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1.0 INTRODUCTION

Systems that operate in alrborne environments and
rely on the resolutlon provided by optilcal sensors require
a stabilization system to isolate the line-of-sight (LOS)
from the operating environment. For systems employing
television sensors, stabilization accuracy 1s of prime
importance in maintaining sufficient picture resolution to
allow target identification and recognition at maximum
ranges. The development of system models that accurately
predict stabllization performance is important both in design
trade offs and in the system design and testing [1].

Two basic concepts are available for achieving LOS
stabilization; momentum stabillzation which employs a spin-
ning mass and rate stabllization which utilizes inertial
rate sensors. Previously rate stabilized platforms have been
employed for high performance laser designator systems
mounted 1in ailrcraft while momentum stabllized platforms have
been used on tactlical missiles. Rate stabilized platforms
have not been used often in tactical missiles due to their
higher cost and the lack of high performance stabilization
requirements over large fileld-of-regards on the missile

seekers. Currently, more TV sensors are belng proposed for



tactical missiles with long stand off range requirements,
hence higher LOS stabilization performance. New lnertlal
rate sensors are also being developed which promlise to sig-
nificantly lower the productlon cost of rate stabllized
platforms. The relative performance capablllty inherent in
the two types of systems has not yet been rigorously treated.
This subject is of interest now due to the lncreasing impor-
tance of LOS stabilization 1n misslle seekers and the cost/
performance trade studies that must be performed to select
the more optimal of the two stabilization concepts for a
particular application.

This paper develops the system models necessary to
evaluate the LOS stabilization performance for either concept.
These models are presented in detall for each concept to
provide an understanding of the baslc physical phenomena
which determines the LOS stabilization performance achlev-
able with each concept. Since the basic LCS stabilization
models are developed 1in a linear fashlon, the extension to
the nonlinear case 1s also included as are techniques for
determining system performance. To demonstrate the validity
of the models derived, a case study 1s presented covering
both momentum and rate stablilized systems which is verifiled
with simulation results. The primary value of thils paper lies
in the model derivation and the detailled presentation of
these models which provides insight into the relationship of

the system parameters wlth the technlques necessary to predict



LOS stabilization performance for both rate and momentum

stabllized platforms.



2.0 THEORY

2.1 Stabillization System Description

The two baslc concepts available for achieving LOS
stablllization are momentum stabilization and rate stabili-
zation. Generally, both systems can be lmplemented with a
two-degree-of-freedom gimbal platform which provides LOS
stablllization about the two axes orthogonal to the LOS.
Momentum stabilization 1s accomplished through the use of a
large splnning wheel supported in two gimbals. Since the
angular momentum vector possessed by the spinning wheel tends
to remain fixed in inertlal space unless external torques are
applied, LOS stabililizatlon 1is achleved. A rate stabllized
platform utilizes two rate (or rate integrating) gyros
mounted on the inner gimbal with their input axes orthogonal
to the LOS to stabilize the LOS in inertial space. The
primary control problem is not that of commanding the plat-
form LOS but rather that of minimizing the LOS motion induced
by undesired torques. This paper, then, 1s concerned with
derlving the models necessary to demonstrate the effect of

the system parameters on the degree of LOS i1solation achieved.



5

A two-degree-of-freedom gimbal platform will repre-
sent a general case for either system. A sketch of an outer
pitch, inner yaw gimbal platform is presented in Figure 1.
A separate, orthogonal set of coordinates are associated
with both the inner and outer gimbals, the base, and iner-
tial space. These are identified with the subscripts IG,
OG, B, and I respectively. Subscripts will be used to
identify the measured parameter and reference frame, i.e.,
TIG/OG refers to the inner gimbal yaw angle measured rela-
tive to the outer gimbal reference frame. Zero relative
gimbal angles are defined as occurring when X1as Xog> B
are colincident.

The gimbal sketch is general in that it applies to
elther stabilization method defined earlier as does the
primary disturbance source which is the aircraft environ-
ment. More specifically, the components of linear vibration
(acceleration) orthogonal to the gimbal rotational axes
couple inte LOS motion through the appropriate gimbal mass
unbalance, while angular vibration couples into LOS motion
through the friction and compliance associated with each
gimbal. Thus, the two most significant performance indices
for a LOS stabilization system are the torque disturbance
rejection (TDR) ratio and the angular disturbance (ADR)
ratio. The TDR ratio is defined as the ratio of LOS motion
to torque disturbance and the ADR ratio is defined as the

ratio of LOS motlon to the angular rate of an adjacent gimbal.
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Figure 1. 2-DOF Gimbal Platform



2.2 System Eqguations and Solution

The dynamic equations are fully derived in Appendix
5.1 from Newton's second law for angular motion. These
equations represent the general case for LOS stabilized plat-
forms since the deflning system equations for rate stabilized
systems may be derived from the momentum solution by setting
the angular momentum term equal to zero and adding an addit-
ional damping term to include the effects of rate gyro
feedback.

From Appendix 5.1, the defining equations for a momen-
tum stabllized platform including the linear and angular

environments are:

EPrq = JI‘P;E - HeE = - KWI'FE_G_ - F; (l}fE - 119&) & oy
) I 0G I &
ETOG = Joegg + H (cos YLE) wlﬁ (1)
i 0 8
= - « B .« =0 )
WO 0G O  0G DO
B X )
where:
ETIG = sum of the external torques about the

inner gimbal rctational axis

ZTOG = sum of the external torques about the
outer gimbal rotational axis
JI/J = inner/outer gimbal inertias about theilr
0 respectlve rotational axis
F_/F = inner/outer gimbal friction coefficient



Kur/Kyo

TDI/TDO = inner/outer gimbal mass unbalance torques

H

I

and all angular motion terms conform to the notation prev-

lously defined. These equations are represented in block

diagram form in Figure 2.

inner/outer gimbal spring constant

angular momentum of spinning wheel

The system equations may be more conveniently

expressed using state notation employing the following

definitions:
Xq Y1a/1 U
Xo Ooa/1 Y1 Yra/1 Y
X3| = | ¥1q/00]° Vol - |O1gsx|? | U
i by .
U
1.

The angular disturbance rate inputs are formed from the body

rates using Euler transformatiocn as:

[ ] L] —"| [ ]
®og/1 r¢B/I ¢1a/1

. Iy, r ’ .
®06/1 "L?og/é} 971 3 '®10/1 | = %

Yoasz /1| |Yza/1]

IG/Oé}

jfu: s
Tpo
Yoe/T
Op/1

3
| %06/1 |

0G/T

%06 /1

y
*0G/T |

where[@og/é} and [%IG/oé]are the Euler pitch and yaw

transformations:
cos OOG/B 0 - s8in ©

-—

0G/B

=



Base Motion

E A =A coso
S i N + B sina
Spring Constant Kyt | | B )=—-A sina
R -y + B coso
} )/—'I I |Friction
Pitch = @
Command Torque N IG/1 = \PLOS/I
. / JIS S
st Inertia
HcosVY :
: 1G |
\ OG - 1 | Cros/z
S.
[ Momentum
| 1 ny
Spring Constant LS + .
i_#___ . 1G/1
——‘FO .
/ Friction
Yaw 'G
Command Torque 1 0G/I ISOSWIG /0G
JnS
Inertia
sin¥1s /g

Figure 2. Momentum Stabilized Platform Block Diagram
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cos wIG/OG sin wIG/OG 0
EIG/O&] = | =8N ¥a0q 998 ¥rgon O
b 0 0 1]

Then the defining stabilization equations may be written in
the conventional format:

F(6) =[ATR(t) +[BIE(S)

y(t) =[CIx(t) +[Dlu(t)

as,
P o e &
fl(t) thI/JI H/JICOSWIG/OG -—KWI/JI 0 xl(t)
xz(t) e H/Jocosle/OG -FO/J0 0 —KWO/JO xz(t)
x3(t) 1 0 0 0 x3(t)
L;u(t)_ 3 0 1 0 0 _l}u(tl
- H/J tsinY e Al
Ly O = By @ -HASEinYegioq) [ YpD
1 0 1/3g © Fo/Jq 0 Tpo
0 0 -1 0 0 Yoo/1
|0 0 0 -1 0 1 |ep/r
| ®o6/1 |
-
3 1
il _ |2 0 @40 10 x|
Yo 0 coszG/OG 0O O 0 x3
4
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Tpr
=
g 0 0 09 T
¥
6 0 o0 estid i
Op/1
o6/1]

These equations have been solved by calculating the
resolvent matrix ([¥(s)]) and assuming zero initial conditions

which yield a solution in the frequency domain of the form:

X(s) =[e(s)IBTua(s) = (s[IF[AITHEu(s)

That 1s,
[ (s-e)s2-£51/3 bs2/J
s~e)s -1IS T S 0
oy y as2/3 [(s-a)s® - es1/3,
|s[1]-[A]] [s(s-e)-£1/3; bs/JO
b ds/JI [(s=a) s - c.]/JO

[(s-e)s?-fs] FI/JI ~-[cs(s-e) - fc]
dsaFI/JI - cds
[ s(s-e) - ]FI/JI -[(s—a)(sz—es—f) - bds ]
ds FI/JI - cd

bs? Fo/Jg - bfs
[(s-a)s-cs] FO/JO - (s=a) fs + cf
bs FO/JO - bf
[s(s-a) - c]FO/JO - [(s-a)(s-e)s+ bds + ¢ (s-e) ]
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-[(s—e)s2 - fs]H/JIsin¥IG/OG

2
-ds H/JISianIG/OG
[u] (2)
~-[s(s=e) - f]H/JIsinWIG/OG
—dSH/JISinLPIG/OG
where:
4 3 2
|s[1]-[A]| = s + (-e - a)s” + (ae = f - bd - ¢)s
+ (af + ce)s + cf

a = = FI/JI d= (=~ H/JO)COSTIG/OG
b = (H/JI)COSTIG/OG e = = FO/JO

The above solution defines the total disturbance
rejection performance for momentum stabilized systems.
Setting the momentum term equal to zero defines the inherent
stabilization achievable with a rate stabilized system but
does not include the effects of the electronic compensation
involved. The effects of the rate stabilized system servo
loop will be included later and shown to establish LOS sta-
bilization performance within the bandwidth of the closed

rate gyro loops.

2.3 Momentum Stabilized Platform Disturbance Model

As wlll be discussed later, stabilization performance
1s generally evaluated in the frequency domain. To obtain an
understanding of the parameters affecting the disturbance

rejection responses, the disturbance inputs will be treated
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individually.

From the general model solution (equation 2), the
torque disturbance rejection response (TDR) of the yaw axis

to inner gimbal mass unbalance torques is:

J o) F
TS R R
e = 5
?LOS/I(S) £ WI \ “wo WO
;. J P F: F
ol 942 4 0.5 41 L2 Is+a)+
Ko Ko Kyt Ku1
(3)
2

wolrwI

which may be plotted as shown in the following sketch. The
low frequency region approaching zero has not been repre-
sented, because it 1is not generally of interest in deter-
mining stabilization jitter. Also, the cosine term in the
above transfer function is treated as a constant in the
following discussion in order to linearize the results and

is usually set to unity except in the cases where it has a

significant impact on the results.

A
20 10G|Y 4
L0S/I
Ty Y X50/70 e

: :
| 1
| 2 |l
|

R :
i A
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As may be noted from the sketch, the disturbance
rejection capability of the yaw axis to inner gimbal mass
unbalance torques is determined by different gimbal para-
meters depending on which of these frequency regions the
disturbance occurs within. For real frequencies, w(s=jw),

less than the spring constant-inertia break of the outer gimbal,

the TDR response is given by Yi.09/1 KWO/H2 o /Kwo and,
e 3 e

2
TDI S JO

for w greater than the wire torque-inertia break of the

outer gimbal and less than the loop bandwidth,

v I K
L1081 - 70 ; _29 <w< ,_H
Tp1 n® 0 / 90790

For frequencies outside the loop bandwidth,

¥108/1 1
S N ey 3 w> H/ /Jd Jd

These same results may be obtained from the original TDR
transfer function with appropriate small and large frequency
approximations. For example, at small frequencies, the

angular momentum term in the denominator is dominant, so,

2 ( JO 32 + FO 54-])
YrLos/z . Sy Eyo K10 . /K
= 5 3 W2 WO
DI s

Jo
and for mid-range frequencies, the s2 term 1s dominant in

the numerator and the su, 53; and H°s? terms predominant in
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the denominator ylielding,

2
YOS/ | Jo/E O ..
T G | (J+Fat J~F) d J
DI I(332+ oL A 0
H2 H2
which with increasing w, reduces to
Yros/1 _ 1.2 e gt Ll
T
DI Jrs T30

Thus, within the loop bandwidth the degree of stabilization
is primarily determined by the square of the angular momentum,
while outside the loop bandwidth, the disturbance rejection
is wholly determined by the gimbal inertia. The roll off
point of the loop, that is, the system bandwidth, is equal to
the momentum over the square root of the product of the
gimbal inertias. This is also referred to as the nutation
frequency of a momentum stabilized system.

The pitch axis of the LOS responds to the inner
gimbal mass unbalance torques with the following TDR as

reduced from the general solution of equation (2).

(%)
OLos/1 _ = co8%¥ra/008 Fyruo®
. J F J F 2
DI (...9___32 5 ._O__S + 1 _'I._.32 + -;-J:-—S + 1 +-—§-—-—-——0032‘PIG 52
KWO Kwo \KwI Ky KyurEwo oG

Which plotted as a function of frequency gives:
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.2011mr$¥ﬁil‘
DI

The small and large frequency approximation may be made with

the same assumptions used for the inner gimbal TDR.

%ros/1 _ _ isH g i
DI B Jrdo
910s/1 1/H i
Tpr k IJ1do 5 (EIFO + JoFT) Sy
J
S(ﬁﬁg—s + H2 s + g 20

The pitch axis disturbance rejection to inner gimbal mass
unbalance torques is determined primarily by the angular
momentum term. It should be noted that the inner gimbal has
poor dc torque disturbance rejection.

Since the model is symmetrical, the yaw and pitch TDR
responses to outer gimbal mass unbalance torques are the same
as the pitch and yaw gimbal responses to lnner gimbal mass
unbalance torques with appropriate parameter changes. These

responses are written as follows from the general model:
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COSWEE/KWO (JI FI )

p
S 4+ w8 + 1
9Los/T _ e Kz Kz .
T T F F
Wo WO Wo Kz
HE 0082 Y1a
KoK 1G .2
WO™WI oG S
(5)
YLos/1 _ (Heos¥rq /0 /Kur¥uwo) s
T J F S
Be R_ng+qu+l%a+ﬁ“l's+l+
WO WO Wi WI
2
K_EK__ cos Y16 _2
wokwz =

The related sketches and low frequency approximations made
for the inner gimbal mass uhbalance torques also apply to the
outer gimbal mass unbalance TDR responses.

The yaw angular disturbance rejection response (ADRy)
determines the amount of LOS motion due to body induced
angular rates about the inner gimbal rotational axis. The

inner gimbal ADRy response may be reduced from the general

model as,
#1083 (Jo 52+§Qs+1) (FIs+1\ g
LOS/A _ Kwo WO WI /
v B iy F \ (I F
0G/I KQ s2 + Kg s + 1}[oL s2 + KI s +1|+_HZ cos<¥Y—-ns
WO WO KWI WI IKWO %%
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which may be plotted as,

H
ML/ WO
ﬁ T / 0 I
1 : l i
20 LOG|ELQ§L1| | |
Yog/1 ‘ : l
.
JOFI/H 1
Ko Tl
H? s3 52

The same assumptions employed to obtain the low and high
frequency approximations of the TDR responses may also be
used here. That is, at low frequencies the momentum squared
term in the denominator may be conslidered the dominate term
and at higher frequencies, the fourth-order, third-order,

and second-order s terms in the denominator are the signif-
icant terms along with the third-order term in the numerator.
These assumptions yleld the following approximations from

which the ADRy sketch was plotted.

J F
G. .2 .0 ) (EI )
s + s + 1)l l\s=— 8 + 1
YLos/1 _ (Kwo Ko WI i e R
YoG/I 2 ;
/ i 3 [T13 4
Kur®wo
JoFr
SYossr H? S
3 "TI T, G F T F) g
0G/1 S 208! g 4+ 1 I 0
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Thus, the disturbance rejection capability 1s dependent upon
the square of the angular momentum at frequenciles within the
natural frequency of the gimbal system, while at frequencies
greater thqn this, the rejection is inversely proportional to
the inner gimbal inertia. The sketch also shows that the
angular disturbance couples through the spring constant at
low frequencies and through the gimbal friction at higher
frequenciles.

The pitch axis response to yaw (inner) gimbal angular

disturbance inputs may be written from the general solution

as:
P
- B ) b
7wcos<VIG g % ] (7)
Los/I _ T
Y J F J F 2
0G/T 2 52 Eg R EE 52 4 EL s+-1,+F HK—“—COSEwIG g2
Ko WO WI WI ‘WI WO oG
and sketched as a function of w.
. _B
I
| A N
:I —> O
20 LOG!?LQ§[£{ : " I
y /0 ‘
0G/I s } l
4 : :
Hs2 !
o F H
I 5s3
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Utilizing the low and high frequency approximations used for
the yaw axis ADR approximations, the pitch axis ADR may be

represented from equation (7) as:

Fi
_K K--.-s + 1

Oros/r _ _~Pwrl Fwr g

Wog/I H52 JIJO
) - F_,H
LOS/I _ 1/ A el
» ' 3
Yoa/1 Ipds S2+(JIF0 + JegPy) JEEES

5 2 s + 1
H H

In this case the primary disturbance rejection is provided by
the angular momentum. The angular motion 1s shown to be
coupling through the inner gimbal spring constant term at low
frequencies, through the inner gimbal friction at the mid-
frequency range, and through the angular momentum at high
frequencies where it is attenuated by the product of the
inertias.

The angular disturbance rejection responses due to
body rates about the outer gimbal rotational axis are of the
same form as the gimbal system responses to body rates about
the inner gimbal yaw axis Jjust presented. These have been

reduced from the general solution to be

» o S o

cosY — X
.LOS/I > o8 IG/0G KWIS +KWIS t1 WOS + 1
6] | [J F J F
B/I S‘ 1—{-9-82+-K—OS+1 2l g2 —I'S+l+ HZ

]
2 2
T3 —CO0OS l;l S
WO Wo Kt Kt Ko o J
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y XS + 1
LOS/T _ S WO
5 3 F 3 F
B/I Bad s 9 gaalll 2 g1 2
i o =—nge % g+ 1l + H 2
Ko Ko Syt Ky TR s
WI WO 0OG

The sketches and approximate responses derived for the
inner gimbal angular disturbance (;OG/I) also apply here with
appropriate parameter changes.

The last primary disturbance input to be considered
1s roll angular rates of the outer gimbal. The LOS pitch
motion induced by this disturbance may be reduced from

equation (2) as:

(9)
Jo g J F
nY 2 0 : SR I
IG/0CT S $ = 4 ] T * S+ I
ros/ _ e :wo fwo e S
; J F J F H2 5
0G/I 5122 & Eg-s + 1 g;-sa +E£-S + 1-+E——E——coszG
Wo WO WI WI WI™WO o

—

which as a function of frequency is,

HcosY
J wo KWI IG/0G
J Jo .,/ /3130

0
LOS /1

20 LOG lj‘.-)—-——-i-—( &JIKWOSIH?IG/Od ;
0G/I Hzécs 3"

J sin¥ i
owr* ™ 16/06 Jo7 15314 /06 S

2 2 2 2
Hecos ?IG/OGS Hecos yIG/OG
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and may be approximated as follows:

JO B J F
2 0 X .3 I
- sinV 8" % K—-s-+ZJ K s8° + s + 1
Sros/r _ = " ras06\ w0 WO WT Kyt .
- 2 2
¢OG/I E~§E——cos2 WIGS3
WI WO oG
Gk HCOSWIG/OG
;
I1d0
JoJ1
5 y 2cos2Y HcosY
®roszz _ = P*™1a/0a \F %% N6 /00 = 16/06G
] = ]
(IJOG/I JIJO 32 + JIFO + JOF e b /JIJO
H20052WIG Hzcosg‘PIG
0G oG

Thus, at frequencies greater than the loop natural frequency,
roll motion couples directly into pitch LOS motion through
the sine of the inner gimbal angle.

The yaw axis response to outer gimbal roll motion is

represented by

Hsiny J F
1G/0G | 0 g2 4, 0 g 4 3 (10)
Yros/T . Kuz Ko Kwo
g J F J F
0G/I EQ 32 + Fg g 1 El s@ + L s + 1 +——E3ﬂ—COSQWIG52
WO WO WI Kyt Kyz¥wo o6

whlch as a function of frequency looks 1like,



A = HcoszG/OG
Jo v J0J1 o
20 L.OG LOS/II 1 :
¢ OGXI \ SanIG/OG |
|
/A/”, I - WIG/OG : sinV
IGZOG
51nY i HJ. s2
1G/0G 1
2
Hcos ?IG/OG
and may be written as
KynsinV¥ J B
HWO s I1G/0G E9_ gl Eg Lo
Ytes/r . TRPRTaeon W WO b =

: 5 2
QOG/I S /JIJO

JOSianG/OG
Hcos 2y
.77 i 1G/0G s
& JJ J+Fp + JaP .
0G/I = 123 S2 " 21 0 0 I a b /JIJO
cos 16 H coswlg
oG G

Then the yaw axls does have more attenuation due to the
angular momentum to this particular input than the pitch

axis.

23
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2.4 Rate Stabilized Platform Disturbance Models

As mentioned previously, the momentum stabilized
platform dynamics define the general case from which the
rate stabilization dynamics may be derived by setting the
angular momentum term equal to zero. While this does give
the solution, considering only the gimbal physical parameters,
it does not account for the effects of the loop closed
through the rate gyro and associated electronics. An
additional term representing this loop must be included in
the defining dynamic equations which for the rate stabilized

platform (i.e., H=0) become:

ETy6= I1¥1a/1"¥wr¥1e/067F1 (“’IG/I““’OG/I) =Gy (s)¥yq,1* Tpg
(1)

e = J

oe™ Yo%a/rm K

wo%oa/BFo (GOG/I "@B/I) B (83000 ,5% Tpg
where GI(S) and Go(s) represent the inner and outer gimbal
rate gyros and associated servo compensation as shown in
Figure 3. The general solution presented in equation (2)
requires the redefinition of 'a' as a = - (F; + G(s))/J;

and 'e' as e=-(FO+GO(s)cosW )/JO and the addition of

IG/0G
- GO(S)(SianG/OG)éOG/I to b25 in the general state equation
definition. This addition requires adding -[(s-a) s2 -

cs] Go(s) SianG/OG and -[s(s-a) =-c] Go(s) SianG/OG to ¢25
and ¢y respectively in the general solution (2) which along

with setting H to zero modifies the solution for rate

stabilized platforms.
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The disturbance rejection solutions will be examined
in detail for the rate stabilized platform. In doing this,
it is desirable to approximate the rate gyro and servo elec-
tronics (Gy(s) and Gy(s) with its most significant parameters.
For the following discussion, GI(s) and Go(s) will be approx-
imated by K(1 + s/wn)/s where K is the gain term associated
with GI(S) and Go(s) when written in the normalized form.
This is generally valid for the following reasons:

l. Integral compensation 1s necessary to provide
reasonable low frequency disturbance rejection. The assoc-
iated lead term is required to provide a stable loop and is
included for completeness.

2. Any additional shaping within the loop bandwidth
is generally done to increase low and mid-frequency gain,
that 1s, employing a lag-lead circuit at these frequencies
commonly referred to as an integrating dipole. This addi-
tional shaping can be easily incorporated into the solution
later.

3. The high frequency poles, due to the raté gyro
and any noise filters, have a minimum effect on the distur-
bance rejectlion responses.

4, Any lead shaping after the loop bandwidth
affects the amount of closed loop peaking which is not being
considered in this type solutilon.

Modifying equation (2) to reflect the special case of a rate

stabillzed platform, the yaw axis TDR is reduced as
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YLos/1 Hiw (2)
Tpz Jr 5 Fr o+ Gp(s)
K—S+ T s + 1
WI WI

Substituting G (s) = K(1 + s/w,)/s, gives

710 7 5 A Br)
TDI i};————sz + FI 5 K/mn 8 4+ 1
K+ K
WI R

which may be plotted as,

y >
20 106 | LOS/T l 1 | -
DI KK :
WI (
1
1
-Af JISE

As seen from the sketch, low frequency disturbance rejection
is provided primarily by the open loop gain (X) excluding the
load since the gainlis generally much larger than the gimbal
compliance (KWI) Without an integrator in the servo compen-
sation, however, the low frequency disturbance rejection
would be determined by Just the glimbal compliance. At

frequencies outslide the loop bandwidth w = WI
J
I

disturbance rejection 1s entirely dependent upon the gimbal

]

inertia.
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The low frequency gain term may be lncreased further

by the addition of an integrating dipole to the servo

compensation, 1.e., 1+ 8/wy , Where w, < w.. The addition
1+ s/m2 2 1

of this shaping requires that K be increased by Wy /0, which

changes the low frequency response to:

g
YLos/1 _ (®1/92)K Q + S/wz) Sl o A M
» J
T (1 + s/w)) I

assuming K < < K,
&

The asymptotic frequency response is,

B+ K.
A
- S R i
, | |
20 1OG lWIDS/I | | |
Tpr | M
I 1 1
| K + K s
N WI = T8
1
W /WK + Kyp

from which it may be seen that the low frequency disturbance
rejection has been lncreased by the ratio ml/w2 Just as the
low frequency gain assuming K and thus K(wl/w2)>>Kw1'

After modifying the solution in equation (2), the

ADR response of the yaw stabililized axis to outer gimbal yaw

rates may be wrltten as
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(xs s + 1
?LOS/I i wr st 1 -
¥ T F G
0G/1 g[oE 2 & IK+ 1(s) & 41
Kyt WI

which upon substituting K G-+ S/w;) for GI(S), is
s

F
K T
S I
fogsr EF Bur \Buz
Yoa/T L R Sl
B e K. K + s + 1
WI Rt

and may be plotted as a function of frequency as,

Fr J1
‘i’ t 1 > W
20 10G |—LOS/I| | l
¥ o6/t { Fy |
I K+ HWI ll
I

Kyx P
Vc+"KﬁI)S 45—3%32

As shown in the plot of the yaw axls ADR response, the
angular disturbance couples into LOS motion through the
spring constant (KWI) at low frequencies and through the
gimbal friction (FI) at higher frequencles as was the case
with the momentum stabilized platform ADR (equations 6_and
7). The disturbance attenuation is determined by the open

loop gain (K) excluding the load at frequencies within the



loop bandwildth K% KWI and by the gimbal inertia at

Iy
frequencies greater than the loop bandwildth.

With the addltlon of an integrating dipole

1+ s/wl
< ADR mes:
17 s/wg’ where w, ml, the become
i .I_ X Wo UJ_)_ .JI o
20 1og | ros/1] | : : :
Yoa/1 | | R, Sp]
| | F \\\
3 ¥
o S il | | K+ K o .
W l | WI UIS
Géxﬂgﬂjs ’J{FI \
W
3
o, K * Ky

Here the dipole also increases the low frequency gain and
thus the low frequency angular disturbance rejection capa-
bility.

Roll angular rates of the outer gimbal couple only
into pitch motion of the LOS as may be observed from Figure
3 or the general solution. The ADR for the rate stabilized
system to roll disturbance inputs may be derived from

equation (2) as

LR T
“wossr $in¥16/0a \Kwo w0 cxiy
®0G/1 J Fo + Go(s)cosy
4 s =glag 20 16/0GC 4 1\

%o Kwo }
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or letting GI(S) = K(1 + s/wn)/s become,

Kyo sin¥yg/0q Jo 5 .Fo
0 K ¥ Kcosy P A
LOS/I _ Wo 1G/0G \ WO WO
) J F_+ K/w
0G/I
15+ KO v s X (+OK v 2542
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“Wo 1G/0G Wo 1G/0G

which plots as shown below recognizing that K > > Kwo
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With the addition of vn integrating dipole, (1 + s/uw l)

(1 + s/w 2)

(w <_wl), this ADR is,

2

("
S|
ID

£
ro

}—l

=
)
o]
0

o) =

o |-
(2]
~
)
@

20 10G|°Los/1|
06/1

<=— 8in¥;. /e

JItan‘PIGIOGS s
K
=
1E\\JIt‘meGIOGS
Kpotan¥ic/oc
%
® =

31



32

1G/0G
J o

Both sketches show that below the loop bandWidtj//KcosW

attenuation to roll disturbance inputs is provided by the
electronic gain of the servo loop, elther K or glq( depending
on whether or not an integrating dipole 1s emploied in the
servo loop compensation. However, at frequencies greater
than the loop bandwidth, roll disturbance rates couple into
pitech LOS rate through the sine of the inner gimbal angle.
There exlsts no inertia attenuation as in the cases of the
inner gimbal mass unbalance disturbances and the pitch and
yaw angular disturbances since the roll disturbance rate

does not enter about a stabilized axis. This 1s also true

for the pitch axis response to roll inputs in a momentum

stabilized system, equation (9).

2.5 Secondary Disturbance Sources and
Primary Nonlinearities

The analysis thus far has derived the disturbance
models for the environmental inputs which are the primary
sources of stabilizatlon error. For completeness, the
secondary disturbance sources will be mentioned herein,
The system nonlinearities, however, may have a significant
impact upon the models which have been developed and a
technique for evaluating these effects willl also be presented.

The principal secondary disturbance sources are gyro

nolse in rate stabillzed systems and magnetically induced
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torques in momentum stabilized systems [2]. Since the
predominant components of gyro noilse occur at high frequen-
cles relative to the system bandwidth [3], the noise 1nduced
LOS motion is not usually high. However, there can be a
significant effect on the torque motor form factor in terms
of excessive heating. Gyro noise effects may be predicted
with the same techniques applied previously to derive the
environmental disturbance models. Momentum stabilized
platforms respond to magnetically induced torques with a low
frequency drift rate which is not of primary concern here.

The most significant nonlinearity is coulomb friction
which impacts both stabilization concepts. Coulomb friction
is defined as a constant retarding torque independent of the
relative gimbal rate as opposed to viscous frictlon which is
directly proportional to the relative gimbal rate. Since
coulomb friction is the predominant friction present, and as
noted earlier, the angular vibration environment couples into
LOS motion through the gimbal frictlon and spring constant,
1t is necessary to include this nonlinearity in the disturb-
ance models.

Coulomb frictlon is generally represented with a
bang-bang function, i.e.,

Tp = Fesen(¥pg o0)
P friction torque

where T

Fo = frictlion amplitude
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For some environments, the coulomb friction effect may be
adequately linearized to allow use of linear disturbance
models. Consldering a line spectra disturbance with a single
frequency predominating, the output of the coulomb friction
model will be a square wave of the same frequency as the
input. This square wave may be treated as a torque disturb-
ance input and may be approximated sinusoidally by the first
term of its Fourier expansion as:

Tp = (UFe/n) sin (2nf, t)

where fc is the predominant frequency of the input environ-
ment (@OG/I)[M]. The frequency of the input environment is
used as opposed to the relative gimbal rate (@IG/OG) fre—
quency since the gimbal inertial rate (¢IG/I) should be small
in comparison to the input environment if the system is
stabilized. This approximation may now be used in conjunc-

tion with the TDR ratio as described in the next section.

2.6 Performance Determination

Determining the environmentally induced LOS jitter
basically entalls combining the input environment with the
appropriate disturbance rejection response. The manner in
which thils is done depends on the input environment spectral
type.

1. Continuous Spectra -- If the input environment
is represented with a continuous (random) spectra, the

amount of LOS motion may be calculated by,
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(=]

gq = 0f|DRR(f)|2D(f)df (15)

i

where €4 Stabilization Error

il

DRR(T) The disturbance rejection ratio for D(f)
D(f) = Input environment power spectral density
Then the total stabilization error is the root ‘sum square

total of the errors created from each disturbance input, i.e.,

2. Line Spectra -- If the input environment is
represented with a line spectra, i.e., a finite sum of
sinusoids, the LOS motion may be calculated from

k

W 2\%
€4 = (22 [D(£.)DDR(T ) 16)
1= (4E [D(£)DDR(L,)] (
where gy = Stabilization Error
D(fj) = Input environment at frequency fj

DDR(fJ) = The disturbance rejection ratio at frequency fj

and the total LOS error is also

2 2

This assumes that the line spectra is phase independent.



3.0 CASE STUDY

3.1 System Definition

To demonstrate the disturbance models and coulomb
friction approximation presented in Section 2, representa-
tive momentum and rate stabilization systems were chosen for
analysis. Both systems have been designed for deployment as
seekers on the same missile and thus have the same form
factor and requirements. These momentum and rate stabililzed
platforms are presented in block diagram form in Figures 4
and 5. Only the inner gimbal is represented for the rate
stabilized platform since there is no cross-coupling effects
to consider in the rate stabilized model and the outer gimbal

follows the same relationship as the inner gimbal.

- 3.2 Model Verification

The actual disturbance rejection responses have been
calculated based on the linear models of Figures 4 and 5
using a block diagram reduction program, ACAP (Automatic
Control Analysis Program)[5] which is avallable on the
Martin Marietta Aerospace computer system. ACAP takes input
in the form of a block diagram, reduces the block diliagram

and calculates the roots and indicated frequency responses.
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Figures 6 - 10 present all the disturbance rejection
responses of the yaw (LOS) axis for a momentum stabilized
system. This includes the TDR responses for both inner and
outer gimbal mass unbalance torques and the ADR responses
for outer gimbal yaw, body pitch, and bedy roll rates. The
asymptotes plotted with these curves were calculated from
approximatlions used in the disturbance models of Section 2.3.
The model derived asymptotes show almost exact agreement
wlth the computer calculated frequency responses.

Figures 11 and 12 present all the disturbance rejec-
tion responses assocliated with the yaw LOS axis for a rate
stablilized system. These are the TDR response to inner
gimbal mass unbalance torques and the ADR response to outer
gimbal roll rates. These responses also have the asymptotes
plotted, based on the disturbance rejection models in Section
2.4. The asymptotes agree with the calculated responses
except for 200 < w < 500 rad/sec. where the rate gyro and
higher frequency poles enter but the difference is not
great (~5 db).

To evaluate the validity of the coulomb friction
approximation made in Sectlon 2.5, a nonlinear simulation of
the rate stabllized platform was programmed, based on the
block dilagram of Figure 5., A 10 Hz outer gimbal yaw motion
was the disturbance input and the resulting yaw LOS motion
is plotted in Figure 13. The results show a yaw LOS motion

of 0.184 milliradian zero-to-peak. Using the approximation
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of Section 2.5 and Figure 11, the yaw gimbal TDR response,
the approximated value 1is 0.226 milliradian of motion. The
approximation then is somewhat conservative, being 23 per
cent higher than the value arrived at by simulation. The
approximation is valid enough to be useful considering it

does not require a nonlinear simulation.

3.3 Stabilization Performance

To compare the performance of the two stabilization
systems, a simplified helicopter environment will be assumed.
This is a line spectra environment consisting of a linear
vibration environment of 2.g's zero-to-peak at 11, 22, and
33 Hz and roll, pitch, and yaw angular vibration environments
of 2.0 milliradians/sec. zero-to-peak at 11 Hz: The gimbals
are all assumed to be balanced to .05 in-oz/g and the coulomb
and viscous (linear) friction terms are assumed to be equal.

Since this is a line spectra environment, equation
(16) applies. Using this equation with the above environment
and the disturbance rejection responses of Section 3.2, the
stabilization accuracy has been calculated for both systems
and is presented in TABLE 1.

The momentum stabilized platform has the lower LOS
motion by a factor of 2.7 over the rate stabilized system.

It should be noted from the disturbance rejection curves that
this result is dependent upon the frequency content of the

environment. A lower frequency environment would cause the
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opposite to be true,

TABLE 1 also shows that coulomb friction 1s the
largest contributor to LOS motion. Even assuming equal
coulomb and viscous friction components, the coulomb friction
effect was stiil two orders of magnitude greater than that of
the viscous friction. The difference in coulomb friction
between the two stabilization examples also accounts for most
of the difference in stabilization performance of the two
systems. If the coulomb frictions were equal, the momentum
stabilized platform would provide less LOS motion in this
environment by a factor of 1.5 over the rate stabilized

system instead of 2.7.

TABLE 1 ——Inner Gimbal Stabilization Accuracy

Disturbance Source Yaw LOS Motion

Momentum System Rate System

Inner Gimbal Mass Unbalance

Torques 2.8 prad 11.6 yprad
Outer Gimbal Mass Unbalance

Torques 8.04 wurad o e
Yaw Outer Gimbal Rates .063 urad 0.53 prad
Pitch Body Rates 0.134 urad S ey
Roll Body Rates 1.0 Hrad & Val e
Inner Gimbal Coulomb Friction s 0 urad 226, prad
Outer Gimbal Coulomb Friction 82,0 ‘wrad et

RSS Total 85.2 urad 226.3 wrad




4.0 SUMMARY AND CONCLUSIONS

An environmental disturbance model has been derived
for the general stabilization case which applies directly
to momentum stabilized platforms. From this general model,
the rate stabilized platform solution was also derived.

The linear disturbance rejection models were presented in
detail for each disturbance input and explicitly identified
the contribution of the various system parameters to
disturbance rejection. This detailed presentation also
provided asymptotic approximations which allow the system
performance to be initially evaluated without a detailed
simulation. A method for predicting stabilization per-
formance based on these disturbance models was introduced
and appropriately modified to include the significant
system nonlinearities.

To demonstrate these techniquzs and the validity
of the model derived asymptotic approximations, a case
study was conducted on equivalent momentum and rate sta-
bilized systems. The disturbance models were shown to be
accurate representations by evaluating the origlnal system
equations with the aid of a computer block diagram reduc-
tion program. A nonlinear simulation of the rate stabilized
platform was programmed and confirmed that the linear

50
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approximation of the most significant nonlinearity,
coulomb friction, to be accurate within 23 percent. Using
a simplified helicopter environment to compare the rate
and momentum stabilized platform performance showed the
systems to be nearly equal within a factor of 2.7 in overall
LOS motion. As noted 1n the text, stabilization perform-
ance 1s strongly a function of the frequency content of the
environment.

In general, the momentum system stabilized systems
rejection is inversely proportional to a function of the
angular momentum of 1its spinning mass at frequencies less
than the system natural frequency. For disturbances cou-
pling directly into the inner gimbal, and hence the LOS,
the rejection capability is inversely proportional to the
square of the angular momentum. For disturbances coupling
from the outer gimbal into the inner indirectly through
the momentum, the disturbance rejection is inversely pro-
portional to the momentum. At frequencies higher than the
system natural frequency, disturbance attenuation is deter-
mined solely by the system inertias except in the case of
a roll disturbance inpﬁt.

The rate stabilized system disturbance rejecticn
capabllity is determined primarily by the open servo loop
galn excluding the load. At frequencies within the system
bandwlidth, the disturbance rejJection response is inversely

proportional to the gain. At higher frequencies, all the
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disturbance rejection, except for the roll disturbance
inputs, 1s provided by the gimbal inertia. The low fre-
quency electronic gain may be increased through the
utilization of appropriate shaping networks as was shown in
Section 2.4. However, once the loop bandwidth is fixed,
which is usually done by the selection of the rate sensor,
it can be easily shown from the open loop frequency
response that the achievable electronic loop gain is a
direct function of gimbal inertia. Therefore, any overall
improvement in disturbance rejection response at all fre-
quencies requires an lilncrease in inertia. Neither
stabilization system provides any rejection of roll rates
entering the outer gimbal at frequencies greater than the
system natural frequency. Since this disturbance occurs
about an unstabilized axis, there 1s no attenuation pro-
vided by the gimbal inertia.

The models presented in this paper yield both an
understanding of momentum and rate stabilized platforms
and the techniques necessary to determine stabilization
performance. The relationships of the gimbal parameters
and electronic compensation to stabilization performance
that were drawn from the models provide a useful design tool
in the early stages of mechanical and electrical trade off
studies. Since the models were also shown to be adaptable
to the inclusion of the significant nonlinearities, they

may also be employed to analyze performance saving the cost



and time required to implement detailed computer simu-

lations.
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5.0 APPENDIX

5.1 Momentum Stabilization
Dynamic Equation Derivation

The dynamic equations for the 2-DOF momentum
stabilized platform may be derived from Newton's second
law for angular motion [6], which states that the sum of

the external torques (ZIT ) acting upon a body is equal to

EXT
the time rate of change of its angular momentum, i.e.,

a3 =
S o==s w= o o
ZTEXT at 5T wx H
where H = total angular momentum
dH/dt = time derivative of H with respect to the
inertial frame
9H/3t = time derivative of H with respect to the

moving frame

w = inertial angular velocity of moving frame

Assuming that the inner and outer gimbal principle axes
are aligned with their respective coordinate frames which
are ldentified here with subscripts I and O, the inner

gimbal angular momentum can be expressed as,

. ~

Hy = Orxbra rt¥e)is +I1y01q, 191 + J1g¥re 1Ky
where HS 1s the spinning wheel angular momentum, and JI#’
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JIY’ and JIz are the inner gimbal moments of inertlia. The
inertial angular velocity of the inner gimbal 1is expressed

as,

~ - ~ - ~

I Y1g/1%1

w. = ¢ +
“r " *1a/1t1 t C16/1

Similarly, the outer gimbal angular momentum may be

expressed as,

~

Ho = Jox%0a/1t0 * J0v%c6/190 * Joz¥os/1%0

with wo = %g/110 * Cog/1d0 *t Yog/1KO

Noting from Figure 1, the following relationships

apply,
lpe io = sin¥1q/0g
d1 * Jo = cos¥1g/00
ke ¢ 3580

The two torque equations may be written as,

ETry = Jrg¥rg/r * Uy = J1x)®16/1%16/1 — HsO1g/1

EToy = Jov9a/r ¥ Yox = oz

; +
®06/1706/1

g - )GIG/IWIG/I) %

sinY @ d + J
IG/0G IX IG/I IZ IY

- + L)
)QIG/IwIG/I stIG/I)

+ -
cos¥r4/06 (;IYOIG/I J1x 917

which using the following transformations,

®1a/1 = %0g/1°°8¥16/0G6 t Q0G/15inY1g/0G
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| 2 v +
16/1 =~ %06/15*16/0¢ * 0a/1°%Y16/00

and assuming that the product terms such as eIG/ITIG/I and
the quantity (JIX - JIY) are negligible, the above expres-

sions simplify to:

LT 1z¥16/1 ~ Hs®10/T

1z =Y

LT =

oY JOYGIG/I + Hs cosY Yy

IG/0G IG/I

These are the basic equations of motion for a 2-
DOF stabilized platform. To these equations, can be added
the external disturbance torques coupling through gimbal

mass unbalance, friction, and compliance.
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