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ABSTRACT 

Lake Eola is a land-locked lake located in downtown Orlando~ 

Florida. Its surface area is approximately 27.0 acres (11.0 Ha) 

and water depth is 2 to 3 feet (0.6 to 0.9 meters) near the shore 

and 22 feet ( 6,. 7 meters) tovJa rd the center. 

Period ical water samples were collected from the Take and 

storm dra ins for various stormwater events and physicochemical 

parameters were analyzed to calculated loading rates from nutri

ents and heavy metals released to Lake Eola. 

Algal bioassay studies were performed to investigate storm-

later impacts on productivity. Periodical water samples were 

collected from the lake, mixed and filtered for limiting nutrient 

studi es using various concentrations of N, P, and Fe. Unialgal 

species of Selenastrum, Chlorella and indigenous species were 

used and changes in chlorophyll "a 11 and biomass were measured. 

Results indicate that phosphorus or nitrogen can be limiting at 

some times of the year. However, the ratio of P:N can be more 

important than actual concentration of phosphorus and nitrogen 

separate ly. Similar algal bioassays were performed on a mixture 

of stormwater, coagulated stormwater and lake water at different 

ratios. 
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CHAPTER I 

INTRODUCTION 

In recent years, the deterioration of the nation's lakes 

and streams has become increasingly obvious. Visual evidence 

of the destruction of our aquatic systems caused by rampant do

mestic and industrial growth is abundant. This destruction, 

onc e limited to small isolated localities, has spread throughout 

this nation until there are very few water bodies remaining which 

do not fee l the pressure of man's existence. 

Much research has been delegated to the quantity and quality 

aspects of po llution sources entering our lakes and streams. 

Virtually every type of pollution source known to man has been 

analyzed and its chemical constituents documented. However, 

relatively few studies have been conducted concerning the ecolo

gical impac ts of these sources on receiving water bodies. 

In order to gain a better insight into the impact of these 

sources, the National Eutrophication Research Program began in

vestigations in 1968 to determine a method for assessing the 

effect of these compounds on aquatic ecology, and in particular, 

on algal production. The result was a publication, in 1969, 

entitled) Provisional Algal Assay Procedures in which a standard 
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procedure was described for conducting algal assays. Intensive 

research was conducted to improve and expand the understanding 

of results obtained in this procedure which culminated in 1971 

with the publication of Algal Assay Procedure: Bottle Test. 

This document described processes which enabled investigators to 

define the stimulatory and/or inhibitory interactions of munici

pal, 1;ndustri al and agricultural wastes upon algal productivity 

in natural waters. Further research and refinements led to the 

development in 1978 of the Selenastrum capricornutum Printz Algal 

Assay Bottle Test which extended these procedures into other 

applications in both eutrophication and toxicity problem areas. 

These procedures enabled researchers for the first time to pre

d1ct natural algal responses to pollution inputs from carefully 

co trolled and monitored laboratory experiments. The techniques 

descr1bed in these procedures in many instances are still being 

defined, and research is still badly needed in this area. It 

is hoped that techniques and procedures developed in the course 

of th1s research may answer some of the yet unresolved questions. 

Scope and Objectives 

This research deals with the ecological effects of urban 

runoff on Lake Eola. Lake Eola, which has been severely damaged 

by continuous stormwater inputs, is a focal point in the heart 

of downtown Orlando, Florida and is of interest mainly for the 

aesthetic value of the surrounding park land. A research project 



was initiated during 1978 and funded jointly by the U.S. Environ-

mental Protection Agency, Florida Department of Environmental Reg~ 

lation, City of Orlando, and the Engineering and Industrial Exper

iment Station at the University of Central Florida to determine: 

1. the nature and extent of pollutional loads from 
stormwater runoff to Lake Eola 

2 . the impact of th es e 1 o ad i n g s on the 1 a k e • s ec o 1 o gy 

3. management techniques for reducing the effect 
of stormwater runoff, and 

4. a proposed plan for the restoration of Lake Eola 

As a portion of this project, a series of algal bioassays 

were begun to determine factors \flhich limit algal productivity 

in Lake Eola and to determine the effect of stormwater runoff 

on the Lakep This investigation is designed~ through the use of 

carefull v controlled 1 aboratory experiments, to provide an ap

proximation of the in situ response which may be expected from 

a particular nutrient or stormwater addition. Since ordinary 

chemical ana1yses cannot distinguish between ions which are 

biologically available for growth and those which are not, the 

results of the research may be a fundamental tool in the selec

t1on and evaluation of optimum lake management techniques in 

Lake Eola. 

II 



CHAPTER II 

LITERATURE REVIEW 

Ecosystems 

Life on earth has developed through time into a multitude 

of in terconnected and interrelated functional units which are 

at the same time separate and unified. These units, cal led eco

systems, may be any area with a boundary through which the input 

and output of energy and materials can be measured and related 

to some environmental factor. One of the important features of 

an ecosystem is its flexibility. It is defined by function, not 

by some arbitrary criterion of scale, and therefore, may be stu

died at a variety of levels. 

Energy is a common requirement of all organisms for main

taining themselves and for reproducing. The initial source of 

the energy used by an ecosystem i s the sun. This energy is cap

tured by green plants, combined with nutrients during photosyn

thesis, and stored in chemical form for use by the plant its elf 

or by heterotrophs. Each time energy is stored in an organism, 

its movement is temporarily stopped until that organism serves 

as an energy source for another organism. This linear passage 

of energy through an ecosystem defines a food chain. A neces~ 

sary part of every ecosystem are decomposers which deriv ~e energy 

4 
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from waste products and in doing so, recycle nutrients through 

the sys tern in a cyclic pattern. 

Ecosystems have developed an inherent stability 'tlhich enables 

them to withstand minor pertubations in their environment without 

permanently damaging the structure of the system. This stability 

is i nsured by: (1) controlling the rate of energy flow into the 

system, {2) controlling the rate of chemical cycling, and (3) by 

mainta1ning a diversity of species and food webs. As long as 

these natura l systems are not overloaded, the stability of the 

ecosystem is maintained. However, man•s alteration of his en

Vlronmen t through mismanaged technological achievements as well 

as his sheer numbers is threatening many natural systems by af

fecting one or more of the above stabilizing factors. Of the 

three factors listed above, the most serious man-made threat to 

e cos ys tern stab i l i ty , at 1 ea s t i n terms of aqua t i c s y sterns , is 

through alteration of nutrient influx and chemical cyc1ing. 

Si nce nutrients are a common requirement of all organisms, the 

presence or absence of these compounds has been shown to regu

late ultimate production in virtually every water system studied. 

HO\'Jever, nutrient inputs can often be accelerated greatly by 

man's activities, the result often being that the affected sys

tem can no longer self-regulate its internal processes, and 

stability is lost. This process of stability loss and there

sulting rapid succession of communities which follows has been 

given the name of eutrophication. 
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Algal Nutrient Requirements 

Stumm, et. al. (1972) proposed the following simplified em

pirical chemical composition of algal protoplasm: 

Algal Protoplasm: 

In addition to the five macronutrients listed above, minute quan- _ 

tities of other elements such as sulfur, calcium, magnesium, 

sodium, po tassium, as well as certain trace metals and vitamin 

complexes are essential for continued maintenance of a healthy 

organism. Each of these requirements is discussed in detail in 

the following sections~ 

Carbon 

Carbo n is derived from car~on dioxide, carbonates, bicar-

bonates or organic compounds. Since carbonates are generally 

present in relative excess in natural waters 2 carbon dioxide is 

usually availabl.e as the normal carbon source for photosynthesis. 

Algae in aquatic habitats live in a solution in which carbon is 

present in a variety of forms, the equilibrium depending on the 

hydrogen ion concentration, amount of excess base, the partial 

pressure of carbon dioxide in the atmosphere and the temperature. 

This relationship can be expressed by: 

Below a pH of 5.0, only free co2 will be present to any extent. 

Between pH 7-9, bicarbonate ions become dominant, and above 

a pH of 9.5, carbonate ions are in excess. Carbonate ions, 
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however, cannot be directly utlilized by algae and may even have 

an inhibitory effect (Goldman, et. al ., 1974). 

It is generally considered that, when available, algae will 

use free co2 in photosynthesis. However, at very high pH values, 

above 9.0, the absence of free co2 may be _an important ecologi

cal factor, caus1ng, among other factors, a reduction in the num

ber of species. Scenedesmus ·quadricauda has been shown to uti1-

ize both free co2 and bicarbonate ions whereas Chlorella pyrenoe

dosa can only incorporate free co2 (Round, 1973). Although free 

co2 is necessary as a carbon source for virtually all algal spe

cies, an excess of carbon dioxide, above 10 percent, will actually 

inhibit growth. Algae grown under continuous illumination and in 

the presence of an adequate nutrient supply have a carbon content 

of 51-56 percent of the ash free dry weight, while 49.5=71.2 

percent has been recorded for Chlorella grown under varying en

V1ronmenta1 conditions (Round, 1973). 

When aquatic organisms exhibit a similar affinity for co2 

and Hco; ions, utilization of bicarbonate generally occurs when 

the bicarbonate concentration exceeds that of co2 by a factor of 

10 (Wetzel, 1975). Because of the rapid diffusion of C02 into 

natural waters, the concentration of this gas in most fresh 

waters is in approximate equilibrium with the atmosphere. Many 

alkaline hard water lakes with a pH greater than 8.5 may contain 

bicarbonate concentrations far in excess of 10 times the co2 
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concentration, and bicarbonate uti1ization may predominate. 

However, an additional reaction i s needed for HC03 assimilation 

which is not required for C02 assimilation. Active bicarbonate 

transport involves a dehydration process in the cytoplasm which 

is coupled with a similar stoichiometric excretion of a hydropyl 

ion from the cell (Wetzel, 1975). Thus, incorporation of bi

carbonate ions may occur, but only at the expense of metabolic 

eff"ciency. Because of the availability of various forms of car

bon to photosynthetic organisms, Goldman et. al. (1974) suggested 

that it is unlikely that inorganic carbon is a growth-limiting 

nutrient in most natural waters. 

Nitrogen 

Elemental nitroge n is readily available in dissolved form 

1 n most wate rs and can be utili zed directly by some species of 

blue-green algae. However, members of other algal groups are 

forced to utilize inorganic nitrogen compounds, mainly in the 

form of nitrate, ammonium salts, and to a much lesser extent, 

nitrites. In addition to inorganic forms of nitrogen, certain 

organic nitrogen compounds can also be utilized in highly pollu

ted waters. Round ( 1973) suggests that there may be a rel a

tionship between some of the products of animal excretions (am

monia, urea, uric and amino acids} and the growth of certain 

fl age 11 a te s . 
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Although algae can uti lize inorganic nitrogen i n virtually 

any form,. there is strong evidence to s~ggest that ammonia is 

the preferred source. However, this phenomenon may be pH related 

since preferential absor ption of ammonia tends to decrease pH 

while assimilation of nitrate ions tends to raise the pH. 

Normal growth requirements of nitrogen in cultures of Chloro

phyceae range between 6.5-8.3 percent of the ash -free dry weight, 

but under conditions of nitrogen starvation, this level can be 

greatly reduced (Round, 1973).. Luxury uptake of nitrogen can 

be 1nduced if algae are sub jec ted to environments defic ient in 

manganese·, boron or zinc. Marine phytoplankton have been shown 

to contain nitrogen in proportion to carbon and phosphorus in a 

ratio of 7:42.1 . Ryther and Dunstan (1971) came to the conclusion 

that due to the low nitrogen/phosphorus ratio in sewage and ter

restrial runoff entering these waters and also because of a lack 

of nitrogen-reducing blue -green algae such as tho se found in in

land lakes, n1trogen may be the critical limiting factor in coas

tal marine waters. 

Although some members of the Cyanophyta can utilize atmos

pheric nitrogen, this process is not an absolute necessity for 

growth of most species, since their needs can be readily suppl ied 

by other sources. The chemical unreactivity of the covalent 

triple bonds of the N2 molecule insures that, although this chem

ical species may be used, its use is a very inefficient process. 

A small but adequate supply of molybdenum is required for the 
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process to occur. 

Phosphorus 

Compounds containing phosphorus play major roles in nearly 

all phases of metabolism, particularly in ener9y transformation 

associated with phosphorylation reactions in photosynthesis. 

Phosphorus functions 1n the storage and transfer of a cell's 

energy by inco poration into ATP and is a main building block of 

nucleotides and nucleic acids. Phosphorus occurs in water as 

inorganic orthophosphate~ which is the fraction immediately use

ful for autotrophic plants, as well as in organic combinations 

such as meta- or polyphosphates. 

Soluble orthophosphorus is present in small quantities in 

natural waters. Low concentrations of this element may limit 

t' e growth of certa1n algal species and, in fact, Miller, et. al. 

(1974) using algal assays, conducted on water from 49 American 

lakes, found phosphorus limiting algal growth in 35 of the 49 

lake assays. Phosphate concentrations as high as 100)000 and 

850,000 times normal concentrations have been reported in species 

of Euglena and Spirogyra {Round, 1973). Certain algal species 

are known to absorb phosphorus in excess and can exist for some 

time in waters which have become phosphate deficient. A few 

specialized algal forms are able to utilize organic phosphate 

esters, such as glycerophosphates and pyrophosphates. Minimum 

cell nutrient quotas of nitrogen and phosphorus for selected 
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algal species are listed in Table II-1. The phosphorus require

ment for most green-alga is 2-3 percent of dry cell weight. 

Algae release phosphorus into the water during active growth 

mainly in the form of inorganic soluble phosphate, which in turn 

cycled rapidly (Wetzel, 1975). During al~al decomposition, phos

phorus is released in organic form and undergoes bacterial degra

dation. Bacteria then function as a nutrient pump, degrading 

the dissolved organic phosphrous to dissolved inorganic phosphor~ 

h"ch is then available for algae as well as bacterial asslmila

tion. Studies by Rhee (1972) on the competition for phosphate 

betv1een algae and bacteria have indicated that bacteria, because 

of a more favorable surface area to volume ratio, may serve to 

1 i'mi t a 1 ga 1 growth in certain sys terns. 

Sulfur 

Sulfur is generally present 1n small quantities in all 

plant cells but is probably not a limiting factor for many algae 

under normal conditions. In most fresh waters~ sulfur is pre

sent in the form of sulfate, but under the influence of strong 

reduc1ng conditions, in the hypolimnion of certain lakes, for 

example, it may be converted into hydrogen sulfide. Sulfur is 

incorporated into cell mass during the synthesis of numerous 

organic compounds, and sulfur is known to exist in the vacuoles 

of certain cells. Strong evidence exists for a connection be

tween diva 1 ent sulfur compounds and the ass imil ati on of s i 1 ica 

in diatoms (Round, 1973). 



Organism 

Asteria ell a 
Formosa 

Gym nod urn 

Dinobr)O n 

Anabaena 

Chlorella 
Pyrena idosa 

Scenedesmu s 

12 

TABLE II-1 

MINIMUM CELL NUTRIENT QUOTAS 
(~moles/cell) OF NITROGEN 

AND PHOSPHORUS FOR SELECTED ALGA 

Nitrogen Phosphorus 

2.0 X 10-9 

3.9 X 10-7 1.1 X 10-B 

1.8 X 10-B 0.5 X 10 -9 

1 0 X 10-7 2.5 X 10-9 

3.0 X 10- 9 

sp. 1.7 X 10-9 

I 

N:P 
Weight 
Ratio 

...... ____ _.. 

15.8:1 

16.3:1 

18.0:1 

------

------

SOURCE: Lehman, J.J.; D.B. Botkin; and Gene E. likens. 
'The Assumptions and Rationales of a Computer Model of Phyto
plankton Population Dynamics,n Limnol. Oceanog. 20:3 (1975): 
343-64. 
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Silica 

Silica is an absolute requirement for diatoms and for certain 

species of flagellates. Although silica is often present in ap

preciable quantities in natural waters, it has been shown in cer

tain instances to be growth limiting in those species which re

quire this element. Low concentrations of silicate can be util 

ized by d;atoms in natural habitats, but since assimilation of 

silicate 1s directly connected with formation of new cell walls, 

cell reproduction success may be affected. Some diatom species, 

such as Asterionella formosa, may exist at concentrations as low 

as 0.5 mg/1, while at least 25 mg/1 are required for -optimum 

gro th of Fragilaria crotonensis (Round, 1973). 

The cycle of silica is characterized, unlike other nutrient 

cycles by an almost complete removal of assi'milated silica from 

the system as diatom frustules accumulate within the sediments. 

The extent of this permanent loss depends on the morphometry of 

the lake basin and the percentage of the sediments which lie in 

the deep hypolimnion. Some of the more fragile forms may be

come dissolved and re-enter the water column, but for the most 

part, renewal of silica in an aquatic system must rely on inflow 

of water which has taken up silica during its transport to the 

lake. 
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Calcium and Magnesium 

Although ca 1 c ;·urn was at one time thought to be an absolute 

requirement for a 1 gae, researchers are now. certain that, where it 

is required, the amount ;·s small, with a minimal concentration 

around 5 mg/1. As a result, calcium is rarely limiting in aqua

tic systems. Calcium ions play an important role in the mainten

ance of cytoplasmic membranes and in wall structures) although . 

strontium can substitute for calcium in certain species. Calcium 

is deposited as a calcite in the cell walls of many algae forming 

an integral part of the skeletal structure. 

agnesium, since it is a constituent of chlorophyll, is an 

absolute requirement for all pigmented algae. The minimum re

quireme nt for magnesium appears to be aoproximately 40 mg/1 . A 1-

though Ca/r1g rat1os are often important in regulating algal 

,gro th many organisms can tolerate a wide range of ratios pro

v"ded calcium and magnesium are present in sufficient amounts. 

There is also evidence to indicate that the ratio of monovalent 

to divalent ions may play an important part in determining the 

response of a 1 gae to these e 1 ements 

Sodium and Potassium 

Sodium appears to be a requirement for blue-green algae only. 

The increase of blue-green algae when waters becom~ eutrophic, 

may, in part, be associated with an increase in sodium content. 

However, large amounts of sodium may be inhibitory, which may 
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account for the lack of blue-green algae in marine environments. 

A thresho 1 d 1 evel of 4 mg Na/1 is required for near optimum growth 

of several green algal species (Kratz and Meyers, 1955). 

Potassium is a requirement for all algae. Low potassium 

conditions can result in low rates of growth and photosynthesis 

with a high rate of respiration. Providing sufficient nutrients 

are available, the ratio of K to Na within the cell is inde~en

dent of the rat1o in the medium (Round, 1973). 

Iron and Manganese 

It has long been recognized that iron is essential to algal 

production. Iron is a key element in metabolism, being a consti

tuent of the cytochrome molecule. A deficiency in iron will 

result in a decrease in photosynthetic rates. Iron exists in 

readily available form in all natural waters, although there is 

evidence to indicate that colloidal iron can also be utilized 

(Goldman, 1972) . Iron deficiencies have been implicated in lim

iting productiv1ty in certain northern oligotrophic lakes. 

anganese 1s present in all natural waters, and because of 

its role in nitrogen metabolism, it is probably a requirement 

of all algae. Photosynthesis and growth can be stimulated by 

an addition of manganese and decreased in a manganese deficient 

medium. Hutchinson (1957) suggests that seasonal variations of 

manganese in surface waters may play a part in regulating the 

composition of phytoplankton communities. 
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Trace Elements 

Minute concentrations of molybdenum, copper, vanadium and 

cobalt have all been shown to be essential for algae. Although 

trace amounts of each of these elements are es~ential~ higher 

concentrations m~y act as poisons. Round (1973) suggests that 

concentration increases caused by autumnal circulations may be 

partly res onsible for the composition of algal communities at 

this time olybdenum has been shown to be an essential element 

for the nitrogen fixing blue-green algae while cobalt or cobalt 

combined organically in vitamin s12 has been shown to be essen 

tial for a large number of algae. Boron deficiency has been 

shown to produce a loss of pigment and reduction in growth in 

certa1n species, and iod1ne, as well as arsenic~ have been shown 

to be essenbal in the growth of rhadophytes. 

Limiting Nutrients 

Although originally developed by Liebig in the middle of 

the 1 ast century as the "La\"/ of the Mi nimum 11
, this fundamenta 1 

environmental generalization of ecology was most consisely for

mulated by F.F. Blackman in 1905. He pointed out that an org.an

ism process that is dependent upon many distinct environmental 

fa c tor s for i ts opera t i on w i 11 be 1 i m i ted by a s i ng 1 e factor · 

whose value is farthest from the process requirements. As de~ 

veloped originally by Liebig, this law only applied to a single 

nutrient limiting growth at any one t1me. Blackman, however, 
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was the first to realize that a succession of different limiting 

factors may affect a particular system. In his examinations of 

the effect of environmental variables upon assimilation of nutri-

ents, he observed that when the rate of a function exhibits a 

transition from rapid increase to a stationary value, it becomes 

at once probable that another limiting factor has come into play. 

This concept of limiting factors is central to ecology. 

The problem of defining limiting factors and predicting the ef-

fe,ct that their alteration Jill have upon ecosystem organization 

is of key importance in formulating a predictive theory of ecole-

gy. This predi ct1 ve ability can be important in predicting the 

impact of environmental alteration, such as the addition of 

urban stormwater to an aquatic system. 

Limiting utrient Kinetics 

Of the various kinetic models that are in current use for 

limiting nutr1ent identification, perhaps the most widely and 

successfully appl1ed is the Monad relationship: 

where: 

f.! = il l K ~ sl 
2 

-1 
~ = specific growth rate, day 

-1 0 = maximum specific growth rate, day 

S = l1 miting nutrient concentration, mg/1, and 

K
5 

= half-saturation coefficient (limiting 
nutrient concentration at 0/2), mg/1 
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At low values of S, which may often be experienced in aquatic 

systems, the Monad equation approximates a first-order equation 

in Hhich the specific growth rate is linearly related to the 

limiting nutrient concentration. The equation then becomes: 

- (' [ s 1 - ~ -
Ks 

When K
5 

is very small in comparison with S, a zero-order relation-

ship exists (l-1 = u), in \lhich the specific ,grO\Jth rate is at its 

maximum value and is no longer dependent on nutrient concentra-

tions. External factors, such as 1 i ,ght and temperature, then 

regulate growth. A typical ~1onod predicted rel ationshif1 be-

t\reen limiting nutrient concentration and specific growth rate 

1s shoqn in Figure II-1. 

0 

~ 
D 

FIRST 
ORDER I 

CO~PLETE 
MONOO :)OE:L 

A 

-- - p.-12 

ZERO 
ORO::R 

Fig. II-1. Relationship between limiting nutrient con
centrations and growth rates as predicted by the Monod model. 
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If this model is to be useful in identifying limiting nutri-

ents in natural waters, then the magnitude of K values must be s 

de.termi ned.. The K
5 

va 1 ue indicates the appr·ox ima te upper nutri

ent concentration at which the growth rate ceases to be propor

tional to that nutrient. Thus, for a nutrient to be limiting, 

its concentration must be approximately equal to or less than the 

Ks value. By comparing the K5 va 1 ue for a particular nutrient 

ith the actual concentration of that nutrient in a particular 

1ater system, 1t is possible to gain insight into the role of 

this nutrient 1n regulating algal growth. Half-saturation con-

stants for selected nutrients and algal species are listed in 

In addition to its use in identifying the nutrient which is 

limiting maximum yield or growth rate, the determination of K
5 

is potentially valuable in predicting relative successio nal pat-

terns of different algal species in a nutrient-limited situation. 

The growth response of two dlffere,nt al9al species to various 

concentrations of the l imiting nutrient are presented in Figure 

Il-2. As seen in this figure, alga A has both a lower 0 and a 

lower K value than alga 8, and as a result, at very low limiting 
'S 

nutrient concentrations the growth rate of alga A is greater than 

alga B. Alga A would have a competitive advantage over alga B 

in this case, and may actually eliminate alga B from the system. 

As the concentrat1on of the limiting nutrient increaes, the com

pet1tive advantage held by alga A is decreased until the growth 
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TABLE II-2 

HALF-SATURATION CONSTANT {K ) FOR 
SELECTED NUTRIENTS s 

AND ALGAL SPECIES 

Phytoplankton Half-Saturation Constant 
Descr1ption Ni troge~ n Phosphorus 

Total Phytoplankton 
I 

0.025 0 .. 005 

Total Phytoplankton 0.025 0.010 

Total Phytoplankton 0.025 0.002 
I 

~Jarm \,Ja ter Species 0.07 0.015 
I I 

I 

Cold ater Species 0.01 0.02 
I I I 

Green Algae 0.015 0 .. 0025 
I 

Small Cell Species 
I 

0.3 0.03 

Large Cell Spec1es 0.4 0 .. 05 

I 

(Ks) 

Carbon 

----

----
__ ..,... ___ 

0.03 

0-.04 

-.liiiijjjlt .... _ 

0.5 

0.6 

SOURCE. U.S. Environmental Protection Agencyr Rates~ 
Constants~ and Kinetics For·mulations in Sur-face ~~aterQuaiTty 
Mode 1 i ng nvi ronmenta l ·Research Labor a tol~y, · fi thens, GA ( 1978) . 
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curves reach a common intersection (Point I} at which each species 

Hill be able to successfully compete for the supply of 1 imiting 

nutrient. At higher limiting nutrient concentrations> alga B, 

because of 1ts higher growth rate, should become the most sue-

cessful compet1tor for the nutrient. 

,. 
Po ---------- ----- --_:-:::..----------c ALGA B 

Al:GA A 

Fig. 11-2. A compar1son of Monod growth responses for 
two lgae havi g different maximum growth rates and half
saturation coefficients. 

Influx of ,'utri ents into Aquatic Systems 

Aqu tic systems can receive nutrient inputs through a mul

titude of sources~ Before man's technological era began, these 

sources were natural in origin and included such nonpoint source 

inp t s p ecipitation, runoff f om forests and pasture lands, 

decay1 ng vegetation and wastes from \\fi 1 d anima 1 s. However,. 

technological advances a d xplosive population growth have re

sult din a rapid increase in nonpoint sou1ces such as drainage 
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from urban areas and return irrigation flows. On a mass loading 

basis, it was once thought that the effects of nonpoint sources 

were generally small compared with the magnitude of such point 

sources as municipal and industrial waste discharges. Addition

al information on the characteristics and magnitude of nonpoint 

sources, however, has led many researchers to question the valid-

.. ty of t his a ssur1pti on (Loehr!> 197 4) . 

To assess the relative importance and effect of nonpoint 

sources informa t ion is needed on the magnitude and distribution 

of th e inputs, the ultimate fate of the constituents desirable 

or undes1rable, ef fects of the constituents, and any benefits 

or costs assoc1ated with control possibilities. Ecological im

p cts of on point sources depend on the intensity as well as the 

seaso nal distribution of the pol l ution source. Since overland 

f low and stream flow are the major transport agents for the non

point sources, information on ti me related changes in concentra

tion and flow are essential for calculations of field rates. A 

comparison of nonpoint sources based solely on concentration 

units i often difficult because of the flow-dependent intermit

tent nature of the sources. Perhaps the best method of compari

son is throu~h the use of area yield rates, such as the quantity 

of nutr1ent per unit of drainage area per unit of rainfall or 

runoff. The constituents and relative magnitudes of a particu 

lar nonpoint input, urban drainage, are discussed in the next 

s ction 
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Characteristics of Urban Stormwater Drainage 

During the past few years it has been recognized that urban 

storm\~ater runoff is not 11 rainwater 11 in te rms of quality. Storm

water runoff typically contains substantial quantities of impuri 

t·es, and in some locations, it has become a more serious source 

of pollutants than municipa l astes (Sartor, et. al ., 1974). 

Street litter, gas combust1on products, 1ce control chemicals , 

rubber and metals lost from vehicles, decaying vegetat ion, domes

tic pet wastes , fallout from industrial and residential combus

tio products, and chemicals applied to lawns and parks may be 

so rces of contam1na ts in urban runoff. Lead, presumably from 

exhaust of in ternal combustion engines, may also be fou nd in 

ur a runoff. A comparison tif area yields from urban and rural 

ru off sources is listed in Table II-3 As seen i n this data, 

rba runoff produced higher concentrations of every parameter 

t sted and in the case of total P04, the urban runoff produced 

a area yield 19 times that found in rural runoff. Area loading 

rates for contribut1ons of total nitrogen and phosphorus by 

vario us nonpoint sources are presented in Figure II-3. 

Loehr (1974) in an investi gat ion on the characteristics 

and constituents of urban ru noff, found the major component of 

street surface contaminants to be inorganic mineral-like matter~ 

The greatest portion of the pollutional potential was associated 

with the fine solids fraction of str et surface runoff. The 

quantity of cant mi nants per unit 1 ength of street ~tas shown to 
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TABLE II-3 

AREA YIELDS OF SELECTED CONSTITUENTS 
FROM URBAN A D RURAL RUNOFF SOURCES 

Const1tuent 

Total Organic Carbon 

Tota 1 P04 

TK ~ 

itrate I 

Sodium 

Potassium 

Cal ci 'm 

agnesium 

Area Yield (kg/yr/ha) 
Urban Runoff 

345 

150 

7.5 

13.3 

235 

133 

960 

290 

Rural Runoff 

144 

7.8 

1.9 

5.0 

42.5 

21.7 

628 

290 

SOURCE: Loehr Rayrrond C. 11 Characteristics and Compara-
tlve agn1tude of on-point Sources.S 1 J. Water Pollution Con
trol Federation 46:8 (1974): 1849-73. 
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increase as the time interval since the last rain event or street 

s t~eep1ng increased, with the 1 argest quantity of contaminants 

located within 6 inches of the curb. Runoff from residential 

streets was found to contain the highest concentrations of total 

phosphorus ) runoff from arterial streets contained the hi ghest 

concentrations of soluble phosphorus, with runoff from arterial 

hi ~gh\Jays containing the highest concentration of nitrogen .. ~1ass 

loadi ngs from urban stormwater runoff from commercial and resi

dentlal areas sur~r~ounding Lake Eola are 1isted in Table II- ~4. 

In addition to the conventional. water pollution parameters, con

stituents such as chlorinated hydrocarbons~ organic phosphate 

compounds , heavy meta 1 s, and po 1 ychl ori na t~ed biphenyls were a 1 so 

found in urban runoff. Pathogeni c organisms have also been iso

lated in urban runoff (U.S EPA 1977) with the most concentrated 

pathogens being Pseudomonas aeruginosa, Staphlococcus aureus, 

Salmonella and enteroviruses. 

Phosphorus Inputs from Urban Runoff 

Because of the importance of phosphorus in the nutrition of 

algae the phosphorus contributions from point sources such as 

urban runoff has received much attent1on (Cowen and Lee, 1976). 

It has been estimate~d by Kluesener, et. al. (1974) that approx

imately 80 percent of the annual total P input to Lake Wingra 

in Madison, Wisconsi n is from urban runoff. 
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TABLE II-4 

MASS LOADINGS FROM URBAN STORMWATER RUNOFF 
FROM A 28 ACRE COM ERCIAL AREA AND A 

16 1 ACRE RESIDENTIAL AREA IN THE 
LAKE EOLA DRAINAGE BASIN 

Constituent 
Average . ass Loading (kg/ha-yr) 

28 Acre Commercial. 16.1 Acre Residential 

ss 338 195 

BOD 50 74.6 

COD 296 442.3 

TOC 123 138.5 

TK 4 1.8 

03 - 6 2 .. 2 

OP-P 2 0.8 

TP-P 3.5 2.2 

SOURCE Wani lista, lar t in P.; Yousef A. Yousef; and 
al dr on . c l ellan 11 Nonpoint Source Effects on \~ater Quality .. " 

J at er Pollution Control Federation 49 (1977): 441-51. 
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Phosphorus transported by urban runoff occurs in both the 

soluble and insoluble forms . Kluesener, et. al. (1974) reported 

that approximately 58 percent of the· tota l phosphorus contained 

in Cincinnati runoff samples was in the dissolved reactive state. 

The remaining 42 percent of total phosp horus occurred as particu

late phosphorus, much of which was associated with the fine 

solids fract1on of the particulate matter transported in the 

runoff. Sartor, et . al. (1974) reported a si mila r value of 56 

perce t of total phosphorus which was associated with particles 

less than 43 microns. 

The availabil1ty of these phosphorus forms to photosynthe

tic organisms can be defined by the equation: 

oJh ere. 

Howeve 

availabl e TP = TSP x (percentage of TSP available) 

PP x (percentage of PP available) 

TP = total phosphorus 

TSP :::: tota 1 solub1e phosphorus, and 

pp = parti cul! ate phosphorus 

_, s1nce virtually all of the tota 1 so 1 ub 1 e phosphorus will 

eventually be converted to orthophosphorus, the availability of 

al' l phosphorus forms can be ca l culated by the above equation pro

vided the contribution by particul ate phosphorus is known. 

Cowen, e . al. (1976), using algal bioassays with Selenastrum as 

a test organ i sm~ reports an average estimated particulate phos

phorus availability of 30 perc ,en t for Ma dison runoff. If this 
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figure is assumed reasonably accurate for other locations as well, 

the available total phosphorus from a stormvo~ater source can be 

calculated by .: 

TP = TSP + PP (0.3) 

Nitrogen Inputs from Urban Ru noff 

Because of the enriching effects of nitrogen to aquatic sys

tems, concentrations of nitrogen in urban runoff are also of in

terest. Co~~en et. a1 (1976} reported an inorganic concentra

tion including ammo ia, nitrite and nitrate, of about 1.0 mg N/1 

in Cincinnati storm\\fater runoff \vith about 65 percent of the 

total in the runoff present in the organic form. Kluesener 

a d le - (1976) found a s1milar organic nitrogen concentration of 

77 percent in urban runoff entering Lake Hingra,. l'isconsin. 

Since inorganic nitrogen forms such as ammonia, nitrite and 

nitr te can be readily ass i milated by algae in natural waters, 

the total amount of nitrogen in a stormwater runoff which may 

be available for aquatic growth wi ll be equal to the amount of 

inorganic nitrogen present plus the percentage of organic nitro

gen which may eventually become available. This relationship 

can be expressed mathematically as : 

Avai labl e Total Nitrogen = Inorganic N + (Organic N) 

x (percentage of Organic N available) 

The percentage of organic N available is a function of time and 

the rate at which microbial activities can mineralize organic N 
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into inorganic N. Cowen et. al. (1976) states that in tests of 

Madison urban runoff, an average of 70 percent total N, with a 

range of 57 to 82 percent, was present as algal-available nitro

gen with bacterial minera lization of organic nitrogen comprising 

the major mechanism for increasing availability of thesenitrogen 

sources. Since concentrations of organic nitrogen are often 

several times higher in urban runoff than inorganic sources, 

computation of the algal available N by addition of the inorgan ic 

sources may result in a gross under-estimation of available nu

trient su pp l i es . 

Algal Bioassays 

As seen in the preceeding d1scussions on the availability 

of 1 trogen and phosphorus in urban runoff, not all of the chem

ically measured nutrient forms are available for aquatic growth. 

To mi im1ze problems which a'e often encountered in making pre

dictions from chem1ca l measu ements alone, many researchers have 

resorted to the use of laboratory-conducted algal bioassay ex

periments to more accurately define possible growth responses 

to nutrient or aste addit1ons. 

Bioassays utilize the measurable response of living organ

isms to environmental variables . This response is an integra

tion of the combined effects of ion solubility and ion availa

bi l ity to the test organism . Bioassays are more va luable than 

pr dictions based on chemical measurements alone because they 
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e·nable a distinction between biologically available ions and 

those not ava1lable. In many cases, chemical analyses would not 

make this distinction. 

The response of a test alga to environmental conditions is 

d1: r ~ect1y a ffe·c ted by such phys i ca 1 parameters as 1 i ght (Reyno 1 ds, 

t. al ., 1975) and availability of co2 (Kuentzel, 1969), by chem

ica l factors such as redox potential, biochemical transformations, 

compl xation . so ption, total salts and ionic balance, hardness, 

acid-base equilibrium and solub1lity (Lee, 1973), as well as 

biological factors such as the presence of bacteria (Kuentzel, 

1969) In fact , r.1uch of the early bioassay experimentation 

as conducted in an effort to define and minimize the effect of 

thes variables Bioassay methods have developed) however, over 

the past 10 years from a tentative procedure prepared by the 

ational Eutrophication Research Program in March 1968 to the 

very soph1sticated and \'-Jell-designed present day assay methods 

as described in the Selenastrum capricornutum Algal Assay Bottle 

Test hich was a maJor step in the clarification and standardi-

ation of assay methods. Many laboratory cultured algal species 

hav been tested over this period including Selenastrum capri

cornutum, Microcystis aeruginosa and Anabaene flos aquae (Payne, 

1974) as well as Stigeoclonium subsecundum {Trotter, et. al ., 

1976) Of all the algal species tested, Selenastrum capricornu-

tum has been selected as a standard test organism because of its 

ease in culturing and enumeration (Payne, 1974 and U.S. EPA, 
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1978a) and because it produces a gro\Jth rate which is approxi

mately twice that of the t ~Jo blue-green species used. A more 

detailed discussion of bioassay techniques and procedures is 

given 1n later sections of this report. 

Practical Application of Bioassay Procedures 

By far the most prol if1c app1 ication of bioassay procedures 

is the determ1nation of the effects of a waste treatment dis

charge on t e productivity of the receiving waters . Miller and 

a 1 o ey ( 1971) considered the effects of secondary and tertiary 

aste ater effluents 1n algal growth in a lake-river system. Al

gal bioassays utilizing Selenastrum capricornutum as the test or-

ganism incub ted in tertiary wastewater effluent would not sup

port the gro th of the test alga unless phoshporus was added 

desp1te the presence of all other nutirents. The results of 

th1s b~oass y ~nd 1ca ted that the installation of a full-scale 

adva ced \ ste treatment plant capable of phosphorus removal 

\~ould resul. t in retardation of the eutrophication process in 

Shaga a La e and would aid the eventual restoration of the lake. 

t~ i 11 e r , e t . a 1 . ( 1 9 7 6 ) , i n an i nv est i gat ion of the effects of 

waste~a er effluents on algal gro\\fth in a r1ver system) found 

that alga l production was regulated largely by the N:P ratio 

with m ximum growth occurring at an N:P ratio of 11.3 to 1. It 

was further suggested that the N: P ratio may be useful in pre-

1 1m1nary assessment of algal growth limitation in natural waters. 
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\aters containing N:P ratios less than 10 may be considered nitro -

9 en 1 i m i t i ng w hi 1 e tho s e waters w i th ~ J : P rat i on s g rea t e r th a n 10 

may be phorphorus 1 imited for algal gro~Jth. A similar study 

by Green (1975) upon the effects of municipal industrial and 

agricultural wastewater effluents upon phytoplankton production 

in the Snake River system found a high degree of correlation be

been the ~xpected troph1c state of a sampling site as predicted 

y its nutr"ent composition and the response obtained in algal 

bioass ys. This indicates that the Algal Assay Bottle Test tech

n·que is sensitive to subtle changes of nutrient content in the 

at1ous ri er aters assayed. Dome1 and Brooks (1974), using 

Chl ore~ll a pyrenoi do sa and Ch l amydomas rei nhardti i as test organ-

is 1s t sted the effects of detergent discharge of phosphorus 

on algal growth. In these experiments, no reduction of algal 

growth 11as obs rved even though a switch was made to non-phosphorus 

d tergents in the study area. Only \vhen eff1uents vtere tertiary 

tr a ted so t at reactive phosphorus l eve 1 s were be 1 ow 1. 2 mg/1 

s algal growth significantly reduced. 

Identificat·on of Algal Growth-Limiting ~utrients 

Another aspect of bioassay research 1s concerned with de

termi ing the troph1c condition of various lakes throughout the 

country and pred1cting the effects of increasing or decreasing 

nutrient input into these lakes. Maloney, et. al. (1972), for 

example, conducted l aboratory al gal assays on waters from nine 
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Oregon lakes of varying water quality in which Selenastrum capr1 -

cornutu111 was used as a test organism. Additions of nitrogen, 

phosphorus, and carbon, singly and in combination, were made to 

the waters and algal growth rates were determined. The addition 

of phosphorus alone greatly stimulated algal growth rates in 

four of the ~aters and the addition of nitrogen alone slightly 

st1mulated a1gal gro\'!lth in two of the waters. Three of the waters· 

wer capa le of support1ng relatively high algal growth rates 

i thout nutr1ent add it ions, and in one o1 igotrophi c water, 

nutrient additions had no effect. In al~ l cases, al9al growth 

rates ere di ectly proportional to the amounts of dissolved 

phosphorus in the ~mters, but there was no obvious correlation 

be een algal growth rates and concentrations of nitrogen and 

ca bon. 

8 ioassay Vi el ds as a Predictor 
of Indigenous Populat1ons 

Because of the 1 arge number of factors known to affect 

1 a bora tory bioassay r,esu1 ts, few researchers have used l a bora

tory bioassay yields as a predictive tool for estimating indi

g nous phytoplankton standing crops and chlorophy11 "au concen

trations. Greene, et. al. (1978), however, suggests that under 

carefully controlled conditions, laboratory experiments can pre

dict actual 1n situ concentrations with a high degree of cor

relation. Using data collected over a two year period with 

Sel enastrum as a test organism in 18 separ·ate bioassay experiments, 
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an equat·on predicting phytoplankton standing crop (r = 0 .. 82) 

was developed: 

indigenous population= 1.07 (bioassay standing crop) - 0.04 
(mg/1) (mg/1) 

A linear regression analysis of similar data of chlorophyll uau 

concentrations and Selenastrum maximum yields resulted in the 

following equat1on (r = 0.91): 

indi genous chlorophyll "a" = 1.41 (bioassay standing crop) + 1.95 
( g/1) (mg/l) 

Although the data presented above is for a single lake system, 

1t seems reasonable that simila relationships could be developed 

for other systems, provided a closely regulated bioassay pro-

c dure is follo ed. 

In s ,mma y it seems that, properly applied, algal bioassay 

expe iments can e useful tools 1n predicting the response of 

aquatic systems to nutrient additions and pollutional inputs. 

Although bioassays have been conducted for many years, there are 

still many aspects of algal growth and behavior that are poorly 

understood. Research 1n these areas, especially in terms of 

predicting in situ responses from laboratory data, is badly 

need d. 



CHAPTER III 

FIELD AND LABORATORY EXPERIMENTATION 

Lake Eola 

Lake Eola is a small land-locked lake located in the heart 

of do~n o~n Orlando. Phys1cal characteristics of Lake Eola are 

1 i' sted i Tab 1 e I I I -1 and 1a ter depth contour~ are shown in 

Figur II-1. Approx1mat~e contour areas and frustrum volumes 

i n La e Eola are l1sted in Table III-2. Contour areas drop off 

very 1 i ttl e up to a depth of 5 feet) s 1 i ghtly more ra.pi d to a 

depth of 10- l S feet, and then very rapidly bel ow 15 feet. 

Ap oxi ately 73% of the total lake volume is located in the 0-

10 foot fr strum 1 ayers. The 1 ake receives sto,rrrwa te r runoff 

by J y of storms -.rers from a \-Jatershed of approximately 136 

acres composed of 78 2 acres of commerc1al and 57.8 acres of 

resl~ dential a eas surra nding the lake (Fi ~gure III-2). A large 

fountain is loca ted near the center of the lake. The natural 

s ho e1 i ne of the 1 ake has been replaced Hi th a stone \fl/all to 

prevent flood ing of the adjacent parkland. Numerous small patches 

of rooted emergent macrophytes exist along this wall. r~o rooted 

submerg t plants have been noted in the lake. The level of the 

lake 1s controll:ed by two drai.nage wells IJVhlch drain into the 

under 1 y i n g a r te i a n a q u i fer· . S i n ce the 1 eve 1 of the l a k e 1 s 
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higher than the piezometric surface, water flows readily do~vn 

the wells. The piezometric surface is located approximately 57.0 

feet above sea level (Wani elista, 1978). The level of the lake 

is ma1 ntai ned between 87.0 and 88.5 feet above sea 1 eve 1. 

TABLE III-2 

APPROXI ATE CONTOUR AREAS AND FRUSTRUt~ 
VOLU ES IN LAKE EOLA 

Contour Data was Collected \~hile the Lake t~as 
at a Height of 88.0 Feet Above Sea Level 

Depth of Contour Area Frustrum Volume Contour Bela 2 ft
2 m3 ft3 

Lake Surface m gal 

0 109,224 1,175,712 -- - ·-- ---
3 103,391 1,112,932 97,222 3,432,966 25,678,586 
4 95,717 1,030,325 30' 348 1~071,629 8,015,781 
5 72,607 781,566 25,656 ' 905,946 6,776,472 

10 45 135 485,847 89,733 3,168,533 23,700,623 
15 27,922 300,559 55,678 1,966,016 14,705,792 
20 11,158 120,110 ! 29,783 1,051,673 7,866,510 
21 1,679 18,074 1,957 69,092 1 516,808 
22 106 1,138 272 9,606 71,853 

TOTAL 330,649 11,675,458 87,332,425 

Sources of pollution in Lake Eo1a include direct rainfall, 

star ater runoff from the pa kland surrounding the lake, and 

storm sewe s wh1ch drain the urban watershed surrounding the 

lake. There are currently 11 active street drains which drain 

stormt~ater into the lake A restoration of Lake Eola was under-

ta en 1n 1972 (Wanieli sta , 1973). At that time, the lake was 

partially dr ined and approximately 40% of the bottom was cleaned 
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of muck and silt and covered with relatively phosphorus free sand. 

Existing stormwater drains were also extended into the lake ap

prox imate ly at the 8-10ft. water level. The lake was then re

filled with water from the drainage wells. However, no efforts 

were undertaken to manage or trea~ the stormwater entering the 

la ke , and now the wate r quality of Lake Eola is ag~in questioned. 

Buildup of flocculant sediment matter is increasing rapidly. 

Large masses of algae can be seen floating along the shoreline, 

and fish nd duck kills have been reported periodically during 

the su mme r months follo ing heavy rain events. In addition, 

Salmonella, Sh1gella and Clostridium botulinum have been isolated 

from the\ ater and shoreline sediments in the lake (Wanielista, 

1979) . 

S i te Se l e c t i on 

To estab lish a record of the water quality in Lake Eola, 

monthly vater quality analyses were performed for a period of 

one year beginning July 1978. Initial samples were collected 

from 16 1 oca ti ons chosen randomly \Ji thin the 1 ake. After the 

1nitial sampling set, the number of locations was reduced to 

six fixed stations (Figure III-3) which were maintained through

aut the sampling period. The six 1 oca ti ons \ve,re divided into two 

groups and monitored alternately so that stations Sl-S3 would 

be monitored one month and stations S4-S6 monitored the next. 

Station 1 was selected near a small island, which is used 
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primarily as a nesting area for birds and ducks, in order to de

termine if th_e ¥/aste products from these animals are sufficient 

to alter water quality in the vicinity of the island. Station 3 

\\las selected near the large fountain to determine whether the 

fountain has an effect on water quality. Station 5 \"'as chosen 

in a shallow silty area near shore. Stations 2, 4 and 6 were 

selected at random from the rema inder of the lake. 

l~ater Quality Analysis-Field Determinations 

Dissolved oxygen and temperature profiles were recorded 

monthly at each of the three sampling locations which were mon

itored. easurements were taken at 0.5 m intervals and at the 

attorn using a YSI ~1odel 54/l. dissolved oxygen meter equipped with 

a emote sens1ng probe. Since station 3 was located in the deep

es area of the la e, measurements of temperature and dissolved 

oxygen were re rded at this station each month. Seechi disk 

depth was also determined at each of the three stations. All 

Seechi disk determinations were conducted between 12 p.m. and 

4 p m. with the sun to the observerrs back. 

Water samples were collected at each of the three stations 

and retu1 ned to the Environmental Engineering Laboratory at the 

Un iversity of Central Florida for water quality analysis and for 

use in bioassay experiments. A11 samples were collected from 

the top 1 meter of the water column using a brass 2 liter Kem

merer water sampler and stored in 1 gallon polyethelene containers 
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which were completely filled to eliminate gas exchange. Samples 

Jere placed on ice in the dark for return to the laboratory. 

Water Quality J1.nal,ys·es-Laboratory Determinations 

The following determinations v1ere performed on each sample 

collected: pH, turbidity ., organic carbon, inorganic carbon, ni

trate nitrogen,, orthophosphorus and chlorophyll "au along with 

an analysis of heavy metals Nhich ;·ncluded: zinc, lead, chromium, 

nic el, copper, aluminum, iron, cadmium, arsenic and calcium. 

Total Kjeldahl nitrogen and 8005 were also determined on selected 

samples. r·easurements of pH, turbidity, and chlorophyll "au 

were performed within 4 hou1 s of collection. Other analyses 

\Jere conducted within the time specified by U.S. EPA. in Nethods 

for Chemica 1 Analysis of via ter and ·wastes ( 1976). 

Determinat1ons of pH were performed with a Corning Model 12 

Research pH meter equipped \-Ji th a temperature compensation probe. 

Turbidi1ty was measured with an H.F. Instruments Model DRT-150 

Nephe 1 ometri c Turb idimeter.. Chlorophyll "au con centra ti ons were 

determined from a calibration curve using a Turner r,1odel 111 

Fi 1 te r Fluorometer. The ca 1 i bra ti on curve was prep a red by ca 1-

culating chlorophyll "au concentrations in water samples from 

Lake Eola using the trichromatic spectrometric acetone extraction 

method as described in Standard Methods for the Examination of 

Water and ~Jastewa ter (14th Edition) and comparing these va 1 ues to 

re 1 a ti ve fl uo res cence values. This ca 1 i bra ti on curve for 
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indigenous algal species in Lake Eola is shown in Figure II I-4. 

Al1 ca 1 i bra ti ons -'ere conducted using the lx and 3x f luoromete r 

ranges since it was determined that switching between these two 

positions produced virtually i denti cal results once the range 

multiplier factor had been applied. The lOx and 30x ranges, 

however, ten ded to underestimate chlorophyll ua•• concentrations ) 

compared to the lx and 3x sca les , and were not used in calibra 

tion or measurement procedures. 

De,terminations of orthophosphorus were performed using the 

ascorbic acid method as described in Standard Methods. The 

standard curve used in determinati on of orthophosphorus is shown 

in Figure III-5. Carbon analyses were performed using the 

combustion-infrared analysis technique with a Beckman Model 915 

Total Organ ic Carbon Analyzer equipped with a Beckman Model 215A 

Infra ed Analyzer. De,terminations of total carbon and inorganic 

carbon Jere made with organic carbon determined by difference~ 

N1trate n1trogen was analyzed using an Orion Model 93-07 nitrate 

1on electrode with an Orion Model 801-A Digital Ionalyzer. Since 

nitrate nitrogen concentrations were generally less than 1 ppm, 

the low level technique as described by Orion in the ion electrode 

instruction manual was used. It was found, however, that the use 

of a low level, ionic strength adjusting solution which is speci 

fied in this technique, would cause an overestimate of nitrate 

nitrogen concentrations in spiked lake water samples of approxi 

matel y 0.40 mg/1 per mg/ 1 of nitrate nitrogen present at 
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concentrations of 0.5 mg/1 nitrate nitrogen or greater. The 

substitution of t~e high level ionic strength adjustor for the 

low level ionic strength adjustor was shown to reduce this error 

to less than 0.05 mg/1 per mg/1 of nitrate nitrogen present in 

the range up to 2 mg/1. A typical nitrate nitrogen standard 

curve is shown in Figure III-6. Total Kjeldahl nitrogen and BOD5 

were determ·ned as described in Standard ~1ethod s. 

He,avy metal analyses were performed on concentrated samples 

usi ng a Spectror.1e trics Incorporated Spectrospan III Plasma Emis

sion Spectrophotometer. Samples were concentrated by adding 2 

ml of concentrated H 03 to 100 ml of sample in a 250 ml Erl en

meyer flask and heating at 95° C until a volume of approximately 

10 ml was achieved. The sample was then brought up to 20.0 ml 

"th glass distilled water and stored in a covered polypropelene 

contai er for measurement. All glassware used in metal determin

a t i on s , as a c i d ... \vas he d before each us e w i th a 1 : 1 so 1 u t i on a f hot 

hydrochloric acid followed by 5 rinses in glass distilled water. 

Algal Bioassay Procedures 

Sample Collection and Preparation 

' ake water samples for use in alga 1 bioassays were collected 

from Lake Eola using a brass 2-1 iter Kemmerer water sampler and 

stor din 1 gallon polyethelene containers. All containers were 

completely filled to eliminate gas exchange and were stored in the 

dark on ice to minimize biolpgical and chemical changes in water 
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qua 1 i ty. S i nee the depth of the euphotic zone in Lake Eo 1 a was 

determined by See chi disk measurements to be approximately 1 

me~ ter, all samples for use in bioassays were call ected from the 

top 1 meter of the water co 1 umn as suggested by U.S. EPA ( 1978}. A 

composite ~'later sample was prepared from lake water collected at 

3 of the 6 f i xed stations in the lake for use in bioassay exper-

iments. 

In order that a unialgal test species could be used in bio-

assay experiments, the indigenous algae in the sample must first 

be removed. This removal was achieved either by filtration fol-

lowed by autoclaving or by autoclaving followed by filtration. 

Filt ration i nvo 1 ved passage of the samp 1 e through a 47 mm di a

meter 1llipore acetate filter ~lith a 0.45 Jl pore size .. Auto

clavlng 1as conduc ed at a pressure of 1.1 kg/cm2 (15 psi) and 

a temperat re of 121° C for 10 minutes per liter of sample, pro

vided the total ster1lization period wa~ not less than 30 minutes. 

Treated samp 1 es were stored in fi'll ed po 1 ye the l ene containers 

0 at 4 C in the dark unt1l needed. In no case was the storage 

period 1 onger than 48 hours. In severa 1 instances, ·it was de

sirable to determine the effect of nutrient additions to indige-

nous a1ga l species in Lake Eola. For these experiments, the 

lak e composite sample was used as is without autoclaving or 

f~ltration of any kind. All: samples fo) bioassay use were ana-

lyzed for the following constituents as described previously: 
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pH, organic carbon, inorganic carbon, nitrate nitrogen, total 

Kje1dahl nitrogen, and orthophosphorus, along with an analysis 

of heavy metals which included: zinc, cadmium, arsenic, nickel, 

copper~ aluminum, iron and chromium. 

Glassware Prepa ration 

Glassware used as culture vessels or in the sample prepara

tion was washed w1th a stiff bristle brush using Liqui-Nox non

phosphate detergent and rinsed thoroughly with tap water. All 

glass~are was then rinsed 1n a 1·1 solution of hot hydrochloric 

acid followed by 5 rinses in glass disti1led water, dried, and 

covered until used 

Test Alga and Innoculum Preparation 

Two un ice 11 u l a r test alga \~ere used as bioassay organisms: 

Se1enastrum capricornutum Printz and Chlorella pyrenodosa. A 

co nee ntra ted Se 1 en as trum culture was obtained from the En vi ron

mental Research La bora tory, Corva.ll is, Oregon. The Chl ore 11 a 

culture ~as obta1ned from Carolina Biological Supply Company, 

Burl1ngton, North Carolina. A culture of Anabaena flos-aguae 

was also obta 1ned from the En vi ron menta 1 Resea r·ch La bora tory, but~ 

because of the tendency of Anabaena to form into large floccu

lant clumps, 1t was not used as a bioassay organism. All algal 

cultures were stored in a dark refrigerator. Approximately 2 ml 

of a sy theti c a 1 ga 1 culture were aseptically trans fer red to 200 
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ml of a synthetic algal culture med ium in a 1-l iter Pyrex Erlen 

meyer flask . The culture vias incubated at 24 + 2° C under con- · 

tinuous ' ''Coo l-~~hi teu fluorescent lighting (400 ~ 10% foot candles) 

and shaken continuously at 100 oscillations per minute. At 

approximately 2 week intervals, a routine stock transfe r of 2 ml 

of algal culture was transferred to a fresh culture medium to 

mainta1n a continuous supply of oells for experimental work. 

The synthetic algal nutrient medium was a dilute medium prepared 

in the laboratory similar to that described by EPA (1978). Indi 

Vldual stock solutions of macronutrients were prepared at 1000 

times the culture medium concentration while the micronutrients 

ere comb1ned into a single solution also at 1000 times recommen

ded concentration. All chemicals used 1n preparation of the med

ium \~ere reagent grade or better~ One milliliter of each stock 

macronutrient solution and 1 ml of the stock micronutrien t sol

ution were combined lA'ith glass distill.ed water to form 1.0 liter 

of alga l growth medium. The solution was fi l ter steril zed by 

fi 1 trati on through a 4 7 mm diameter ~1i 11 i pore acetate fi 1 ter 

with a 0.45 1-1 pore size at a pressure of 1/2 atmosphere. Final 

pH of the prepared medium was found to be 7. 50. Fi na 1 con cen

trations of macroelements and microelements are listed in Table 

III-3 . 
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TP.BLE I I I-3 

CO~ICEr4TPATIO 15 OF tli\CROELEt·iENTS AND HICROELE,.1ENTS IN 
THE PREPARED SYNTHETIC ALGAL (vlEDIUM 

Element Concentration of 
Element 

acroelements (mg/1): 

N (in the form of Na 03) 4.200 

9 (in the form of 1gC1 2 
. 6 H20) 2.904 

Ca (i n the form of CaC1 2) 1.202 

s (in the form of Mgso4 
. 7 H20) 1.911 

p (in the form of K2HP04) 0.186 

K (in the form of NaHC03) 0.469 

c (in the form of NaHC03) 2.143 

i croe l emen ts ( 119/l ) . 

B (i n the form of H3B03) 32.460 

(in the form of MnC1 2) 115.374 

Zn (in the form of ZnC1 2) 1.570 

Co (in the form of CoC1 2 
. 6 H20) 0.354 

Cu (; n the form of CuC1 2 
. 2 H20) 0.004 

Mo (in the form of Na 2Moo4 
. 2 H20) 2.878 

Fe (; n the form of FeC1 3 
. 6 H20) 33.051 
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Algal Bioassay Methods 

All bioassays were conducted in 1000 ml Erylenmeyer fl asks 

containing 200 ml of sample. Flasks were incubated on an Eberbach 

shaker with a modified 3/4 inch plywood tab1e top, 64 inches 

1 ong and 32 inches wide, which was cons true ted to accomoda te 66 

Erylenmeyer 1 liter flasks. During the bioassay period, the sha

ker table was adjusted to provide 100 oscillations per minute. 

All flasks were fitted with foam plugs to allow gas exchange and 

prevent contamination. A constant temperature of 24 ± 2° C was 

maintained in the incubation room. Constant illumination was 

prov1ded by t\vo "Cool-\~hite' fluorescent l ights which were ad

justed to provide an illumination of 400 + 10% foot candles as 

rreasured adjacent to the flask at the 1 iquid level. The incuba

tlon apparatus used in bioa say experiments is shown in Figure 

III-7 

Depending, on the experimental design, it was often neces

sary to add an initial nutrient dosage to the flasks at the start 

of the ex peri men t to determine the effect of these nutrients on 

a 1 ga 1 productivity~ Various concen tra ti ons of phosphorus, ni

trogen, iron, and EDTA were added to sel.ected flasks. Phosphorus 

was added in the form of a solution of K2HP04, nitrogen as NaN03, 

iron as FeC1 3 and EDTA as the sodi urn sa 1 t.. Con centra ted stack 

solutions of each nutrient were prepared so that, depending on 

the nutrient concentration desired in the flask, no nutrient 
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addition would require a volume greater than 2 ml to be added to 

any flask. Disposable s teri 1 i zed pipettes were used in all nu

tri'ent additions to avoid contamination. Jq 1 nutrient spikes 

v1ere added to flasks in triplicate, and the results of the 

three flasks were averaged. Gl ass...-Jare used as i ncuba ti on vesse 1 s 

was permanently numbered so that any si.ngle flask which produced 

consistently higher or lower productivity responses could be 

detected and removed. A 11 flasks were a 11 owed to equi 1 i bra te 

under test conditions for 24 hours before innoculation with an 

algal species to allow time for the test media used to come to a 

constant temperature and also to allow for equilibrium in gas 

exchange. This procedure was shown to produce more consistent 

results among the flasks with a specified nutrient addition. All 

flasks Jere innoculated with 1 ml of a 14 day old algal culture 

to give an initial chlorophyll 11 a 11 concentration of approximately 

10 }Jg/1 . 

Standing Crop Determinations 

Measurements of gro\~th responses \.Yere performed by determina

tion of in vivo fluorescence of chlorophyll "a" using a Turner 

hode1 111 Filter Fluorometer equipped \\fith a model 10-030 cuvette 

holde . The fluororreter was also equipped with a special photo

multiplier tube with enhanced red sensitivity as recommended by 

Turner in Fluorometric Facts (1976) for in vivo chlorophyll determina-

tions. The mode l 10-045 blue lamp was chosen as the light source 
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in combi nation with a model 5-60 pri rna ry exci ta ti on fi 1 te r. 

The emission fi 1 ter used \·Jas a mode 1 2-64 fi 1 ter as recommended 

by Turner. Before measurement, each incubation flask was swirled 

to assure uniform mixing of the contents. A grab sample of ap 

proximately 4 ml from each flas k was collected in a Pyrex 13 x 

100 mm test tube for measurement in the fluorometer. All test 

tubes were inverted several times before measurement to assure 

uniform di st ri bu ti on of a 1 gae. Only the lx and 3x fluorometer 

ranges were used, with all values recorded relative to the 3x 

range. All nutrient additions used in bioassay experiments were 

run 1n triplicate and results obtained in the three flasks were 

av a~ed for use in data analysis. 

In order that the bioassay results could be expressed in 

terms of dry ce 11 eight of ce 11 mass per liter of so 1 uti on, 

a ca 11 bra ti on curve was prepared re 1 a ti ng relative fluorescence 

to cell dry ~eight in rng/1. To prepare this curve, 14 vJhatman 

4.25 em GF/A glass fiber filters were dried for 2 hours at 103° 

C ~ All filters were allowed to cool in a dessicator for at least 

one hour before weighing. Relative fluorescence of measured 

a liquets of an actively growing Selenastr-um culture were measured 

\\lith a fluorometer and then fi 1 tered at a pressure of 1/2 atr.los

phere. Filtration was followed vJith a 50 ml distilled \.-Jater rinse 

of the filter funnel to transfer all algae to the filter and to 

wash nutrient salts through the filter. All filters were dried 

at 103° C for 24 hours, cooled in a dessicator for 24 hours, and 
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then weighed. A calibration curve was then prepared relating 

relative fluorescence measurements to algal cell dry weight . 

This calibration curve is shown in Figure III-8. 

Luxury Uptake of Phosphorus 

An experiment was conducted to determine if luxury uptake of 

phosphorus in an actively growing algal culture can occur in suf

ficient quant1ty to alter the results of short-term bioassays. 

Approximately 200 ml of synthetic algal medium (Table III-2) 

were p 1 aced in to five 1-1 iter Eryl enmeye r flasks with a 14 day 

old culture of Selenastrum and incubated on a shaker table at 100 

oscillations per minute under a constant illumination of 400ft

candles using "Cool-\~hi te" fl,uorescent 1 ighting. The contents of 

each flask were combined daily into a single mixture in a 2-

lite beaker. A portion of the combined mixture was filtered 

through a Whatman GF/A filter which had been washed with 100 ml 

of d1 s i lled water, dried, and \"eighed.. The val ume of culture 

filtered was dependent upon the conc,entration of algal cells pre

sent and was chosen in order to deposit the maximum amount of 

cell mass on the filter ~·ithout clogging the fil.ter. After fil

tration, the filters were dried at 103° C for 24 hours and re-

w e i g he d . T h e fi 1 te l p a pe r was then rna s ce rated w i t h a t i s s u e 

grinder and digested in an autoclave at 121° C at 15 psi using 

the persulfate digestion technique for phosphorus as described 

in Standard Methods. Concentrations of orthophosphorus were 
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determined on neutralized samples using the ascorbic acid tech -

nique. The calibration curve used in these determinations is 

shown in Figure III-9. Concentration of phosphorus in mg per 

gram of dry ce 11 mass was ca 1 cul a ted and plotted as a function 

of incubation period. All glassware used in this experiment 

was acid-'washed as described under "GlaSS\'r/are Preparation 11 
•. 

P.e la ti onsh ip Between Organic 
Carbon and Ce 11 Dry l~ei ght 

It has been reported in the literature that measurements of 

otal organic carbo , can be used to detect changes in algal pro-

duction in biomass experiments. To determine the relationship 

bet ~een organic carbon in an actively growing algal culture and 

cell dry ~vei ght a series of Se lenas trum cultures grown in Lake 

Eola wa er were analyzed for organic carbon content on the 17th 

day of the1 r 1 ncubati on~ All cultures were grown under the con-

ditions described in 11 Algal Bioassay Methods 11
• Organic carbon 

was rreasured on unfiltered samples using the combustion-infrared 

technique with a Beckman Model 915 Total Organic Carbon Analyzer. 

Fluorescence of each sample ~vas measured and converted to cell 

dry weight using the standard curve shown in Figure III-7. 

Thirty-nine di ffe1 ent samples were tested in this experiment, and 

the results are shown in Figure III-10 .. The r'elationship between 

cell dry weight and organic carbon appears to be a linear function 

in the range of values tested. This linearity is confirmed by the 

correlation coefficient of 0.947. 
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CHAPTER IV 

LIMNOLOGICAL CHARACTERISTICS OF LAKE EOLA 

To establish a record of the \·Jater quality in Lake Eola, 

monthly water quality analyses were performed at six fixed sta

tions (Figure III-3) for a period of one year, beginning' in J:uly 

978 The six 1 oca ti ons were divided in to two groups and moni-

tared alternately so that stations Sl-S3 would be monitored one 

month and stations S4-S6 monitored the next. The results of the 

analyses are listed in Tables IV-1 to IV-3. Temperature measure

ments indicate little variation in lake water temperature between 

the three stations recorded on a specific date. Variations in 

empera ture between s ta ti ons were generally 1 i mi ted to 1° C or 

less. The highest temperature recorded during the test period 

as 30.9° C, occurring during August at stations 55 and S6. 

Lowest lake water temperature \'las measured at station S4 during 

February with a value of 11.1° C. Seechi disk measurements at 

stations Sl~ S2, S3 and S6 f luctuated little during the test 

period with recorded values between 1.0-1.3 meters. Stations S4 

and 55 appeared to have consistently 1 ower Seechi disk depths 

tith values between 0.8 and 1.1 meters, the lowest values occur

ring during the period of September to December. Dissolved oxy-

gen concentrations in the top O.S meters of the v-1ater column 

63 
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fluctuated somewhat over the test period with values measured 

at indi v'i dual stations between 7.5 and 12.6 mg/1. The averages 

of dissolved oxygen concentrations measured in Lake Eola on spe

cific sampling da tes are shown in Figure IV-1. A dissolved oxy

gen concentration of 8.2 mg/1 was measured in July 1978 with a 

steady increase to 10.4 mg/1 in March 1979. A decrease in dis

so 1 ved oxygen concentration to 9 .. 7 mg/1 occurred during Apri 1 

1978 but increased after that date, reaching a maximum value for 

the period tested of 12 .. 2 mg/1 in late June. Typical dissolved 

oxygen profiles for shallow, middle, and deep areas of Lake Eola 

are sho n in Figure IV-2 and are listed in Tables IV-4 to IV-6. 

A s 1 i ght decrease in di sso 1 ved oxygen concentration with in

creasing depth was noted in shallow regions of the lake during 

the su mme r . nths. This decrease was equivalent to approximately 

1-2 mg/1 over a depth of 1. 5-2.0 meters. Temperature decreased 

2-3° Cover the same interval. In deeper portions of the lake 

(middle), oxygen concentrations decreased 2-3 mg/1 over a 4 meter 

depth. Temperature decreased approximately 2-3° Cover this 

depth with the surface temperature near 29.0° C. In the deepest 

regions of the lake, the oxygen concentration dropped rapidly, 

reaching 0.2 mg/1 at a depth of 4.0 meters. In some instances, 

temperature decreased only about 3° Cover the first 4.0 meters, 

but decreased another 4° C from 4.0 meters to the bottom at 6.5 

meters. During the fall months, typical dissolved oxygen concen

trations in shallow areas showed a decline with depth similar to 



120 
DISSOLVED OXYGEN 

11.0 (TOP 0.5m) 

10:.0 

90 

68 

a.o...___ __________________ _.J 

40~0 CHLOROPHYll ~· a" 

~0.0 

20.0 

10.0 

0~' ================================~ 10.0 

9.5 : 

9.0 

8.5 

pH 

8.0--'---~----------------___. 

ao 
6.0 

4.0 

'20' 

· TUR'BIDITY 

' 
o~--~-1---+---r~~--~~---+-~-4-~ 

J A S ·a · N D J F M 
~---!978 ----'>--, ....... ~r-----[979 ~--~-

Fig .. IV-1. Aver.age physical chemical. parameters of \\later 
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TABLE IV-4 

TYPICt DISSOLVED O)...!CL\ A~JJ TRrPERA1URE 
PRO ILES I LAK EOLA FOR STATIONS s

1 
At\!D s

2 

DATE 
7-25-78 1-5-79 4-30-79 ' 7-10-79 
1emp D.O. Temp D.O. Temp D.O .. Temp 
(0 ) (oC) (oC) (oC) 

--- --- 14.9 10.2 23 .. 6 12.0 29.0 

I 30 .. 3 7.9 14 9 8.5 23.8 11.2 28.5 

28.8 7.0 14.8 8.3 23.8 9.4 28.3 
28.5 5. ' 14 .. 5 9.3 23.4 8.2 28.1 
28 .. 1 ' 5. 3 14.2 9 .. 4 23.2 6.8 28.0 

---- --- 14.0 9 .. 0 23.0 6.8 28.0 

---- --- 14.2 10.2 24.6 12.2 28.9 
29. 7. 14.2 8.6 24 .. 8 12.5 28.9 

2 .. 0 8 5 14 .. 2 8.9 2 • 7 11.5 28.9 
-- ~- --- 14.0 9.6 24.7 10.6 '28.3 

128 .. 5.3 13.8 9.9 24.3 6. 3· 28.2 

- -·-- -- 13.7 10.2 23.8 5.2 28.0 

28.0 5.3 13.5 9.5 23.7 4.8 27.9 
---- --- 13.5 9.3 23.2 4 .. 2 27.9 

13.5 .6 I 
I ---- --- ----

I 

D.O. 

9.1 

8.5 

8.3 

7 9 

7.7 

8.3 

9.1 

9.0 

8.9 

8.5 

8 .. 4 

8.1 

6.9 

4.9 

---· 



DEPlli 
(m) 

St tion 
I . . 

0.0 

0.5 

0 

1.5 

2 .. 

2.5 
? 0 

3 s 
4 . 0 

4 s 
0 

. 
6.0 

6~5 (B) 
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TABLE IV-5 

TYPICAL DISSOLVED OXYGEN AND TEMPERATURE 
PROFILES IN LAKE EOLA FOR STATION s3 

DATE 
' 7-25-78 I 2-10-79 I 4-6-79 I 7-10-79 ! 

Tmp D.O. Temp . D.O. T8mp D.O. · Temp D.O .. 
(oC) (oC) ( C) (oC) 

--- --- 12.0 0. 4 21.0 10.8 29.0 9.1 

29.3 8.8 2 .0 10.1 21.1 9.6 29.0 8.9 

28 .. 7 8.6 12 0 
i 

9.9 21.1 8.0 28.8 8.2 

--- I --- 12.0 10.0 21.0 7.6 28.5 7.8 

I 28 • 2 7.2 12 .. 0 9 .. 6 20.9 6.8 28.2 7.5 

--- --- 11.9 9.6 20.8 6.5 28.0 7.4 

2 .0 .9 11.8 9.3 20.8 6.1 27.9 6.4 
I 

11.8 
I 

9.1 20.8 6.0 27 .. 8 4.5 --- - - - I ' 

27.0 0.2 11.8 9 .. 1 20.0 5.3 27.6 1.2 

-- - --- 11.8 9.1 19.3 2.9 27.2 0.3 

2 .. ' 0. 11.8 9 .. 1 19.0 2.2 27.0 0.4 

--- --- 11.8 9.0 18.8 1.3 26.8 0.3 

22. 0.1 11.8 8.7 18.5 0.8 26.5 0.2 

--- --- 11.7 --- 18.0 0 .. 6 26.2 0.2 
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TAB.LE IV-6 

TYPICAL DISSOLVED OXYGEN ArtD TEr~PERATURE 
PROFILES IN LAKE EOLA FOR STATIONS s4, s5, AND s6 

DA1E 
D TH 10-13-78 12-14-78 I 4-6-79 16-20-79 

I 

(rn) Temp D.O. Temp D.O. Temp D.O. ramp 
(oC) (oC) (oC) ( C) 

t:on 4: 

0 .. 0 23 . 6 8.7 17 .0 9. 3 21.0 10.2 27.8 
0 .. 1 ---- --- 17.0 9.2 21.1 9.7 27.8 

0 23.8 7.1 17.0 9. 2 . 21 .1 8.1 27.3 

1 5 ---- --- ---- --- 21.0 7.2 27.0 

2.0 23 . 7 6.9 17.0 9.3 20.8 6.7 26.8 

2.5 (B) 23 . 6 6.4 7.0 9 . 3 20.6 6.3 26.7 

at·on 
~ 

I 

0 0 23.6 I 8-.7 7. 5 9.3 21 .2 9.5 27.2 

0. - - - --- 17.5 8.9 21.2 9.5 27.2 

2 . 5 7.1 7.5 8. 5 21.2 7.9 27.2 

3 ( ) 2 7 6.3 17.5 8.5 21.2 7.3 27.1 

·an 6: 

0.0 23.8 8.7 17.0 8 4 21.1 10.4 27.4 

0.5 ---- --- 17.0 8.4 21.2 8.0 27.5 

1.0 23.9 7. 4 17.0 8.4 21 2 6.7 27.6 
I 

1.5 ---- --- ---- --- 21.2 5.9 . 27.6 

2.0 23.8 7.7 17 .0 8.1 21.2 5.6 27.3 

2.5 ---- --- ---- --- 21.2 5.4 27.0 

3 23 . 7 ' 8. 0 17.0 .0 21.2 5.2 26.7 

3. 23.7 7.9 ---- --- 20.5 4.7 26 .. 3 

4.0 (B) ---- ·--- ---- --- - 20.3 4.4 125.4 

D.O. 

12 .. 0 

12.5 

10.0 

8.6 

5.9 

5.1 

12.2 

13.0 

11.8 

7.3 

12.2 

12.9 

11.6 

11.2 

10.8 

4.4 

3.3 

2.7 

·2 .1 
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that found during the summer. Average differences of 3-4 mg/1 

were found between the water surface and lake bottom. Tempera

ture during this period was virtually isocline at all locations . 

Average 1 ake surface tempera tut--e during this period was near 

23° C In the m1ddle areas of the lake, a similar decline in 

oxygen concentration was noted with a 3-4 mg/ l difference between 

the water surface and the sediments. The deep area of the lake 

experienced a slight decline in oxygen concentrati on from the 

surface to 1.0 m, after Jhich dissolved oxyg,en increa sed to a 

depth of approximate ly 4.0 m and then decreased rapidly to the 

bottom. During the ~vinter months , temperature v.Jas practically 

isoc1 ine with 1 ess than 1° C drop between the surface and the 

bottom. Surface temperature at this time was approxi mately 14° 

C. A similar isocline condition was found in dissolved oxygen 

in all areas of the lake 'With a decrease of only 1-2 mg/1 be-

t een the top and bottom at all stations. In the spring both 

temperature and dissolved oxygen showed rapid increase in surface 

values. Average surface temperature was 23° C at this time with 

isocline conditions in the shallow and middle regions and a 2-3° 

C decrease between top and bottom temperatures i n the deepest 

sections Dissolved oxygen concentrations decreased rapidly 

with increasing depth in all sections of the lake, approaching 

5 mg/1 a.t a depth of 2. 0 m and 0.5 mg/1 at 4 .. 5 m. The aver_age 

percent saturati ons of dissolved oxygen in the top 0.5 m of Lake 

Eola are listed in Table IV-7. Average oxygen concentrations were 
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Tl\BLE IV-7 

PVERAGE TEMPE Rft.TUHE, OISSOLVED OXYGEN AND 
PERCE T SATURATION OF DISSOLVED 

OXYGEN IN THE TOP 0.5m OF LAKE EOLA 

Temperature Dissolved 
Date Oxygen % Saturation (OC) 

(mg/1) 

7/25/78 29 . 3 8.1 107.0 

10/13/78 23 .. 7 8.0 96.1 

12/14/78 17.3 8.9 96.0 

1/05/79 14 .3 9.4 94.6 

2/10/79 11.7 10 .. 3 98.0 

3/13/79 18.3 10.4 113.9 

4/06/79 21 . 2 9 .. 6 110.5 

4/30/79 24.1 11.5 140.0 

6/20/79 
I 

27.5 12.5 160.2 

7/10/79 28.9 9.0 117.2 
I 
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above saturat ion in the fall and ttlinter. The highest satura

tion of oxygen occurred betvteen March and June. 

Average pH values for the six fixed stations (Tables IV-1 to 

IV-3) were very similar, ranging from 8. 79 to 8.93. The highest 

pH recorded in the lake was 9.45 at station SS in March 1979. 

The lowest value was 8 32, occurring at station 54 in September 

1978. Average pH values in Lake Eola \'Jere typically above 9.0 

during the spring and summer months and below this value during 

the fall and winter (Figure IV-1). 

The turbidity at all stations in Lake Eola was relati vely 

lo ~ with average values for the six stations between 4.3 and 5.9 

and extreme values bet een 3.5 and 7.2. No significant differ- · 

ences were noted in turbidity measurements between the six stations. 

Average turbidity measurements appeared to be highest in the sum-

me and spring and lowest 1n the fall and winter (Figu~e IV-1). 

Concentrations of chlorophyll 11 a" were extremely varied over 

the test period. Extreme va1ues mea s ure d at individual. stations 

ranged between 6 . 2 l-19/l during October at station S6 to 41.4 l-!9/1 

in July at S3. Average values for each location during the test 

period were very close, however, average values ranged from 22.4 

~g/ 1 at 51 to 27.2 ~g/1 at 53. 

Organic carbon concentrations in Lake Eola also varied wide

ly over the test period. Average lake concentrat ions were highest 

in t he fall and late spring with a maximum value of 28.4 ppm 

reached in October (Figure IV-3). The lov~est values were measured 



76 

0.04 ORTHOPHOSPHORUS 
OQJ, 

• I 

........ 
bb 0.02 
E 

0.01 

0 
25 

ORGANIC CARBON 
'20 

E 15 
c. 
c. 

IQ I 
I 

5 
50.0 

I 

40.0 
JNORGAN IC CARBON 

E 
30.0 

c. 

20.0 

10.0 
0.50 

0.40 N~3 N / 

E 
0.30 

Q. 

c. 020 .. 

/ 
/ 

~ 

0~10 
J! 

.~ 

A s 0 N D J F M A M J 

1978 1979 

Fig. IV-3. Average Physical Chemical Parameters of water 
samples collected from the top 0.5 m in Lake Eola. 
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during winter and early spring with a minimum value of 4.6 ppm 

occurring in March 1979 . Average values at individual sampling 

locations for the period studied seemed to indicate higher con

centrations at locations S4~ S5, and 56, than were found at Sl, 

52 and 53. The average concentration found at S4-S6, all lo

cated on the east end of the lake, was 12.8 ppm. Concentration s 

on the west end of the lake at stations Sl-53 were considerably 

lower with an average of 8.5 ppm. 

Inorganic carbon concentrations in lake Eola were also some

what varied over the test period. Values ranged from a low of 

12.3 ppm during July 1978 at station S5 to 40.6 ppm at station 

S3 in April Concentrations of inorganic carbon appeared to be 

slightly lower at stati'ons S4-S6 with a combined average of 19.4 

ppm than at stations Sl-S3 which had a combined average of 20.6 

ppm. 

Concentrations of nitrate nitrogen fluctuated mi 1 dly over 

the test period \"'i th the range of fluctuation between 0.10 and 

0.52 mg/1. Average nitrate concentrations at individual stations 

were very close, however, ranging between 0. 23 and 0.28 mg/1. 

Although data for this parameter is limited, it appears that 

average lake concentrations of nitrate were highest during the 

winter months with the lowest measured values occurring in July 

1978 (Figure IV-3). 
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Orthophosphorus concentrations at individual stations fluc

tuated greatly over the test period. A maximum value of 0.041 

mg/1 was measured at stations S5 and 56 in February with a minimum 

of 0.010 mg/1 occurring at various stations several times during 

the test period Average orthophosphorus concentrations at 

each of the stations were very close. Values ranged from 0.019 

mg/1 at 51 to 0 024 mg/1 at 53 and S6. Orthophosphorus con

centrations appeared to be lowest during the 1 ate summer, early 

fall and early spring with maximum values occurring in early sum~ 

mer and \~inter (Figure IV-3}. 

Although the data is very limited, concentrations of 8005 

seem d to be very low. Average BOD5 at individual stations 

ranged from 3.0 to 4.3 mg/1. 

Total metal concentrations measured in composite \vater 

sa mp 1 e s co 11 e c ted i n Lake Eo 1 a a re 1 i s ted i n Tab 1 e I V -8 .. No a p

parent trend is observed from the data presented, and metal con

centrations seem to remain v.Ji thi'n a narrow range osci 11 ating 

around an average value. 
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CHAPTER V 

BIOA SSAY EXPERIMENTATION 

Numerous bioassay exper imen ts were conducted to evaluate 

algal responses to nutrient changes in La ke Eola water and to 

study the impact of untreated and coagulated stormwater runoff 

on algal production . In this research~ four different types of 

sample preparations were used: ra~J unfiltered lake water, water 

filtered through a 0 .45 micron Millipore fi lter (F), water which 

~ a s f i 1 te red th en au to c l a v ed ( F I A ) , and wa te r wh i c h was au to -

claved and the filtered (A/F) In addition to indigenous algal 

species from lake Eo l a , two di fferent laboratory cultured test 

species e e also utilized, Chlorella pyrenodosa and Selenastrum 

~ricornutum Printz . 

Uptake of Phosphorus by Actively 
Growing Algal Cells 

The growth response of Selenastrum in a synthetic algal 

medium under constant il1 uminatlon is shovm in Figure V-1. Cell 

dry weight of Se1enastrum in the culture increased exponentially 

with the maximum yield of approximately 120 mg/ 1 of dry cell 

weight being achieved after 14 days. On the other hand, phos

phorus concent atiorsin the algal cells, expressed in milligrams 

of phosphorus per gram of cell dry weight, decreased in an expo-

80 
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nential fashion with increas ing incuba tion period. Phosphorus 

concentration decreased from 18.1 mg of phosphorus per gram of 

cell mass on the second day to 6.8 mg of phosphorus per gram of 

cells on the fourth day . This concentration leveled off around 

2.6 mg of phosphorus per gram of cell mass on approximately the 

14th day, with only minor fluctuations noted around that value 

until the experiment was terminated on day 19. 

Al gall Responses to Nutrient Changes in Lake Eola Water 

Several bioassay experiments were conducted to evaluate 

algal responses to nutrient changes in Lake Eola water. Water 

quality characteristics of the lake water used in t hese experi

ments are listed in Table V-1. 

The results of a bioassay experiment conducted during August 

1978 using Chlorella as the test species with varying concentra

tions of nitrogen and phosphorus are listed in Table V-2. The 

maximum yield O'btained in this experiment (1.63 mg/1 dry cell 

weight) was achieved after 11 days and occurred in the flasks to 

which a nitrogen spike of 1.0 mg/1 nitrate nitrogen had been 

added. This yield represented an increase of 117% over the con 

trol flasks. The addition of nitrogen spikes in concentrations 

of 3.0 mg/1 and 5.0 mg/1 N03-N resulted in slightly lower maxi 

mum yields of 1.41 mg/1 and 1.55 mg/1, respectively. The addition 

of phosphorus to lake water resulted in maximum yields which oc

curred on the 6th dtly of incubation for all concentrations of pns

phorus spikes tested. These yields, however, were only slightly 
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TABLE V-2 

GRrn TH RESPONSES OF CHLORELLA TO VARIOUS 
CONCENTRATIONS OF NITROGEN AND PHOSPHORUS ADDED 

TO FILTERED LAKE EOLA WATER COLLECTED 8/10/78 

Con centra ti on 
of Nutrient Average Cell Dry Weight (mg/1) 

Added to 
Lake la ter . Initial 1 Day 3 Days 6 Days 8 Days 11 Days 

Lake later 
Control 0.51 0.36 0 .43 0 .. 75 0.75 0.64 

0.1 a/1 p 0.54 0.38 0 .65 0.83 · 0. ?G 0 .. 85 
...,; 

I 

0.5 g/ ' p 0.50 0.38 0.68 0.94 0.79 0.77 

1 . 0 mg/1 p 0.49 0. 37 0.69 1.01 0.76 0.83 

1. 0 mg/1 N 0.50 0.37 0.54 1.22 1.39 1.63 

3 0 mg/ 1 0 48 0. 38 0 61 1.24 1. 35 1.41 

5. 0 mg/ l N 0.51 0.39 0 . 59 1.13 1.37 1.55 

12 Days 

0.53 

0.80 

0 .. 79 

0.80 

1.50 

1.39 

1 .. 39 
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greater than the control ~.Jith increases of 11%, 25%, and 35% for 

phosphorus spikes of 0.1 mg/1, 0.5 mg/1 and 1.0 mg/1, respective

ly. The pH of the lake water used in this experiment was 9.34 

which was the highest pH value found in a lake water sample used 

for bioassay experiments. Concentrations of orthophosphorus 

(0.017 mg/1) and inorganic carbon (13.8 ppm) were both lower in 

the water used in this bioassay than average values measured in 

lake Eo 1 a. 

The results of a bioassay performed with lake water samples 

collected during January 1979 are shown in Figure V-2. Selenas

trum was used as the test organism. The gTeatest biomass yields 

in this experiment were obtained ~ith a phosphorus spike of 0.05 

mg/1 P which was the smallest concentration of the phosphorus 

spikes tested. This nutrient addition resulted in a maxim~m 

yield of 2.38 mg/1 of dry well weight after 12 davs, representing 

an increase of 136% over the yield obtained in the control fJasks. 

The addition of 0.5 mg/1. P produced a yield of 1.80 mg/1 dry cell 

weight after 12 days, an increase of 78% over the control. The 

addition of 0 1 mg/1 P resulted in the lowest growth response of 

the phosphorus spikes tested. Max i mum cell yield for this addi

tion was 1.54 mg/1, occurring also on the 12th day, and represen

ting an increase of 52% over the control. As seen in Figure V-2, 

the maximum yield in the control flasks occurred on day 6. How

ever, after achieving this yield, the cell dry 'Height in the con

trol flasks dropped off rapidly until on day 20, which was the 
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last day measurements were recorded, the concentration of cell 

dry weight had decreased by 88% to 0.12 mg/1. Flasks to whith 

phosphorus had been added did not show this rapid decline, and 

instead, seemed to fl uc tua te within + 15% of their maxi mum yi e 1 ds 

until the exper1ment was terminated. The addition of various 

concentrations of nitrogen to this lake water resulted in yields 

which were equal to or less than the control. A nutrient spike 

of 1.0 mg/1 N03-N produced a maximum yield of 0.76 mg/1 occurring 

on the 6th day, a decrease of 25% from the control value. The 

highest yield of the nitrogen spikes was obtained on the 6th day 

with an addition of 3.0 mg/1 N03-N. Calculated cell dry weight 

for this addition was 0.90 mg/1 which was a decrease of 11% from 

the control . The addition of a 5.0 mg/1 nitrate nitrogen spike 

resulted in a somewhat lower maximum yield than did the addition 

of 3.0 mg/1 · 03-N. aximum cell dry weight of 0.81 mg/1 was 

achieved on day 6, representing a decrease of 20% from the con

trol. It is interesting to note that, although the nitrogen 

spikes all produced a maximum yield on the 6th day which was 

near the control value, concentrations of cell dry weight in 

these flasks decreased after that time to lower values than did 

the control. After 20 days of incubation~ the average cell mass 

concentrations in the nitrogen spiked flasks were only about 2% 

of the maximum yield they had obtained. The addition of an iron 

spike at a concentration of 0.05 mg/l produced a growth response 

which was v1rtually indistinguishable from the control. Maximum 
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yield was obtained on day 6 and was within 9% of the control. 

The pH of the filtered and autoclaved lake water used in this ex

periment was 8.37. The concentration of inorganic carbon was 

22.0 ppm with an orthophosphorus concentration of 0.011 mg/l. 

The results of an additional bioassay with Selenastrum as 

the test species using autoclaved then filtered lake water col

lected during February 1979 are sho\Jn in Figure V-3. The highest 

growth yields were obtained in this water using nitrogen spikes. 

aximum y"eld was obtained after 18 days with a nitrate nitrogen 

spi ke of 3.0 mg/1 which produced a cell dry weight of 21.0 mg/1, 

108% h1g her than the control flasks. The addition of a 1.0 mg/1 

1'03- spike produced a yield in 15 days of 20.2 mg/1 dry cell 

we1ght hich \Jas 100% greater than the control flasks and 4% less 

than the maximum yield for this experiment. A slightly lower 

yield was obtained after 18 days w1th a nitrogen spike of 5.0 ffiWl 

(17.1 rng/1 dry cel1 weight), but this y1eld was still 69% greater 

than the control and only 19% less than the maximum yield. The 

add1tion of phosphorus spikes to this lake water resulted in 

yie 1 ds which were considerably 1 ess than the contra 1 . Maxi mum 

yield from a phosphorus spike was obtained after 10 days with a 

phorpho~us add1tion of 0.05 mg/1. This corresponds to a total 

orthophosphorus concentration, including phosphorus background in 

the lake water, of 0.11 mg/1~ The calculated cell vield obtained 

at this concentration was 6.9 mg/1 which was 32% less than the 

control. The addition of phosphorus spikes in concentrations of 
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0.1 and 0.5 mg/1 produced yields after 14 days of 4.9 and 5.3 

mg/1 dry cell weight. Total orthophosphorus concentrations in 

these flasks were Drl6 and 0.56 mg/1, respectively, including 

background con centra ti on. These yi e 1 ds represented decreases of 

51% and 48% of the control values for phosphorus spikes of 0.1 

mg/1 and 0.5 mg/1 . The addition of a 0.05 mg/1 iron spike pro

duced the lowest yield of any nutrient tested in this assay. 

aximum yield for this nutrient was obtained after 4 days at 2.0 

mg/1 dry cell weight which was only 20% of the control value. 

The addition of nitrogen and phosphorus spikes to this lake water 

in combination increased production greatly. When a spike of 

0.05 mg/1 P plus 1.0 mg/l was added, maximum yield was obtained 

~ n 18 days \'.J i th a f i n a l c e 11 dry wei g h t of 16 . 4 mg I 1 . Th i s v a 1 u e 

represents an increase of 82% over the control and is only 9% 

less than the maximum yield obtained in this experiment, which 

occ rred with a nutrient spike of 1.0 mg/1 N. Similar results 

were obtained with a nutrient addition of 0.1 mg/1 P and 1.0 mg/1 

N. raximum yield obtained with this addition was 19.0 mg/1 dry 

ce 11 weight after 18 days, Jh i ch is an increase of 89% from the 

control and only 6% less than maximum yield for this experiment. 

The pH of the autoclaved then filtered lake water used in this 

bioassay (Table V-1) was 8.26 which was somewhat lower than aver

age pH values found in Lake Eola. Concentrations of organic car

bon and inorganic carbon were also lower than average in situ 

lake values. The concentration of nitrate nitrogen in this water 
' 
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1.25 mg/1, was over twice as high as any other lake bioassay wa

ter used~ Also, the orthophosphorus con centra ti on of 0.058 mg/1 

was the highest background value measured in Lake Eola water used 

for bioassay experiments. Analysis of total metal concentrations 

in this water (Table V-3) indicate higher than average concen

trations for water used in bioassay experiments of aluminum, lead, 

z1nc, cadmium, nickel and copper. 

The addition of EDTA to this same lake water collected in 

February 1979 was a 1 so tested, and the resL 1 ts are shown in 

Figure V-4. The addition of EDTA to the lake water control pro

duced a maximum y1eld of 3.6 mg/1 dry cell weight after 7 days~ 

This represents a decrease of 64% from the lake water control 

~i thout EDTA (Figure V- 4). The 1 a rges t maximum yield was obtain

ed, as in the experiment without EDTA, with a nitrogen spike. 

The addition of EDTA, however, greatly increased the y1el d ob

talned in nitrogen spiked flasks. The largest maximum yield with 

EDTA occurred at a nitrogen spike of 5.0 mg/1 compared to the 

maximum yield without EDTA, which was obtained with a 3.0 rng/1 N 

addition. The yield obtained with the 5.0 mg/1 spike + EDTA was 

39 .. 5 mg/1 dry cell weight after 18 days. This corresponds to an 

increase of 88% over the largest maximum yield obtained in the 

same 1 ake wa t r (at a concentration of 3. 0 mg/1) without EDTA. 

The addition of 1.0 mg/1 and 3.0 mg/1 N spikes resulted in very 

simi1ar maximum yields of 33 .. 8 mg/1 and 33.4 mg/1 after 14 and 18 

days, respectively. These values were only 14% and 15% less than 



-
-

-
-

D
at

e 
An

d 
T

re
a

tm
e

n
t 

La
ke

 
vJ

a t
e

 r:
 

2/
21

/7
9 

C
om

po
si

te
 

A
/ F

 

3/
18

/7
9 

C
om

po
si

te
 

A
/F

 
C

om
po

si
te

 
F

 I A
 

4/
30

/7
9 

C
om

po
si

te
 

7 I
 1

7/
79

 
C

om
po

si
te

 
C

om
po

si
te

 
A

/ F
 

S
to

rm
w

a
te

r:
 

10
/1

6/
78

 
C

om
po

s 
i t

e
 

F
 I A

 

11
/8

/7
8 

C
om

po
si

te
 

4/
28

/7
9 

C
om

po
si

te
 

C
oa

g 
(A

l u
rn

) 

7/
17

/7
9 

C
om

po
si

te
 

C
oa

g 
( F

eC
l 1

_) 
_

_
_

 

AB
LE

 V
 -3

 

TO
TA

L 
M

ET
AL

 
CO

NC
EN

TR
A

TI
O

NS
 I

N
 C

OM
PO

S
IT

E
 

ST
O

R
t1H

AT
ER

 
RU

NO
FF

 
AN

D
 LA

KE
 

EO
LA

 W
AT

ER
 U

SE
D

 I
N

 
B

IO
AS

SA
Y 

EX
P

E
RI

M
E

NT
S 

C
o

n
ce

n
tr

a
ti

o
n

 
(m

g
/1

) 
Al

 
Fe

 
Pb

 
C

r 
Zn

 
Cd

 
As

 

0.
30

2 
0.

05
8 

0.
06

4 
0.

02
3 

0.
03

4 
0.

00
3 

0.
05

5 

0.
29

4 
0.

07
6 

0.
05

2 
0.

 0
27

 
0.

01
5 

0.
00

1 
0.

01
4 

0.
19

5 
0.

04
2 

0.
05

6 
0.

02
0 

0.
01

9 
0.

00
2 

0.
05

0 

0.
22

4 
0.

06
2 

0.
06

1 
0.

01
7 

0.
01

0 
0.

00
0 

0.
07

2 

0.
31

2 
0.

14
0 

0.
09

2 
0.

03
6 

0.
02

7 
0.

00
1 

_.
 __

__
 

0.
18

5 
0.

37
8 

0.
02

9 
0.

04
7 

0.
03

0 
0.

00
0 

--
--

-

__
_ .

. _
 

2.
41

4 
4.

93
9 

0.
06

6 
0.

67
6 

0.
05

8 
0.

04
0 

__
 ...,.,.

.,
_

 
0.

 6
43

 
1.

42
5 

0.
02

2 
0.

35
3 

0.
00

2 
0.

03
2 

0.
72

4 
0.

44
6 

0.
37

8 
0.

01
4 

0.
34

8 
0.

01
6 

0.
13

5 
1.

17
 

0.
06

9 
0.

21
8 

0.
00

8 
0.

33
7 

0.
01

3 
0.

13
9 

0.
34

0 
0.

20
0 

0.
07

8 
0.

02
2 

0.
12

8 
0.

00
0 

0.
 1

20
 

0.
 1

20
 

0.
34

2 
0.

01
4 

0.
02

5 
0.

12
6 

0.
00

0 
0.

05
4 

Ni
 

Cu
 

0.
00

9 
0.

07
6 

0.
00

6 
0.

04
0 

0.
,0

07
 

0.
03

3 

0.
00

3 
0.

03
5 

\.
.0

 
1--

--1
 

0.
00

7 
0.

05
7 

0.
02

3 
0.

04
4 

0.
05

0 
0.

12
9 

0.
03

0 
0.

08
9 

0.
01

3 
0.

15
0 

0.
01

2 
0.

07
0 

0.
03

6 
0.

06
9 

0.
46

2 
0.

21
4 



92 

50~--------------------------------~, 

Ol 
E 5 

I-· 
:c 
t9 
w 
3: 
)-
0::: 
0 ., 

::11 h 
u 0.5 ' 

_j 
<t 
~ 
<( 

---~:;-8 

KEY 
• •1.0 mgtr EDTA 

0.0 '5 mg1/l g 
0.1 mg/1 £>--. • -6 P t I mg/1 EOTA 
0.5 mg/16--- -6 

1.0 m·gll o ·· o) 
3.0 mg/1 o- · -o N+ 1 mg/1 EDTA 
5.0 mg/1 o-- ---o 

0 .. 05 rng/l Fe o c) 
0.05 rngll' P' + '1.0 mg/1 N D--: ·--o . mg/1 EDTA 
0 I mg/1 P +1.0 rng/J N o-----o 

0 J ....__... _ __,__-L-.......1...--'--"""'---L--..L--"----' 
0 2 4 6 8 10 12 14 16 18 

INCUBATI.ON PERIOD CDAYS) 

Fig. V-4. Responses of Sele~~strum to various nutrients 
added to Lake Eola samples collected 2/21/79. (Lake water 
autoclaved then filtered). 
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the maximum yield obtained with a nitrogen spike. The addition 

of EDTA to flasks containing phosphorus spikes seemed to reduce 

maximum yields from the values obtained in flasks without EDTA. 

Maximum yi e 1 d for a phosphorus spike was obtai ned at an ortho

phosphorus addition of 0.1 mg/1 (0.16 mg/l total orthophosphorus~ 

includ1ng background) after 6 days with a dry cell weight of 3.3 

mg/1 Th1s value is 8% less than the control + EDTA and 33% less 

than the same orthophosphorus concentration without EDTA. The 

addition of 0.05 mg/1 and 0.5 mg/1 phosphorus spikes produced sim

llar yields of 2.9 mg/l and 2.4 mg/1 of cell dry weight after 6 

days. These va 1 ues rep resent decreases of 58% and 55% of the 

yields obta1ned without EDTA. The addition of EDTA to an iron 

spike of 0 .. 05 mg/1. increased maximum yield from 2.0 mg/1 dry cell 

weight in the flasks without EDTA to 2.5 mg/1 dry cell weight 

with EDTA The incubation period needed to reach this maximum 

yield was increased, however, from 4 days without EDTA to 7 days 

with EDTA When EDTA was added to flasks containing combination 

spikes of nitrogen and phosphorus, increases in maximum yields 

were obtained. Maximum yield increased in flasks containing ad

ditions of Op05 mg/1 P + 1.0 mg/1 N from 18.4 mg/1 dry cell weight 

without EDTA to 29.3 mg/1 with EDTA, an increase of 59%. Both 

of these yields occurred after 18 days. A nutrient spike of 0.1 

mg/1 P + 1.0 mg/l N produced a dry cel.l weight after 18 days of 

28.3 mg/1 which was an increase of 49% over the same flasks with

out EDTA. It is interesting to note that both additions of 



94 

nitrogen and phosphorus in combination resulted in yields which 

were slightly less than the yield obtained from the addition of 

the nitrogen spike alone. 

A final limiting nutrient study was conducted with Selenas

trum as a test organism using fi 1 tered then au toe laved lake vJa

ter col1ected in Narch 1979 .. Largest maximum yield was obtained 

with a phosphorus spike of 0. 1 mg/1 (Figure V-5). This produced 

a maximum yield of 4.7 mg/1 dry cell weight after 17 days, an in

crease of 124% over the control. The addition of phosphorus at 

a concentration of 0.5 mg/1 resulted in a somewhat lower yield of 

3 2 mg/ 1 dry oell tei ght after 8 days. This represented an in-

c rea se of 52% o ve r the control and a decrease of 32% from the 

highest maxi mum yield - The add1 ti on of nitrogen spikes of 3. 0 

mg/1 and 5.0 mg/l resulted in yields of 2.3 mg/1 and 2.2 mg/1 

dry cell weight. These values are very cl,ose to that observed in 

the control flasks. The pH of the composite 1 ake water used in 

this exper1ment was 8.39 (Table V-1) which was some*hat lower 

than average lake water values found in Lake Eola at this time of 

the year. The concentration of inorganic carbon (16.7 ppm) was 

about average for water used in bioassay experiments. Background 

concentration of orthophosphorus in this water, 0.01 mg/1, was 

much lower than average in situ lake values, vJhile the nitrate 

nitrogen concentration of 0.058 mg/1 was slightly higher than 

average. Total metal concentrations in this filtered and auto

claved l:ake water were about average for water used in bioassays 

(Table V-3). 
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Fig. V-5. Responses of Selenastrum to various nutrients 
added to Lake Eol a water samples collected 3/18/79. (.Lake 
water filtered then autoclaved). 
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Nitrogen to Phosphorus Ratio Experiments 

A series of experiments were conducted with Selenastrum as 

the test organism using Lake Eola water collected March 18, 1979 

to determine the effect of nitrogen to phosphorus ratios on algal 

produ cti vi ty. The results of an experiment using autocl aved then 

filtered l ake water are shown in Figuve V-6. The highest maximum 

yield was obtained at an N: P ratio of 11.4:1. The yield obtained 

at this ratio was 86.0 m ~g/ 1 dry cell weight after 19 days. An 

:P ratio of 3.4:1 resulted i n a maximum yield of 25.1 mg/l dry 

cell we1ght, 29% of the largest maximum yield. When the ratio 

was 1ncreased to 7.4:1, the yield increased to 76.7 mg/1 which 

as 89% of the largest va l ue. An N:P ratio of 15.3:1 decreased the 

yield somewhat to 78.5 mg/1 after 19 days, 91% of the maximum 

11alue . lhen the :P rat1o ~as further increased to 21.3:1, the 

maximum yield was 84 9 mg/1 representing 99% of the l argest yield. 

The contro l flask, with an N:P ratio of 3363:1, produced a max i

mum yield of 1.5 mg/1 which was only 2% of the highest maximum 

yield. 

When the same 1 ake water v;as fi 1 tered then autocl aved and 

then tested under the same conditions and nutrient additions, 

the results were somewhat similar) although the maximum yields 

obtained were much l O'IJer than 1 n the autoclaved then fi 1 tered 

f l asks. Highest maximum yield in this experiment was obtained at 

an N:P ra tio of 21.4:1 (Figure V-7). This yield was 40.6 mg/1 

dry cell weight, occurring after 19 days. An N:P ratio of 3.5:1 
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Fig. V-7. Responses of Sel~na~trum to various N:P ratios 
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tered then autoclave~). 
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produced a maximum yield of 10.0 mg/1 dry cel.l weight which was 

25% of the maximum. An increase in the N:P ratio to 7.5:1 in-

creased the yield to 29.2 mg/1 after 17 days, 72% of the maximum. 

A further increase in the N:P rati o to 11.4:1 resulted in 

an increase in observed yield to 33.8 mg/1, 83% of the maximum 

yield. The yield was increased to 84% of the maximum with an N:P 

ratio of 15.4:1 which produced a mean cell dry weight of 34.3 

mg/1 Relative growth response of autoclaved then filtered and 

filtered then autoclaved lake water to changes in N:P ratios is 

shown in Figure V-8. Lake water which was fi 1 tered then auto-

claved produced a yield approxi mately one-half that found with 

autocl aved then fi 1 tered samples. Ho\-Jever,, the range of N: P in 

which the greatest yields were obta1ned was virtually identical. 

The pH of the autoclaved then filtered lake water (Table V-1) 

used in these exoeriments (8.86) was slightly higher than the pH 

of the f1l tered then autoclaved water (8.39). Concentrations of 

inorganic carbon and nitrate nitrogen were similar between the 

two waters. However) the orthophosphorus concentrations in the 

autocl aved then fi 1 tered \AJater was over twice as high as in the 

filtered then autoclaved water. 

Effect of Stormwater Runoff on 
Algal Production in Lake Eola 

To test the effect of stornwater runoff on al.gal productivity 

1 n Lake Eo 1 a, various concentrations of s torrnwater runoff co 11 ec ted 

on 10/16/78 were added to composite la~e water samples. Chlorella 
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pyrenoi dosa was used as the test species, and both 1 ake water and 

runoff were filtered then autoclaved. The lake water control for 

this experiment increased only slightly from an initial dry cell 

weight of 0.42 mg/1 to 0.47 mg/1 after 3 days (Figure V-9). Af

ter this time, the algal cell mass began to decline~ reaching a 

minimum of 0.05 mg/1 on the 14th day of incubation. When a 5% 

storrnwater mixture \~as incubated, a maximum yield ~1a.s obtained 

after 8 days of 1.09 mg/1 dry cell weight. The algal population 

again began to decline slightly, although not as rapidly as ex

perienced in the control flasks. Incubat1on of a 10% stormwater 

mixtu e produced a maximum yield, also on the 8th day, of 1.55 

mg/1 dry cell weight. The largest maximum yield was found with 

a stor, 1ater concentration of 25%. The dry cell ~Jeight obtained 

at th1s concentration was 3.27 mg/1, also after 8 days. This 

yi ld was 111% greater than the 10% stormwater mixture, 200% 

greater th an the 5% addi ti o , and 596% h_i gher than the contra 1 . 

After reaching th1:s max1mum yield, production dropped off some

what but not as rapidly as was experienced in the control, 5%, 

and 10% mixtures. It should also be noted that a small initial 

decline in algal mass occurred at this concentration after 1 day. 

When a 50% mixtur of stormwater and lake water was incubated, 

th maximum yield was obtained after 8 days and was calculated 

to be 1.58 mg/1 dry cell weight. Cell mass dropped off after 

reaching this maximum to 0.57 mg/1 on day 14. A large initial 

decline in cell mass was noted after 1 day with the initial value 
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Fig. V-9. Responses of Chlotella to various concentra
tions of stormwater runoff and Lake Eola water collected 10/16/ 
78. (.Lake \vater and runoff filtered then autocl aved). 
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of 0.47 mg/1 dropping to 0.09 mg/1 . By the second day, the 

cell mass had recovered to slightly higher than the original 

va 1 ue. 

A 7S% mixture of 1 ake ~later and storlTl'v'Jater showed a rapid 

decline in cell mass to be low detectable limits after only 1 day. 

The population recovered in 3 days, reaching a maximum yield of 

0.80 mg/1 in 4 days. Another decline in cell mass occurred af

ter reaching this maximum yield to 0.25 mg/1 on the 14th day. 

This value v-1as only 31% of the maximum yield for this mixture. 

When a so 1 uti on of pure s torrnvJater runoff was tested~ the same 

initial die-off to below detectable limits was experienced. Re

covery to initial values was achieved in 2-3 days, and a maximum 

y1eld of 0.83 mg/1 was obtained in 4 days. Die-off after achieving 

this maximum was rapid with a reduction to only 16¢ of the maxi

mum value in 14 days. Chemical and physical characteristics for 

th1s stor~~ater runoff sample are listed in Table V-4. The pH 

of this sample was 7.49, much lower than average lake pH values. 

Turbidity of the sample was also high (65 .0 JTU). Concentration 

of organic carbon in this runoff was 284.0 mg/1, which was about 

average for the storrrwater used in bioassay experiments. The 

orthophosphorus concentration of 0.48 mg/1 was much higher than 

concentrations normally found in Lake Eola \'later. Metal analysis 

of this stormwater (Table V-3) indicated very high concentrations 

of iron, lead, chromium, zinc, cadmium, copper, and calcium, as 

compared to average lake Eola values presented in Tables IV-8 and 
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V-3. Results of a chemical analysis of the lake wa ter used in this 

experiment are listed in Table V-1. The pH of this lake water was 

9.04 which is ve·ry near average lake values .. The organic carbon 

content was 28 .. 8 mg/1, which vJas the highest value found in any 

lake water used in bioassay exper ime nts. 

Another experiment testing the ~effect of various concentra

tions of fi 1 tered s tornwater runoff on algal production 'IJas con

ducted in November 1978 using Chlorella as the test species. In

cubation of a Chlorella culture in filtered lake water as a con 

trol produced a maximum yield of 3.39 mg/1 dry cell weight after 

5 days (Table V-5). This represented an increase of 688% over 

the i n i t i a 1 v a. 1 u e for that con centra t i on . After reach i n g th i s 

maximum yield, ho\Jever, cell mass dropped off rapidly,. reaching 

a minimum of 0.34 mg/1 on the lOth day. A mixture of 5% storm

water produced a ce l yield of 5.34 mg/1 after 5 days, an in

crease of 57% over the control. Cell mass dropped off rapidly 

after reaching this maximum, although not as 1ow as the control. 

A 10% mixture reached a maximum yield after 5 days of 3. 59 mg/J, 

an increase of only 6% over the control. Cell die-off in this 

mixture was less rapid than the previous concentrations, with a 

value of 1 .48 mg/1 dry cell weight after 11 days. The largest 

maximum yield of any stormwater concentration tested was obtained 

with a 25% mixture of runoff and lake water. This yield of 6.33 

mg/1 was obtained after 10 days, an increase of 87% over the 

control yield. A slight decline in cell mass to 5.94 mg/1 occurred 



106 

TABLE V-5 

GROWTH RESPONSES OF CHLORELLA TO VARIOUS 
CONCENTRATIONS OF FILTERED LAKE EOLA WATER AND 

FILTERED STORNWATER RUNOFF COLLECTED 11/8/78 

Runoff 
Averaqe Dry Cell Height ( mg/1) 

Concentration I Initial 1 Day 5 Days 6 Days 7 Days 10 Days 

Lake Uater 
Con tro 1 0.43 0.81 3.39 2.49 1.57 0.34 

5% Runoff 0.40 0.55 5.34 2.77 1.16 1.31 

10% Runoff 0.38 0.62 3.59 3.42 2.17 1.71 

25% Runoff 0.35 0. 61 2.05 2.03 2.17 6 .. 33 

40% Runoff 0 37 0. 61 1.96 1.47 1.51 5.21 

50% Runoff 0.34 0. 61 1.91 2.46 2.31 3 .. 51 

75% Runoff 0. 32 0.56 2.43 2.51 2.01 2 .. 51 

100% Runoff 0.37 0.53 3.02 3 78 4.36 4.39 
I 

11 Days 

0.39 

1.15 

1.48 

5.94 

4.52 

3 .. 92 

3.24 

5.44 
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on the 11th day. A 40~~ mixture of s toriTh\fater produced a maximum 

yield also on the lOth day of 5.2.1 mg/l. This represented an ln

crease of 54~~ over the control. A mixture of 50% runoff pro

duced a gradual inc rease in cell mass reaching a maximum value of 

3.92 mg/1 on the 11th day, an increase of 16% over the control. 

A si mi 1 a r increase in ce 11 mass was noted at a stormwa ter concen

tration of 75%, reaching a maximum of 3.24 mg/1 on day 11. 

A more rapid increase in cell mass was observed in the lQO% 

runoff flasks, obtaining a maximum yield of 5.44 mg/1 after 11 

days~ . representing an increase of 60% over the control. Analysis 

of the storiTI\t.Jater used in this bioassay revealed large concentra

tions of organic carbon, nitrate nitrogen, and orthophos phorus 

{Table V-4). Relatively high concentrations of iron and lead \·Jere 

aJso found (Table V-3) 

To test the effectiveness of chemical coagulants in reducing 

the productivity responses of Lake Eola water to stormwater run

off, an experiment was conducted using various concentrations of 

untreated runoff and coag,ulated runoff in combination with unfil

tered lake water. The results of this expeTiment are shown in 

Figure V-10. The untreated 1 ake water contra 1 showed only a 

slight increase in cell mass during the incubation period, in

creasing from 0.59 mg/1 dry cell weight initially to 0.83 mg/1 

dry ce 11 weight on day 5. t~hen a 5% mixture of 1 ake water and 

untreated runoff were incubated, algal cell mass increased stead

ily from an initial value of 0.60 mg/l to 1.59 mg/1 after 11 
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days. After reaching this maximum value, the cell mass decreased 

to 0 94 mg/1 after 18 days, corresponding to a reduction of 40% 

from the maximum value. A mixture of 10% runoff produced a max

imum yield of 1.80 mg/1 after 8 days and then fell to 0.85 mg/1 

dry cell weight by the end of the incubation period. This cor

responded to a decrease of 53% from the maximum value. The lar

gest cell yield in this experiment was obtained with a 25% mix

ture of storiTh<Jater runoff This yield occurred after 11 days and 

reached 3.72 mg/1 dry cell weight. This value was 348% higher 

than the control, 134% higher than the 5% mixture, and 107% high

er than the 10~' mixture. \lfhen the stormwater runoff concentration 

was 1 ncreased to 50% the maxi mum ce 11 yi e 1 d decreased to 2. 83 

mg/1. The value\ as 24% less than the maximum value. After 

reaching this value, the cell mass died off slightly~ 

and afte 18 days, was only 58% of its maximum value for this 

concentration. Cbemical analysis of this stormwater revealed 

high concentrat1ons of organic carbon and inorganic carbon (Table 

V-4) The pH of this runoff was relatively low considering aver

age in situ lake pH values. A nitrate nitrogen concentration of 

6.9 mg/1 was foundp Orthophosphorus concentration was relatively 

high with a value of 0.291 mg/1. 

To test the effectiveness of a coagulant in reducing the po

tenti a1 a 1 ga 1 productivity of stormwater, a sample of stormwater 

was coagulated with 240 mg/1 alum at a final pH of 5.5. Various 

concentrations of this coagulated stormwater were incubated with 
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lake water, and the results are shown in Fibure V-10. The incu

bation of a 5% coagulated stormwater mixture produced the largest 

maximum yield obtained using coagulated stormwater additions. 

This yield was obtained after 6 days and reached a cell mass of 

1.04 mg/l. This value was only 25% greater than the control com

pared to the maximum yield using untreated runoff (at a concentra

tion of 25%) which increased gro\tJth 348% over the control. The 

addition of coagulated runoff in concentrations of 10% and 25% 

resulted in identical cell yields of 0.79 mg/1~ although the 10% 

addit1on reached its maximum on day 8 while the 25% addition 

reached its maximum on day 6. This value was 20% less than the 

control. The incubation of a mixture of 50% runoff reduced the 

yield to 0.69 mg/1, occurring after only 5 days. After this value 

as reached algal cell mass dropped off rapidly until, on day 

22 the cell mass was 0.26 mg/1, only 38% of the maximum value. 

Chemical analysis of this coagulated runoff revealed relatively 

lo\,J concentrations for both organic and inorganic carbon, as well 

as orthophosphorus (Table V-4). 

The PH of this coagulated runoff was 5.87, which was the 

lowest pH of any water used for bioassay experiments.. ~1etal analy

sis of the coagulated runoff revealed that coagulation had been 

effective in reducing the concentration of every metal tested 

with the exceptions of aluminum, arsenic, and calcium (Table V-3). 

An additional coagulation experiment was co.nducted to test 

the effectiveness of FeC1 3 as a chemical coagulant in reducing 
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algal productivity. The results of this experiment are listed in 

Table V-6. The highest maximum yield in this experiment occurred 

in the untreated lake water control flasks. A ·maximum cell dry 

weight of 0.91 mg/1 was obtained after 7 days~ representing an 

increase of 102% over the initial value of 0.45 mg/l. After reach

in g this mass, cell dry weight dropped off rapidly to 0.28 mg/1 

after 17 days. A 5% mixture of storrnNater runoff and lake water 

produced a max1mum yield of 0.88 mg/l after 7 days, a value which 

as only 3% less than the highest maximum yield for the control. 

Cell mass for this concentration, however, dropped off less rapid

ly after reaching the maximum value than did the control flasks. 

A mixture of 10% stormwater resulted in a maximum yield of 0.75 

mg/1 after 3 days, declining to 0.35 mg/1 in 17 days. Although 

the maximum y eld for this concentration was less than the con

trol) the final cell mass of 0.35 mg/1 after 17 days was higher. 

A 25~' mixture of stormwater runoff produced a cell yield between 

that observed with the 5% and 10% mixtures. Maximum yield of . 

0.81 mg/1 was obtained after 7 days, declining to 0.27 mg/1 .on 

the 17th day. A mixture of 50% runoff reached a maximum yield 

of 0.75 mg/1 after 7 days, declining to 0.44 mg/1 on day 17~ 

This decline was the 1 east rapid of any of the stormwater mix

tures tested. 

To test the effect of coagulation of this stormwater on re

ducing alga l production in Lake Eola water, a stormwater sample 
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TABLE V-6 

GROWTH RESPONSE OF INDIGENOUS ALGAL SPECIES 
I 1 LAKE EOLA TO VARIOUS CONCENTRATIONS OF 

CO ·1POSITE STOR~~ATER RUNOFF AND COAGULATED 
STOR~1WATER RUNOFF COLLECTED 7/17/79 

Runoff Ave rage Ce 11 Dry \a.lei ght (mg/l) 
Con centra ti on Initial 3 days 7 days 10 days 14 days 

Lake Jater I 

Control 0.45 0.79 i 0 .. 91 0 .. 71 0.46 

Lake ~ater 

& 5% Runoff ,, 0.48 0.74 0.88 0.61 I 0. 5.2 

Lake Water 
t;. 10% Runoff 0.41 0.74 0.71 0.48 0.28 

Lake vJa ter 
& 25% Runoff 0.40 0.76 0.81 i 0.67 0 .. 51 

Lake \~ate r 
0 50 ,~ Runoff 0.33 0 .. 71 0 .75 0 .71 0.39 

I 

La k e~ ~·J a te r 
Contra 1 0.45 0 .. 79 0. 91 0.71 0.46 

i 

Lake Nater 
& 5% Runoff 0.35 0.51 0.39 0.25 0.15 

lake ~Ia ter' 
& 10% Runoff 0.34 0.41 0.45 0 .. 29 0.15 

I 

Lake Water 
& 25% ~unoff 0. 27 0.23 0.27 . 0.34 0.39 I 

! 

Lake l~ater 
& 50% Runoff 0.18 0.12 0.09 ' 0 .. 05 0.35 

17 days 

0.28 

0.47 

0.35 

0.27 

0.44 

0.28 

0.05 

0.11 

0.65 

0.31 

NOTE: Runoff ·water was coagula ted using 58 .. 5 mg/1 FeC1 3 and fin a 1 
pH was 5.3. 
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was treated with a dosage of 58.5 mg/1 Fec1 3 at a final pH of 5.3. 

The results of a bioassay performed with various concentrations of 

this coagulated runoff are listed in Table V-6. All mixtures of 

coagulated stormwater runoff and lake water resulted in lower cell 

dry weights than the control flasks, and with the exception of 

the 25% mixture, produced a lower cell dry weight than the corre

sponding value obtained with untreated runoff. A 5% mixture of 

coagulated runoff and lake water produced a maximum yield of 0.51 

mg/1 after 3 days which was 42% less than the untreated yield at 

this concentration although the untreated yield required 4 more 

days to obtain. After reaching this maximum, cell mass dropped 

off rapidly, reaching a value of 0.05 mg/1 after 17 days, only 

10% of the maximum yield for this concentratio-n. Incubation of a 

10% m1xture resulted in a maximum yield of 0.45 mg/l after 7 days, 

40% less than the untreated sample for this mixture. Cell yield 

at this mixt re also dropped off after reaching the maximum, with 

a value of only 0.11 mg/1 on day 17. A 25% mixture of this coagu

lated stormwater and lake water produced the highest maximum yield 

of the untreated mixtures, reaching 0.89 mg/1 after 14 days. 

This value was 10% higher and was reached 7 days later than the 

corresponding untreated sample. Die-off in this mixture was not 

as rapid, decreasing only 27% to 0.65 mg/1 on the 17th day. A 

50% mixture of coagulated runoff resulted in an initial decline 

in cell mass from 0.18 mg/1 to 0.05 mg/1 after 10 days. After 
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that time, however, cell yield increased to 0.35 mg/1 on the 14th 

day. Chemical analysis of the lake water used in this bioassay 

revea 1 ed conc ~en trations of inorganic carbon, orthophosphorus ~ 

and nitrate nitrogen very near average in situ lake values for 

year (Table V--1). The pH of this lake water sample was 9. Total 

metal concentrations in the lake water used in this experiment 

were higher than average for aluminum, iron, lead, chromium, zinc, 

and copper (Table V-3). Water quality characteristics of the 

stormwater and coagulated stormwater used in this experiment are 

~ is ted in Tab 1 e V -4. Coagulation of the s tormwa ter reduced the 

pH from 7.47 in the untreated sample to 6.25 after treatment .. 

Coagulation was also successful in reducing orthophosphorus con

centrations fro m 0.024 mg/1 to be low detectable limits. A reduc

tion in nitrate nitrogen was also noted. Coagulation with FeC1 3 

reduced concentrations of a 1 umi num, lead, zinc, and arsenic (Ta

ble V-3} while concentrations of iron, chromium, nickel, copper 

and calcium were increased 

To determine if dry weather storm sewer flow has any effect 

on alga 1 pro duet iv i ty in Lake Eo 1 a, a composite sample of 1 ake_ 

v1ater and a sample of dry weather storm sewer flow were both 

filtered through a 0 45 ~ millipore filter and then innoculated 

with a Chlorella culture. The results of the incubation of var

ious concentrations of this base flow are 1 isted in Table V-7. 

The lake wate control flasks ptoduced very little growth with a 



115 

TABLE V-7 

GROWTH RESPO~SES OF CHLOPELLA TO VARIOUS CONCE NTRATIONS 
OF DPY WEATHER STOR~l SEHER FL0\1 AND 
LAKE EOLA WATER COLLECTED 12/15/78 

Concentration Average Ce 11 Dry vleight { mg/ l) of Dry \ eather 
Flow Used Initial 3 days i 6 days 10 days 12 days I 16 days 

Lake ater 0.65 0.67 0 .. 68 0.45 0.41 
I 

0.31 Control 
t 

Lake ater + 0. 63 0.52 I 0.52 0.53 0.43 0.21 5% Dry Fl O\tJ 
l 
! 

ake \~ater + 0 64 0.53 I 0.50 0.29 0.25 0.15 10 Dry Flo 

Lake later + 0.63 0.44 I 0.36 0.30 0.22 0.17 25 % Dry Flow I 
I 

lake \·Ja te r + 0.66 0. 54 0.62 0.40 0.37 I 0.15 50% Dry Flow 

Lake Water + 0.65 0.20 0.18 0.08 0. 07 0.06 
75% Dry Flow 

10010 Dry Flow· 0.72 0.44 0.22 0.10 0.07 0.03 

I 
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cell mass increase of only 0.03 mg/1 after 6 days. After this 

time, the cell mass began to decline, reaching a minimum of 0.31 

mg/1 after 16 days. A mixture of 5% dry weather flow did not pro

duce an increase in algal cell mass over the initial value of 

0. 63 mg/1 and fi na 111 y decl i ned to 0. 21 mg/1. after 16 days.. A 10% 

mixture of base flow and lake water resulted in a growth response 

s i m i' l a r to th e 5% m i x tu r e \vi t h the .except i on of a s 1 i g h t l y s rna 11 er 

terminal value. The growth response of a 25% mixture showed a 

more rapid decline in cell mass than did the 5% and 10% mixtures. 

G owth response in the 50% mixture did not decline as fast as the 

prev1ous mixtures, and in fact, seemed to be increasing after 6 

days. Af ter that time, however, cell mass dropped off rapidly. 

A very rapid initial decline was observed in the 75% mixture 

with a final cell mass after 16 days of only 0.06 mg/1~ 9% of the 

i n i t i a 1 v a 1 u e A s i mi li a r dec 1 i n e wa s o bserved i n pure dry we a

ther flow with a terminal value of 0.03 mg/1. Chemical analysis 

of the dry weather flow used in this experiment (Table V-4) indi 

cated a very l ow phosphorus concentration of 0.041 mg/1. The pH 

of this water was 8.63 which is only slightly less than average 

lake values. Concentrations of organic and inorganic carbon 

vJ ere s 1 i g h t 1 y hi g h e r than aver age i n s i t u 1 a k e val u es . 



.. 

CHAPTER VI 

DISCUSSION 

From all indications, both visually and analytically, Lake 

Eola appears to be a lake in severe ecological distress. Persis

tent algal blooms exist virtually year round. Populations of the 

mac os copi e a 1 gae Cha ra and the fi 1 amentous green a 1 gae, Spiro gyra, 

became so dense during the summer months along the shoreli ne that 

in many instances it became very difficult to launch the small Jon 

Boat used in this research. Floating masses of dead algae and 

fish and the1r accompanying odor are a common ~ccurrence in Lake 

Eola. ith the excepti.on of areas near the shoreline, the bottom 

of the lake is covered ith an accumulation of loose flocculant 

partially ecomposed organic matter which is easily disturbed. 

The loose nature of this material makes it difficult for rooted 

subrnergent plants to ex1st and with the exception of a very small 

area near the shoreline, no rooted plants of any kind were seen 

in Lake Eola. In areas near the center of the lake, this organic 

rna tter subjected to 1 ong peri ads of a no xi c and reducing condi

tions, has formed into sapropel complete with the characteristic 

hydrogen s u 1 fi. de sme 11 . 

117 
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Limnological Characteristics of Lake Eola 

Concentrations of dissolved oxygen in Lake Eola, although 

usually at or above saturation near the surface (Table IV-7}, 

drop periodically during the spring and summer months to 1 mg/1 

or less at depths of 4 meters or greater (Figure IV-2 and Table 

IV-5). Determinations of Seechi disk depth in Lake Eola averaged 

approxi mately 1 meter. If the ratio between euphotic zone depth 

and Seechi disk depth is assumed to be 3.0 (Cole, 1975), then 

the euphotic zone depth in Lake Eola would be approximately 3 

meters. This depth corresponds with data shown in Figure IV-2, 

where concentrations of dissolved oxygen are seen to drop rapid

ly below 3-4 meters during spring and summer months. Below this 

depth, ox~ en is consumed rapidly by decomposition processes. Al

though measurements of dissolved oxygen have indicated that the 

deeper areas can become oxygenated somewhat by wave action during 

'tJindy periods, it s ~eems reasonable to assume that the areas in 

.ake Eola below 4-5 meters deep remain anoxic during much of the 

spring and summer. Besides releasing large quantities of H2S 

and co2, these conditions can also cause release of considerable 

quantities of phosphorus which may then become available for fur

ther algal production .. This release has been demonstrated in 

Lake Eola to be as high as 250 mg of orthophosphorus/m2 (Marshall, 

1980). If this release is conservatively considered to be lim

ited to areas of 4.5 meter depth or more, the area under this 

depth would be approximately 30,000 m2 (Table III-2) and the 
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expected release under anoxic conditions may be as high as 7500 

g of phosphorus. A release of this magnitude, if mixed into the 

water column by 1ave action, cou ld increase average in situ or

thophosphorus concentrations by as much as 0.023 mg/1 P. 

Measurements of pH in Lake Eo la are indicative of the tre

mendous rate of a 1 ga 1 production. The average hydrogen ion con 

centration in Lake Eola during the research corresponded to a pH 

value of 8.86. At this pH, approximately 96% of t he inorganic 

carbo present would exist in the bicarbonate state. The remain

ing 3% would be in carbonate form with only a minute percentage of 

free co2 with in the first fe1t1 meters in Lake Eola. Thus , it ap

pears that algal production is deple ti ng this source almost as 

fast as it ent~ers the water. After the free co 2 is utilized, 

those photosynthetic organisms which are capable of utilizing 

bicarbonate ions also begin to do so. It is not unreasonable to 

assume that the compos i tion of algal communities in Lake Eo1a is 

determi·ned and regula-ted not only by seasonal variations but also 

by the type of inorganic carbon compounds present.. As seen in 

Figure IV-1, pH was typically lower in fall and winter months 

when algal production would be expected to decrease and higher in 

the spring and summer when production is at a maximum. Turbidity 

increases during spring and summer are also indicative of this 

1ncreased production. 

Nutri ent data for Lake Eola, in many cases, does not follow 

typical predicted cyclic patterns (Figure IV-3), which is to be 
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expected consideri ng the irregularity in both quantity and 

quality of the poll ution source. Concentrations of orthophos

phorus fluctuated between 0.01 and 0.04 mg/1 during the test per

i od. Although concentrations would normally be expected to reach 

minimum values during the high ly productive spring and summer 

months, peaks in phosphorus were found i n August and May~ presum

ably due to stormwater additions and/or phosphorus release from 

bottom sediments. Organic carbon was 1owest in the winter months 

as expected due to decreases in algal production and sto rm\Afater 

inputs ·lith a corresponding increase during the spring and summer. 

Ho\•Jever a very large increase in organic carbon was meas ured 

durina October and lovember and was presumed to be due to mixing 

of sediment material caused by circulation increase s typical of 

the fall season. Inorganic carbon appeared to be lower during 

the spring and summer as algae utilized this substrate as a food 

source with slight increases during the nonproductive winter 

months. A two-fold increase in concentration was recorded in 

Apri 1 1979 presumably due to stor!Th'-!ater inputs . Although the 

data on nitrate ni trag en is l irni ted, it appears that nitrate con

centrations experienced decreases during spring and summer as 

algae utilization increased. 

Sample Preparation for Bioassay Use 

Two of the most discussed and variable aspects of bioassay 

research involve sample preparation and the selection of a test 
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organism. In this research, four different types of sample pre

parations were used: ra~' unfiltered lake water, water filtered 

through a 0. 45 micron ~li 11 i pore fi 1 ter (F), water which was fi 1-

tered then autoclaved (F/A), and water which was autoclaved and 

then filtered·{A/F). In addition to indigenous algal species 

from Lake Eo 1 a, two di; ffe rent laboratory cultured uni a 1 ga 1 test 

species were also utilized, Chlorella pyrenodosa and Selenastrum 

capricornutum Printz. Both of these species are solitary, non

motile green algae which possess a wide tolerance towards environ

me tal conditions and occur in waters of diversified composition 

(EPA, 1978). A summary of experimental conditions for bioassay 

stud1es conducted during this research is listed in Table VI-1. 

The validity of resul~ ts obtained from a bioassay experi ment 

hing upo the abil1ty of the experiment to predict or mimic in 

situ algal responses to nutrient additions. Since these responses 

are an integration of the combined effects of ion solubility and 

ion availability to the test organism, any factor which alters 

these condit1ons, such as samp l e treatment, may bias bioassay re

sults. Chemical analyses conducted during this research indicate 

that autoclaving, f1ltration follo\ved by autoclaving, and auto

c1aving followed by filtration all result in significant decreases 

in co centrations of organic carbon, inorganic carbon, and ortho

phosphorus. However, nitrate nitrogen concentrations show sub

stantial increases due to these treatments as presented in Table 

VI -2 Simi 1 ar results have been reported by ~i lip nd Mi dd1ebrooks 

• • 
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(1975) in tests on mesotrophic pond water. They suggested that 

oxidation attributable to the physical disturbance of the sample 

as it passes through the filter probably accounts for higher ni

trate levels in treated samples. It seems reasonable that in-

c re as e s i n tempe r a t u re an d press u re d uri n g au to c 1 a vi n g may a 1 so 

be responsible for chemical changes of various parameters in wa

ter samples . Oxidation of organic carbon, nitrogen and phosphorus 

may occur altering the composition and quantity of these nutrients 

while at the same time, slightly increasing the pH. Autoclaving 

of the sample either before or after filtration, besides substan

tially reducing concentrations of organic carbon, inorganic car

bon and orthophosphorus can also cause reductions in concentra

tions of toxic heavy metals by precipitation during autoclaving 

(Filip and ~11ddlebrooks, 197.5}. These precipitates may be ex

tremely resistant to resolubilization under bioassay conditions 

(Environmental Protection Agency, 1978). Oxidation of organic 

wastes may also occur rendering these compounds less toxic. It 

appears that autoclavi_nu of a sample tends to produce conditions 

which may enhance algal production by increasing the availability 

of some nutrients and at the same time decl"easing toxicity of 

organic compounds and heavy metals. As seen in Table VI-3, the 

maximum yields obtained in test waters which were autoclaved then 

filtered are much larger than any other type of treatment. This 

difference may be a result of a combination of several factors. 

First, a micronutrient necessary for growth may have been present 
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in minimal quantity in the vvater column in relation to the needs 

of the organism . As a result, most of this elemen t which is in a 

form useable by algae may already be i ncorporated in biomass. 

The lake \~ater samples wh ich were prepared by autoclaving followed 

by filtration 'rJere collected during February when the highest le

ve 1 s of ch 1 orophyll "all ~ve re measured in Lake Eo l a (Figure I V-1} . 

Autoclaving of the sample may have released this nutr ient making 

1 t ava i 1 ab 1 e for growth. Second, heavy meta 1 s v1hi ch are preci pi

tated during autoc laving are removed when filtration follows auto

claving. Hovever, when autoclaving follows filtration, these pre

cipitates are not removed . The resolubilization of some of these 

comoounds may produce an inhibitory effect in samples which are 

fi 1 tered then au toe 1 aved 

~h1le autoclaving may result in substantial changes in the 

chemical composition of water containing large quantities of or

ganic particulate matter, filtration alone produces, with the 

except1on of orthophosphorus, very little change in sample com

posltlon . As seen in Table VI-2) pH, organic carbon and inorganic 

carbon decreased slightly during filtration '"ith nitrate concen

trations experienci ng a slight increase. Concentrations of or

thophospho us, howeve were reduced by 58% compared to the raw 

l ake water sample . Similar results were found by Filip and Mid

dl ebrooks (1 975). Raw la ke water samples probably contain some 

parti cu l ate phosphorus which is converted to orthopho sphorus un

der the acidic conditions of the ascorbic acid technique and 
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serves to increase the measured orthophosphorus concen t ra ti on 

in the raw water. f·1easurement of orthophosphorus in the fi l tered 

sample resulted in a substantially lower value, indicating, per

haps erroneously, that filtration removes orthophosphorus. It 

seems clear from these results that filtration alone produces 

the 1e~ ast alte·ration in chemical composition especially when deal 

ing with a very eutrophic water containing large quantities of 

suspended organic particles. 

From the results obtained during this research, it appears 

that autoclaving of a sample is not a suitable treatment technique 

for use in studies \A/here the effects of heavy metals or complex 

organic compounds are to be determined. In these cases, filtra~ 

tion only should be used. If, on the other hand, a relative1y 

clean oligotrophic water is to be assayed and it is desirable to 

determine the amount of algal biomass that can be grown from all 

nutrients in the water, including those contained in filterable 

organisms and other particulate matter, then autoclaving of the 

sample seems to be the best treatment technique. It also appears 

that autocl·aving of a lake water sampl.e,either before or after 

filtration,and the subsequent use of a unicellular algal species 

under laboratory conditions in a bioassay experiment \~il1 not pro

duce results which are indicative of the amount of biomass that 

will be produced, under the same nutrient conditions, in the lake 

itself. Although autoclaving the sample will probably not change 
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the nutrient which is indicated to be limiting growth, as a gen

eral rule~ samples which are autoclaved will produce a much larger 

standing crop than filtered sampl~s. 

Selection of a Test Organism 

From the standpoint of modeling in situ algal responses in 

bioassay experiments, the sample preparation technique which alters 

water quality the least will be the preferred method. The use of 

ra lake water containing indigenous algal species then appears to 

be the optimum method for predicting algal responses in a parti cu

lar system. The major advantage of using raw water is that the 

chemical composition of the lak~ water sample used in the bioassay 

remains essentially unchanged. Indigenous algal populations have 

developed, over tim~ a tolereance to environmental conditions in 

their p rticular habitat. Organisms which are continually sub

jected to 1 arge 1 oadi ngs of organic wastes or heavy meta 1 s may 

evolve, through natural selectiof\ an immunity to concentration le

vels of these compounds which would be toxic to laboratory cul

tured speciesp A bioassay using this cultured species may pre

dict algal die-off at certain concentrations of pollutant while 

act u a 1 i n s i t u con d i t ions wo u 1 d be much d i f fe re n t . 

Indigenous A1gal Species 

Th e use of raw lake water~ however, possesses several dis

tinct disadvantages. First, the composit1on of indigenous algal 

species in any given aquatic environment is varied and complex. 



129 

'Represen ta ti ves of Ch 1 orophyta, Cyanophyta, Chrysophyta, Eugl eno-

phyta, Rhodophyta and Phaeophyta may and probably will be pre

sent, representing a wide spectrum of sizes and habitats. Mem

bers of these phyla may be unicellular, colonial, filamentous, 

motile, non-motile, encased in a sheath, or encased in a gelatinous 

coating. Because of this variation in compos ition, measurement 

of production in indigenous populations is often difficult. In 

direct detenminations by electronic particle counting using a 

Coulter Counter is the preferred method specified by the Environ

mental Protection Agency for a.ll bioassay work (Greene, personal 

commu nication}. However, measurement of indigenous popul ations 

by this method \vou1d first require large clumps .and filaments 

w1thin the s,ample to be broken up either by mechanical or sonic 

means. Certain algal forms are more resistant to these procedures 

than others resul,ting in a suspension of uneven composition which 

could cause~ clog ~ging of the aperature tube ot~ selective passage 

of particles . Gravimetric techniques, although not affected by 

the composition of the cul ture, are prohibitively time consuming 

as well as being subject to inherent large experimental error. 

Measurement of in vivo fluorescence of algal chlorophyll "an is 

perhaps the best suited detection method for indigenous species. 

ltJh i le a fl u:orome te r wi 11 not accurately measure 1 a rge fi 1 aments 

or colonial forms, somewhat reproducible results may be obtained 

if the sample is first broken up slightly by a mechanical mixer 

or by vigorous shaking. Fl uorometri c measurement of chlorophyll 
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11 a" is a very sensitive method vJhi ch can be quickly performed. 

However, the ch l orophy11 "a" to ce 11 mass ratio may vary consider

ab1y with grnwth in natural waters having different chemical com

position (Round, 1973) and may cause a bias in bioassay results. 

These problems can be minimized by preparing separate cell mass 

vs chlorophyll 11 a" fl uorometric calibration curves for each al

gal species and natural water used. Although electronic particle 

counting is the preferred method for measurement of algal produc

tion, fluorometric determinations, because of their sensitivity 

and r ,api di ty, can be very useful in bioassay work and may be the 

only valid method for use with indigenous populations. 

The second disadvantage of using indigenous species involves 

a basic assumption implied in their use. A sucession of algal 

populations normally occurs in a lake over time unti l the species 

which are best suited for growth in that particular environment 

have become dominant. When these species are subjected to the 

conditions of a bioassay experiment which invariably involve dif

ferent temperatures , 1 i gh t i ntens i ties, and nutrient avail abi 1 i ties, 

the natural result is either for the community to be unable or 

slow in re sponding to nutrient additions or for a different suces

si:on to occur in species composition to a community more suited to 

the test environment. When this occurs, the main advantage of 

using i ndigenous species, that of closely mimicing natural re

sponses, is lost and compounded by increased difficulty in produc

tlon measurement. It was noted during this research that the 
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results obtained within the triplicate flasks of a single nutrient 

addition were extremely variable when indigenous species were 

used. This variation was sometimes as large as 100-200% and re

flects the complex nature of natural systems. These variations 

often make interpretation of bioassay results from indigenous 

populations difficult at best. 

Unicellular Algal Species 

To avoid the problems of enumeration and slow growth response 

associated with the use of raw lake water containing indigenous 

algal species, most algal bioassay researchers have resorted to 

the use of an easily measured and cultured unialgal test species. 

Of the many species tested in bioassay work, Selenastrum has sur

faced as the most common assay organism and is now the only spe

cies recommended for use by the Environmental Protection Agency 

(Greene, personal communication). The distinctive crescent moon 

shaped cell configuration makes microscopic examination of a sam

ple for contamination by other algal speci ~es a very simple pro

cess. No problems of any k1nd were experienced during this re

search in culturing or maintaining a Selenastrum culture. 

Chlorella, which was also used in these experiments, is easily 

cultured but lacks the characteristic cell shape which makes 

enumeration of Selenastrum a simple task. No differences in 

growth response were detected during this research between 

Chlorella and Selenastrum. Unialgal cultures of the blue-green 
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a l ga, Anabaena and ~1icrocystis as recomended in PAAP, were also 

obtained for use in preliminary bioassay experiments, however, 

neither one of these species were judged suitable for bioassay 

work. ~1icrocystis simply refused to grow in the synthetic algal 

medium and a satisfactory culture of the species was never ob

tained. Anabaena could be easily cultured but tended to clump 

together in tight masses which were resistant to resuspension, 

making fluorometric measurement of this species virtually impos

sible~ Anabaena also required recu1 turing in fresh algal medium 

on a eekly basis to prevent population die-off. Selenastrum, 

on the other hand,, did not require this frequent reculturing . 

It appears, then, that if a unialgal species is to be used 

in bioassay research, that Selenastrum is the preferred organism. 

EnuTTEration of this species is a simple task either by electronic 

particle counting or in vivo fluorescence. The selection of a 

singl'e test species, such as Selenastrum, for use in most bioassay 

experiments would make interpretation and comparison of results 

obtained in different labora tories a much easier task. 

In Situ Predictions from Bioassay Experiments 

An important and often puzzling aspect of bioassay research 

involves the prediction of possible in situ responses from the 

results obtained in a laboratory experiment. The most useful pre

dictive model is one in which the expected chlorophyll 11 a''' con

centration in a 1 ake, as a result of nutrient or s tormwater 
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additions, could be calculated from the cell yield obtained in a 

bioassay experiment. A summary of bioassay results obtained in 

control flasks with no nutrient additions is listed in Table VI-4. 

This data represents changes in cell mass other than those actu

ally measured in the lake due to the type of test organism used 

and the conditions of the bioassay. Since bioassay experiments 

are subjected to a constant illumi nation as well as optimum nu

trient avai1abillty due to oscillation of the flasks, the ulti

mate y'eld obtained in these control flasks was somewhat larger 

than the actual standing crop of algae in Lake Eola itself, as 

measured by the concentration of chlorophyll na". If it is as

sumed that the concentration of chlorophyll 1\a" actually measured 

in a la e is the maximum concen tration that can occur under the 

given environmental conditions, then a ratio can be developed 

bet een the actual in situ chlorophyll concentration and the in

creased yield obtained in control flasks due to the conditions 

of the bioassay. However, the response obtained in a bioassay 

experiment is a direct result of the type of sample treatment and 

test organism used and only those experiments utilizing the same 

treatment type and test organism should be used for predictive 

purposes. 

As seen in Table VI-3, the only type of sample preparation 

and test organism combination which produced similar ratios is 

the use of raw water containinq indigenous species. The average 

chlorophyll 11 a" to maximum yield ratio for this combination was 
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20.4 .. Therefore, the chlorophyll ''a" concentration expected in 

Lake Eola from a particular nutrient or stormwater addition in a 

bioassay experiment using untreated lake water containing indi

genous species could be calculated by multiplying the maximum 

cell y1eld in mg/1 by a factor of 20.4. Stated in other terms, 

1 aboratory bioassay experiments conducted during this research 

us1ng 1ndigenous species resulted in increases in the standing 

crop of between 1.4 and 1.5 ti mes those levels actually measured 

in Lake Eo 1 a. However, the 1 ack of the other sample treatment 

and test organism combinations to produce consistent ratios does 

not indicate that these are not suitable predictive tools. 

Since sample treatment, other than filtration only) was shown 

to significantly affect Nater quality, it is expected that these 

res lts will be considerably different from actual in situ re

spo ses in eutrophic waters such as Lake Eola. Filtered samples, 

however, when used with the same test organism, should produce 

results consistent with results obtained using indigenous spe

cies. Since only two tests were conducted using water which was 

f1ltered only, the failure of this treatment to produce consis

tent results deserves further research. 

Effect of Nutrient Additions to Lake Eola Water 

A summary of nutrient addition bioassay experiments using 

Lake Eola water is listed in Table VI-5. As seen in this data, 

both nitrogen and phosphorus were able to stimulate algal produc~on 
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in Lake Eola on certain dates. Although the data is limited, it 

appears that stimulation of a particular water by nitrogen or 

phosphorus may be related to the background phoshporus concentra 

tions in the sample at the beginning of the bioassay. Whenever 

the phosh porus concentration before nutrient additions was approx

imately 0.02 mg/1 or less, algal production was stimulated by 

a phosh po rus addition. Above this value, nitrogen was shown to 

s t i m u 1 a te growth . 

hi le nitrogen was able to produce a short-term stimulation 

on algal production in certain bioassay experiments using a uni

algal species in Lake Eola water, it will probably not be a lim

iting resource when considered over a period of years. In Lake 

ola, as in most lakes, the major new source of phosphorus is the 

atershed. r itrogen and carbon, although also obtained from 

the watershed, both have considerable inputs from the atmosphere. 

If an excess of phosphorus) relative to carbon,. is added to a wa

ter, algal growth will deplete the avail able carbon before phos

phorus becomes li:miting. This will lower the partial pressure of 

carbon dioxide in the water, and addition~l carbon dioxide will 

diffuse into the water from the atmosphere allowing comp1ete 

utilization of phosphorus until it becomes a limiting resource 

(Schindler, et. al., 1972; Schindler and Fee, 1974). r~olecular 

nitrogen will follow a similar diffusion pattern into waters when 

nitrogen fi,xers reduce its concentrations. Since blue-green algae 

are a major component of most eutrophic systems, it is reasonable 
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to assume that nitroQen will rarely limit long-term algal produc-

t i on i n th es e waters . 

A cl,ose examination of the data indicates that the N:P ratio 

may~ under certain conditions, be more influential in regulating 

algal production in Lake Eola than the actual concentration of 

nitrogen or phosphorus. The fact that N:P ratios can play an im

portant part in determining the potential biomass in a system 

is clearly demonstrated in Figures V-6 through V-8. In these ex

periments, an optimum weight ratio of total soluble inorganic ni

trogen (TSIN) to orthophosphorus was found to be be~Jeen 3.4 and 

21.4. Chiaudani and Vighi (1974) report optiQum weight ratios 

between 4.5 and 9 in studies on Italian lakes. However, the data 

presented in Table VI-5 indicates that maximum yields were ob

tained in nutrient addition bioassays with N:P ratios as high as 

104. As stated previously growth response of an organism will 

be affected largely by the availability of ions in its environ

ment. It seems reasonable to assume that when a nutrient is pre

sent in a minimal quantity that a point will be reached in terms 

of the concentration of a particular nutrient at which . the avail

ability of the nutrient will become so low that further growth 

will be limited by ion availability rather than by its relation

ship to other ions. It is this reduction in ion availability that 

may explain the seemingly erratic results for N:P ratios reported 

above. In the bioassay experiment conducted using lake water 

collected on 2/21/79, maximum yields were obtained with N:P ratios 
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between 71 and 104. Evidently, the concentration of phosphorus 

was sufficient to stimulate growth but was not present -in suffi

cient quantity to produce an excess of ion avail,ability to the 

test organism .. . It appears then that a threshold level of phos

phorus exists below which the growth of an organism is regulated 

solely by the concentration of phosphorus presen t, assuming all 

other essential nutrients are al,so present Above this tnreshol d 

val,ue, phosphorus is in relative excess and the organism is no 

longer 1 imi ted by ion availability alone. As concentrations of 

ions increase, organisms are virtually surrounded by an abundance 

of nutrients. Since some molecules have greater affinities for 

binding sites on the cell membrane than others, these binding 

sites may become blocked by certain compounds, limiting further 

nutr1ent uptake. In an environment with an excess of nutrients, 

cel,l grovJth will be optimum at a nutrient ratio where nutrients 

needed for gro\-Jth can be r,eadi ly take,n up by the cell in ,approxi

mate quantities necessary for· growth. As seen in Table VI-5, an 

orthophosphorus concentration of 0.060 mg/1 was not sufficient 

to provide excess ion availability. However, when the concentra

tion is increased to 0 .. 110 mg/1,, as 'Was the case in the experiment 

using lake water collected on 3/18/79, optimum growth occurred at 

a weight ratio of 6.4:1 which is within the range reported pre

viously. It appears then that the threshold concentration within 

Lake Eola above which sufficient phosphorus ions are available so 

that growth may be limited by the relative abundance of these ions 
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rather than their actual con centra ti ons 1 s betvifeen 0.060 and 0.110 

mg/1 P04-P. In other words, when the concentration of orthophos

phorus in Lake Eola is approximately 0.10 mg/1 or less, alga l 

production is regulated by the concentration of orthophosphorus 

alone. Above this concentration, it is assumed that an excess of 

phosphorus is available, and algal growth is regulated by the N:P 

ratio. However, since concentrations of orthophosphorus recorded 

in Lake Eola during this research were 0.04 mg/1 or less, it can 

be concluded that, except during periods of heavy phosphorus load

ings by storTll\Nater inputs or by long periods of anoxia, algal pro

duction in Lake Eola is limited by the concentration of phosphorus 

alone. 

Effect of Stormwater Runoff on Algal Populations 

A summary of storrnwater addition bioassay experiments using 

Lake Eola ~-Jater is listed in Table VI-6. As seen in this data, 

maximum yields were produced in virtually every case with a mix-

t u re of 25% s to rmw ate r runoff, res u 1 t i n g i n i n creases of 8 7-7 31 ~h 

over control flasks. If the ratio of~ situ chlorophyll 'a" to 

maximum cell yield using indigenous algal species is assumed to be 

20.4 as previously developed, the maximum cell yield of 3.72 mg/1 

obta 1ned using lake vJater colle·cted on 4/28/79 would correspond 

to a chlorophyll "a•• concentration in Lake Eola of 76 1-19/l as a 

result of this storm event. An algal cell cdncentration of this 

magnitude would quickly utilize available nutrient supplies and 



TA
B

LE
 

VI
 -

6 

S
U~

1~
1A

RY
 

OF
 S

T
O
RM

~J
A
T
E 

R
 A

DD
! T

IO
N 

EX
 P

ER
I ~

1E
NT

S 
US

IN
G 

LA
KE

 
EO

LA
 W

AT
ER

 

. 
. 

S
to

rm
\¥

 at
e r

 
. 

. 
~ 

fv1
ax

1m
um

 
# 

o
f 

D
ay

s 
· 

P
er

ce
n

t 
Sa

mp
le

 
C

h
ar

ac
te

r1
st

1
cs

 
E

 
. 

t 
1 

C
on

e.
 

T
 

t 
t 

R
 

h 
1 

x p
e r

1 
r.1

e n
 a

 
I 

p 
d 

. 
e s

 -
o 

e a
 c 

n c
 re

a s
 e 

D
at

e 
_ 

Ce
ll

 
Yi

el
d

 
~0

 
·~
cl

ng
 

O
rg

an
is

m
 

M
ax

im
um

 
O

ve
r 

C
o

ll
ec

te
d

 
T

re
at

m
en

t 
P0

4-P
 

N0
3-

N
 

(m
g/

1
) 

· ~
~~

r~
m 

j 
Y

ie
ld

 
C

on
tr

ol
 

I 

10
/1

6/
78

 
F/

A
 

0.
48

0 
--

3.
27

 
25

%
 

C
hl

or
el

la
 

8 
59

6%
 

11
/0

8/
78

 
F 

0.
65

0 
--

6.
33

 
25

%
 

C
h1

or
e

l1
a 

10
 

87
%

 

4/
28

/7
9 

N
on

e 
0.

29
1 

6.
90

 
3

.7
2 

25
%

 
In

di
ge

no
us

 
11

 
73

1%
 ~
 

S
pe

ci
es

 
~
 

4/
28

/7
9 

A
lu

m
 

0.
01

3 
0.

90
 

1.
04

 
5%

 
In

di
ge

no
us

 
6 

8%
 

C
oa

gu
la

te
d 

S
pe

ci
es

 

7/
17

/7
9 

N
on

e 
0.

02
4 

1.
90

 
0.

88
 

5%
 

In
di

ge
no

us
 

7 
-3

%
 

. 
S

pe
ci

es
 

7/
17

/7
9 

Fe
C1

3 
0.

00
0 

1.
32

 
0.

89
 

25
%

 
In

di
ge

no
us

 
14

 
-2

%
 

C
oa

gu
la

te
d 

S
pe

ci
es

 

-
-
-

-
-

-
-
~
 ·
·
-
-
-
-
-
-
'
-
-
-
-
-
-
~
-
.
.
.
-
.
:
.
-
-
-
-
-
-
.
.
;
_
-
-
-
-



142 

be reduced to a much lower value in a short time. However, this 

reduction would occur largely at the expense of increased sedi

ment buildup .. 

If Figure V-9 is consi'dered a typical algal response to storrTl-* 

water additions, it can be seen that the addition of stormwater 

in any concentration, even 100% stormwater runoff, resulted in 

an inc ease in algal production over the control. However, when 

storrrrwater as added in concentrations of 25% or greater, the 

growth curve was typified by an initial die off of algal popula

tions, the magnitude of which being a function of runoff concen

tration. This d1e-off is due largely to the presence of toxic 

elements in the stormwater which is discussed, along with its im

plica ions) in a later section. If a typical 1/2 inch storm fell 

on the Lake Eola watershed, the corresponding runoff, if completely 

m ·xed th oughout the water co 1 umn, would represent an addition of 

only 2% to the total lake volume. At this concentration of storm

water runoff, the effect on algal production would be greatly min

, mi zed. However, the time necessary for the s torTTWater to mix 

throughout the entire lake~ depending on weather conditions, is 

probably on the order of several days. It seems reasonable to as

sume then that stormwater concentrations of 25% or greater may 

exist n ar stormwater outfalls for at least 1 day and that the 

die-off predicted at this concentration would occur in these areas. 



143 

Effect of Coagulated Runoff on Algal Growth 

One of the techniques under consideration for the restoration 

of Lake Eola includes chemical coagulation of a portion of the 

runoff to remove phosphorus and heavy metals. Alum, A1 2(so4) · 

18 H2o, was selected as a coagulant for test purposes. An a 1 urn 

dosage of 240 mg/1 at a final pH of 5.5 was determined through 

jar tests to provide optimum phosphorus removal. Coagulation 

under these conditions resulted in a reduction of 96% of ortho

phosphorus and 87% of nitrate nitrogen (Table VI-6). With the 

exception of aluminum and arsenic, coagulation also reduced con

centratioffiof every heavy metal tested. 

As seen in Table VI-6 and Figure V-10, coagulation of the 

sto mwate resulted in substantially lower growth responses~ as 

compared \nth uncoagulated test f1asks at every concentration 

of stormvJater tested. The maximum percent increase in a1ga1 pro

duction over the control flasks was reduced from 731% using un

treated s tormwa ter to 8% in a coagu 1 a ted sample. Using the in 

situ chlorophyll 11 a" to maximum experimental yield ratio for in

digenous species of 20.4, the maximum cell mass obtained in the 

treated flasks correspond to a chlorophyll "a" concentration in 

Lak e Eola of only 21.4 ~g/1. It should be noted that, even though 

an input of stormwater has occurred to the lake, the maximum pro

duction predicted by this addition is 1 ess than the average in situ 

chlorophyll "a' 1 concentrations in Lake Eola measured during this 

research (Tab 1 e s IV -1 to IV- 3) . 
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An interesting result of these coagulation experiments is 

that the untreated sample required 11 days to reach its maximum 

yield while the coagulated sample obtained a maximum in only 6 

days . Greene , e t . a l . ( 19 7 6 ) s u '9 g es ts that a growth 1 o g i n a 1 g a 1 

~esponse is often experienced in waters containing toxic compounds. 

Certain algal forms are able to produce extracellular substances 

\ hich can form chemical complexes with the growth inhibiting 

substance. Anabaena, for example, over a period of days, may pro

duce a polypeptide which forms a non-tox1c complex with copper, 

iron, and phosphorus . The absence of this characteristic growth 

lag in the coagulated samples suggests that sufficient toxic ele

ments had been removed by this process so that a 1 ga 1 forms were 

no longer inhibited. Thus, it seems that coagulation of storm

wate not only removes nutrients and limits algal production but 

it also produces a product which is less toxic to aquatic organ-

; sms. 

Sig,nificance of Dry ~Jeather Flow 

To determine if dry weather storm sewer flow has any effect 

on algal production in Lake Eola, various concentrations of storm

water base flow and lake water were incubated with Chlorella as 

the test organism. The results of this experiment are listed in 

Table Vl-7. As seen in this data, dry storm sewer flow was not 

able to stimulate algal growth at any concentration tested and, 

in fact, seemed to inhibit production. It seems reasonabl~ then, 
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to assume that the effect of this input on the algal production 

in Lake Eola is negligible. 

Physical-Chemical Effects of StormNater Additions 

Average water quality characteristics of urban stormwater 

collected from the Lake Eola drainage basin are listed in Table 

VI-7. As seen in this data, considerable variation exists in 

ater quality characteristics between individual storm events with 

most parameters listed experienc1ng a 10-fold range of concentra

tions over the eight storm events testede 

Also, more than half of the nutrients released to the lake 

in stormwater runoff appear to be in dissolved form. Calculations 

of the mass loadings from these storm events are presented in 

Table VI -8. ass loading averaged 8.3, 1.1, 8.5 and 0.03 kg/ha/cm 

of rainfall for suspended solids, BOD5 and orthophosphorus, re

spectively. Assuming a drainage basin area of 55 hectares and an 

average rainfall of 128 em, the total soluble orthophosphorus re

leased to the lake would equal 211 kilograms/yr. Similarly, load

ings from suspended solids, BOD5 and TOC will equal to 48,432, 

7744 and 59,480 kilograms per year, respectively. If all the sus

pended solids are transported to areas of the lake deeper than 

6.5 meters, a buildup of solids approximately 0.15 meter deep will 

accumulate per year in these areas of the lake. This material, 

in addition to rapidly decreasing available water depth in the 

lake, also creates a significant oxygen demand during its 
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Date 

7/11/78 

7/14/78 

7/25/78 

8/03/78 

8/10/78 

9/15/78 

10/12/78 

11/07/78 

Average 

Ca 1 cul a ted 
Loadi t gs * 
(kg/ yr) 

147 
TABLE VI-8 

MASS LOADINGS FROM LAKE EOLA BASIN 

rlass Loading, kg/ha-em 

ss 8005 TOC Soluble 
Ortho-Phosphorus 

18 .. 5 2'. 6 4.1 0.06 

4.4 0.6 6.0 0.02 

8.9 0.3 1.0 0.02 

9.3 0.9 3.6 0.02 

4 .5 0.3 1.. 6 0.03 

5.9 2.0 20.0 0.02 

13.0 1.0 18.0 0.02 

1.8 1. 1 13 . 4 0.03 

8.3 1.1 8.5 0.03 

58,432 7,744 59,840 211 

*As s u Ires a d r a i n a ge bas i n a rea of 55 h a and aver age r a i n fa 11 
of 128 cm/yr. 
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decomposition and it may be responsible for anoxic conditions ex 

perienced during spring and summe r months. 

Of the dates on which stormwater was collected, the lowest 

concentrations of virtua lly every stormwater parameter seemed to 

occur dur1ng the months of July and August. These months are 

typicall y characterized by frequent and intense storm events. 

Si nee the dry period bet~tJeen storms is very short, the accumula

tion of transportable mater ial in contributing areas of the water

shed 1s min i mi zed~ and nutrient input into the lake per storm i s 

reduced. However, s i nee storm ~events occur a 1 mo st dai l y during 

this period~ the total i nput of nutrients over t hi s rainy season 

wi l l be very large although it wil , be stretched out over a per

i od cf severa l months . The frequent and intense nature of these 

storms serves to reduce concentrations of toxic heavy metals and 

organ'cs wh ile at the same time supplying ttl:lake with a constant 

supply of phosphorus, nitrogen and carbon. This continuous sup

ply of nutrients with reduced concentrations of toxic elements 

combined with warmer water temperature s du ring these summer months 

prov ides enriched conditions for algal growth, and one would ex

pect the most rapid rate of algal growth to occur during this 

time. However because dilution of algal populations by storm

water and the constant removal of the uppe~ r layers on the lake 

via the drainage well are constantly lowering these populations, 

the highly enriched growth which is occurring during this period 

i s not r eflec t ed by in situ chlorophyll "a" concentrations~ 
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In contrast to the enhanced algal growth conditions exper

ienced during the summer rainy months due to stormwater events, 

runoff entering the lake after prolonged periods of drought may 

produce severe toxic effects on aquatic life in Lake Eola. Con

taminants have been allowed to accumulate within the watershed 

over this period, and whan a storm event occurs, the mass loading 

to the l.ake is many times larger than that experienced during a 

rainy period. This large influx of toxic and oxygen demanding 

\1/astes can be letha1 to many forms of aquatic life. Evidence of 

such a phenomenon was recorded in March, 1979, when a rain event 

occurred after a 6 weeks dry spell. Concentrations of organic 

carbon as high as 400 mg/1 were measured in stormwater runoff 

entering the lake during this event . Two days after this event, 

dissolved oxygen concentrations had been reduced from saturation 

near the surface to 4 mg/1 at a depth of 1 meter and to virtually 

zero below 2 meters. Numerous large-mouth bass averaging 2-3 

pounds were also found floating in the water, and large masses of 

dead filamentous algae had accumulated in thick mats over much of 

the lake's surface. The color of the water itself was changed 

from its characteristic blue-green tint to a gray-green appearance. 

Seechi disk depth was reduced to less than 0.5 meters. After ap

proximately 5 days, conditions began to improve, and after 10 days 

physical conditions in the lake, as dete1mined by dissolved oxy

gen profiles and Seechi disk measurements, had returned to near 

normal values for this time of year. However, it should not be 
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inferred that the lake had returned to the same ecological condi

tion as before the storm event. The damage caused to the lake 

system by increases in sediment buildup and loss of animal species 

are difficult to document and can never be regained. 

Heavy Metal Toxicity 

Although the algal production measured in these bioassays 

auld certainly correspond to eutrophic conditions, it appears 

the production in Lake Eola may actually be partially inhibited 

by tox1c elements in the stormwater runoff. The grO\'lth response 

of Selenastrum in a synthetic algal medium is shown in Figure V-1. 

s·nce this med1um is by design a phosphorus limited medium (EPA, 

1978), then algal growth should continue until all available phos

phorus has been utilized by organisms. A total of 120 mg of dry 

cell weight per l1t r of Selenastrum were produced from the 0.186 

mg/1 of phosphorus contained in the synthetic algal medium. From 

this relationship, it can be calculated that 0.01 mg/1 of phos

phorus will produce, assuming all other essential nutrients are 

present in sufficient quantities needed for growth, 6.45 mg/l of 

Selenastrum cell mass. Accordingly) the 0.017 mg/1 of phosphorus 

pr sent in the 1 ake water sample co 11 ec ted on 8/10/78 shou1 d have 

produced 10.97 mg/1 of dry cell mass assuming no toxic effects 

existed and all other nutrients necessary for growth were present. 

As seen in Table VI -3, none of the bioassay experiments with the 

exception of the one in which EDTA was added,. \~ere able to produce 

the maximum predicted yield. 
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The fact that the addition of EDTA was respon 1ble - r 1n 

creasing the experimental maximum yield strongly sug sts h _ p -

sence of heavy metal stress in Lake Eola .. The add"t·ons o - TA 

to a lake water sample collected on 2/21/79 resulted in wo-ol 

increase in cell yield (F1gure V-4 and Table VI~5). An nh 5 bi 

tion of 47% was calculated for this experiment between con r 1 

flasks incubated with and without EDTA. EDTA may act t - -ab 1 

ferrous iron, increasing the availability of this 1on for - ua 

growth while at the same time suppressing heavy metal t Xl ity 

chelat1on (iller, at. al., 1976). However, since th ,- add' io 

of 1ron to this experiment in control flasks w1thout DT - 1 o 

stimulate algal production, it was concluded that th 1nc 

production caused by EDTA was due largely to suppre o o 

metal toxicity. Toxic levels of sele,cted heavy met 1 

trum along 1th average Lake Eo1a ater and torm~a r 

listed in Table VI-9. It can be seen that normal b 

centrat1ons of copper and z1nc i Lake Eo a ·ts lf ar 

to cause cont"nuous 1ncipient 1nhibition of a a u 

certain spec·es. Average hea~ metal cone ntrat1on n 

co lected near Lake Eola 1ndicate an algic -dal e 

\ ; th a z1 nc concentration sufficient to ca 

Although no informat1on 1s 1 ·sted for tox c 1 

average concentrati o , of 500 g/1 of 1 a · 

off at ake Eo a can be a m d 

da c.. cfnr. ts. xpet ·m nts po e y ,; 
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{1975) on the toxicity of zinc to Anabaena and Selenastrum indi

cate that a zinc concentration corresponding to the average lake 

Eola concentration of 0.048 mg/1 was sufficient to reduce the 

yield of Anabaena and Selenastrum to only 20-40% of the maximum 

y1eld. Similar concentrations of lead and arsenic are also pre

s ~ent in Lake Eola water and may exhibit similar exhibitory effects. 

Synergistic effects due to the simultaneous presence of various 

heavy metals may increase this toxic effect and further limit al

gal growth. Greene further suggests that ionic strength may be 

a prime factor in regulating zinc toxicity upon the growth of 

Selenastrum. Sensitivity of the test alga to zinc appe-ars to be 

inversely proportional to the ionic strength of the test substrate. 

Ion pair formation with some of the more common cations present 

in a rece1v1ng water such as calcium, magnesium or sodium may be 

a significant process by which the availability of zinc in waters 

of high ionic strength is altered. In the absence of synergistic 

constituents,, the factor of 2.72 + 20 percent when multiplied by 

the ionic strength ( ~mhos/em) of a test substrate should indicate 

the level of zinc in ~g/1 that would inhibit 95% of growth in 

the test organism. If the average specific conductivity of Lake 

Eola water is assumed to be 300 1-1mhos/crn O~anielista, 1976 ), then 

the zinc concentration which would inhibit 95% of growth in 

this system would be approximately twice the average stormwater 

concentration of 423 ~g/1. It seems reasonable that, although the 

concentrations of zinc in Lake Eola may not produce this 95% 
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inhibition in algal P'roduction, the concentrations of z·inc found 

in stormwater, even disregarding any synergistic effects, are suf

ficient to cause significant inhibition in lake Eola. 

Since limiting algal production is the essence of a lake 

restoration project, it would seem that the heavy metal inhibition 

found in lake Eola is not totally undesirable. However, the algi

Cldal and inhibitory effects of these toxic compounds do contri

bute to other serious problems i n Lake Eola. As seen in Figure 

V-9, the response of a test organism to concentrations of storm

water runoff larger than 25% is often an ini tial die-off of a por

tion of the cells with the magnitude of this die-off being a func

tion of the composition of the stormwater entering the lake. Al

though a storm event of sufficient magnitude to produce a concen

tration of storm~\fater in the lake of 25, percent is unlikely, these 

concentrations do occur' near, stormwater outfalls. Density gradi

ents due to the large amount of dissolved and suspended solids in 

stormwa tet runoff may make wat~er surrounding these areas somewhat 

resistant to mixing and allow sufficient time for algicidal ef

fects to occur., Perhaps th ~e major problem associ a ted with this 

die-off is an increase in sediment buildup. With the exception 

of areas near the shore, the bottom of Lake Eola is covered with 

a thick layer of silt and flocculant material, increasing in 

depth as one nears the center of the lake. Besides contributing 

large quantities of phosphorus and other metals (Marshall, 1980) 

during periods of anoxia (Marshall, 1980) and creating a continuous 
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oxygen demand, the consistency of this material makes it impos

sible for rooted submergent plants to develop. The absence of 

t hese plants severly limits the fauna that can develop within 

the lake creating a system characterized by low diversity and a 

corresponding lack of stability. Benthic organisms, which also 

play an important role in regulating decomposition and release 

of sediment material , are li mited to only a few specialized forms. 

The increasing buildup of heavy metals with in the lake also makes 

the problem of biological magnification very real. Lake Eola is 

commonly used as a winter home for many species of water fowl. 

If these animals feed on organisms within the lake heavy metal 

concentrations may build up within their bodies posing serious 

hea lth problems to hunters who may shoot these birds for food on 

their return north. 



CHAPTER 'VI I 

SUMMARY ANO CONCLUSIONS 

During the course of this res ~ear, c!h, monthly water quality 

analyses were performed 1n Lake Eola and bioassay experiments were 

conducted to detenmine the effect of nutrients and stormwater ad -

ditions on al~ gal productivity in this lake system~ Coagul~ ation 

of stormwa ter to remove nutrients and 1 imi t a 1 gal, production ~'las 
, 

also studied From the results obtained in this research, the 

fo 11 o ing cone l us ions wer~e reached: 

1. The input of stormwater into Lake Eo 1 a has sever ~ely 
damaged this aquatic system. Persistent algal blooms 
exist virtually year round. Bottom s ~ed1rnents have 
become covered with a layer of loose flocculant ma
terial and anox1c conditions exist in deep areas of 
more than 4 meters deep during the spring and summer. 

2. Bioassay research can be a useful tool in predicting 
algal responses to pollution loads as l ong as the 
proper combination of test organism and sample treat
ment which best represent the aquatic system are used. 

3. Bioassay pre para ti on tee hni ques other than fi 1 tra tion 
only were found to decrease concentrations of organ ic 
carbon, 1norgan1c carbon , orthophosphorus, and 
heavy metals, while at the same time increasing ni
trate nitrogen concentrations. 

4. Autoclav1ng of a water sample is not a suitable 
treatment technique for use in bioassay studies 
where the effects of heavy metals or complex or
ganic compounds are to be determined. In these 
cases, fi ltration only should be used. 

5. The use of in~igenous algal species in a bioassay 
experiment may encounter problems in enumeration and 
can be cha rae teri zed by a s 1 o~v growth response. 

156 
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However, the use of these species can be a useful 
tool especially in systems where continued exposure 
to pollutants has produced a certain amount of bio
logical resistance. 

6. When the concentration of orthophosphorus in Lake 
Eola is less than 0.10 mg/1, algal production is 
regulated by the addition of orthophosphorus alone. 
Above this concentration, it appears that an excess 
of phosphorus is available, and algal growth is regu-
1 a ted by the N: P ratio. Ho\'!;ever, in most cases the 
concentration of orthophosphorus in Lake Eola water 
is below 0.04 rng/1, and algal production is limited 
by the concentrations of added phosphorus alone. 

7 Although nitrogen was able to stimulate algal pro
duction in limited bioassay experiments, it will 
probably not be a limitng resource in Lake Eola 
when considered over a period of years due to the 
large numbers of nitrogen-fixing blue-green algae 
which are characteristic of eutrophic systems. 

8. Additions of stormwater runoff to Lake Eola water 
in any concentration will result in an increase in 
algal production, A mixture of 25% stormwater run
off will produce the largest standing crop. 

9. Coagulation of stormwater runoff with alum will 
reduce concentrations of both orthophosphorus 
and nitrate nitrogen by 80-95%. Certain heavy 
metals will also be removed. 

10. Coagulation of stormwater runoff will significantly 
reduce the growth potential of this pollution source 
while at the same time producing a produce which is 
less toxic to aquatic organisms. 

11. Dry weather storm sewer flow has a negligible effect 
on algal production in Lake Eola. 

12. Maximum algal growth in bioassay experiments gener
ally occurred after 6-11 days of incubation. How
ever, when stormwater runoff is added to Lake Eola 
water, a growth lag is often experienced which may 
extend the time required to reach maximum yield to 
as many as 18 days. 

13. Continuous stormwater inputs into Lake Eola during 
the rainy season will produce greatly enhanced algal 
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growth due to the constant input of nutrients and 
dilution of toxic components. Inputs of stormwater 
after a long dry spell may inf1ict ·serious toxic 
effects on aquatic life. 

14. Concentrations of copper and zinc in Lake Eola it
self are sufficient to cause incipient inhibition 
of algal production. Average stormwater runoff 
concentrations of copper, zinc and lead are suffi
cient to produce complete inhibition or algicidal 
effects. 
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