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CHAPTER I 

INTRODUCTION 

Research Objectives 

In today' s world alrrDst everyone encounters queueJ.ng situations 

lD their daily lives. As the population incredSes the demand for 

services increases. This leads, at least temporarily, to longer waiting 

lines, or queues. In some cases the problem can be solved by simply 

increasing services to meet the demand. In other cases it nay not be 

physically or economically feasible to increase the services. The 

grDWth of queueing theory, as a subject, has been stimulated by the lack 

of a simple solution to these problems. The IIDSt obvious examples of 

queues formed by people are the checkout counters in supennarkets , banks 

ticket counters, and doctors offices. 

Queues are not limited to people. In industry we find trucks 

waiting to be loaded, airplanes waiting to land, and rrachines waiting 

to be repaired. In all of these examples time is a common element, 

and time has value (usually monetary). The time lost by a truck wait ing 

to be unloaded at a warehouse has a definable value to the owner of the 

truck. Conversly, the time lost by the loading crew when no trucks 

are there to be unloaded has a definable value to the owner of the 

warehouse. The proper application of queueing theory can help to 

JD.lilimize this loss of time in the queue and by the server. 



The queueing theory that is available today was developed using 

advanced nathematics. The models are complex and require a good 

understanding of these advanced mathematical techniques. This 
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canplexity points out the need for a si-mplified approach to queueing 

problems . The most basic description of a physical system is usually 

made with a drawing or a diagram. In the field of engineering Gantt 

charts , PERT charts and logic flow diagrams are used. Graphs and charts 

of various kinds are used extensively to describe business and industrial 

systems. The benefits of graphical methods yield a simplified approach 

to the queueing problem. The use of graphical methods is the primary 

thrust of this research. 

In illustrating a diagram appruach, the scope of this research 

lS limited to a specific type of queueing problem, corrunonly referTed 

to as the "repair.rrEn" problem. This problem is characterized by a 

finite number of repairmen. Once a machine fails it must be repaired 

before it can be put back into service. 

The results of this research are expected to show that a queueing 

system can be described with a diagram or a graph. After graphically 

rmdelling the system, the -ease of understanding will be assessed and 

analytical results obtained. These results will be compared to results 

obtainable from theoretical models. 

Organization of the Thesis 

In Chapter 2 the "repa.irman" problem is physically described and 

then conceptually presented as a queueing system. The Poisson queueing 

model is introduced along with the derived formulas which apply to the 



repairman problem. A numerical example of the repa.irman problem is 

solved using the Poisson model. 

In Chapter 3 the problem is described as a Markov process which 

lS a special type of stochastic system. The Graphical Evaluation and 

Review Technique (GERT) is introduced and the repairman problem is 

JIDdeled as a stochastic network using this technique. An analysis of 

the GERT model produces steady state results for comparison with the 

Poisson model , plus additional inforrration about the system which is 

not available using the Poisson model. 
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In Chapter 4 the Q-GERT simulation technique lS introduced. The 

repairman problem is JIDdeled as a Q-GERT network and the s.imulation is 

performed using the Q-GERTS computer program. The use of a s.imulation 

approach :rrakes it pos·sible to remove most of the assumptions which are 

inherent in the Poisson and the GERT models of the repairman problem. 

Finally, in Chapter 5 , the results of theory, GERT , and Q-GERTS are 

brought together and analyzed. Advantages and disadvantages of each 

are discussed. 



CHAPTER 2 

THEORETICAL MODEL 

Definition of RepairrrBn Problem 

The most obvious queueing systems are those composed of people 

waiting for service. Figure l shows a barber shop that has three 

barbers working. 

...., ___ . queueing system __ _.. 

X . . • X X X-

queue of 
customers 

\ 
\ .... 

D 
0 

--.0---
parallel 
servers 

Fig. l. Barber Shop as a Queueing System 

departing 
- -~ customers 

The customers arrlve at the barber shop and join the queue if 

all three barbers are busy. 'When a barber completes service on one 

4 

customer, the first customer in line moves to that barber position and 

his service begins. The queueing system is defined as the queue of 

customers and the parallel servers. For the barber shop, the calling 

source of customers is very large, and is assumed to be infinite. For 

this reason it is not necessary to show the depart:ing customer rejoining 

the calling source of customers . Furthermore, the characteristics of 
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the calling source will be independent of the nlilllber of customers lil 

the barber shop. 

The ~~pairma.n prublem is a queue~g system that behaves somewhat 

differently. The customers are machines, which are physically fixed m 

position. The servers are the repairmen that physically JIDVe to the 

failed machine to repair it. Keeping this physical difference in rn.illd, 

the repairman queueing system is represented by Figure 2. 

reparrman ..._ __ 
queuelllg system 

1 ......... repaired . ..._ . 
(K-R) ... X X X 

- ..... _ rrachines 
2 ---- -~ . .-.--- ,.,. ', 

\ 
\ 

I f · e calling queue repa:umen f. 
\ source 1 

~ ' ~/ ,.......__ ..-------- ~---- ~ __ ...._.---- ...... ,__- ~.-.~~- ..... 

Fig. 2 . Repainnan Problem as a Queueing System 

This represent ation of the repairman problem resembles the barber shop 

example in that the customers join a queue, are served, and then depart 

the queueing system. However, the call~g source of machines is now 

finite in size, and the characteristics of this calling source at any 

point in time are dependent upon the number of machines in the calling 

source. If the total number of JIB.chines for a specific prublem is 

denoi:ed by (K) , then the number of rrachlnes in i:he calling source will 

vary between zero and K. The number of repairmen is denoted by (R), 

and the max:iJnum number of JIE.chines i:hai: can be in the queue is (K-R). 

/ 
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The repa.inn:m problem then lS represented as a queue~g system with a 

finite calJi?g source and a queue that is limited to a finite size. 

Poisson ·queueing .Mddel 

The Poisson queueing model makes it possible to mathematically 

analyze queueing systems whiCh meet the following conditions: 

(l) The individual units that make up the calling 

source are identical 

(2) All service facilities are id~ntical 

(3) The arrivals to the system are Poisson 

distributed 

( 4) The service time ls exponentially distributed 

Real world queueing problems rarely meet all these conditions. However, 

it has been found that a wide range of queueing systems can be 

successfully analyzed by assuming the above conditions. The 

mathematics involved in analyzing models without these assumptions 

is very laborious. Because the Poisson model reasonably approximates 

a wide range of queueing systems and the mathema.tics involved are not 

extremely difficult, this model has received wide usage in fields 

other than matheiiE.tics. (Panico, 1969) 

The Poisson JIDdel is further restricted to an analysis of the 

queueing system in it's "steady state". The steady state condition 

exists when the behaviour of the system becomes independent of time. 

This presupposes that the parameters of the system will penni t a steady 

state to be reached and the elapsed time since the start of the 
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operation appraoches .ill.finity. Even though transient state solutions 

do exist for some :rrodels, the JIB.thematics .again become extremely 

difficult. 

The following symbols are used in the finite Poisson queueing 

model and will be continued in the other JIDdels in later chapters. 

(Taha, 1971). 

are: 

The input parameters for describing the system are: 

K the total number of machines in the problem 

It the mean failure rate of each identical ma.chine 

Jl the mean repair rate of each identical repai.r-TIEn. 

R number of repairmen 

p defined as !t/J.l 

The output of the derived formulas for the steady state analysis 

"-eff -

w s 

w 
q 

the mean failure rate of the calling source 
of machines, once a steady state is reached 

the expected time that each machine will spend 
in the queueing system each time the ma.chine 
fails. This is the same as the expected time 
the machine is out of operation. 

the expected tine that each machine will spend 
waiting in the queue after each failure. 

expected number of machines in the queueing system 
once steady state is reached. This is the 
expected number of machines not in operation. 

expected number of machines in the queue once 
steady state is reached. 

the probability that exactly n liBchines are 
in the queueing system (out of operation) once 
steady state is reached. where n is only 
defined from n = 0 to n = K. 

the expected nlilllber of idle repairmen 
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To derive the steady state expressions for P , W , W , 1 , and 
n s q s 

L the system must be exa:rrrined over an increment of time (h) srrall 
q 

enough that only one failure and/or repair can occur during h. In 
. ... - - · 

addition, the appru:x:inate probability of a failure durillg h is (K-n) h 

for n s K, and the appro:x:inate probability of a re:p::ilr during h ls 

n l.1 h for n $ R and R l.1 h for n ~ R, where n is the ntllilber of TIE.chines 

in the queueing system at the beginning of h. The resulting steady 

state expressions for the system are: (Taha 1971) 

p 
0 

p 
n 

Lq 

L s 

w q 

w s 

R 

Aeff 

--

--

--

--

--

= 

--

-1 

(2 .1) 

K n 
(n) P p 0' O.s:n~R (2. 2 ) 

cfi) n! Pn 
PO' R~n~K R~Rn-R 

K 
~ (n-R) p (2.3) 
n=R+1 

n 

L + 
Aeff 

(2.4) 
q l.1 

L q (2.5) 
Aeff 

L s (2.6) 
"-eff 

R 
2:_ (R-n) p (2.7) 

n=O 
n 

(R-ID ( 2 . 8) 
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To deiiDnstrate the use of the Poisson queueing JIDdel, consider 

a three machine one repairm:m example. The failures of each JIB.chine 

are Poisson distributed with a mean failure rate of :>t=l. 0 failure/hour. - - - · 

The repairs by the repair.rn:m are also Poisson distributed with a mean 

repair rate of 11=2.0 repairs/hour. As a result of the special 

relationship of the Poisson and exponential distributions, the time 

between failures for each JIB.chine is exponential with a mean 11 It= l hour. 

The reapir time is also exponential with a mean 1 I = • 5 hours . 
11 

From the statement of the problem: 

A - 1.0 failure/hour/nachine -

11 - 2.0 repair/hour /repairman -

R - lrepairman -

K - 3 JIB.chines -

A - .5 p = - -u 

From equations (2.1) and (2.2): 

Po - .2105 -

pl = .3158 

p2 = . 3158 

p3 - .1579 -

From equations (2.3) tlLnough (2.8): 

L = . 6316 JIB.chines 
q 

R = .2105 repairmen 

!teff 
- l. 579 JIB.chines/hour -

L - 1.4211 machines -s 



w q 

w s 

= .40 hours 

= .90 hours 

These resBlts are summarized in Table l and discussed ln the 

following paragraphs. 

Assuming the mchine operation does reach a steady state, the 

probability of no failed machines is . 2105. The p:mb3bilities of 

one and two failed nachines are the same and equal to . 3158, and 

the probability of all machines failed is .1579. The expected 
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number of JIB.chines out of operation at all tine is 1.4211. This means 

that the machine operation will be operating with 1.579 machines. 

Once a machine fails it will be out of operation for an average of 

0.90 hours, and 0.40 hours of that time will be spent waiting for 

the re}Bir.m:m . The repa.ir.rnan will be idle 21% of the time , and busy 

79% of the time. 

Using this infonnation several conclusions can be JIE.de about 

this operation. The JIDst obvious is that over the long run only 1. 5 

machines will be operating. In JIDst situations that would probably be 

unacceptable. Machines represent a relatively large investment as 

comp::Ired to repa.i.nnen. Machine hours spent .ill the repair system 

represent a loss of income, and in this case 4/9 or 44% of those lost 

JIB.chine hours are spent wai t:ing for a repairman. The other 56% are 

spent actually being repaired. 

The Poisson queueing JIDdel can be a useful tool for the analysis 

of actual repairrrE.n problems. However, the IIDdel is restricted by 

several asslilllptions, and the user must be aware of these. Also, the 



analytical results are limited to the steady state situation. 

TABLE l 

Summary of Poisson queueing model 
analysis of n:;pa.irrnan problem 

Steady State 
Results 

. :>t eff (mcb..illes /hour) 1.579 

p 0.50 

w (hours) 0.90 s 

L s (macb..illes) 1.4211 

w q 
(hours) 0.40 

Lq Cna.cb..illes ) 0. 6316 

R (repairmen) 0.2105 

Po 0.2105 

pl 0.3158 

p2 0. 3158 

p3 0.1579 

ll 
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CHAPTER 3 

STOCHASTIC NETWORK APPROACH 

In this chapter the repai:rnan problem is studied as a stochastic 

system which can be g:rephically represented by a network. The concept 

of queueing as a stochastic pl'"~Ocess is certainly not new. The Markov 

process , which is an important class of stochastic systems , has been 

used extensively for the study of queueing systems. Unforhmately the· 

Markov process becomes very difficult to analyze once the transitional 

behavior of the system is expressed as random variables. The Graphical 

Evaluation and Review Technique (GERT) was developed for the study of 

stochastic networks. Pritsker (1966) defines stochastic networks as 

those having activities characterized by a probability of occurrence 

and a time , where the time is not a constant but a random variable. 

The repa.irman problem is first represented as a Markov process. 

The concepts and analytical methods of GERT are introduced, and then 

the repair.m:m problem is represented and analyzed as a GERT stochastic 

network. 

Queueing As A Markov Process 

A Markov process is a matherrB.tical model that can be used in the 

study of complex stochastic systems. In this model the system is 

described by the states of the system and the state transitions. This 
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definition -of a Markov process lends itself to a graphical representation. 

The graphical representation of the system is called a system state 

diagram. Figure 3 shows a system state diagram that depicts a three 

machine, one repairman problem. 

Fig. 3. System State Diagram of Repairman Problem 

The states of the system are defined as the number of failed machines 

(the ma.chines being repaired plus the nachines waiting for repairs) . 

At any point in time (t) the system will be in one of the follovving four 

states: 

so - 0 MaChines failed -

sl = l MaChine failed 
. 

s2 = 2 MaChines failed 

s3 - 3 MaChines failed -

If the system is in state S . at t, then at ( t · + IJ. t) it will be in state 
l 

s., S.+l or s. 1 . (!J.t is defined such that only one state 
l l ' l-

transition can occur during IJ.t). If (!J.t) is taken as a constant finite 
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time, then' the system is a discrete-time Markov process. In this case 

the only element of interest concerning the state transitions is the 

probability that the transition from S. to s. will occur in (~t). 
- .. -· l J 

An example is a one machine, one repauman situation as shCNJn. below: 

.4 

If a ~t is chosen for successively examining the system, then there are 

conditional probabilities associated with eaCh state transition (e.g .. 3 

is the conditional probability of a transition from state 0 to state l 

given the system is in state 0 ) . This system can be analyzed as a 

very basic Markov process (Howard, 1960). 

In queueing models the tnne between state transitions must be 

introduced, and these times are usually state dependent random variables. 

This results in a continuous-time Markov process, and the mathematics 

of the analysis becomes more difficult. Examples of this are pl entiful 

ln Saaty (1961), Parzen (1962), and Taha . (1971). In spite of this 

difficulty the concept of queueing as a Markov process provides a 

graphical rrethod for presenting the queueing model. 

Graphical Evaluation and Review Techni que 

The Graphical Evaluation and Review Technique (GERT) was introduced 

by Pritsker (1966) as a network approach to the analysis of stochastic 
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and logical systems. The network consists of a set of logical nodes 

which are joined by branches. The nodes and branches of the GERT network 

are assembled in an analogous fashion to the states and state transitions 
- · 

of the Markov process system state diagram. 

Even though several different nodes were introduced, this study 

lS concerned with the Exclusive - Or/Probabilitic node, where Exclusive 

Or refers to the input side of the node and Probabilistic refers to the 

output side of the node. The definition of the logical relations for 

thi::? node are: 

"The realization of any branch leading 
into the node causes the node to be 
realized; however, one and only one of 
the branches leading into this node can 
be realized at a given time. 

Exactly one branch emanating from the 
node is taken if the node is realized. " 

(Pritsker, 1966) 

Each branch of the network is , characterized by a probability that the 

branch is taken and a time interval required to traverse that branch. 

The time interval is usually a random variable. 

The concepts described above can be illustrated with a GERT 

network for a manufacturing and inspection process as shown in Figure 4. 

Once a part is manufactured, or a rejected part is reworked, node 2 

is realized. The realization of node 2 causes one of the branches 

e.m:mating from node 2 to be taken. The branch selection is based upon 

the probabilit ies assigned to the branches. If br anch 2-4 is taken , the 

part goes through a finishing process and departs the syst em. If 

branch 2-3 is taken, the part is either scrapped or reworked. Rewor ked 
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parts are then inspected. It i s seen from the di.agram that successful 

inspection is independent of whether a part is first time thru or a 

re~orked part. 

Sc:v.apped ~ 11/:\ r--P~=~. ~~T:-:::;0--~ v; -

I~ finishing 
P=l T=4 

Fig. 4. Gert Network for Manufacturing Inspection Process 

·Evaluation ·of ·-me ·GERT Network 

The evaluation· of the GERT network is JIE.de possible by the 

use of flow graph theory and moment generating functions. Flowgraph 

theory is covered in detail by Lorens (1964) and by Whitehouse (1973). 

The use of moment generatj_p.g functions is described by Whitehouse (1973). 

Flowgraph theory is a graphical concept which employs nodes and 

branches. Each branch has a transmittance. The transmittances are a 

single multiplicative parameter. In the GERT network, however, the 

branches must have multiple parameters (time and probability) and these 



· parameters are not. generally multiplicative. For example, the 

m:mufacturing and inspection p:rocess of Figure 4 has branches with 
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p:robabili ty and t~e parameters. The probability parameters along any 

path in the network are multiplicative, vJhile the time parameters along 

that path are additive. To use flow~aph techniques to analyze the 

network all parameters must be multiplicative. This is accomplished by 

expressing the time parameter as the moment generating function of the 
. . 

time . The moment generating function of the sum · of independent random 

variables is equal to the product of the moment generating functions of 

the independent variables . In this way the parameters of the branch 

can be expressed as a single multiplicative parameter called the "W" 

function, where the W frmction is the product of the multiplicative 

parameters of the branch. 

I
J\ w. -=P .• M .. (s) A Yl _l,_;:::__J ~l] ~l] -~<> 'w 

The W function corresponds to the transmittance of flowgraph theory 

and the network can nCM be analyzed using Mason's Rule. Mason's Rule 

as stated by Whitehouse (19 7 3 ) is : "Write down the product of trans­

mittance along each path from the independent to the dependent variable. 

Multiply its transmittance by the sum of the nontouching loops to that 

pa.th. Sum these JIDdified pa.th transmittances and divide by the sum of 

all the loops in the open flow graph. " Time and spa.ce do not permit a 

detailed description of the use of Mason's Rule to solve flowgraphs. 
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The definition of the various terms, such as non touching loops, and 

excellent examples are contained in Lorens (1964) and Whitehouse (1973). 

The man~~~~ing and inspection system is shown in Figure 5 with 

the W function of each branch assigned. 

F.ig. 5 • l1anuf acturing Inspectlon · Network With W PW1ctions 

The times for all branches are constant and the JIDIDent generating 

· f · st h T · h · functlon or a constant lS e w ere lS t e constant tlffie. Using 

Mason's Rule an equivalent W function (WE) can be developed between a 

start node (dependent variable) and an end node (independent variable). 

For this example there are two end nodes where the process could 

terminate with a finished part or a scrapped part:. The equivalent W 

function for a finished part CW1 ; 6 ) will be developed. Only one path 

exists from node 1 to node 6. 

path is: 

The product of the W •• , along that 
lJ. s 

= 0. 8el3s 



There lS only one first order loop in the system: 

8s 
. __ {W 2 , 3 ) (W 3 , 2 ) - 0.14e . 
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There are no higher order loops , and there are no nontouching loops to 

the pcith. Therefore: 

l3s 
_ 0.8e Il-OJ 

l-O.l4e8s 

The equivalent W function for the pc1.th contains an equivalent 

probability CPE) and an equivalent moment generat~ function (ME (s)). 

The equivalent p:mbability is obtained by setting the time to ze:m and 

evaluating the W function. Therefore: 

PE = WE (0) 

Pl,6 = wl,6Co) = 
o.8 

1 -0.14 

Pl,G = 0.930 

The equivalent IIDment generating function of the time for the path lS 

obtained by removing the probability portion of the W function. 

~(s) = 

Successive moments can then be taken where, 111 = the first JIDment, 11 2 = 

the second moment, etc. 
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~(s) 1 dWE(s) 
111 = = ds s=O WECO) ds s=O (3.1) 

- -

ct2~Cs) 2 

I s=O 
- 1 d WE(s) 

(3.2) 112 = -
WE(O) ds2 s=O ds

2 

Higher JIDments can also be calculated in the same JIBililer, but they are 

not generally useful. From a study of statistics, it is known that the 

first JIDment C 111 ) is the expected value of the random variable and the 

varlilllce for that variable can be computed using the first and second 

IDOJIEI1tS. (Pritsker 1966) 

= (3.3) 

From equation 3.1 the expected time for a part to become a finished 

product is, 

lll - 14.30 

and the variance of that time lS, 

12.11 

where, 

= 216.60 

In SUlTliiB.YY, the manufacturing inspection process has been described 

by a graphical network. The probability that a finished pnxluct will 

result is 0 . 9 30 . This also implies that the probability of a scrapped 

part is 0. 070. The expected time to turn out a finished product is 

14.30 units time, with a variance of 12.11. The expected time to turn 
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out a scrapped part can be computed for the path leading to that outcome. 

These are the most basic results of a GERT analysis of a stochastic 

network. Other useful infonna.tion can be derived, and will be 

illustrated in later examples. 

GERT Model for 3 fuchine/l Repa.irrran Problem 

A GERT Model for the general repairman queueing problem was 

developed by Whitehouse (1973). A specific example of this general 

nndel is the 3 rrachine/1 repairman example that was analyzed in 

Chapter 2. The example Wa.s also represented as a Markov process earlier 

in this chapter. The GERT network for this specific example is in 

Figure 6 and is very similar to the l13rkov system state diagram of 

Figure 3. 

wl o 
' w3,2 

~K¥ wo,l wi,2 wz,3 
w2,l 

Fig. 6 . GERT Network for 3 Machine/ l Repairman Model 

The nodes of the GERT di_agram represent the four states of the system just 

as in the system state diagram. The W filllction of the branches represent 

the multiplicative parameters of probability and time for the transition 

fran a given state to an adjacent state. It should be noted that in 

the system state diagram there was a probability that the system would 
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remain lil it's present state over the interval of time flt. This is 

not true for the GERT network. The interval of time over which the 

network is examined is a state dependent random variable. It is defined 

to be an interval of time such that a transition to an adjacent state 

does occur. 

The failures of each identical machine are Poisson distributed 

with a mean of. A, and the repairs for each identical repairman are 

Poisson distributed with a mean of l-1· Because the number of JIB.chines 

subject to failure and the number of busy repa.irrren changes, depending 

upon the state of the system,. A and l-1 are not adequate descriptors of 

the system. Therefore the failure rate and repair rate of the system 

are designated as A. and l-1. respectively, where i denotes the state of 
l l 

the system. Each A. and l-1· can be defined by the relationship: 
l l 

A· 
l 

ll· 
l 

-

(K-i)A 

ll-1 for l < R 

Rl-1 for l > R 

For example, consider the 3 machine/1 repairman problem. If the system 

is in state 0, all three machines are subject to failure. The failure 

rate of the system (A0) would be 3A . However, the rere.ir rate of the ... -

system C11 0 ) would be zero, because the repairman is idle. The state 

dependent failure and repair rates which completely describe the 

3 machine/1 repairman problem are: 



State (i) A· 11· l l 

0 3A 0 

1 2A 11 

2 A 11 

3 0 11 

The probability that each branch of the network lS taken can be 

determined using the. A . , 11 . . Given that the system is in state l, 
l l 
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it can only JIDVe to state (i+l) or state (i-1). The prubability that 

the system will JIDve to state (i+l) is the probability that a failure 

will occur before a repair. Conversely the probability of moving to 

state (i-1) is the probability that a repair occurs first. These 

probabilities can be expressed as: 

A. 
P. - l 

i+l -
A·+11· l, 

l l 

11· 
P. - l 

i-1 
-

l, A·+Jl. 
l l 

and it can be easily seen that : 

P. "+1 l, l 
+ P. . 1 

l, l-
1 

Not only are the t:ilne distributions state dependent, but they 

are dependent only upon the current state of the system. The t:ilne 

distribution of interest is the time the system remains in state i. 

To determine this distribution consider that the actual failures and 

repairs of the system in state i are independent Poisson distri-

butions with means /... , and 11. respectively. The system will re.rrain 
l l 

in state i until either a failure or a repair occurs. If an 

occurrence is defined as a failure or a repair, then the occurr~ence 
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rate will be the sum of the repair rate and the failure rate. The 

occurrences. will also be Poisson distributed with a nean of 

.<A.i + lli). From the relationship between the Poisson and eXJX)nential 

distributions, the occurrence tiire will be exponentially distributed 

with a mean of ( A ! ) . The rnanent generating function for the . 
i lli 

·al di ib. • • (1 s)-l ;\... 1 · th Th exponentl str utlon lS - - ; WHere - lS e mean. e a a 

general W function for the branches of the network can nCNJ be expressed 

as' 

A. s -1 w .. = l (1 - ) for J = i + 1 l] A..+lJ. A..+ll· 
l l l l 

ll . s -1 w .. = l (1 - ) for J = l ~ 1 
l] A·+ll. A·+ll. l l l l 

where, 

W.. = P .. M .. (s) 
l] l] l] 

For the example problem of Figure 6 with A.=l failure/hour and ll=2 repair/ 

hour, the state dependent failure and repair rates are: 

State (i) 

0 

1 

2 

3 

A. 
l 

3 

2 

1 

0 

ll· l 

0 

2 

2 

2 
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The W functions for this network are: 

wo,l 
= 1(1- s)-1 

3 w2,1 = .67(1- ~)-l 

wl o 
( s -1 

w2 3 = .33(1- ~)-l = .. -& -1.- 4) 

' ' 
wl,2 

.5(1- ~)-l 
w3 2 

s -1 = - 1(1- --) -4 
' 

2 

The 3 nachine/1 repa.irman. queueing problem, where A. = 1 failure/ 

hour and 11 = 2 repairs/hours, is completely described by a GERT network. 

Before contin~g with the analysis of this network, a computer program 

for the analysis of GERT networks will be intrDduced. Specific operating 

instructions for this program are listed in Whitehouse (1973), and are 

summarized in the next section. 

GERT Exclusive - Or Program 

A digital computer program is available in FORTRAN for the 

analysis of GERT networks with Exclusive-Or Probabilistic nodes called 

GERTXOR. The branches of the network have a probability and a time 

which can be expressed as a random variable. The input to the program 

illcludes a problem identification card and one card for each branch -. 

of the network. The input can1 for each branch in the network includes: 

(1) Start Node 

(2) End Node 

( 3) Type of Time Distribution 

( 4) P:robabili ty of Realizing the branch 

(5) Parameters defining the time distribution 



The output from the PY?gvam includes: 

(1) All paths and loops of the network 

(2) _The p:robability of realizing a sink node 
from any source node. · 

C 3) The mean and the variance of the time to 
reach a sink node f:rom any source node 

To determine the expected value of the time to go from zero 

machines failed to three nachines failed using the GERTXOR progvam, 

the network nrust be opened as shown in Figure 7. 

w1,o 
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I~ p=l T=O~ wo,1 w 

~ 
w2,3 ~~~ 1,2 

w2,1 

Fig. 7 . GERT network for time to go from all 
machines operating to all machines failed. 

The network must have a source node and a sink node. The source ·node 

lS identified as having no branches leading into it , and the sink node 

lS identified as having no branches leading out of it. For this reason, 

node s is added to provide a source node, where the p:robabili ty of 

branch s-0 is 1 and the time is 0. Branch 3-2 was removed because we are 

only interested in the time to go frDlil node 0 to node 3 which represents 

the time to go from all TIB.chines operating to -all nachines failed. 

The output is shown in Table 2 . The input network section is an 

echo print of the data. Next is a listing of each branch of the network 

including it's p:robabili ty of selection and the mean and variance of the 
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time to t:Pavel that branch. The two loops in the network are listed 

with their W functions evaluated at s=O. The desired path frum node s 

to node 3 is l~E?t~d with a probability of 1. 0, a nean time of 3. 8451, 

and a variance of the time of 11.4652. 

TABLE 2 

GERTXOR Output For GERT Network of Figure 7 

INPUT NEIWORK 

NODES AND PROBABILITY OF SELECTION WITH 
MEAN AND VARIANCE OF TillE FOR EACH LINK 

FROM TO PROB VAR 

s 0 1.00 0.0 0.0 

0 1 1.00 0.33 0.109 

1 2 0.50 0.25 0.063 

1 0 0. 50 0.25 0.063 

2 1 0.67 0.33 0.109 

2 3 0.33 0.33 0.109 

LOOP OF ORDER l W(O) - 0.5000 
W(O) = 0.5000, NODES 0 ·1 

LOOP OF ORDER 1 W(O) = 0.3350 

NS 

s 

W(O) = 0.335, NODES 1 2 

NE 

3 

FROB 

1.000 

VT 

3.8451 11.4652 

EQUIVALENT BRANCHES OF THE NEIWORK 

ENTRY 
s 

EXIT PROBABIUTY MEAN TIME VARIANCE 
3 0.10000E 01 0.384515E 01 0.114652E 02 



Given· this brief. introduction to the GERTXOR prog1:1am, we nay 

nCM return to the analysis of the. GERT JIDdel. The initial analysis 

of the problem will include the development of steady state results 

for comparison with the Poisson Model of Chapter 2. The rerraining 

analysis will include infonration about the system that is not 

available from a steady state analysis, such as the Poisson JIDdel. 

Steady ·state ·ResUlts 

The steady state results are developed by first finding the 
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steady state prolB.bili ties. The steady state p:robabili ty for a given 

state is equal to the expected time in the given state during a 

regeneration of the system, divided by the expected total time of the 

regeneration. A regeneration of the system occurs when the system 

returns to the state from which it started. The GERT network for the 

expected time of regeneration for node 0 lS shown in Figure 8. 

Fig. 8 . GERT network for expected time of regeneration. 
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The network is opened at node 0 , and node I represents the input side 

of node 0 • The ex}?ected ~geneJ:~ation time of node 0 (representing 

system regeneJ:~atio::) is the time to go frDID node 0 to node I. Using 

the GERY.XOR program for the calculation, 

- dMO,I(s) J -
~l ds s=O 1.5688 hours 

The :rrean time spent in each state during the system regeneration is 

represented by the branches starting f:rom that ncde. For example the 

time spent in state 1 is represented by branches 1-2 and 1-I. To find 

the steady state probability for each state: 

(l) Set the :n:nrnerrt geneJ:~ating functions equal to l 
for all bnanches not emanating frDrn the node of 
interest, and again evaluate the network from 
node 0 to node I. 

(2) Divide the mean time spent in each node by the 
mean regeneration time for node 0. 

Figure 9 depicts the network for the mean time spent in node l. Setting 

the moment generating function equal to one for a branch effectively 

reduces the time distribution for that branch to zero. 

l(l) 

lA 1(2) 
~-_____,. 

Fig. 9 . GERT network for determining P 
1 

_ . 



For the network of ~igure 9 the mean time spent in node 1 lS : 

= .50 hours s=O 

The steady state probabi1i ty for> node 1 (state 1) lS : 

. . . . . 50 
p1 = 1.5688 ::: .319 
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In the same liE.IITler all steady state probabilities for the system are 

found to be: 

Po - .210 -

pl = .319 

p2 - .314 -

p3 - .157 -

which closely corresponds with theoretical results as summarized later. 

Once the steady state probabilities are detennined, the other 

steady state :p3rarneters can be dev~loped. First, the expected number 

of failed machines is: 

K 
L~ = ~ nPn- (0)(.210)+(1)(.319)+2(.314)+(3)(.157) 

n;:;Q 

L s 1.418 JIB.chines 

The effective ·failure rate for the nachines in operation is: 

K 
:£__ 
n=O 

p A. 
nn 

= (.210)(3)+(.319)(2)+(.314)(1)+(.157)(0) 

.Aeff - 1. 582 nachines/hour 
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The expected number of idle repairmen 1s : 

R 
R = (R-n) P 

n=O 
n 

= (l-0)(.210) + (0-0)(.319) 

R - . 210 repairmen -

Therefore , the expected nlllTiber of busy repairmen 1s : 

R - R = . 790 repairmen 

The expected number of mchines being repaired is the same as (R-R), 

and the number of failed mchlnes waiting for service is: 

L 
q 

L 
q 

L -(R-ID 
s 

. 628 machines 

From the derived formulas o£ Chapter 2, the expected time each machine 

lS out of operation once it fails is : 

w 
8 

w s 

L s 

· Aeff 

.896 hours 

Also, the expected time waiting for a repainnan 1s: 
L 

w - ~q-
q Aeff 

w 
q 

. 397 hours 

A comparison of these results and the steady state results of the 

Poisson queueing .r.ocxiel is shown. in Table 3. Overall, the results are 

very close. However there are some differences. For the Poisson mcxiel 

P1 and P
2 

are equal. For the GERT model this is not true. This 

difference can be accounted for in the formulation of the prol::abili ty 

portion of theW function for branches 2-l and 2-3. P2. 1 was 2/3 and 
' 



P 2 3 was 1/3. They were ronnded off to . 67 and . 33 respectively. 
' 

TABLE 3 

Comparison of steady state results of 
repairman problem using GERT and Poisson JIDdel 

GERT Poisson Model 
Results ResUlts 

Po .210 .210 

pl .319 . 316 

p2 .314 .316 

p3 .157 .158 

L s l.lil8 1.42 

"-eff 1.582 1.579 

L .628 . 632 q 

w . 896 .900 s 

w .397 .400 
q 

R .210 . 210 

Other Useful Information 
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A vast amoliDt of addi ti:>nal :infor.rrE.tion can be developed £rom the 

GERT network of the repa.innan prublern. The real difficulty is 

determining which information is actually useful in the analysis of 

a particular prublem. In this section, the following inforrrE.tion 

will be developed. 

(l) Expected time to regeneration 

( 2) Expected number of :rrachine failures during 
1 regeneration 



(3) Expected time to complete failure of 
the· system·,. given the system is in state l. 

(4) Expected time to complete recovery of 
the_ system,. given the system is in state l. 

(5) Probability of complete failure occuring 
before recovery, given the system is in 
state i. 

(6) Probability of recovery occuring before 
complete failure, given the system is m 
state i. 
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The expected time to regene.J:lation can be computed for each state, 

however it really only has meaning for state 0 (all JIE.chines operating). 

In computing the steady state probabilities earlier, the regeneration 

time for node 0 was calculated as 1. 5688 hours. The expected number 

of JIB.chine failures during one rege..Tleration is determined by using 

counters . The counter, e c, corresponds to a rroment generating function 

representing a constant, c, tagged on each branch to physically "countn 

the number of t:llnes a branch is rea.lized. 

F · 10 GERT network with counters . lg. . 
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~igure 10 shows the GERT network with the counters on each branch 

'Which represents a JIE.chine failure. The equivalent JIOIDent generat~g 

function from node 0 to node I is now a. function of s and c. Setting s 

equal to zero, the successive TIDments of the count can be determined. 

Therefore, the expected number of machine failures d1.Jring one 

regeneration of the system to state 0 can be found as follCNJs: 

M0 1 C.s ,c) j 
' s=O 

c=O 

. Sec - · .16Se2c 

1 - .67ec 

2 . 58 JIB. chine failures 

Given that a certain number of mchines are not operatmg the t:ine 
' 

distribution to all machines failed or all JIE.chines operating can be 

detennined. For example , given that the system is in state 1 , Figure 11 

shCNJs the GERT network for complete failure of the system (All :rra.chines 

failed). 

1 _ _ w_2.;_, 3--~>~ 

Fig. 11. GERT network for system failure, 
gl ven system is in state l. 
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Node s is added as a durrmy node and the branch s-1 has a time of· zero. 

Evaluating the networ>k from node s to node 3 wil~ give the expected tinE 

to complete failure given the system is in state 1. Networks can also 

be constructed for starting in nodes 0 and 2 in a similar ma:rmer. 

The expected time to complete recovery for state 1 is shown in 

Figure 12. 

Fig. 12. Expected time to complete recovery from state 1. 

Again ncx:le s is a durrmy start node but node 0 is now the end node. 

Given that the system is in an intermediate state (state 1 or 

state 2), it may be useful to know the probability of recovery occuring 

before cc:mplete failure, and the time to recovery given that complete 

failure· does _not occur. This type of conditional information can be 

developed by constructing the GERT network with an end node for each 

of the possible outcomes. The network of Figure 13 demonstrates this 

for the system starting m state 1. 



Fig. 13. GERT netwo.rlc.for·.the conditional 
probabitities o,f fail--ure and recovery. 
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Using the GERTXOR program to analyze this network, the output will list 

the probability, expected time, and variance for moving fYDm node s to 

node 0 and from ncxle s to node 3. 

All of the networks covered in this section were analyzed with 

the ccmputer program and the results are surr:niErized in Table 4. Whereas 

the steady state queueing information is TIDre appropriate for planning a 

JIB.chine operation, the information in this table is more appropriate 

for aiding in day to day operational decisions. For example, once the 

system is in state 2 (1 JIB.chine operating, 2 JIB.chines failed) the 

prubabili ty of complete failure is the same as that for recovery. Also, 

the expected time to recovery is appro.xinately 2 hours. If the system 

does go to state 3 the expected time to complete recovery will be 2.5 

hours. Using this inforrration the work coming into these JIB.chines can 

be rescheduled, or measures can be taken to change the probability or 

times. Diverting a repairman fran other operations would be one way to 

improve the recovery capability. 
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In S1..DIIITEIY, the GERT approach to the repa:i.rnan queue:ing problem 

is a graphical technique for analyz~ the stochastic system. It not 

only gives the traditional steady state analysis of the system, but 
. - -

specific conditional information can be developed fo~ given situations. 
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CHAPTER 4 

A GRAPHICAL Sll1UIATION MODEL 

In the previous chapters the three JIE.chine/ one repa.irrnan problem 

was analyzed using two different mtherratical models. The Poisson 

queueing model yielded only steady state results. The GERT :rrodel 

yielded steady state results and a limited amount of conditional 

information. In addition to the limited T'esul ts these :rrodels are 

restricted by the following assumptions: 

(1) The illdividual units that :rrak:e up the calling 
source are identical 

(2) All service facilities are identical 

( 3) The arrival rate to the system is Poisson 
distributed 

( 4) The service time lS exponentially distributed 

Simulation techniques have made it possible to remove these assumptions 

and study a wider range of complex q1Jeueing problems . 

In this chapter the repairman example will be modeled using 

the Q~T network language . The statistical inform3.tion about the 

model will be developed using the Q~ERTS simulation program. 'The 

Q-GERT network language as developed by Pritsker (1974), is designed 

to simplify the task of constructing the TIDdel and to serve as a 

cammmications device between the JIDdel builder and the decision maker. 
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The Q-GERT Network 

The Q-GERT network is an extension of tt1e GERT network of 

Chapter 3. It· consists of nodes and brunches thro:ugh which 
-

transactions flow. These transactions can be 2ither physical units, · 

such as JIBc.hliles, or inforrrE.tion units. The transactions can be 

identified by the assignment of numerical attributes. 

The branches of the Q-GERT network are called activities and 

the Characteristics associated with an actiVlty are: 

(1) The probability or conditions under which 
the activity will process a transaction 
which has reached the start node of the 
activity. 

( 2) Functions and parameters describing the 
d~ation time for the activity. 

(3) Activity labels. 

Nodes represent the start and the end of activities. Decisions 

regarding the flow of transactions are mde at the nodes. Activities 

emanating from a given node cannot be started nntil that node is 

realized. The three basic nodes of the network are: 

~egular Node - requires m realizations to be 
released the first time and n 
realizations to be released 
therea£ter 

Queue Node - represents a queue where transactions 
can wait for further processing. The 
initial number of transactions in the 
queue is m and the maximum number 
allowed is n. 



Selector Node - Used to select among parallel 
queues and/or parallel service 
activities. A is the queue 
selection rule and B is the 
server selection rule. 
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The output side of the nodes indicate the type of branching that 

ls to l:e performed from the node. The four possible branching 

operations are: 

DETERMINISTIC - all activities for which this node 
is the start node will be initiated. 

PROBABILISTIC - one and only one activity for which 
this ncxie is the start node will be initiated. 
The choice will l:e on a random basis using the 
probabilities assigned to the activities leaving 
the node. 

CONDITIONAL, TAKE FIRST - the activities for which 
this node is the start node are rank ordered. 
The conditions associated with the activities are 
tested and as soon as one of the conditions is met 
that activity is initiated. 

CONDITIONAL, TAKE AlL - each activity that has this 
node as its start node is taken if the condition 
assigned to the activity is satisfied. The 
condition for all activities emanating at the node 
are evaluated. 

This brief explanation of nodes and activities is intended to 

p:rovide a general understanding of the ba.sic components of the Q-GERI' 

network. Discussion of specific networks will show how the nodes 

and activities can be used to mcxiel real systems. For JID:re detailed 

.information on Q-GERT the reader should refer to Pritsker (1974). 

Q-GERT Model of the Repairman Problem 

The Q-GERT model for the repairman queueing problem is depicted 

m Figure 14. This is the same problem that was analyzed in Chapters 
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2 and 3. It consists of three identical ma_chines and one repairman. 

Node 2 is the source ncxie for the network. Three transactions 

(representing three machines) will be generated from node 2. Attribute 
... - . - · 

1 of these machines will be assigned a value based on an incremental 

distribution starting with 1. That is, attribute l of each JIE.chlne 

(transaction) is assigned the machine nwnber (e.g., 1,2,3). The output 

of ncxie 2 is Conditional, Take ·All. The condition for activity 2-2 

is that the value of attribute l is less than or equal to 2, which stops 

the generation of transactions after three have been generated. Activity 

2-4 is always initiated because the value of attribute l is greater than 

zero. Node 4 is a Conditional Take First node and it identifies the 

machines by attribute l. It sends machine l to node 6, machine 2 to 

ncxie 8 and JIB.chine 3 to node 10. Activities 6-7, 8-7, and 10-7 represent 

the time between failures for each machine. For this example they all 

follow an exponential distribution with a mean of 1 hour. The symbols 

under the activities of Cl, C2, and C3 stand for counter 1, counter 2, 

and counter 3. They will count the number of transactions each activity 

prucesses prlor to the release of the statistics nodes. Node 7 is a 

statistics node for "Between" statistics. It records the time between 

realizations of the node. 

Ncxie 9 is also a statistics ncx:ie for ninterval" statistics. It 

records elapsed time since the last nark for every transaction . All 

transactions are marked with a reference time as they leave a source 

node. However, they will be marked again with a new reference time if 

they pass thrDugh a JJBrk node. Node 12 is a queue node that initially 
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has zero transactions waiting, and can hold an infinite number of 

transactions. The "F" in this node designates "First Come, First-Served" 

service discipline. _ Activity 12-14 represents the single repairman. 

The time of rep3..ir is exponentially distributed with a mean of 0 . 5 hours . 

At node 14 the three JIE.chines are returned to operation through nodes 

15 and 16. InforiiB.tion transactions also leave node 14 and interval 

statistics are taken at node 17. 

Node 18 is a sink node, and the information transactions which 

leave it are lost from the system. Node 18 requires 500 transactions 

for the sink node to be realized the first time. This will constitute 

one simulation of the system. Node 18 also collects "first" statistics. 

First statistics are the first time the node is realized during a 

simulation. Once the actual machines leave node 14 they p:tss thrDugh 

node 15 which collects between statistics and node 16 which marks the 

nachines with a new reference time for the next failure repa.ir cycle. 

Q-GERTS Simulation of the Repairman P:mblem 

Using the Q-GERTS computer program the network model of the 

repairman problem was simulated ten times. Each simulation consisted 

of one realization of the sink node, which represents 500 machine repairs. 

The complete printout for this simulation is contained in the Appendix· 

The printout is organized into three sections: (l) Echo Check of the 

input date (2) Final Results for First Simulation and (3) Final results 

for 10 simulations. 

The accuracy of the model can be determined by comparing the 



simulation results to the theoretical results fran Chapter 2 . In 

sane simulations it is difficult to determine whether the mxlel has 

actually reached a steady state during the simulation. Even if the 
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model reaches a steady state, the statistics are sane times distorted 

by the data collected during transient behavior of the system. For 

this rrodel it was determined that a good measure of steady state would 

be a cc:mparison of the effective failure rate of the machines to the 

effective repair rate of the r~pa.irman. The mean effective failure 

rate of the JIE.chines was previously defined as .Aeff. Therefore, the 

mean effective repair rate will be defined as J.leff. Statistically, the 

system is in a steady state when the distributions of effective failures 

and effective repairs are identically distributed. For this s:imulation 

statistics taken at node 7 represent the time between failures of the 

IIB.chines, and those taken at node 15 represent time between repairs. 

These in effect measure 1 I .Aeff and i; J.leff respectively. From the 

computer output the mean and standani deviations are: 

l 
/.Aeff 

11
lleff 

MEAN STANDARD DEVIATION 

0.6356 hours 0.5801 hours 

0.6371 hours 0.5744 hours 

In addition, the histograms for nodes 7 and 15 are almost identical. 

Therefore, the statistical results of this simulation should closely 

approximate the steady state situation. 
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Us~g the statistics nodes of the model and the automatic queue 

and server statistics, the steady state results of the Q-GERT simulation 

will be developed in the following six measures. 

l. Lq - Expected number of machines in the Queue 

The mean of the av~age number in the queue 1s 0. 6353 
nachines. 

2. P 0 - Probability of 0 Machines in the System 

The mean of the average server utilization is 0.7853. 
This SQ.ys that the probability of the repainnan being 
busy is . 7853. Therefore, the probability of the 
repairman being idle is (1-.7853) . 

. 2147 

3 . . ~eff - Effective Arrival Rate of Machines to the Queue. 

From the between statistics taken at node 7, the 
expected time between failure of the three machines is 
0 . 6 3 56 hours . There£ ore , 

l 
/..eff = .6356 1. 5733 JIB.chines/hour 

4. W - Expected Time in the Repair System for each Machine. s 

5. 

The interval statistic at ncxle 17 measures the total 
time for a complete cycle for every ma.chine. A cycle 
consists of operation, failure, waiting, and repair. 
Node 9 measures the time of operations for e~ch machine 
during one cycle. Therefore: 

w s Expected cycle time - expected operation time 

w 1.9051- .9973 s 

w .9078 hours 
s 

L --s 
Expected Number of Machines in the Repair System 

The expected number of ma.chines in the re];Bir system 
is the sum of the expected number waiting for repair 
and the expected number bemg repa.ired. The exp~cted 
number waiting is L , and the expected number. b~mg. 
repaired is the sam~ as the average server utllizat1on. 



L s L + Repairman Utilization q 

.6353 -t .7853 

1. 4206 Machines 

6 • W ~ = Expected Waiting Time in the Queue q . 

Both L an~ A eff have already been determined. 
There£~, 

w 
q 

.6353 -
1.5733 '""" .4079 hours 
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These results are compared to the theoretical results in Table 5 . The 

comparison shows that the simulation results are very close to the 

theoretical. This establishes the Q-GERT neu,vork as a reasonable model 

of the (M/M/l):(GD/3/3) repairman problem. 

TABLE 5 

Comparison of steady state results by 
simulation and by derived formulas 

Steady State By By 
Parameter Simula:tion ·Derived ·rotrnula 

. Aeff 1.5733 1.5789 

W- 0.9078 0.9000 
8 

L 1.4206 1.4211 s 

w 0.4079 0.4000 
q 

L 0.6353 0.6316 
q 

Po 0.2147 0.2105 
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The output for the Q-GERTS simulation also contains other useful 

information. The standard deviation, stand.ard deviation of the mean 
' 

and coefficient '?f _yariation· are. given for each statistic node. Also 

listed are the minimum and JIEJdmurn value of that statistic. For 

example, from the interval statistic at node 9 it is found that the 

minimum and JIEJdmurn times spent in operation by any machine was 0. 0005 

and 8.4923 hours respectively. 

Counter statistics are computed in relation to eaCh statistic node. 

In this problem the counters only have mearring in relation to the sliik 

node (node 18) . Counters l, 2, and 3 cormt the number of times ma.chines 

1, 2, and 3 fail d1.I[ling one simulation of the network. The mean nlllilber 

of failures after ten simulations are: 

Machine l 171.8 Failures/simulation 

Ma.chine 2 165.3 Failures/simulation 

Machine 3 163.5 Failures/simulation 

The average number in the queue ncdes has a standard deviation and the 
r-

nrinllm.rrn and maxirrn..nn values are recorded. The statistics on the servers 

includes the longest periods idle and busy. For the repairman of this 

example, the longest idle period was 2.8083 hours and the longest busy 

period was 12.5053 hours. 

Using the same approa.ch that was used in the development of the 

Q-GERT JIDdel for this example, more complex repa.i:r.nEn problems can be 

simulated. Because each individual nachine can always be identified, 

the assumption of identical machines and repairmen is no longer 

necessary. Also, the Poisson failure rate and exponential re:pai:r time 
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asslDTlption is no lo!lger needed. Other> time distributions can be used 

for each nachine. The· use of spare machines · can be introduced, and 

prior>i ties can be assigned so that mo~e important JIB.chines spend less 

time in the repair system. These capabilities combined with the logical 

network depiction of the system makes the Q-GERT technique very useful 

in the analysis of n:::p:ri.rmm type problems . 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

Comparison of ·MOdels 

This study has concentrated on the development of graphical or 

network approaches to the solution of the repa.innan type queueing 

pr:oblern. The more traditional approach of using the derived formulas 

of the Poisson queueing JIDdel was presented first. The steady state 

solution of these formulas was used to verify the results of the 

graphical models as they were developed. Table 6 su:rnr.rarizes these 

steady state results using the three different techniques. Using 

the Poisson model as a standard it can be seen that the GERT stochastic 

network apprDach can provide the same steady state measures of the 

system. In the GERT approach the other measures of the steady state 

were developed using the steady state probabilities. Therefore~ 

-. 
the numerical differences that occured in P1 and P 2 are also evident m 

the other measl..l:res . 

In the Q-GERTS simulation the measures of the steady state were 

developed using the statistical capabilities of the simulation 

teclmique. The values of P 1 , P 2 , and P 3 are not easily deternrined. 

FIDID the comparison with the Poisson model it can be seen that the 

simulation provides a very good approximation of the theoretical system. 



TABLE 6 

Comparison of steady state results using Poisson 
- ·Models, GERT, and Q-GERTS 

Poisson Model 
Derived FormUlas GERT 

A.eff CM.achines/hour) 1.5789 1.582 

w (hour>s) 0.9000 0.896 s 

L Cnachines ) 1.4211 1.418 s 

w (hours) 0.4000 0.397 q 

L (rrachines ) 0.6316 0.628 q 

Po 0.2105 0.210 

pl 0.3158 0.319 

p2 0.3158 0.314 

p3 0.1579 0.157 

Q-GERTS 
Simulation 

1.5733 

0.9078 

1.4206 

0.4079 

0.6353 

0.2147 

For those problems which do not violate the assumptions of 

the Poisson model, it is certainly easier' to determine the steady 

s t ate results using the derived formulas. · However, the assumptions 

are quite restrictive and IIDst repairrrBn systems do not meet them 

all. For example, a system with a spare JIB.chine carmot be analyzed 

using the Poisson queueing model. In terms of· understanding the 

problem, the Poisson model is the least desirable. It does not 

treat the problem as a system or provide a graphical depiction 

of the problem. 
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The GERT mcxiel of the repa.i:rnBn problem is constructed as a 

stochastic network. 'This provides a graphical representation of 
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the problem as a system, and the analysis of the system develops a 

clearer understanding of the problem. The GERT network for the 

problem is very similar to the system state diagram of the Markov 

process, which is also a stochastic representation. Infonnation about 

the system is no lo?ger limited to the steady state as shCNm in 

Chapter 3. The GERT model as developed in this study is subject to 

the same assl..llllptions as the Poisson JIDdel , however this does not 

preclude the development of GERT mcxlels using distributions other 

than Poisson and exponential. Whitehouse (1973) has done work in 

this area. 

The GERT anal sis makes it possible to develop additional 

in£onnation about the repairman problem. The analysis is no longer 

restricted to the steady state as with the Poisson model. For every 

state of the system the probability, expected time, and variance of 

the time to move to every other state can be predicted. For the 

example discussed in Chapter 3 it was found that once one JIB.chine 

failed, the probability of getting all JIB.chines operating before 

canplete failure of the system was 0. 7 52. The expected time until 

full operation was 0.542 hours, with a variance of 0.404 hours. This 

type of information makes it possible to predict the actual perfoP.mance 

of the machine system over a short period of time. 
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The Q-GERT simulation teclmique is potentially the most useful 

model of the three. The assumptions of the Poisson and GERT JIDdels 

are no longer necessary. Actual JIE.c.h..:ille operations can be realistically 

simulated using Q-GERT. Other simulation teclmiques are available . that 

can simulate the same problems. However, they do not pruvide a 

graphical description of hew the system operates. The network approach 

simplifies the for.rrulation of the model. Once the network is con-

structed it provides a clear, logical picture of the system being 

simulated. One disadvantage is that the symbology of Q-GERT is not 

obvious, and it does reqw._re some study. Also, an analysis of the 

network requires the use of the Q-GERTS computer program. 

Areas for FtJrlther Research 

In the use of GERT for analysis of the repairman problem the 

f irst ~ of concern should be a mcxiel that does not require the 

Poisson/exponential relationship between the failure rate and repair 

time. 

The use of the Poisson distribution for the ma.chine failure rate 

implies randomly distributed failures. In many cases this is an 

acceptable assumption. The assumption of exponential repair times 

may not occur as frequently in actual systems. Whitehouse (1973) 
I 

discusses two possible GERT representations of the re];X3i:rnEn problem 

with other distributions for the repair times. However, he does not 

attempt to analyze the system using these JIDdels. 
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For the Q-GERT mxlel the most challenging area seems to be the 

inclusion of regularly scheduled JIBintenance and in spections in the 

JIDdel. Another area of concern is the statistical output of the Q­

GERTS program and how it can best be used. For example, counter 

statistics are generated in relation to each statistics node. As was 

de.TIDnst:rated in Chapter 4, the interpretation of these statistics lS 

not completely understood. J\ 



APPENDIX 

Computer Output for Q-GERTS Simulation 
of Repainnan Problem 
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