrates system configuration at this point.

11

Main I I / O Peripherals
Memory and Mass Storage ,

If\ -- ~~

, t.f BUS
'~) \ .

48 bit s
wide

, I/
I

Processor

two
~- - - - - --- - - - -- -~

buses I

~ -
I - - - - --- - -- --- ~
I

48 bits wide, each

Fig. 4. System Data Paths

2. PROCESSOR REGISTERS

Now that the system can move data quickly when r equired, we

need to minimize the movement of data (and i ns tructions) by inclu-

ding, within the processor, the following accumulator s / registers.

1. Registers used to hold data bef ore and after operation;

for generality of use, the width should be ~ 48 bi t s , they should be

available by either of two ports, so that two operands can come from

the same register file and the file should hold at least 8 registers

so t hat the r egister specification field in t h e instruction word is

of non-tr i vial width; suggested source is SN74172 , 3-port register .

file

2 . To save t ime in computing memory addresses, there should

be separate regis ters which act as index registers for list ac-

12

cessing and as base registers for relocatable instruction accessing;

by having these registers separate from the 48 bit registers, they

can be pe~nently wired to parallel adders and the Program Counter,

thus allowing rapid address computation; suggested length is 32 bits,

allowing a main memory of 4 Megawords, although the base registers

will typically be referring to blocks of words of 512 word size or

larger and something less than 32 bits would suffice; suggested

source is SN74170 4WX 4 bit register file. The need for at least 8

working registers (including index) to allow the writing of

position-independent code is discussed in a book from General Auto

mation (7). Lorin (8) shows that index or base registers are

needed for multiprogramming activity.

3. A third set of reg!sters will be used whenever the pro

cessor is forced to switch from number-crunching to managing the

system, as defined by the Operating System Program (OSP). These

registers will be 48 bits wide, so as to be able to handle any size

word. To minimize register-memory swapping while executing the OSP,

8 registers will be provided.

4. A fourth set of registers is in the FPP, so as to fur

ther minimize the movement of operands. These will be discussed in

Section II Bl.

Lest the reader be appalled by the numerous registers in the

processor, remember that registers are relatively cheap, less than

$.2 per bit. Adding extra registers is one hardware technique

which greatly ·. improves Throughput because the data can be available

13

within 50 nsec instead 400 nsec, and the use of fewer bits to select

a register than to specify a main memory word allows shorter instruc

tions.

Speaking of instructions, why can't they be in registers as

well?

3. HIGH SPEED LOCAL STORAGE (CACHE MEMORY)

In computers with only a few registers the instruction exe

cution cycle most often requires two main memory accesses: one to

fetch the instruction and a second to locate the desired operand.

Having data in registers reduces the frequency of second accesses.

Likewise, having the instructions in fast store/registers would re

duce or eliminate first accesses. Having the instructions in fast

store would reduce the instruction execution time by nearly 40% be

cause of having a 50 nsec register access time replacing a .4

usecond memory access.

Storing the entire program in fast store would be con~

siderably more expensive than using conventional memory, although

the Throughput would increase considerably. Programmed loops, which

will fit into the available fast store, can be executed at a very

fast pace without requiring the main memory to be nearly as fast.

Lorin (8) discusses this under '~oving a Single Processor System

to Its Limit."

To permit the use of fast storage, two conditions must be

satisfied. These are (1) the loop must fit within the available

fast storage, and (2) instructions must exist for loading the loop

14

instructions into fast storage and for switching the processor to

and from execution of the fast storage loop. The first condition is

satisf~ed by -purChasing a suitable block of fast storage (less than

$.2 per 16 bit word for 75 nsecond access) and by allotting suffi

cient bits in the instruction words to select any one word of fast

storage, which can be avoided by using a Cache Program Counter.

Thus 1024 bits of fast storage requires 10 bits to select any one

word.

The second condition cannot be satisfied by purchasing com

ponents; instead two new instructions must be defined. Multiple

Fast Transfer (MFT) is intended to load several words into sequen

tial storage locations. Before executing MFT, an index register

could be initialized as an autoincrementing pointer to the desired

data block. MFT contains the two essential numbers of (1) the

first word of the data block, and (2) the number of words to be

transferred to fast store or to main memory.

The second new instruction is Conditional Control Transfer;

program control is handed from the regular program counter to a

Fast Store program counter, or vice versa, if a specified processor

state exists.

The Throughput improvement provided by Cache Memory is il-

lustrated with a software implementation of the Booth algorithm f or

multiplication, which goes as follows:

1. Logical-shift the multiplier and the partial product

15

2. Add the multiplicand to the partial product if the mul-

tiplier LSB is a 1

3. Go to 1 unless finished

This operation is executed as follows:

1. Load the multiplier and multiplicand into the proper

registers, clear the register wherein the product will appear, and

load a down counter with 1710

2. Load an autoincrementing index register with the address

of the first instruction of the add-shift loop

3. Execute a MFT of the add-shift loop into a block of fast

store

4. Execute a CCT--unconditionally transferring control from

the program counter to a fast storage program counter

The loop is executed requiring 0.5 usecond per instruction,

until a CCT is satisfied (after 16 loop iterations) and control is

transferred baCk to the program counter.

With the following add-shift loop

[
multiplier here

A [B I
double length product appears here

._ ___ c ____ _.l (._, __ one factor here

LOOP: Shift right A

Shift right B

CGT_(if counter=

Skip (if carry =

Add (A+C into A)

Decrement counter

Jump (to LOOP)

NEXT: next instruction

0)

0)

in the program

loaded into
fast store

16

conventional execution (with instruction CCT changed to a condition-

al Jmp TO NEXT) requires the following execution times:

1. Load multiplicand and multiplier into B and C registers,

clear A register, and load 1710 into a down counter (these initiali

zations are identical for both cases and thus are neglected)

2. 16 interations of the loop from Shift A through Jump

(to LOOP) requiring 16 iterations times 7 instructions times 1.5

useconds ·(the 1.5 usee is composed of 1 usee instruction fetch time,

and 0.5 usee execute time because all operands are in registers) per

instruction, or 168 useconds

3. Execution of Shift A, Shift B, and then Jump to NEXT

which ends the loop--4.5 useconds

for a total of 172.5 useconds.

A similar execution, using fast store, required the fol-

lowing times:

1. Initializations

2. Load an autoincrementing index register--2.5 usee, and

17

execute a MFT (of 7 words)--1 usee to fetch plus 7 transfers

times 1.5 usee or 11.5 usee

3. Transfer program control to a fast storage program
... - - -

counter--CCT--1.5 usee

4. Execute loop--16 iterations times 7 instructions times

0.5 usee or 56 usee

5. Execution of Shift A, Shift B, and CCT--1.5 usee

for a total 11.5 + 1.5 +56+ 1.5 or 70.5 usee; this is ~ · 40% of con-

ventional execution times.

Thus execution of loops requiring many iterations-where

the critical number of iterations is inversely proportional to the

loop length-will reduce program execution time. For combinations

of long loops and many iterations, the execution time is bounded by

limits of 60% and 20% of conventional execution times, where 60%

results from instructions being in cache memory and the operands in

main memory, and 20% results from instructions in cache and all

operands in registers. This assumes that all data massaging occurs

in 500 nsec, no matter what the operation.

The program requires three additional instructions:

1. To initialize an index register

Q. MFT

3. CCT

It is felt that the additional instructions will prove useful, MFT

for restoring register contents after a POWER FAIL INTERRUPT (indeed

if the entire processor state were contained in registers one MFT

18

would suffice to restore the processor state) and both MFT and CCT

for changing processor states and reassigning processor control in

a multiuser/~ultiprogramming/multiprocessor/time-shared computation-

al environment.

For consistency, if nothing else, it is necessary to make

the cache memory word size 48 bits. To determine the necessary num-

ber of words in the memory requires more effort, but an examination

of several program loops (see Appendix A) showed that a 1K word

cache memory is adequate. Besides, Section III shows how to pack

several instructions in one 48 bit word, so there is t he capability

of holding quite large loops in a lK cache memory.
,

A possible source is the SN74S200, a 256 bi t RAM. Probable

cost is greater than $500 for a 48 bit memory.

4. INSTRUCTION LOOKAHEAD

It was previously mentioned that the processor needs to keep

data and instructions coming to and going from the data operation

modules. With the inclusion of several types of registers and the

cache memory, the data and instructions are available faster than

the processor can finish one instruction and move to the next.

For example, with data and instructions in cache memory, and

assuming 25 nsec to compute the next instruction address, 75 nsec

cache memory access time for the instruction, 100 nsec instruction

decode time and 75 nsec to access the new operands from either re-

gister or cache memory, then a 100 nsec execution t i me (a rea-

19

sonable value for fully parallel operations such as ADD, COMPARE) is

totally swamped by the 275 nsec instruction setup time. This flow

of operations follows:
.

1. Compute next instruction address--0~150 nsec; 0 typi-

cally, 150 nsec if different index register is used; allow 25 nsec

2. Access next instruction in cache memory--75 nsec

3. Clock instruction into holding register and decode--100

nsec

4. Locate new operands and prepare to gate them onto pro-

cessor buses--75 nsec

5. Gate operands onto buses and execute instruction--100

nsec

6. Return to 1

By adding extra logic to implement an Instruction and Data Lookahead

module, then these 5 operations can be split into 2 parallel activi-

ties as illustrated in Figure 5.

(a)

(b)

(c)

compute address
25 nsec

.J,
access instruction

75 nsec
~

decode instruction
100 nsec

~
wait if current
instruction could
cause a branch

(d) locate new operands

(e)

75 nsec

l
execute instruction

100 nsec

L ~ '""x--- wa1.t

Fig. 5. Flow of Instruction Lookahead

20

This parallel flow reduces the typical execution time to 250

nsec from 375 nsec, and is well worth the extra circuitry, which will

mainly consist of logic to allow the locating of operands to have

priority over instructions, especially desirable if two operands are

sequentially pulled from the cache memory, and logic to halt the in

struction sequence (steps a, b .& c) if the present instruction could

result in a program flow branch and thus invalidate the address that

would have been computed. It should be noted that a branch within

the boundaries of cache memory results in much less time delay (be

fore returning to pipelined execution) than does a branch to main

memory.

To expedite instruction transfer from the cache, a dedicated

path exists between the cache and the lookahead unit, as shown in

Figure 6.

5. I/O CONTROLLER

After improving the Throughput by adding the hardware sugges

ted in Section II A1 to A4, it is necessary to ensure that the pro

cessor will not be bothered by the need to handle the I/O devices.

We particularly do not want the processor to have to handle data

transfers to and from mass storage.

By using an I/O Controller to handle all interrupt servicing

and block data transfers, and to buffer I/O device data transfers

to/from memory, the processor can be isolated from most of the prob

lems that I/O devices inflict upon a computing system, particularly

21

where the cache memory is reading in a block of data and an I / 0 ser-

vice routine memory access would delay the beginning of a computation

loop.

Figure 6 presents the hardware suggestions of Section II

A.l-5.

Main
Memory

'"

Human
Interface

Mass
Storage

·y I/0 Controller IE-

1 ,,

Processor i'
,It

Register
File

Arithmetic &
Logic Unit

'"
Base &

Index
Registers

Holding Register

/ BUS

4'8 bits

_,
' Instruction .L __
' ~. ~+-~~~ Lookahead

Meinory
Cache

~--------------
Program
Counter

Fig. 6. System Configuration

22

6. MAIN MEMORY PARTITIONING

One way to prevent processor and I/0 conflict over main

memory is to par~~t~on main memory into sections, each with its own

memory address and data registers and bus controller interface. Data

awaiting I/O action would be available in one section while the other

section(s) could simultaneously provide memory service for the pro

cessor.

There is a peculiarly interesting benefit if the number of

memory sections available to the processor is a binary integer 2n,

n > 1. This benefit appears as a l/2n reduction in effective memory

access time when referencing sequential memory locations, as when

transferring blocks of memory words to the processor cache memory.

For example, if there are 4 memory sections for the proces

sor, and if words are written into these sections in a 4 word paral

lel fashion (e.g., word N in section 1- location M, word N+l in sec

tion 2 - location M, N+3 in section 4 - location M, word N+4 in sec

tion 1 - location M+l, etc.) as illustrated in Figure 7, then by

accessing 4 words in parallel, the effective memory access time be

comes 100 nsec instead of 400 nsec.

Keep in mind that to access any word takes 400 nsec but that

once the Memory Buffer registers are filled, the effective word rate

is 10 MHz instead 2.5 MHz. Once data is in the cache memory, how

ever, the word rate rises to 13 MHz.

As was discussed in section II A, part 1, the inclusion of

partitioned memory may justify two BUSes, with the I/O controller

23

moving I/0 data to and from the processor portion of memory, and with

the processor dumping I/O commands into an I/O controller parallel

port, without dire~ly talking with any I/O devices.

Section
Word
Address

' ' ' '
M

M+l

M+2

MAR*

BUSS

- #

Section
1

' ' '
N

N+4

N+8

' ' ' '

MBR**

Section
2

' ' ' '
N+l

N+S

N+9

' ' ' '

MBR

Section
3

' ' ' '
N+2

N+6

N+lO

' ' ' '

MBR

Fig. 7. Parallel Storage Increases Memory

* MAR = Memory Address Register
** MBR = Memory Buffer Registers

B • DATA OPERATIONS

Section
4

' ' ' '
N+3

N+7

N+ll

' ' ' '

MBR

For best processor Throughput, the data operations need to

be as parallel or one-step a procedure as is feasible.

1. FLOATING POINT PROCESSOR (FPP)

One of the key points of this report is that a scientific-

computation-oriented minicomputer needs to have a hardware Floating

24

Point Processor to handle the high-precision arithmetic operations.

Since the FPP can provide a lOOX Throughput improvement, either the

computer system should have one from the start, or one should be de

signed and built by some graduate students as a research project.

But if there is no FPP, there is no reason to implement the other

proposals of this report, since the FPP gives such a big benefit.

The following parameters need to be considered when speci

fying the FPP:

1. Is it an integral part of the processor or is it treated

as an I/O device with the attendent data movement delays

2. How many full width registers are included in the FPP,

whiCh provide needed storage to minimize the moving of data at

inopportune moments

3. Is the FPP expandable to wider words and greater preci

sion by a control instruction, or must triple-word (48 bit re

solution) operations be executed by software or software-hardware

combinations at a serious Throughput penalty

4. What degree of parallelism should the FPP provide for

the multiply operation

For best Throughput, the FPP should be an integral part of

the processor, with immediate access to the processor buses, regis

ters, and cache memory. Particularly for Floating Point Addition

and Subtraction, where the majority of the instruction execution

time will be spent in aligning the decimal points before parallel

add or subtract and the additional time needed to move two operands

25

to an I/O device and move the result back to the processor register

files compares with the actual execution time, keeping the FPP in

the processor is j~tified. In addition, the BUS is then less

needed by the processor, and I/O data movement is enhanced.

The second FPP parameter is the number and size of registers

it retains for its own use. Since maximizing Throughput requires

keeping the FPP as busy as possible without delaying operations be

cause the operands are not available, at least 6 registers, 48 bits

wide, are needed to hold the operands and results of two successive,

completely separate arithmetic operations whiCh were executed while

the processor buses or caChe memory were busy with other activities.

Therefore, the SN74172 dual-port register file is suggested, sup

plying 8 words X 2 bits in each integrated circuit, and being able

to drive two buses with different operands.

The third FPP parameter, expandability, is determined by

the size of the adders and shift registers of the FPP. One-step

addition and subtraction requires a 32 bit adder (which assumes 32

bit resolution) as does the iterated steps multiply and divide, so

including the capability for 48 or 64 bit resolution computation

merely requires 4 or 8 more 4 bit adders and 1 or 2 lookahead logic

functions (whiCh is used to keep the time to add 64 bit operands

down to 2 or 3 times the delay of a single 4 bit adder). The mul

tiply and divide functions also will require a 96 or 128 bit shift

register, whiCh is 16 SN74198 ICs. By including at least 13 more

ICs, the FPP can be expanded to 64 bit arithmetic operations, thus

26

avoiding obliging the programmer who needs more than 32 bit opera-

tions to fall baCk to software implementation or a (M + N) (a + b)

partial product approach.
---.

The fourth FPP parameter, degree of parallelism of the ac-

tual act of multiplication, is determined mainly by affordability.

Secondary considerations are space and power, which at least for

earth-bound computer-systems, still reduce to a matter of cost.

The cheapest implementation, the add-the-multiplicand-to-the-

partial-product-if-the-next-multiplier-LSB-is-1, can easily yield

step times of - 150 nsec/bit, or 4.8 usee for the basic operation

plus 0.5 usee instruction setup time (with the sign and exponent

of the product being computed during the 4.8 usee) which yields

5.3 usee for 32 bit multiplication.

The use of clockless multiply ICs such as the Fairchild

9344 (9) will give a 32 bit product, truncated from 54 bits, in

750 nanoseconds. An expansion of 64 bit. operands requires 4 times

as many ICs and power, or --- of the 9344 ICs.

A third approach uses the Advanced Micro Devices AM25LS14,

(10) a one-cloCk-pulse per bit of product serial multiplier func-

tion, which enables the use of 4 ICs for a 32 bit multiplier. One

operand is presented in parallel to the 8 inputs of each of the

ICs, and the other operand is clocked serially into the end of

each of the multipliers. The allowable clock rate for 32 bits is

6 MHz, or 10.2 usee for a 32 bit multiplication. By using 16 of

27

the ICs to generate 4 partial products, with only 32 clock cycles,

and then adding the partial products with 3 adders, the time for

a complete 32 bit multiply is 0.5 usee setup+ 5.6 usee partial

multiply +.2 usee addition, a total of 6.3 usee, no speed improve-

ment over the first approach, the Booth algorithm, mainly because

32 clock pulses are required.

The non-parallel version of this approach is readily ex-

panded to 48 or 64 bit operands by simply using 6 or 8 multiplier

chips and thus is recommended if more than 32 bit operations are

likely.

The most reasonable pseudo-parallel approach is a partial

product approach using Medium Scale Integration logic which yields

partial products in 8 clock pulses instead of 32, requiring about

40 ICs. If used with a 10 MHz clock rate, it would result in par-

tial products in 0.8 usee and complete results in 0.5 usee setup

+0.8 usee multiply +0.2 usee addition, totaling 1.5 usee. This

approach is diagrammed in Figure 8. By reconfiguring the shift
'

registers and adders, 64 bit multiplications can be performed in

0.5 usee setup + 3.2 usee multiply +0.2 usee addition, totaling

3.9 usee.

This last technique, because of its inherent parallelism,

speed, and expandability, is recommended for use in a scientific

computing system.

28

8 bits each

A3 ~ Al Ao

-- -

B

32 bits

A3 X B 40 bits

A2 x B +j l
Al X B + [I l l
·Ao X B + [l l l I

Fig. 8. Pseudo-Parallel. multiplication also allows effec
tive execution of double-precision multiplication by reconfiguring
the shift registers and adders.

2. ARITHMETIC-LOGIC-UNIT OPERATIONS
..

(INTEGER ARITHMETIC)

The ALU, which provides one-step 32 bit operations such as

add, subtract, OR, AND, COMPLEMENT AND SHIFT, can execute its oper-

ations in well under 100 usee for all but multiple shifts.

By executing these operations from the two processor buses,

the additional time delay of synchronously clocking the operands

into holding registers is avoided. Since the Qperand access time

is 75 nsec and the transfer time is 100 usee, with (for example)

29

the maximum 32 bit add time of 60 nsec, the operations can be exe

cuted in 2 cycles of the 10 MHz clock instead of 3.

Figure 9 illustrates this execution time reduction, particu-

larly valuable when linked with instruction lookahead.

I I
Decode

I Strobe

Access Latch

Operands t Store
Transfer Result
to ALU

+ Execute

Standard Timing

Store
Result

Decode

~
Access, Transfer

and Execute

Compressed Timing

Fig. 9. Execution from Buses speeds One-Step Operations

3 • COMPOUND OPERATIONS OF ALU

As has been repeatedly emphasized, one of the techniques

used to enhance Throughput is to move data as little as possible,

mainly by keeping data near where it is used, not out in memory.

By making available compound instructions such as Add-and Branch-

if-Zero, the processor can avoid having to set-up the operands for

two instructions.

For example, to add two numbers and change program flow

30

based upon the sum by using the PDP-11/20 instruction set requires

two instructions:

ADD (A + B .::r B) . - -

BEQ B,J (branch if equal to J)

while the Nova 1200 allows the following

ADDZ A,B, szc

(skip next instruction if A = B)

Granted that the Nova instruction cannot reference memory or I/O

devices nor can the skip action directly yield large changes in the

addresses (although Program Counter relative addressing could be

used) but the intent of this report is to have the operands in re-

gisters and the instructions in cache memory so there is no need for

lArge addressing fields. Thus if the instruction is executed in one

continuous flow, there is no need to load the intermediate results

in temporary registers and even this slight delay can be avoided.

To summarize, if we take advantage of the operands being

in registers and use compound instructions as permissible, then the

ADDZ,A,B and BEQ B,J execute times with the operands stored in main

memory (needing 7 read or write operations or - 3 usee) can be re-

duced to (75 nsec get instruction, 100 nsec decode, 25 nsec get A

and B, 75 nsec add A to B, 50 nsec compare sum, . 75 nsec get J, 75

nsec add J to Program Counter and load in PC) a total of 475 nsec,

or a Throughput improvement of 6 times.

III. SOFTWARE CONSIDERATIONS

In this portion of the report, section IIIA determines how

the software can best utilize the capabilities of the available

hardware, presumably that suggested under Hardware Considerations.

In Section IIIB . and C we look for special contributions to Through

put that certain other software features, mainly variable instruc

tion length, can provide.

A. SYSTEM BUSES

The software will not be directly concerned with the BUS(es)

and processor buses. '!he BUS assignments will be handled by the I/O

controller, with short processor requirements, such as a 4 memory

words-in-parallel-transfer, given priority. This reversal of the

usual priority hierachy is possible because of the buffering capa

bilities of the I/O controller.

Nor will the software be concerned about the processor

buses, as their usage will be handled by processor control logic,

which will probably be either conventional logic or a highly

parallel control word microcontroller, so as to support system speed

requirements.

1. REGISTERS

It is intended that all processor working registers be

accessible by the same instruction type, while the Supe-rvisory Mode

32

registers use still another instruction which is restricted to being

used by the Operating System (OS). By using only one instruction to

access a number of registers, although in separate register files of
---~

possibly different sizes, the assembler and compiler are simplified

and the logic circuitry needed to select the different files is not

increased over that needed by separate instructions.

Also all of the I/O controller registers and data files

should be accessible by the OS, so that they may be transferred to

or from memory in response to a Power Fail Shutdown or Restart.

2 • CACHE MEMORY

The processor's cache memory is supported by three special

instructions. The first is Multiple Fast Transfer, which guides the

block transfer of data from one point in the system to another, not

just to cache memory. The second is Conditional Control Transfer,

used to transfer control of the processor instruction decode logic

from the main memory PC to the cache PC or vice versa, to switch to

and from Supervisory mode and to force the processor to operate in

the fixed-length instruction mode instead of the variable-length

mode.

The third instruction is the type of main memory reference

instruction which occurs when the processor is executing instruc~

tions from ·cache memory and suddenly needs to go outside cache

memory boundaries. The uniqueness comes by the address of the ac-

tual main memory location being computed from the base register for

that program, the index register for the particular page of the

33

program, and the sum of the CPC and the memory address displacement

supplied by the memory reference instruction. The capability must

exist for this type of addressing.

If the cache is large enough to hold several program seg

ments, with the execute time of any particular segment being long

enough to load the cache with the next program segment, then the

flow of execution will keep rolling around the cache boundaries;

this continual flow of execution can only_ be implemented by using

base and index registers, and the associated "memory" referencing

instructions.

3. I/O CONTROLLER

The intent of the I/O controller is to free the processor

from having to guide I/O activity, and to add certain hardware fea

tures which software is too slow to handle anyway, such as disc and

tape error detection and correction, and the buffering of high speed

data block transfers.

The OS needs to be able to guide the I/O controller, either

by direct communication on the system BUS or by presenting commands

at a special parallel controller port. Instructions need to be able

to handle the following demands:

1. Modify priorities of peripherals as their importance to

a program or different programs changes, by a command from OS

2. Be able to acknowledge or ignore peripheral interrupts

during preventive maintenance or equipment failure, so that the sys

tem is not paralyzed by uncompleted data transfers

34

3. Be able to handle the discovery of a parity error, or

worse, resulting from an I/O transfer or a file read, so far as

initiating a retransmit or a reread, or by recording the device and

data address where the fault occurred so as to facilitate repair

The last requirement implies that the I/O controller should

handle I/O error checking and system error record-keeping in error

status registers. Since hardware logic can be more cost effective

in finding/correcting I/O and memory errors than can the OS, the ·

only error checking done by the processor should be monitoring for

processor errors, but again with hardware. The OS may periodically

monitor the error status registers.

4. MAIN MEMORY PARTITIONING

Physical partitioning of main memory was presented as a

technique for obtaining rapid transfer of blocks of data. It is

also useful for maintaining separation of tasks in a time-shared

environment where it is advantageous to keep at least part of the

OS in memory as well as user programs awaiting data from mass

memory or from special devices such as Fast Fourier Transform mo

dules, where disc swapping would be ineffectual. There is a need

for the OS to be able to reconfigure the memory for a better task

fit. This falls under the domain of memory management, and· should

be linked with what is actually . resident in the cache memory.

A similar situation occurs when a separate Task-Scheduling

processor is concerned with keeping the scientific processor fully

occupied with number crunching while it handles the execution of the

OS, as does the B6500 of the ILLIAC IV system (11).

5. FLOATING POINT PROCESSOR

There are two basic types of instructions which guide the

FPP. The first, as may be expected, are those which specify the

various floating point operations and the registers wherein the

operands are located. The operations are:

1. add

2. subtract

3. multiply

4. divide

5. invert

35

The invert operation is included because it provides a

useful function, which is often used in matrix operations, without

requiring the initialization of a register with 0001 to serve as a

dividend.

The second type of instruction is concerned with the expand

ability of the FPP. The actual technique used to expand the charac

teristic size from 32 bits to 48 or 64 may be selected from Section

II.B.l. With expanded precision, the 48 bit registers will not hold

all of an operand, thus it will be necessary to specify six 48 bit

registers (4 operand, 2 for the result) instead of only 3.

The expanded precision instruction should also indicate

whether 48 or 64 bits (or other) is being used, as each extra bit

of precision requires an extra 100 nsec. One field of the instruc-

36

tion could contain a binary count of the precision, which is loaded

into a down-counter in the FPP, where a Borrow output from the

counter halts the computation.

6. MEMORY REFERENCE CAPABILITY

OF COMPOUND INSTRUCTIONS

One area of software support required by compound instruc

tions comes from the need to be able to execute these operations

with the operands contained in either processor files or main memory.

Unlike the FPP instructions, which take from ~ 500 nsec for an

addition with no decimal point alignment needed, to as long as ~ 30

usee for an extended-precision 64 bit multiplication, and where the

instruction lookahead has time to access the operands for the next

operation and move them from main memory if needed, the compound

operations are so short (<100 nsec execution time, using instruction

lookahead) that using separate instructions, to access the operands

and store the result back in main memory, is a considerable waste of

processor time and memory space. This is illustrated in Figure 10,

where the different parts of an instruction execution sequence are

assigned typical operate times.

Another advantage occurs where the cache memory branches to

main memory for some flag status check or update; if the necessary

activity can be pulled from memory in the form of one long instruc

tion, then the system can avoid the Throughput penalizing need of

multiple memory accesses.

Execution via Memory Reference

time, nsec

75

100

100

400

Locate instruction (cache)

Decode instruction

Computer address of operand A

Locate operand A (main memory)

Compute address of
operand B

37

Place A in processor file 400* Locate operand B (main
memory)

100 Execute operation

400 Store result in memory
1.675 usee

100 Place B in Processor file

Non-Memory Reference

75 Locate instruction for operand A (cache)

100 Decode

100 Compute address of operand A

400 Locate operand A (main)

100 Place A in processor

Locate operation instruc
tion (cache)

Decode

1 100 Execute operation

Locate instruction for

operand B (cache)

Decode

Compute address for
operand B

400 Locate operand B (main)

100 Place B in processor file

Locate instruction for
storing result (cache)

100 Decode

100 Compute address

400 Execute store
1.975 usee

Fig. 10. Memory Reference Capability Speeds Compound
Instruction Execution.

*This can be reduced to < 100 nsec if A and B are pulled from memory
by a 4 words-in-parallel memory access, which reduces the total
to 1. 375 usee.

A third advantage is that if the processor is given a few

general-purpose registers which the user programs cannot directly

access, then execution of these status monitor functions (or what

ever) can proceed without the need for the programmer to move data

from registers to cache or memory to make temporary working space.

These three advantages also apply for the other operations

of the ALU.

B. SPECIAL SOFTWARE CONTRIBUTIONS

38

The bulk of the Throughput-improving fac·tors presented by

this report have been in the hardware. There is, however, one

software factor which can significantly affect Throughput. This is

the availability and proper application of variable-length instruc

tions.

The benefit arises by not having to force the processor con

trol statements (instructions) into fixed word lengths. It has been

shown in Section II.A.3 that a MFT instruction has wide applicabili

ty, even though it will need 45 bits of the available 48 allocated

as follows:

1. op code--6 bits .

2. cache starting address--10

3. cache or registers--3

4. Number of words to be transferred--10

5. Starting location of memory block--16

However, the bulk of operations, particularly when execu-

ting instructions from cache memory, do not need to be 48 bits long.

39

By using cache PC relative addressing, the address displacement can

be limited to 10 bits. Register specification can be limited to 2

or 3 fields of 5 bits or less, so 16 or 24 bit instructions are cer

tainly reasonable and thus justify double-or-triple packing in a 48

bit word.

The following section presents an even denser packing of

instructions, coupled with a highly structured operand movement

technique; the intent is to minimize both operand movement and in

struction access and decode time, mainly by employing very simple

instruction formats.

C. POLISH NOTATION EXECUTION

This paper has repeatedly emphasized that a computer should

be judged primarily by its Throughput. A previously mentioned

approach to improving Throughput is that of reducing the instruction

execution time by storing the program in cache memory. Here we

examine another approach of simplifying the instruction format to

permit packing two or more instructions per memory word. Obviously

it will be difficult to implement memory referencing in small

instructions (8 to 24 bits long); indeed, it is even difficult to

specify different registers. Perhaps this new approach may be best

described as having the operands automatically moved into position-

no explicit operand selection. This technique of implicit operand

selection corresponds to the technique of Polish Notation--PN.

An example of conventional algebraic notation, requiring

40

explicit operand selection/location, is

(a+b) * (c-d)/f

This expression could be evaluated as follows:
-- -

1. Evaluate a+b and store in g

2. Evaluate c-d

3. Multiply g times c-d and

4. Divide product by f

PN would rearrange the previous expression as

ab+cd-*f/

which would be evaluated as previously done, with the difference

being that the storage location g is not required. This assumes

that a subtract sign means c-d, not d-e subtraction sign/opcode

would also be useful.

It is recognised that the following operations are needed:

1. Addition of two numbers a+b

2. Subtraction of two numbers a-b or b-a

3. Multiplication a X b

4. Division a/b or b/a

5. End of PN execution list

The processor will be responsible for the actual data

operations; it must manage the operand mo~ement and the airthmetic

operations as required by the PN op code (at this point the size of

the PN op code is undefined).

The previous operations 1 through 5 are actually 7 distinct

instructions. It may be argued that the order-dependent operations

41

of subtraction and division do not have to be bipolar; the Algebraic-

to-PN conversion program could be written so that only order-

independent operations need be available. However, it is felt that

the provision fQr order-dependent execution will cause little if

any time penalty but will permit a simplification of the Algebraic-

to-PN conversion program and a considerably easier task of manual

conversion.

Another arguable point is the need for inclusion of logic

operations. To "resolve" both arguements, it has been decided to

set the PN op code at 4 bits, thus allowing a considerable expan-

sian of the set of 7 previously discussed.

A third consideration is ''why has not PN become popular?"

One answer is provided by the article ·~croprogramming, Stack Ar-

chitecture Ease Minicomputer Programmer's Burden" in the February

15, 1973 issue of Electronics (12). To quote,

"In addition, the stack concept is convenient for writing
the compiler. Proof is that compiler writers using con
ventional computers create stack environments in software.
Thus, from the standpoint of any user the availability of
a minicomputer with a stack architecture makes it cheaper
to obtain a compiler for the particular high-level language
that suits his application."

And the answer is--stacks are popular (with enhanced PN execution a

main reason) but a stack which operates without software assistance

does require a considerable amount of hardware--an amount comparable

to a small computer of several years ago. Figure 11, excerpted

from the Burroughs B5000 manual (13), presents the stack components.

add
(push)

remove

execution
stack

pointer

empty

(pop)

full

main memory
stack pointer

to

to processor

top element

second element

empty

full

additional
fast

storage

, " I

,,

'twll

to main memory

Fig. 11. Hardware Elements of a Stack

42

Perhaps the most straight forward stack implementat~on would

be a shift register with the properties:

1. N-bits wide (N is the size of the operands)

2. Very long or deep

3. Left and right shiftable

43

4. At least the top 2 elements visible to the processor

This hardware element does not exist. Indeed, the author is not

aware if even a finite length by m-bits wide shift register exists.
-- -

However, such a stack could be implemented with large quantities of

8-bit-long shift registers (e.g. SN74198).

A slightly different approach uses IC &&~ such as the

SN7489, a 16 words of 4 bits memory. At current per-bit prices,

the 7489 is - 75% cheaper than the 74198 but is slower in that a

Read/Write cycle is required rather than a simple shift. Figure 12

presents the operation of a RAM implemented stack, which is execu-

ting the function

The action codes are as follows:

N. PUSH operand onto stack

F. POP operand from stack

A. Add top to second element

M. Multiply top and second element

D. Divide top element by second element

E. Divide second element by top: element

s. Subtract top element from second element

T. Subtract second element from top element

H. Execute next cache word as a conventi nal instruction

44

I N N N N N N M M D A T I Action Code

I
A B c D E F G H I J K I Top element

A A A A E A A

B B B B B B B
RAM

c c c c c
D D D

0 0 1 2
4 4 3 2

3 4 3 2 2

1 0 0 1 2

1 0 0

3 4 4

RAM level
RAM vacancies

A A

0 0 0 0 0 1 1 1 1 0 0 0

as execution progres ses

Main memory

Main memory
level

Fig. 12. Typical Stack PUSH, POP, and Execute Activity

The general philosophy is one of (1) be hesitant to move

words from RAM to ·main memory (move only when RAM is full, or when

a PN op code says to) and (2) be quick to move words from main

memory to RAM (do so whenever the RAM is less than half full, unless

inhibited by a PN op code) but do not fill up the RAM.

At this point it is assumed that a stack has been imple-

mented, via the cache memory and cache PC. It is now necessary to

develop additional PN instructions; this is done by observing the

PN implementation of a series evaluation.

For real values of X

sin x = x1 - x3 + x5 - x7 +
1! 3! 5! 7!

• • • • • • • • • •

(X in radians)

which may be rewritten as (using the first 4 terms)

sin X = X ~ - 3~ ~ \!! ~ - 7~)))

45

This could be programmed in the fol lowing fashion, beginning

with the innermost operations

OPERATION/ CODE(8 bit word) NEW TOP ELEMENT

Push X

Push 1

Push 1/6

Push x2

Push 1

Push 1/20

Push r
Push 1

Push 1/42

Push r
M x!-/42

s l - x2/42

·.

46

M x2 (1-x2 1 42)

M <x2 120) (1-x?-I 42)

A l+(~I20)(1-X2 142)

M y}(l+(X2120)(•••))

M (X216)(1+(X2120)(•••))

s 1-(x2 16) (•••••)

Pop top element of previous
work

The significant addition is the PUSH command, used to load

operands onto the stack, and the POP command which is used to remove

the answers from the stack and store them in a register; a conven-

tiona! Data Move instruction could be used to access the answer (if

the Top Element could also be treated as a register) for use else-

where but would not remove the answer from the stack.

It is not possible to contain PUSH and POP within the pre-

viously mentioned 4 bit op code. Both commands must specify a

register to be the operand source or sink, respectively. It is

possible to have PUSH and POP communicate with only one register,

but there is a more effective approach. Notice that the sin X

evaluation PUSHes 6 different operands and if only one register were

available, the program would have had to End PN Execution, load the

register and commence PN execution on 6 different occasions.

The better approach is to initialize a group of registers

with the necessary operands--for example x2, 1142, 1, 1120, 116, X--

47

and then PUSH the operands onto the Stack when needed, without having

to exit and return PN execution. Of course several bits will be

needed to indicate which register holds the operand (or is to receive

the operand, if POP is commanded). How many bits will suffice for

most PN programs? Another example will help.

Another example is that of Matrix Inversion, with the

matrices stored in cache.

A-1 A -- I -- A A-1 A A-1 I f d ; , , o or er n

1 0
=

0 1

By Gaussian Reduction of the A matrix we have

1 0 c D
=

0 1 E F

requiring n divisions and 1/2 n(n+l) multiplications and additions.

For matrices containable in the available processor files, autoin-

crementing index registers could be used to point to the operand-

holding register (with the incrementing triggered by the index

register being used to compute a cache address).

For matrices which must remain in main memory, autoincre-

menting index registers will point to the memory word. The key

idea is the use of autoincrementing index registers.

Remember the point of discussion is how many registers to

make available to the PUSH and POP instructions; or how big is the

48

register specification field of the PN instruction? A consideration

of the data base addressing requirements shows that 16 registers, or

a 4 bit field, should be adequate. However, since there is 8 bits

- -
in the instruction, the # of accessible registers is increased to

32, or a 5 bit register select field, to allow referencing most, if

not all, of the processor registers. This requires that the PUSH

and POP instructions be recognized by 3 bit op codes. How should

these 32 available registers be used.

Several should be autoincrementing index registers. The

others will be conventional working registers, used to hold con-

stants--such as 1, or to hold pointers which are used to reinitialize

the autoincrementing index registers after a matrix has been inverted

and a new matrix is ready for inversion.
.

This analysis results in the following PN instructions, 8 bits

wide:

1. ADD A+ B + A

2. SUBTRACT A - B + A

3 • SW TRACT B - A + A

4. MULTIPLY A X B + A

5. DIVIDE A I B + A

6. DIVIDE B I A + A

1. PUSH cache (reg xxxxx)

8. POP cache (reg xxxxx)

9. End of PN Execution (next 48 bit wor should be inter-

preted as a conventional instruction)

IV. CONCLUSIONS

Although th-e-·bulk. of the proposed Throughput enhancements

have been hardware oriented, they result in dramatic software

changes as well. To make best use of the new hardware resources,

the software needs to be equally carefully considered.

We have shown that the most important feature, hardware or

software, is the inclusion of a Floating Point Processor; by using

a pseudo-parallel approach, as much as a 200X Throughput improve

ment can be gained, as compared to a software floating point pack

age.

The next most significant position should be shared by the

cache memory, which can provide at least a SX improvement in effec

tive memory access times with a lesser Throughput improvement, and

by the Polish Notation teChnique of structuring data and permitting

simple instructions. The other features all together boost the

Throughput by smaller amounts as estimated below:

(a) wide buses -- 1.25X

(b) numerous registers -- 2X

(c) instruction lookahead

(d) I/O controller -- l.SX

1 .25X

(e) partitioned memory -- 1 . 25X

The product of these factors is 5. 9X, a very nice Thro put en

hancement for any computer, but especially effective when coupled

with the three previously mentioned features.

The result is a computer with a maximum of 3 or 4 Mega

Instruction per Second execution rate, and capable of 600,000

floating point multiplications per second.

50

51

APPENDIX

How _Large Should The Cache Memory Be?

The following example is excerpted from a Fortran program

that was written to compute and graph the spectral content of var

ious waveforms, which the program also generated. The excerpt is

the Fourier Transform computation routine.

Fortran Statements

00 115 N=l,NW

H=N

W=H*DW

RT=.O

GT=.O

DO 112 K=l,NT

H=K

T=AT+H*DT

(NW=lOO)

(NT=200)

R=A(K) *DT*CPS (W*T)

RT-RT+R

G=A(K) *DT*SIN(W*T)

GT=GT+G

112 CONTINUE

Memory Words per Statement

8

2

4

2

2

8

2

5

43

4

43

4

AMP=SQRT(RT*RT+GT*GT)

DATA(N)=AMP

115 CONTINUE

CALL GRAFTU(DATA,NW)

TOTAL

30

1

158

The outer loop (loop counter N) computes 100 spectral

points, while the inner loop (loop counter K) uses the 200 time

function points to compute each spectral point.

52

In estimating the number of conventional machine level

instructions to equal this Fortran excerpt, we assume that A*B+C

(for example) requires 4 instructions (A to (P)rocessor, B to (P),

A*B, C to (P) +A*B) and that a sin(X) or cos(X) function with

.0000001% accurate result needs xl7/17! as the last term, with 3

instructions (1/N! to (P), (l/N!)*X2, 1+~/N!, with~ and 1 con-

tained in registers per term, needs about 35 instructions including

setup operations.

The total number of instructions is 158, with approximately

50 operand storage locations plus an array of 100 locations and

another of 200, requiring 408 words of high speed storage.

To allow for even bigger computation loops (the example is

admittedly simplistic) and to minimize the need for swapping arrays

from cache to main memory as various sections of the arrays are

needed by the program, at least 1K word of cache memory should be

available.

LIST OF REFERENCES

1. Foster, C. Comp~ter Architecture. New York: Van Hostrand
Reinhold, 1970.

2. How to Use the NOVA Computers. Southboro, MA: Data General
Corporation, 1971.

3. Processor Handbook PDP11/20-15-r20. Maynard, MA: Digital
Equipment Corporation, 1971.

· 4. Programmers Reference Manual for the Model 960A Computer.
Dallas, TX: Texas Instruments Incorporated, 1971.

5. The TTL Data Book for Design Engineers. Dallas, TX: Texas
Instruments Incorporated, 1973.

6. Hellerman, H. Digital Computer System Principles. New York:
McGraw-Hill, 1967.

53

7. The Value of Power. Anaheim, CA: General Automation Inc., 1973.

8. Lorin, H. Parallelism in Hardware and Software (Real and
Apparent Concurrency). Englewood Cliffs, N.J.: Prentice
Ha-l, 1972.

9. TTL Data Book. Palo Alto, CA: Fairchild Semiconductor Inc.,
1972.

10. Mick, J., ed. Digital Signal Processing Handbook. Sunnyvale,
CA: Advanced Micro Devices, Inc., 1976.

11. Bell, G. and Newell, L. Computer Structures: Reading and
Examples. New York: McGraw-Hill, 1971.

12. '~croprogramming, Stack Architecture Ease Minicomputer
Programmers Burden." Electronics 46 (February 15, 1973):
95-101.

13. Burroughs B6700 Information Processing Systems Reference
Manual. Detroit: Burroughs Corporation, 1972.

	Hardware and Software Considerations for Improving the Throughput of Scientific Computation Computers
	STARS Citation

	TITLE PAGE
	i

	ABSTRACT
	ii

	ACKNOWLEDGEMENT
	iii

	TABLE OF CONTENTS
	iv

	I. INTRODUCTION
	01
	02
	03
	04
	05

	II. HARDWARE CONSIDERATIONS
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30

	III. SOFTWARE CONSIDERATIONS
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48

	IV. CONCLUSIONS
	49
	50

	APPENDIX
	51
	52

	LIST OF REFERENCES
	53

