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PREFACE 

In early 1973 Professor Fred 0. Simons Jr., of Florida Tech­

nological University, suggested the topic for this research report. 

During control engineering discussions, it was proposed that a D.C. 

Shunt Motor could be constrained to perform in an idealized sense for 

the static case. The purpose of this report is to provide a reason­

ably comprehensive examination of a control which linearizes the tor­

que-speed relationship of a de servo system. 

The fundamental goal is to determine a control which linear­

izes the torque-speed output relation of a system, in which a de 

shunt motor is under basic armature control. Consequently, the emph­

asis is on a concept and technique rather than the design of the sys­

tem process. In this regard, the report does not delve into perform­

ance analysis, or design of the system to constrain the torque and 

speed parameters to operate along an idealized curve. 

iii 
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I. TORQUE-SPEED NONLINEARITY IN THE SHUNT MOTOR 

Introduction 

A servomotor transforms a control signal into a torque which 

is applied to a load, in accordance with a selected control strategy, 

to satisfy the control system specification. Various types of de 

motors exhibit different torque-speed characteristics. These char­

acteristics, usually shown as torque-speed curves, are factors which 

severely limtt a system's dynamic performance. The concept of an 

11 idea1 motor· .. provides an artifice for considering torque-speed char­

acteristics, having practical use in the design of de motors and the 

servo systems which use them [ 6, 12, 16 ]. 

The ideal motor is one in which there is negligible brush 

and bearing friction, and the effects of saturation, armature react­

ion, and armature inductance are negligible. These criteria, when 

used with the mathematical modeling of a de shunt motor allow an eq­

uation to be developed relating both the torque and speed parameters 

with the control signal. Consider the ideal de motor shown in Figure 

1 : 

where R = armature resistance a 
R f = field resistance 

L a = armature inductance 

L f = field inductance 

I · = armature current 
a 



v cs 

I f = field current 

V cs= control signal 

2 

V f = applied field voltage 

T d = developed torqu~ 

N = speed 

K T = motor torque constant 

K g = generator constant 

E g = induced voltage ( counter-emf ) 

R a 

+ 

L 
a 

R f 

v f 

Figure 1. Schematic diagram of a de shunt motor 

The armature-circuit voltage equation, assuming negligible induct-

ance, is · 

V = I cs 
And the coupling relationship 

R + E a a g ( 1 ) 

( 2 ) 
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Th~n, 

V c.s = I a R a + K q N I f . ( 3 ) 

The torque de 1 i vered by a de motor depends .upon the flux and armature 

current~, in a relationship · - · -· 

Td~<t>Ia=Kifia 

Therefore, with ( 3 ) and ( 4 ) 

. T d = K I f ( V cs -. K g N I f ) 

R a 

and the torque equation has an idealized "linear" form of 

T d = K T. V cs - D N. 

( 4 ) 

. ( 5 ) 

( 6 ) 

if field current is held constant, and armature voltage is considered 

the control variable. It remains to. be established, that the termin­

ology "linear" used in conjunction with the torque equation ( -~ ) is 

in fact ~onsistent with the accepted definition of linearity [ 6, 14, 

16 ]. 

Of course, since the effects of friction and other factors 

have been neglected in the model, torque-speed parametric curves de­

rived from equation ( 6 ) are ide·ali.zed. In terms of physical syst­

ems, a system is linear if and only if 

·H ( a X l + 8 X 2 ) =. aHx 1 + 8 H X 2 ( 7 ) 

where X 1 and X 2 are input ·signals 

a and 8 are con$tants. 

and possesses both the property of additivity a·nd homoqenei ty [ 3, 5' 

13 ]. For qenerality consider the de motor from the principle of 

superpos·ition aspe.ct because of its simplicity. If, in equation ( 6) 
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the developed torque is plotted for zero speed and with a variable 

input ( control signal ), the ideal torque-control signal character­

istic of Figure 2 is obtained. 

+ T d 
N = 0 

v cs 

Figure 2. Ideal motor torque characteristics at zero speed 

With zero speed, the characteristic curve of Figure 2 can be seen to 

possess both the property of additivity and homogeneity; first from 

the simplified equation showing proportionality 

T d = K T V cs ( 8 ) 

and secondly, from the straight line ( linear function ) relation 

shown in the graphical portrayal. Conversely, at the free running 

speed, where torque is zero, 
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N = K V T cs ( 9 ) 

D 

and the principle of superposition applies as shown in Figure 3. The 

end point conditions where ·speed and torque were taken to be zero 

have been demonstrated to be linear. 

+ N 
T d = 0 

Figure 3. Ideal motor speed characteristic at free running speed 

If the ideal torque-speed characteristics of equation ( 6 ) 

is plotted as shown in Figure 4, with the terminal points satisfying 

both Figures 2 and 3, the physical system demonstrates linearity in 

both the torque and speed parameters. Torque and speed display the 

properties of additivity and homogeneity with respect to the control 

signal in the ideal motor [ 12, 16 ]. 
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- T d cs 5 

cs 3 
4 

cs 2 

Figure 4. Ideal motor torque-speed characteristic 

Ideally then, the developed torque T d of a motor should be 

proportional to the control signal V cs and speed N in a relation, 

T d = K T V cs - D N ( 1 0 ) 

where K T is the torque constant and D is the electrical damping con-

stant for the motor, in order to have linear operation. This equat­

ion is a straight line curve representing ideal torque-speed charact­

eristics, which may be considerably different than actual motor cur­

ves [ 16 ]. In practice, linear theory is utilized in analysis and 

system design, by considering the actual motor curves as linear for 

small departures in the region of operation. If a nonlinear situat­

ion arises, the standard approach of analysis is to limit attention 

to small perturbations about the operating point ( reference state ) 
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and find a first order or linear approximation of the nonlinear sys­

tem. ~lith this technique, the control strategy needed to satisfy the 

system specification, can be obtained from the linearized equations 

even though the system equations are nonlinear [ 5 ]. 

In servomotor design, great emphasis is placed upon linear­

izing the relationship between control voltage and torque. The des­

ign goal is to have a straight line characteristic from the stall 

torque to the no-load speed as indicated by equation ( 10 ). Since 

this is not the case for a normal de shunt motor, one alternative is 

to provide a method of adaptive control which constrains the system 

to perform in an idealized sense. 

If a technique can be developed which linearizes the shunt 

motor torque-speed curve; then it i s conceivable that on~ can benef­

it from the linearization. One aspect of this proposal is the poss­

ibility of a cost saving resulting from tbe use of a less expensive 

motor rather than a special design motor for servo system use. Sev­

eral other factors must be considered; the effects upon system per­

formance and dynamic behavior must be ascertained, and the cost must 

be minimized so that potential users can effectively trade-off costs 

and other parameters with the system philosophy and performance spec­

ification of the design process. Thus as a first step, this report 

is directed towards examination of a control technique to linearize 

the torque-speed curve of a system utilizing a de shunt motor under 

basic armature control. 
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The Shunt Motor 

In the shunt motor, a field is set up by the armature curr­

ent in quadrature with the mai~ field which results in a net reduct­

ion of the main flux. This effect ( armature reaction ) is caused by 

the load current saturating the magnetic field path, or creation of 

an armature flux in opposition to the main flux. The creation of an 

armature flux by the load current causes a displacement shift in the 

neutral zone and resultant field flux. Accordingly, the flux density 

is saturated on part of the pole while the remainder is weakened, 

causing a net reduction of the main flux. The effect of armature 

reaction is proportional to load current. Figures 5 and 6 show the 

schematic diagram of a de shunt motor connection and its character­

istic curve, relating torque, speed and current. The characteristic 

curve shows that as the load increases, and armature current sets up 

an opposing field, motor speed decreases. Speed decreases as the 

main field is weakened until there is a drastic change at an operat­

ing point where the load torque approaches the stall torque value 

[ 11, 16 ]. 



annature current .._I a- -· 

9 

motor current 
.._. I 

t 
Field applied voltage 

v 

field current 

Figure 5. Shunt motor schematic diagram 

Current t 
Speed 

r----s_p_e_e_d~~ 

Torque ._, 

Figure 6. Shunt motor characteristic curve . 

a 
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The annature control mode of connection repre·sents qne meth-

od of utilizing a shunt motor in a system. In this mode, the field 

current .is he.l d constant and the anna.ture vo 1 tage is used as the con­

trol variable. When this ~o~~-is utilized, the torque-speed charact­

~ristic curve· approaches that of the ~deal motor previously shown in 

Figure 4. Figures 7 and 8 show the schematic diagram of a de shunt 

motor under anna ture contra 1 and its characteristic curv.e. This is 

the mode of contra 1 to be i n.ves ti gated .for deve 1 opment of a 1 i near­

izing scheme. The torque-speed curve of the annature controlled mot­

or is li~~ar over a wide range and to a first approximation is rep-

resented by the ideal curves shown in Fiqure 8. The straight line 

curves neglect the effects of brush and bearing friction and annature 

reaction; all of which can be made very small in a well designed mot-

or [ 12, 14, 16 ] . 

field current armature current 

If .... ~ . I a 

t + 
field voltaqe armature voltage 

Field 
v f V a 

Figure 7. Armature controlled sh~nt motor schematic diagram 



ll 

Family of nonlinear speed curves 

v ·> v- 1>. . . . . . . . . . . . > v 1 n n-
~Family of ideal speed curves 

Speed t " ' "- V a = V n 

Torque ~ 

Figure 8. Armature contra 11 ed shunt motor characteristic curves 

In addition to the nonlinearities which are inherent to the 

motor, nonli~earities can arise in a servo system due to associated 

· components. Thaler and Wilcox [15 ] in presenting a basic approach 

to the . analysis and design of speed control systems with de motors, 

. account for modulator impedance in · the analysis of performan~e. Both 

the characteristics of the motor and amolifier are considered toqeth-

er since the characteristics of both affect speed regulation. Trux­

all [ 16 ] provides an excellent treatment of nonlinearities arising 

from the basic tor~ue equations, magnetic saturation, armature react-

ion, d~ad zone, and static friction from both the aspects of design 

_ techniques and electromechanical actuators. 
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Both natural and induced environments which a servo system 

experiences under use conditions can influence system nonlinearity. 

These environments which can be either internal or external to the 

system and its components, affect electrical and mechanical portions 

of the system. As an example; thermal shock and vibration environ­

ments can affect friction characteristics by causing a change in 

mechanical clearances, while electrical parameters can also change 

in response to system use conditions. Simple wearout ( a condition 

of repeated system use ), continuous environmental stress or envir-

onmental cycling create changes in the original system characterist­

ics, influencing nonlinearity and causing performance degradation. 

The development of a linearizing control could compensate for both 

the effects of environment and inherent component nonlinearities in 

the system. 

Consider the basic armature control system shown in Figure 

9, where 

J M = motor moment of inertia 

f M = motor viscous friction 

J L = load moment of inertia 

f L = load viscous friction 

n = motor to load gear ratio 

eM= motor shaft position 

aM = motor shaft velocity 

a· M = motor shaft acceleration 

e L = load shaft position 
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• e L = load shaft velocity ... 
e L = load shaft acceleration 

T = load torque L 

V a 

I a .,_ 

t Field 

v f 

Gears Load 

-Gn--- _{\JL\ . \1!_0 

Figure 9. Basic armature controlled motor-load schematic diagram 

For dynamic equilibrium the torque equation at the motor shaft is, 

T d 
•• • = ( J M + J L) eM+ ( f M + ~) 6 M + T L ( 11 ) 

n2 n2 

This equation does not include the effects of retarding torque due 

to shaft stiffness. The basic assumption is that the shaft spring 

constant ( K S ) is comparatively large or alternately that all sh­

afts have infinite stiffness. In instrument servos, the spring con-
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stant is considered comparatively large. Equation ( 11 ) can be sim­

plified to 
•• • 

T d = J e M + f e M + T L ( 12 ) 

2 2 with J ~ ( J M + J Ll n ) and f = ( f M + f L 1 n ). The field 

current for the armature control motor is usually constant and equ­

ation ( 4 ) thus becomes 

T d = K Ta I a ( 13 ) 

where K Ta is the motor torque constant in the armature control mode. 

The circuit voltage equation for Figure 9 is 
• • 

V a = R a I a + L a I a + K gae M ( 14 ) 

where K ga is the counter-emf constant for the motor. Utilizing eq­

uations ( 12 ), ( 13 ), and ( 14 ) to develop the system equation 

yields 

L a J ·a· M + ( R a J + f L a ) e M + ( f R a + K g a K Ta ) e M 

• 
= K Ta V a - L a T L - R a T L ( 15 ) 

Applying the Laplace transform, 

s [ La J s 2 + ( R a J + f L a ) s + f R a+ K ga K Ta ] e ~1 (s) . 

= K Ta V a ( s) - {- s L a + R a ) T L ( s) ( 16 ) 

If T L (s) = 0, the transfer function for the armature controlled 

motor-load combination is, 

s e M K Ta I L a J 
--~~(s) =--~2--~--~~--2~ 

va s +2r;:wns+wn 
( 17 ) 
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where 2 ~ w = ( R J + f L ) I L J and n a a a ( 18 ) 

w 2 = ( f R + K K T ) I L J n a ga a a ( 19 ) 

The mathematical model of the developed motor-load combination for 

the armature control connection is shown in Figure 10. The transfer 

function notation in this figure has been simplified, by representing 

K M = K TaIL a J, K a= R a I K Ta' and~ a= LaIR a [ 1, 14, 

15, 16 ]. 

L 
K ( s +-1-) -... a ~ a 

T 

v ~· - • 

K M e L 
a + 

a - .. - - s2 + 2 2 ·-~w s + w n n 

Figure 10. Armature controlled motor-load mathematical model 

When it is necessary to provide accurate control of steady­

state speed, closed-loop feedback control is established. In closed­

loop feedback control, the speed measurement is compared to the ref­

erence signal and an error is generated to control speed regulation. 
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The change from the model shown in Figure 10 is very simple, but the 

steady state accuracy is improved greatly with the regulation reduced 

to less than 1 percent with tachometer feedback. Figure 11 illust- · 

rates a closed-loop speed control system with an armature controlled 

motor and tachometer feedback. The model of Figure 10 has been mod­

ified by the addition of an amplifier and tachometer [ 14, 15, 16 ]. 

In this closed-loop model, the amplifier is connected to the 

motor block with the assumption that no loading effect exists to dis­

turb the transfer functions. The amplifier output circuit impedance 

must be added to those of the motor circuit being driven by the amp­

lifier. This model shows no poles in the amplifier circuit. As such, 

it is applicable to vacuum tube and transistor amplifier control. 

When rotating amplifiers ( Ward-Leonard ) or other types such as thy­

ratron control are utilized, the model must be modified to account 

for the addition of open-loop amplifier poles. The amplifier with 

gain G A in this model is a pure gain component. If it provided rect­

ification; its transfer function would include an open-loop pole [ 14, 

15, 16 ]. 

The system transfer function can be formulated from the block 

diagram of Eigure 11 and the basic relationship 

C G 
- = ( 20 ) 
R 1 + G H 

where C represents the system output, R is the reference input, G is 

the forward transfer function and H is the feedback transfer function. 

The open-loop speed equation is given by, 



1 
r · -- K ( s + -) -L - a "'C 

a 

Motor - Load 
' 
' 

Amplifier 
• 

R 
e 1 :: c ,. -

L V a K r~ --+ -- --- - 2 
...... G A= K A -

s2 + 2 ~ w n s + w n 
...... -

1 

~ 

"".J 

G t 

G ~1 

K t . 
.... 

I-" . 

Tachometer 

' . . . 
Fiqure 11 . . Closed-loop speed control system with armature controlled motor 
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s e L 
= K A K M R (s) - K a K M ( s + 1/ ~ a ) T L (s) 

s2 + 2 ~ w s + w 2 
n n 

closed-loop speed is 

G A G M R (s) - K ( s + 1/ ~ ) G M T L (s) 
s e - a a 

L -
l+GAGMGt 

The output-input function at T L = 0 is 

speed K A K M 
= 

R s2 + 2 C w s + w 2 + KAKMKt n n 

The output-input function with R a constant is 

--= 
K a K M ( s + l/ ~ a ) speed 

T L s2 + 2 t w n s + w ~ + K A K M K t 

( 21 ) 

( 22 ) 

( 23 ) 

( 24 ) 

The ~losed-loop speed control system model of Figure 11 is described 

by the equations of motion ( 11 ), ( 13 ), and ( 14 ), the speed 

transfer functions of equations ( 21 ) and ( 22 ), and the output­

input functions of equations ( 23 ) and ( 24 ). This model is a bas­

i c uncompensated system; compensation for obtaining stability or ac­

ceptable performance is not included. Some significant remarks can 

be made about this closed-loop system [ 5, 14, 15, 16 ]. 

1. The closed-loop system is inherently stable 

2. The model is incorrect if the motor is driven into nonlinear op­

eration, but it can be used as a first approximation 

3. The forward gain must be increased when feedback is used 

4. High amplifier gain may cause system oscillation or instability, 

compensation may be required 
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5. The system may be underdamped if the amplifier is pure gain with 

no open-loop poles 

6. Additional poles may be introduced by the amplifier, increasing 

the need for compensation-

?. Introduction of additional amplifier poles causes systems to be­

come unstable 

8. Load torques may be considered separately for constant, period­

ic or random application 

9. The transient response to load change is not the same as for 

reference speed change 

10. Load change can be examined by substituting s = 0 into the open­

loop system function 

lJ. The speed 1 T L closed-loop response for load disturbance has 

greater bandwidth than speed I R, and possibly larger overshoot 
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I I. EQUATIONS FOR IHE LINEARIZATION" PR.OCESS 

The Parameter Enve 1 ope. 

The family of nonlinear torque-speed curves, for the armat­

ure contro 11 ed motor ( Figure 8 ) is b.ounded by: 

1. The torque-speed curve at maximum control voltage determined by 

motor desiqn 

2. The loci of stall torque erid point co~dition~ ( N = 0 ) 

3. The loci of no-load speed end point conditions ( T = 0 ) 

Within these boundaries ( parameter envelope ) for the particular mot­

or it is possible to have infinitely many to~que-speed combinations 

for incremental changes in co~trol voltage. Torque-speed combinat­

ions within these botindaries do not impose any restrairits upon the 

motor, except for points lyinq on or near the boundaries. The de mot­

or may not be designed for continuous s~all operation or operation 

· i n the vicinity of stall; in ge·neral this is not usually a system re­

quirement exc;ept under i ntenni ttent or random con.di ti ons [ 14, 16 ].. 

In vi~w of the torque-speed characteris~ic curves, it is 

appropriate to qualitatively consider the closed-loop speed control 

system for the static case with reference to Fiqure· 11. · To attain 

accurate speed control several· basic steps, as ·shown in Fiqure 12, 

are accomplished. Assume that at a point in time the desired speed 

_N 1 at torque T 1 has changed in response to load conditions t6 sp­

eed N 2 at torque T 2. The tachometer measur.es the speed N 2 and 
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generates an electrical signal proportional to it. With this signal 

and the reference signal -representing desired speed, the motor cont­

rol voltage is either increased or decreased depending upon the speed 

N 
2 

relation to speed N 
1 

tci drive the system speed to the desired 

value at N 
3

• 

Speed t 
v cs(n) 

N 1 - +- Desired speed 

@ 

N2 ·-·---~ 
V cs2 

(i) I 

T 1 Torque 

CD 
® 

Determine actual speed ( N ) 
. 2 

Determine difference between desired and actual speed 

(N
1

-N
2

) 

~ Adjust control signal to account for speed difference 

to arrive at desired speed N 
3 

Figure 12. Basic qualitative steps for speed control systems 
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The Linear Relationships 

Equation ( 10 ) expressed the developed torque of a motor 

T d in a linear relationship with the control signal V and speed 
cs 

--
N. This equation was developed from analysis of the motor electrical 

circuit with appropriate assumptions. Actual output torque of the 

motor shaft is distinctively different. The motor actual output tor­

que T A measured at the shaft of the unloaded motor assuming neglig­

ible static or coulomb friction is related to T d by, 

TA=Td-fMN ( 25 ) 

where f M is the motor viscous friction constant. Equation ( 25 ) 

can be referred through the gears to the load by the use of the gear 

ratio n defined in terms of speed as, 
• e 

-:....:...M = n 
• 
aL 

It may be shown that with the definition of gear ratio n, 

T L = n T A 

From equations ( 25 ) and ( 27 ) 

( T A ) L = n ( T A ) = n ( T d - f M N ) 

( 26 ) 

•( 27 ) 

( 28 ) 

. where ( T A ) L is the load torque delivered by the motor at the load. 

Substituting forT din equation ( 28) with equation ( 10 ), 

( T A ) L = n [ K T V cs - ( D + f M ) N ] ( 29 ) 

and 

( T A ) L = n ( K T V cs - D M N ) ( 30 ) 

where D M is the motor damping constant including both viscous frict­

i on and electrical damping [ 14, 15, 16 ]. 

Without loss of generality, equation ( 30 ) can be written, 
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TA=K V -D N 
T cs M 

( 31 ) 

Caution must be exercised with the use of equation ( 31 ); if load 

torque is under consideration, the gear ratio n must be a factor in 

the equation. 

Equation ( 31 ) allows a model to be defined which can be 

utilized to adjust the motor control so that torque-speed output of 

the servo system can be constrained to follow the straight line form 

of the ideal servo motor. It is more convenient to express equation 

( 31 ) in terms consistent with the need to adjust the torque of the 

system. The actual torque delivered by the motor T A can be consid­

ered the desired torque T 
0 

needed at the system output, and the out­

put torque T experienced due to load variations are related by 
0 

T = T - m N 
D 0 

(_ 32 ) 

where m is the geometrical slope. Figure 13 shows one of the family 

of curves for variable V , illustrating the interpretation of eq-
cs 

uation ( 32 ). Consider initially, that torque T 
0 

= T 
1 

at speed 

N and there are system components for measuring torque and speed at 
1 

the system output. The tachometer measures speed N 
1 

and generates a 

voltage signal proportional to it. With N 
1 

and equation ( 32 ), the 

value of T ri· corresponding to speed N 
1 

on the straight line curve 

can be determined. Then, a motor control signal corresponding to T 
0 

can be provided by adjustment of the motor control voltage e T 
a D 

can be summed with measured torque T 
0 

to generate an error signal 

driving the system to the desired value of torque-speed on the st-

raight line curve. Subsequent changes in speed, torque or motor 
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control signal e operate in the same manner and the torque-speed 
a 

parameters are constrained to move along the straight line in the st-

atic case. 

Torque t 

T 1 

T 2 

r 0 =.r 0 -mN 

. v 
, cs ( n) 

N 1 Speed 

(!)Determine actual speed N 1, and output torque T 1 
~ Determ~ne desired torque T 0 = T 2 from T 0 = T 0 - m N 

~ Adjust control signal e a to drive motor to T 0 
Ci) Determine T 

0 
- T 

0 
and adjust T 

0 
signal to account for 

error in torque 

Figure 13. Qualitative steps for torque-speed parameter control 
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Figure 14 shows a simplified linearization model block dia­

gram, incorporating the basic steps to control the torque-speed par­

ameter. The block labeled Model Definition at the motor control volt-
. - ·-

age input e a remains to be defined. Its function is to represent 

the straight line curve of equation ( 32 ) and provide the implement­

ation of basic steps 2 and 3 of Figure 13. 

The Linearization Model 

In general, the linearization might be implemented as shown 

in Figure 15. A tachometer is connected to the motor drive shaft pro­

ducing a voltage proportional to speed. This feedback signal is used 

as a point of reference by which the system operation is transferred · 

from the nonlinear to the linear curve. Since it is desired to const-

rain the torque-speed parameter to move along the straight line curve 

shown in Figure 13; a voltage divider is used to provide a voltage 

proportional to T 0 which lies on the straight line curve. The div­

ider has a proportionality factor m, equal to slope m of the straight 

line, which divides the speed voltage to a value representative of 

T 0. An equivalent statement is that for each point on the straight 

line curve representing speed, the torque at this point is proport­

ional to it by a factor m ( slope ). 

A torque sensor provides a voltage proportional to output 

torque T 0. The desired torque T 0 is subtracted from T 0 resulting 

in a torque difference E. Epsilon represents the difference between 

torques, at the same speed, on the nonlinear and linear curves. This 

difference can have a positive or negative value. The sign of E dep-
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ends upon whether T 0 lies above or below the straight line curve at 

the time of consideration. The torque difference E is used to adjust 

the drive voltage e a to either decrease or increase the motor volt­

age to drive the torque-speed parameter to operation along the linear 

curve. If E is positive, e must be decreased and if E is negative, e 

must be increased for proper operation. 

The torque difference E and the drive voltage must be oper­

ated upon in a circuit which has the following basic specification: 

1. WithE positive, e must decrease until E = 0 and then hold at 

constant e 

2. With E negative, e must increase until E = 0 and then hold at 

constant e 

This circui-t is shown in Figure 15 as the basic summation symbol mod­

ified by these two constraints. 

Basically, by the use of both speed and torque feedback the 

motor voltage is decreased or increased to a value at which the tor­

que-speed parameter lies on the straight line. With the model, the 

torque-speed parameter is constrained _to operate along the straight 

line curve in the static sense. 
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III. MECHANIZATION FOR LINEARIZATION 

Torgue and Speed Sensors 

Figure 15 shows both torque and speed feedback. The speed 

feedback utilizes a conventional tachometer to provide a voltage prop­

ortional to speed. To measure the output torque T 0 a dynamic-torque 

transmitter is shown in the linearization model. Miller [ 8] des­

cribes dynamic torque transducers which measure torque while trans­

mitting power. One type of transducer ( or transmission dynamometer ) 

is called a noncontact type. This transducer measures twist in the 

drive shaft and translates it to torque without contact with the phy­

sical system. A coupling shaft is incorporated between the motor and 

load. This coupling shaft incorporates two discs which are aligned 

with optical sensors. As the motor spins up, the twist in the con­

necting shaft is measured through the determination of phase lag be­

tween the optical signals. This phase lag ( twist ) is converted to 

a signal representing dynamic torque. Other methods utilizing mag­

netic, capacitive, or inductive noncontact signal paths have been con­

sidered by manufacturers for noncontact type dynamic torque trans­

ducers, each operating in essentially the same mode [ 8 ]. 
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IV •. _ .CONCLUSIONS 

A system utilizing a de shunt motor can be constrained, 

through the use of control engineering concepts so that the motor per­

forms in a linear fashion even though the torque-speed characteristic 

is nonlinear. The simple linearization model presented constrains 

the torque-speed characteristic to operate along a linear curve which 

lies within the motor parameter envelope, for the static case. With 

the concept presented, the linearization model adjusts for nonlinear­

ities caused by the motor design, and those caused by natural or in­

duced environments. As nonlinearities are introduced by wear o~ oth­

er factors, the process continuously adjusts for time oriented modes 

of nonlinearity. 

The linearization scheme, simple in nature, controls the tor­

que-speed parameter by adjusting motor control voltage in response to 

the actual nonlinear and desired characteristics. Conceptually the 

model performs in a comparator mode of operation constraining the tor­

que-speed to match the desired linear curve. No design mechanization 

of the model is given, but it is apparent that the model could be de­

signed for variable slope m and axis intercept, parameters of the line 

to provide generality for system utility. 

Perhaps the greatest utility of the closed-loop linearization 

model would be to use the process with low cost motors for which no 

special efforts have been taken to control the torque-speed charact-
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eristics linearity. If a low cost, and general utility linearizat­

ion system could be designed, one has the advantage of being able to 

take a 11 Cheap 11 motor, add the linearization package and achieve lin­

ear operation in the static case. 

The linearization model presented is a concept with commer­

cial application if developed and produced as a low cost product with 

today•s technology. The design and performance analysis of the sys­

tem remains to be accomplished as further development of the concept. 

Basic mathematical models developed for the armature controlled motor 

used in a speed control system can be used as a basis for the per­

formance analysis. 
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