
University of Central Florida University of Central Florida 

STARS STARS 

Retrospective Theses and Dissertations 

1975 

Stabilization System Environmental Disturbance Modeling and Stabilization System Environmental Disturbance Modeling and 

Analysis Analysis 

Lawrence E. Sieb 
University of Central Florida, larry@medtechcon.com 

 Part of the Engineering Commons 

Find similar works at: https://stars.library.ucf.edu/rtd 

University of Central Florida Libraries http://library.ucf.edu 

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for 

inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information, 

please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Sieb, Lawrence E., "Stabilization System Environmental Disturbance Modeling and Analysis" (1975). 
Retrospective Theses and Dissertations. 184. 
https://stars.library.ucf.edu/rtd/184 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Frtd%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/184?utm_source=stars.library.ucf.edu%2Frtd%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


STABILIZATION SYSTEM ENVIRONMENTAL 
DISTURBANCE MODELING Al?D ANALYSIS 

LAWRENCE E. SIEB, JR. 
B . S .  Michigan S t a t e  University, 1969 

THESIS 

Submitted in par t ia l  fulfillment of the requirements 
f o r  the degree of Master of Science in Engineering 

in the Graduate Studies Program of 
F l o r i d a  Technological University 

Orlando, F l o r i d a  
1975 



TABLE OF CONTENTS 

Section 

. . . . . . . . . . . . . . . .  1.0 INTRODUCTION 

2.0 THEORY . . . . . . . . . . . . . . . . . . .  
2.1 Stabilization System Description . . . . . .  
2.2 System Equations and Solution . . . . . . . .  
2.3 Momentum Stabilized Platform Disturbance . . . . . . . . . . . . . . . . . . .  Model 

2.4 Rate Stabilized Platform Disturbance 
Model . . . . . . . . . . . . . . . . . . .  

2.5 Secondary Disturbance Sources and Primary . . . . . . . . . . . . . .  Monlinearities 

2.6 Performance Determination . . . . . . . . . .  
. . . . . . . . . . . . . . . . .  3.0 CASESTUDY 

. . . . . . . . . . . . . .  3.1 System Definition 

3.2 Modelverification . . . . . . . . . . . . .  
3.3 Stabilization Performance . . . . . . . . . .  
4.0 SUMMARY AND CONCLUSIONS . . . . . . . . . . .  

APPENDIX 

5.1 Momentum Stabilization Dynamic Equation 
Derivation . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . .  6.0 LITERATURE CITED 

iii 



LIST OF FIGURES 

Figure 

1. 2-DOFGimbalPlatform. . . . . . . . . . . . . 
2. Momentum S t a b i l i z e d  Pla t form Block 

Diagram . . . . . . . . . . . . . . . . . . .  
3.  Rate S t a b i l i z e d  P la t form Block Diagram . . . . 
4. Momentum System Case Study Block Diagram . . . 
5. Rate System Case Study Block Diagram . . . . . 
6. Momentum S t a b i l i z a t i o n  Yaw TDR Response To 

Inner Mass Gimbal Unbalance Torques. . . . . 
7. Momentum S t a b i l i z a t i o n  Y a w  TDR Response To 

Outer Gimbal Mass Unbalance Torques. . . . . 
8. Momentum S t a b i l i z a t i o n  Yaw ADR Response To 

Outer Gimbal YawRates . . . . . . . . . . . 
9. Momentum S t a b i l i z a t i o n  Y a w  ADR Response To 

Body Pitch Rates . . . . . . . . . . . . . . 
10. Momentum Stabilization Yaw ADR Response To 

Outer G S m b a l R o l l R a t e s .  . . . . . . . . . . 
11. Rate S t a b i l i z a t i o n  Yaw TDR Response To Yaw 

Mass Unbalance Torques . . . . . . . . . . . 
12. Rate Stabilization Yaw ADR Response To 

Outer Gimbal Yaw Rates  . . . . . . . . . . 
13. Nonlinear Simulat ion Resu l t s  . . . . . . . . . 



1.0 INTRODUCTION 

Systems that operate in airborne environments and 

rely on the resolution provided by optical sensors require 

a stabilization system to isolate the line-of-sight (LOS) 

from the operating environment. For systems employing 

television sensors, stabilization accuracy is of prime 

importance in maintaining sufficient picture resolution to 

allow target identification and recognition at maximum 

ranges. The development of system models that accurately 

predict stabilization performance is important both indesigp 

trade offs and in the system design and testing [l]. 

Two basic concepts are available for achieving LOS 

stabilization; momentum stabilization which employs a spin- 

ning mass and rate stabilization which utilizes inertial 

ratesensors. Previously rate stabilizedplatfoms have been 

employed for high 'performance laser designator systems 

mounted in aircraft while momentum stabilized platforms have 

been used on tactical missiles. Rate stabilized platforms 
6 . have not been used often in tactical missiles due to their 

higher cost and the lack of high performance stabilization 

requirements over large field-of-regards on the missile 

seekers. Currently, more TV sensors are being proposed for 
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tac t i ca l  missiles with long stand off  range requirements, 

hence higher LOS stabilization performance. New inertial 

rate sensors are also being developed which promise to sig- 

nificantly lower the production cost o f  rate stabilized 

platforms. The relative performance capability inherent in 

the two types of systems has not yet been rigorously treated. 

This subject is of interest now due to the increasingimpor- 

tance of LOS stabilization in missile seekers and the cost/ 

performance trade studies that must be performed to select 

the more optimal of the two stabilization concepts for a 

particular application. 

This paper develops the system models necessary to 

evaluate the LOS stabilizationperformance for either concept. 

These models are presented in detail for each concept to 

provide an understanding of the basic physical phenomena 

which determines the LOS stabilization performance achiev- 

able with each concept. Since the basic LOS stabilization 

models are developed in a linear fashion, the extension to 

the nonlinear case is also included as are techniques for 

determining system performance. To demonstrate the validity 

of the models derived, a case study is presented covering 

both momentum and rate stabilized systems which is verified 

withsimulation results. The primary value of this paper lies 

in the model derivation and t he  detailed presentation o f  

these models which provides insight into the relationship o f  

the system parameters with the techniques necessary to pred%zt 
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LOS s t a b i l i z a t i o n  performance f o r  both rate and momentum 

s t a b i l i z e d  platforms . 



2.0 THEORY 

2.1 Stabilization System Description 

The two basic concepts available for achieving LOS 

stabilization are momentum stabilization and rate stabili- 

za t ion .  Generally, both systems can be implemented with a 

two-degree-of-freedom gimbal platform which provides LOS 

stabilization about the two axes orthogonal to the LOS. 

Momentum stabilization i s  accomplished through the use of al  

large spinning wheel supported in two gimbals. Since the 

angular momentum vector possessed by the spinning wheel tends 

to remain f i xed  in inertial space unless external torques are .  

applied, LOS stabilization is achieved. A rate stabilized 

platform utilizes two rate (or rate integrating) gyros 

mounted on the inner gimbal with their input axes orthogonal 

to the LOS to stabilize the LOS in inertial space. The 

primary control problem is not that of commanding the plat- 

form LOS but rather that of minimizing the LOS motion induced 

by undesired torques. This paper, then,  is concerned with 

deriving the models necessary to demonstrate the effect o f  

the system parameters on the degree o f  LOS isolation achieved. 



5 

A two-degree-of-freedom gimbal p la t fo rm w i l l  repre-  

sent a general case f o r  e i t h e r  system. A ske tch  of  an  o u t e r  

p i t ch ,  i n n e r  yaw gimbal pla t form i s  presented i n  Figure  1. 

A sepa ra t e ,  or thogonal  s e t  of  coord ina tes  a r e  a s s o c i a t e d  

with both t h e  inne r  and o u t e r  gimbals, t h e  base, and i n e r -  

t i a l  space.  These are i d e n t i f i e d  w i t h  t h e  s u b s c r i p t s  I G ,  

OG, B, and I re spec t ive ly .  Subsc r ip t s  w i l l  be used t o  

i d e n t i f y  t h e  measured parameter and reference frame, L e e ,  

yIG/OG refers t o  t h e  i n n e r  gimbal yaw angle  measured rela- 

t i v e  t o  the  o u t e r  gimbal r e f e rence  frame. Zero r e l a t i v e  

gimbal angles  are def ined as occur r ing  when xIG, XOG, XB 

a r e  co inc iden t ,  

The gimbal ske tch  i s  gene ra l  i n  that  i t  a p p l i e s  t o  

e i t h e r  s t a b i l i z a t i o n  method def ined e a r l i e r  as does t h e  

primary dis tu rbance  source which i s  t h e  a i r c r a f t  environ- 

ment. More s p e c i f i c a l l y ,  t h e  components of  l i n e a r  v i b r a t i o n  

(acceleration) orthogonal  t o  t h e  gimbal r o t a t i o n a l  axes 

couple i n t o  LOS motion through t h e  appropr i a t e  gimbal mass 

unbalance, whi le  angular  v i b r a t i o n  couples i n t o  LOS motion 

through the f r i c t i o n  and compliance a s soc ia t ed  wi th  each 

gimbal. Thus, t h e  two most s ign i f i . can t  performance i n d i c e s  

f o r  a LOS s t a b i l i z a t i o n  system a r e  t he  torque d i s tu rbance  

rejection (TDR) r a t i o  and t h e  angular dis tu rbance  (ADR) 

r a t i o .  The TDR r a t i o  i s  defined as t h e  ratio of LOS motion 

t o  torque dis tu rbance  and the ADR r a t i o  i s  def ined as t h e  

r a t i o  of LOS motion t o  t h e  angular  r a t e  of  an ad jacen t  gimbal. 



er Gimbal 
(OG) 
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Figure 1. 2-DOF Gimbal Platform 



2.2 System Equations and Solution 

The dynamic equations are fully derived in Appendix 

5.1 from Newton's second law for angular motion. These 

equations represent the general case for LOS stabilized plat- 

forms since the defining system equations for 'rate stabilized 

systems may be derived from the momentum solution by setting 

the angular momentum term equal to zero and adding an addit- 

ional damping term to include the effects of rate gyro 

feedback. 

From Appendix 5.1, the defining equations for 3 momen- 

tum stabilized platform including the linear and angular 

environments are: 

CT = JoeoC + H (cos Y I G )  YIG 
OG - - - 

where : 

= sum of the external torques about the 
Inner gimbal rotational axis 

=. sum of the external torques about the 
outer gimbal rotational axts 

= inner /outer  gimbal inertias about their 
respective rotational a x i s  

= inner/outer gimbal friction coefficient 



K ~ ~ / K ~ ~  = inner/outer gimbal spring constant 

*DI/~DO = inner/outer gimbal mass unbalance torques 

H = angular momentum of spinnlng wheel 

and all angular motion terms conform to the notation prev- 

iously defined.  These equations are represented in block 

diagram form in Figure 2. 

The system equations may be more conveniently 

expressed using state notation employing the following 

definitions: 

The angular disturbance rate inputs 

rates using Euler transformation as: 

are formed 

where eOGiBJ L the Eu ler pitch a 

from t 

nd yaw 

phe body 

transformations: 





 hen the defining s tab i l i za t ion  equations may be written in 

the conventional format: 

x(t) =[~]z(t) +[~]u(t) 



These equations have been solved by calculating the 

resolvent matr ix  ([@(s)])and assuming zero i n l t i a l  conditions 

which y i e l d  a solution i n  the frequency domain of the form: 

That is, 

[(s-e)s2-fs] FI/JI - [cs ( 8 - e )  - f c ] 
d s * ~ ~ / 3 ~  - cds 

[s (s-a) - c]FO/JO - [ ( s - a )  (s-e)s+ bds * c (s-e) 1 



where : 
4 

IsC11-CAI1 = s + ( - e - a ) s 3  + (ae - f - bd - c ) s  
2 

+ (af + c e ) s  + cf 

The above solution d e f i n e s  the t o t a l  disturbance 

rejection performance for momentum s t a b i l i z e d  systems. 

S e t t i n g  the momentum term equal to zero defines t h e  inherent 

stabilization achievable with a rate s t a b i l i z e d  s y s t e m  bu t  

does not include the e f f e c t s  of t h e  electronic compensation 

involved. The effects of t h e  rate s t a b i l i z e d  system servo 

loop w i l l  be inc luded  later and shown t o  establish LOS sta- 

bilization performance within the bandwidth of the .closed 

ra te  gyro loops.  

2.3 Momentum S t a b i l i z e d  Pla t form Disturbance Model 

As will be discussed l a te r ,  stabilization performance 

i s  generally eva lua ted  i n  the  frequency domain. To obtain an 

understanding of the parameters affecting the disturbance 

r e j ec t ion  responses, t h e  disturbance inputs w i l l  be t r e a t e d  



individually. 

From the general model solution (equation 2), the 

torque disturbance rejection response (TDR) of the yaw axis 

to inner gimbal mass unbalance torques is: 

which may be plotted as shown in the following ske tch .  The 

low frequency region approaching zero has not been repre- 

sented, because it is not generally of interest in deter- 

mining stabilization jitter. Also, t h e  cosine term in t h e  

above transfer function is treated as a constant in the 

following discussion in order to linearize the results and 

is usually set to unity except in the cases where it has a 

s i g n i f i  

*O =I 
cant impact on the r e s u l t s .  

i b  

'4 
MS/I - 

TDI 

! 

H 

&x PoJI I r & W 

I 
I 
I 
I 
I 
I 

2 
8 



As may be noted from the sketch, the disturbance 

r e j e c t i o n  c a p a b i l i t y  of the  yaw axis to inner gimbal mass 

unbalance torques is determined by different gimbal para- 

meters depending on which of  t h e s e  frequency r eg ions  t h e  

disturbance occurs wi thin .  For rea l  frequencies, w ( s = J w ) ,  

less than the spring constant -inertia break of the outer gimbal,  

the TDR response is given by ~LOS/ I -  KWO/~*. ,, /G and, 

TDI - ,2' Jo 
for w greater than the wire torque-inertia break of t h e  

outer gimbal and less than  the loop bandwidth, 

For frequencies outside the loop bandwidth, 

These same results may be obta ined from the original TDR 

transfer function with appropriate small and large frequency 

approximations. For example, at small frequencies, the 

angular momentum term in t h e  denominator is dominant, so, 

and for mid-range frequencies, the s2 term is dominant in 

the numerator and the s4, s3, and H ~ S ~  terms predominant in 



the denominator y ie ld ing ,  

which with increasing w,  reduces t o  

Thus, wi th in  t h e  loop bandwidth t h e  degree of s t a b i l i z a t i o n  

i s  p r i m a r i l y  determined by t h e  square of t he  angular  momentum, 

while ou t s ide  t h e  loop bandwidth, t h e  disturbance rejection 

i s  wholly determined by the gimbal i n e r t i a .  The r o l l  o f f  

point of the loop, that  is ,  t h e  system bandwidth, is equal t o  

the momentum over t h e  square r o o t  of the product  of t h e  

gimbal i n e r t i a s .  T h i s  i s  a l s o  r e f e r r e d  t o  as t h e  nu t a t i on  

frequency of a momentum stabilized system. 

The p i t c h  a x i s  of the LOS responds t o  t h e  i nne r  

gimbal mass unbalance torques  with t h e  following TDR as 

reduced from t h e  genera l  s o l u t i o n  of equat ion ( 2 ) .  

Which  lotted as a func t ion  of frequency g ives :  



The small and large frequency approximation may be made with 

the same assumptions used for the inner gimbal TDR. 

The pitch axis disturbance rejection to inner gimbal mass 

unbalance torques is determined primarily by the angular 

momentum term. It should be noted that the inner gimbal has 

poor dc torque disturbance rejection. 

Since the model is symmetrical, the yaw and pitch TDR 

responses to outer gimbal mass unbalance torques are the same 

as the pitch and yaw gimbal responses to inner gimbal mass 

unbalance torques with appropriate parameter changes. These 

responses are written as follows from the general model: 



COS 

The related sketches and low frequency approximations made 

f o r  the i nne r  gimbal mass uhbalance torques also apply to the 

ou te r  gimbal mass unbalance TDR responses. 

The yaw angular disturbance rejectlon response (ADRy)  

determines the amount of LOS motion due to body induced 

angular rates about the inner gimbal r o t a t i o n a l  axis. The 

inner gimbal ADRy response may be reduced from the general 

model as,  



which may be p l o t t e d  as, 

The: same assumptions employed to obtain the low and high 

frequency approximations of the TDR responses may also be 

used here. That is, at low frequencies the momentum squared 

term in the denominator may be considered the dominate term 

and at higher frequencies, the fourth-order, third-order, 

and second-order s terms in the denominator are the signif- 

icant terns along with the third-order term in the numerator. 

These assumptions yield the following approximations from 

which the ADRy sketch was plotted. 



Thus, the disturbance rejection capability is dependent upon 

the square of the angular momentum at frequencies within the 

natural frequency of the gimbal system, while at frequencies 

greater than this, the rejection is inversely proportional to 

the inner gimbal inertia. The sketch also shows that the 

angular disturbance couples through the spring constant at 

low frequencies and through the gimbal frictlon at higher 

frequencies. 

The pitch axis response to yaw (inner) gimbal angular 

disturbance inputs may be written from the general solution 

as:  

and sketched as a function of w .  
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U t i l i z i n g  the low and high frequency approximations used for 

the yaw axis ADR approximations, the pitch axis ADR may be 

represented Prom equatlon (7) as: 

I n  this case the primary disturbance rejectlon is provided by 

the angular momentum. The angular motion is shown to be 

coupling through the inner gimbal spring constant term at low 

frequencies, through the inner gimbal friction at the mid- 

frequency range, and through the angular momentum a t  high 

frequencies where it is attenuated by the product of the 

inertias. 

The angular disturbance rejection responses .due to 

body rates about the outer gimbal rotational axis are of the 

same form as the gimbal system responses to body r a t e s  about 

t he  i n n e r  gimbal yaw a x i s  just presented. These have been 

reduced from the general solution to be 



The sketches and approximate responses derived for the 

inner gimbal ' angular disturbance (+OGII) also apply here with 

appropriate parameter changes. 

The last primary disturbance input to be considered 

is roll angular rates of the outer gimbal. The LOS pitch 

motion induced by this disturbance may be reduced from 

equation (2) as: 

which as a function of frequency is, 



and may be approximated as follows: 

I 
Jo - s2nY e~os/r  . - z s  

H* 
COS 

2 3 
K K 
W3: wo y ~ ~ S  m 

Thus, at frequencies greater than the loop natural frequency, 

roll motion couples directly into pitch LOS motion through 

the sine of 'the inner gimbal angle. 

The yaw a x i s  response to outer gimbal roll motion is 

represented by 

which as a function of frequency looks like, 



AT- 

and may be written as 

Then the yaw axis does have more attenuation due to t h e  

angular momentum t o  t h i s  particular i npu t  than the p i t c h  

axis. 



2.4 Rate Stabilized Platform Disturbance Models 

As mentioned previously, the momentum stabilized 

platform dynamics define the general case from which the 

rate stabilization dynamics may be derived by setting the 

angularmomentum term equal to zero. While this does give 

the solution, considering only the gimbal physical parameters, 

it does not account for the effects cf the loop closed 

through the ra te  gyro and associated electronics. An 

additional term representing this loop must be included in 

the defining dynamic equations which for the rate stabilized 

platform (i.e., H=O) become: 

where GI(s) and Go(s) represent the inner and outer gimbal 

rate gyros and associated servo compensation as shown In 

Figure 3. The general solution presented in equation (2) 

requires the redefinition of ' a t  as a = - (FI + GI(s))/JI 

and ' e l  as e= - (Fo+Go(s)cos\YIG/OG )/JO and the addition of 
- GO ( s  ) (sinyIG/oG )QoGII to bZ5 in the general state equation 

definition. This addition requires adding -[(s-a) s2 - 
csl G0(s) sinlIG/OG and -[s(s-a) -c] Go(s) to $25 

and $45 respectively in the general solution (2) which along 

with setting H to zero modifies the solution for ra te  

stabilized platforms. 





The d i s tu rbance  r e j e c t i o n  s o l u t i o n s  w i l l  be examined 

in deta i l  for the  r a t e  stabilized pla t form.  I n  d o i n g t h i s ,  

it i s  d e s i r a b l e  toapproximate  t h e  rate gyro and servo elec- 

tronics (GI(s) and Go(s) with  i t s  most s ign i f i c3an tp rame te r s .  

For the fo l lowing d i scuss ion ,  G I ( s )  and Go(s) w i l l  be approx- 

imated by K ( l  + s/w,)/s where K i s  the ga in  term as soc ia t ed  

with GI(s) and G o ( s )  when w r i t t e n  i n  the normalized form. 

T h i s  i s  gene ra l ly  v a l i d  f o r  t h e  fo l lowing reasons:  

1. Integral compensation i s  necessary t o  provide 

reasonable low frequency d i s tu rbance  r e j e c t i o n .  The assoc- 

i a t e d  l ead  term i s  r equ i r ed  t o  provide a s t a b l e  loop and i s  

included for completeness. 

2. Any a d d i t i o n a l  shaping wi th in  the loop bandwidth 

is  geherally done t o  inc rease  low and mid-frequency ga in ,  

t h a t  i s ,  employing a lag-lead c i r c u i t  a t  these f requenc ies  

commonly r e f e r r e d  t o  as an i n t e g r a t i n g  d ipo le .  T h i s  addi-  

t i o n a l  shaping can be easily incorpora ted  i n t o  the s o l u t i o n  

l a te r  . 
Y 

3.  The high frequency po le s ,  due t o  t h e  r a t e  gyro 

and any noise  f i l t e r s ,  have a minimum e f f e c t  on t h e  d i s t u r -  

bance r e j e c t i o n  responses.  

4 .  Any l ead  shaping a f t e r  t h e  loop bandwidth 

a f f e c t s  t h e  amount of c losed  loop peaking which i s  not being 

considered i n  t h i s  type s o l u t i o n .  

Modifying equat ion ( 2 )  t o  r e f l e c t  the  specia l  case of a rate 

s t a b i l i z e d  pla t form,  t h e  yaw axis  TDR i s  reduced as 



Substituting G ( s )  = K ( 1  + s/w~)/s, gives 

which may be plo t ted  as,  

As seen from the sketch, low frequency disturbance rejection 

i s  provided primarily by the open loop gain (K) excluding the 

load since the gain is generally much larger than the gimbal 

compliance ( K W I )  Without an integrator in the servo compen- 

sation, however, the low frequency disturbance rejection 

would be determined by just the gimbal compliance. At 

frequencies outside the loop bandwidth a .J"T 9 

disturbance rejection 1s entirely dependent upon the glmbal 

inertia. 



The low frequency gain term map be increased further 

by the addition o f  an integrating dipole to the servo 

1 3. S / W ~  compensation, iee*, , , where w 2  < w 
1' 

The additLon " @2 
of this shaping requires that K be increased by w1/u2 which 

changes the l o w  frequency response to: 

assuming K < < K. 
WI: 

The asymptotic frequency response is, 

20 LOG 

from which it may be seen that the low frequency disturbance 

rejection has been increased by the ratio w 
1 I W 2  just as the 

low frequency gain assuming K and thus K(o /w  ) > > K W I .  
1 2  

After modifying the solution in equation (2),  the 

ADR response of the yaw stabilized axis to outer gimbal yaw 

rates may be written as 



w- m 

*oc/r 

which upon substituting K + S/an) for GI(s), is 
S 

and may be p l o t t e d  as a function of frequency as, 

As shown in the plot of the yaw axis ADR response, the 

angular disturbance couples i n t o  LOS motion through the 

sp r ing  constant (%I) at low frequencies and through the 

gimbal friction (PI) at higher frequencies as was the case 

with the momentum stabilized platform ADR (equations 6 and 

7). The disturbance a t t enua t i on  i s  determined by t h e  open 

loop gain (K) excluding the load at frequencies wi th in  the 



loop bandwidth / and by the gimbal iner t ia  at 

frequencies g r e a t e r  than t h e  loop bandwidth. 

With the  a d d i t i o n  of  an i n t e g r a t i n g  d l p o l e  

1 + s/wl 

1: + s / w 2  
, where w < o the ADR becomes: 2 la 

Here the d ipo l e  a l s o  increases t h e  low frequency gain and 

thus  t h e  low frequency angular  disturbance r e j e c t i o n  capa- 

b i l i t y .  

R o l l  angu la r  rates of t h e  o u t e r  gimbal couple only 

into p i t c h  motion of the LOS as may be observed from Figure 

3 o r  t he  g e n e r a l  s o l u t i o n .  The ADR for the rate s t a b i l i z e d  

system to r o l l  disturbance i n p u t s  may be d e r i v e d  from 

equat ion ( 2 )  as 



or letting GI(s) = K ( l  + s/w )/s become, n 

which p l o t s  as  shown below recognizing that  K > > KWO 

2 0  LOG [@LOS/I I 
,,/I 

With the a d d i t i o n  of vn integrating dipole, (1 + S/W 1) 

(1 + s/w * )  
(02 < ul), this ADR is, 



Both sketches show that below the loop bandwidth ~~~~y r,,,, 
attenuation to roll disturbance inputs is provided by the 

electronic gain of the servo loop, either K or %K depending 
@2 

on whether or not an integrating dipole is employed in the 

servo loop compensation. However, at frequencies greater 

than the loop bandwidth, roll disturbance rates couple into 

pitch LOS rate through the sine of the inner gimbal angle. 

There exists no inertia attenuation as in the cases of the 

inner gimbal mass unbalance disturbances and the pitch and 

yaw angular disturbances since the roll disturbance rate 

does not enter about a stabilized axis. This i s  also true 

for the pitch axis response to roll inputs in a momentum 

stabilized system, equation (9). 

2.5 Secondary Disturbance Sources and 
Primary Nonlinearities 

The analysi's thus far has derived the disturbance 

models for the environmental inputs which are the primary 

sources of stabilization error. For completeness, the 

secondary disturbance sources will be mentioned herein. 

The system nonlinearities, however, may have a significant 

impact upon the models which have been developed and a 

technique for evaluating these effects will also be presented. 

The principal secondary disturbance sources are gyro 

noise in rate -stabilized systems and magnetically induced 



torques in momentum stabilized systems 121. Since the 

predominant components o f  gyro noise occur at hlgh frequen- 

cies relative to the system bandwidth [3], the noise induced 

LOS motion is not usually high. However, there can be a 

significant effect  on the torque motor form factor in-terms 

of excessive heating. Gyro noise effects may be predicted 

with the same techniques applied previously to derive the 

environmental disturbance models. Momentum stabilized 

platforms respond to magnetically induced torques with a low 

frequency drift rate which is not of primary concern here. 

The most significant nonlinearity is coulomb friction 

which impacts both stabilization concepts. Coulomb friction 

i s  def ined  as a constant retarding torque independent of the 

relative gimbal rate as opposed to viscous f r i c t i o n  which is 

directly proportional to the relative gimbal rate. Since 

coulomb friction is the predominant friction present, and as 

noted earlier, the angular vibration environment couples into 

LOS motion through the gimbal friction and .spring constant,, 

it is necessary to include this nonlinearity in the disturb- 

ance models. 

Coulomb friction i s  generally represented with a 

bang-bang function, i.e., 

where TF = friction torque 

FC = friction amplitude 



For some environments, the coulomb friction effect may be 

adequately linearized to allow use of linear disturbance 

models. Considering a line spectra disturbance with a single 

frequency predominating, the output of the coulomb friction 

model will be a square wave of the same frequency as the 

input. This square wave may be treated as a torque disturb- 

ance input and may be approximated sinusoidally by the first 

term of its Fourier expansion as: 

.TF = (4.FC/") sin (2rfct) 

where fc is the predominant frequency of the input environ- 

ment (yOGII 4 .  The frequency of the input environment is 

used as opposed to the relative gimbal rate ('kIGIOG ) fre- 

quency since the gimbal inertial rate should be small 

in comparison to the input environment if the system is 

stabilized. This approximation may now be used in conjunc- 

tion with the TDR ratio as described in the next section. 

2.6 Performance Determination 

Determining the environmentally induced LOS jitter 

basically entails combining the input environment with the 

appropriate disturbance rejection response. The manner in 

which this is done depends on the input environment spectral 

type  

1. Continuous Spectra -- If the input environment 
is represented with a continuous (random) spectra, the 

amount of LOS motion may be calculated by, 



where = Stabilization Error 

DRR(f) = The disturbance rejection ratio for D(f)  

D ( f )  = Input environment power spectral density 

Then the total stabilization error is the root 'sum .square 

total o f . t h e  errors created from each  disturbance input, i.e., 

2. L i n e  Spectra -- If the input environment is 
represented with a line spectra, i.e., a finite sum of 

sinusoids, the LOS motion may be calculated from 

where ~i = Stabilization Error 

D ( f j  ) - Input environment at frequency fj 
DDR(fj) = The disturbance r e j e c t i o n  r a t i o  a t  frequen.cy f 

j 

and the t o t a l  LOS error  is also 

This assumes that the line spectra is phase independent. 



3.0 CASE STUDY 

3.1 System Definition 

To demonstrate the disturbance models and coulomb 

friction approximation presented in Section 2, representa- 

tive momentum and rate stabilization systems were chosen for 

analysis. Both systems have been designed for deployment as 

seekers on the same missile and thus have the same form 

factor and requirements. These momentum and rate stabilized 

platforms are presented in block dlagram form in Figures 4 

and 5. Only the inner gimbal is represented for the rate 

stabilized platform since there is no cross-coupling effects 

to consider in the rate stabilized model and the outer gimbal 

followsthe same relationship as the inner gimbal. 

- 3.2 Model Verification 

The actual disturbance rejection responses have been 

calculated based on the linear models of Figures 4 and 5 

using a block diagram reduction program, ACAP (Automatic 

Control Analysis ~rogram)[5] which 's available on the 

Martin Marietta Aerospace computer system. ACAP takes input 

in the form of a block diagram, reduces the block diagram 

and calculates the roots and indicated frequency responses. 
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Figures 6 - 10 present all the disturbance rejection 
responses of the yaw (LOS) axis for a momentum stabilized 

system. This includes the TDR responses for both inner and 

outer gimbal mass unbalance torques and the ADR responses 

for outer gimbal yaw, body pitch, and body roll rates. The 

asymptotes plotted with these curves were calculated from 

approximations used in the disturbance models of Section 2.3. 

The model derived asymptotes show almost exact agreement 

with the computer calculated frequency responses. 

Figures 11 and 12 present all the disturbance rejec- 

tion responses associated with the yaw LOS axis for a rate 

stabilized system. These are the TDR response to inner 

gimbal mass unbalance torques and the ADR response to outer 

gimbal roll rates. These responses also have the asymptotes 

plotted, based on the disturbance rejection modbls in Section 

2.4. The asymptotes agree with the calculated responses 

. except for 200 < w c 500 rad/sec. where the rate gyro and 

higher frequency poles enter but the difference is not 

great (- 5 db). 

To evaluate the validity of the coulomb friction 

approximation made in Section 2.5, a nonlinear simulation of 

the rate stabilized platform was programmed, based on the 

block diagram of Figure 5, A 10 Hz outer gimbal yaw motion 

was the disturbance input and the resulting yaw LOS motion 

is plotted in Figure 13. The results show a yaw LOS motion 

of 0.184 milliradian zero-to-peak. Using the approximation 



















of Section 2.5 and Figure 11, the yaw gimbal TDR response, 

the approximated value is 0.226 milliradian of motion. The 

approximation then is somewhat conservative, being 23 per 

cent higher than the value arrived at by simulation. The 

approximation ls valid enough to be useful considering it 

does not require a nonlinear simulation. 

3.3 Stabilization Performance 

To compare the performance of the two stabilization 

systems, a simplified helicopter environment will be assumed. 

This is a line spectra environment consisting of a linear 

vibration environment of 2 . g t s  zero-to-peak at 11, 22, and 

33 Hz and roll, pitch, and yaw angular vibration environments 
YP - 

of 2.0.milliradians/sec. zero-to-peak at 11 Hz. The gimbals 

are all assumed to be balanced to .05 in-oz/g and the coulomb 

and viscous (linear) friction terms are assumed to be equal. 

Since this is a line spectra environment, equation 

(16) applies. Using this equation with the above environment 

and the disturbance rejection responses of Section 3.2, the 

stabilization accuracy has been calculated for both systems 

and is presented in TABLE 1. 

The momentum stabilized platform has the lower LOS 

motion by a factor of 2.7 over the rate stabilized system. 

It should be noted from the disturbance rejection curves that 

this result is dependent upon the frequency content of the 

environment. A lower frequency environment would cause the 



opposite to be true. 

TABLE 1 also shows that coulomb friction is the 

largest contributor to LOS motion. Even assuming equal 

coulomb and viscous friction components, the coulomb friction 

effect was s t i l l  two orders of magnitude greater than that of 

the viscous friction. The difference in coulomb friction 

between the two stabilization examples also accounts for most 

of the difference in stabilization performance ,of the two 

systems. If the coulomb frictions were equal, the momentum 

stabilized platform would provide less LOS motion in this 

envirbment by a factor of 1.5 over the rate stabilized 

system instead of 2.7. 

TABLEl--Inner Gimbal Stabilization Accuracy 
J.- 

Disturbance Source Yaw LOS Motion 
t 

Inner Gimbal Mass Unbalance 
Torques 

Outer Gimbal Mass Unbalance 
Torques 

Yaw Outer Gimbal Rates 

Pitch Body Rates 

Roll Body Rates 

Inner Gimbal Coulomb Friction 

Outer Wmbal CouLonb Friction 

RSS Total 

Momentum System Rate System 

2.8 prad 

8.04 prad 

.063 urad 

0.134 prad 

1.0 prad 

15.7 prad 

82.0 prad 

85.2 prad 

11.6 prad 

. . . . .  
0.53 prad 

. . . . .  

. . . . .  
226. prad 

. . . . .  
226.3 prad 



4.0 SUMMARY AND CONCLUSIONS 

An environmental disturbance model has been derived 

for the general stabilization case which applies directly 

to momentum stabilized platforms. From this general model, 

the rate stabilized platform solution was also derived. 

The linear disturbance rejection models were presented in 

detail for each dksturbance input and explicitly identified 

the contribution of the various system parameters to 

disturbance rejection. This detailed presentation also 

provided asymptotic approximations which allow the system 

performance to be initially evaluated without a detailed 

simulation. A method for predicting stabilization per- 

formance based on these disturbance models was introduced 

and appropriately modified to include the significant 

system nonlinearities. 

To demonstrate these techniqu~ and the validity 

o f  the model derived asymptotic approximations, a case 

study was conducted on equivalent momentum and rate sta- 

bilized systems. The disturbance models were shown to be 

accurate representations by evaluating the original system 

equations with the aid of a computer block diagram reduc- 

tion program. A nonlinear simulation of the rate stabilized 

platform was programmed and confirmed that the linear 

50 



approximation af t h e  most s i g n i f i c a n t  non l inear i ty ,  

coulomb f r i c t i o n ,  t o  be accura te  wi th in  23 percent .  Using 

a simplified he l i cop t e r  environment t o  compare t h e  r a t e  

and momentum s t a b i l i z e d  platform performance showed t h e  

systems t o  be near ly  equal within a f a c t o r  of 2.7 i n  o v e r a l l  

LOS motion. As noted i n  t h e  t e x t ,  s t a b i l i z a t i o n  perform- 

ance 1s s t rongly  a funct ion of t h e  frequency content of t h e  

environment. 

I n  general, the momentum system s t a b i l i z e d  sys tems  

r e j e c t i o n  i s  inverse ly  propor t ional  t o  a funct ion  of t h e  

angular momentum of  i t s  spinning mass a t  frequenc.ies l e s s  

than t h e  system natural frequency. For dis turbances cou- 

p l ing  directly Snto the inner  gimbal, and hence the LOS, 

the r e j e c t i o n  capab i l i t y  i s  inverse ly  propor t ional  t o  the  

square of the For dis turbances coupling 

from the  oute inner  i n d i r e c t l y  through 

the momentum, t h e  dis turbance r e j e c t i o n  i s  inverse ly  pro- 

por t iona l  t o  t h e  momentum. A t  f requencies  higher than t h e  

system n a t u r a l  frequency, disturbznce a t t enua t ion  is deter -  

mined s o l e l y  by t h e  system i n e r t i a s  except i n  t h e  case of 

a r o l l  dis turbance input .  

The r a t e  s t a b i l i z e d  system disturbance r e j e c t i o n  

capabil i ty  is determined p r i m a r i l y  by t h e  open servo loop 

gain excluding t h e  load. A t  f requencies  wi th in  t h e  system 

bandwidth, t h e  disturbance r e j e c t i o n  response is inverse ly  

prop~*bional t o  the gain. A t  higher f requencies ,  a l l  t h e  
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disturbance rejection, except for the roll disturbance b 

inputs, is provided by the gimbal inertia. The low fre- 

quency electronic gain may be increased through the 

utilization of appropriate shaping networks as was shown in 

Section 2.4. However, once the loop bandwidth is fixed, 

which is usually done by the selection of the rate sensor, 

it can be easily shown from the open loop frequency 

response that the achievable electronic loop gain is a 

direct function o f  gimbal inertia. Therefore, any overall 

improvement in disturbance rejection response at all fre- 

quencies requires an increase in inertia. Neither 

stabilization system provides any rejection of roll rates 

entering the outer gimbal at frequencies greater than the 

system natural frequency. Since this disturbance occurs 

about an unstabilized axis, there is no attenuation pro- 

vided by the gimbal inertia. 

The models presented in this paper yield both an 

understanding of momentum and rate stabilized platforms 

and the techniques necessary to determine stabilization 

performance. The relationships of the gimbal parameters 

and electronic compensation to stabilization performance 

that were drawn from the models provide a useful design tool 

in the early stages of mechanical and electrical trade off 

studies. Since the models were also shown to be adaptable 

t o  the inclusion of the significant nonlinearities, they 

mag also be employed to analyze performance saving the cost  



and t i m e  required to implement detailed computer simu- 

lations. 



.5 .0  APPENDIX 

5.1 Momentum Stabilization 
bnamic Bauation Derivation 

The dynamic equations for the 2-DOF momentum 

stabilized platform may be derived from Newton's second 

law for angular motion C61, which states that the sum of 

the external torques (CTEXT) acting upon a body is equal to 

the time rate of change of its angular momentum, i.e., 

- 
where H = t o t a l  angular momentum 

dE/dt = time derivative of H with respect to the 

Inertial frame 

alf/at = time derivative of H with respect to the 

moving frame 
0 

w = inertial angular velocity of moving frame 

Assuming that the inner and outer gimbal principle axes 

are aligned with their respective coordinate frames which 

are identified here with subscripts I and 0, the inner 

gimbal angular momentum can be expressed as, 

where Ha is the spinning wheel angular momentum, and J 
1x3 



J x ~  an8 JIZ are the inner gimbal moments of inertia. The 

inertial angular velocity of the inner gimbal is expressed 

Similarly, the outer gimbal angular momentum may be 

expressed as, 

with 

Noting from Figure 1, the following relationships 

The two torque equations may be written as, 

which using the following transformations, 



. and assuming t h a t  t h e  product terms such as BIG/IHIG/I and 

the quantity (JIX - JIy) are negligible, t h e  above expres- 

slons simplify to: 

These are the basic equations of motion for a 2- 

DOP stabilized platform. To these equations, can be added 

the external disturbance torques coupling through gimbal 

mass unbalance, friction, and compliance. 
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