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ABSTRACT 

INVESTIGATION OF SEQUENTIAL MACHINE DESIGN TECHNIQUES FOR 

IMPLEP.ffiNTATION OF A TRAC SCANNING ALGORITIIM 

BY 

RAYMOND F. COTTON 

This report will demonstrate the design techniques to translate 

a given scanning algorithm into a hardwired pre-processor. The 

language to be ''pre-processed" is TRAC (Text Reckoning and Compiling) 

devised by Mooers and Deutsch. 

The major drawback in the current implementation of TRAC is 

speed. The software overhead required for string manipulations and 

execution of the input scanning algorithm is the major degrading 

factor. A TRAC machine consisting of a hardwired pre-processor to 

scan the input and produce formatted data for a stack oriented 

evaluator is proposed. 

The control machine for the input scanning algorithm for the 

pre-processor is designed using various sequential machine design 

techniques. 

The one-hot code and the minimum state variable design represent 

the two extremes which are presented. 

/ 
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INTRODUCTION 

A class of hardware/software trades which is of partic~lar 
~ 

interest is the SRecialized system. One such specialized machine is 

the machine which is optimized to execute programs written in a higher 

level language. Such a machine is described in this paper. The higher 

language is TRAC.l This machine will offer a hardwired pre-p~o~essor 

plus an architecture which is tailored to provide specialized run time 

support for the functions provided by the language. 

The intent of this report is to give insight into the pre-processor 

design. This will be given by demonstrating the techniques and steps 

required in the design of the state control machine. This control 

machine is the segment of sequential logic that controls the state 

sequence of the machine and the various support registers, counters, 

etc., as well as controlling the data flow. The techniques presented 

are not intended as the complete design, but only to take that one step 

further from concept to implementation. 

The constraints of this report are that portions of the pre-

processor, such a~ the interrupt and data transfer sequences will be 

generalized and presented as plausible concepts for eventual implementa-

tion i~ e future system. 

Furthermore, certain aspects of the TRAC language such as diag-

nostics, error recovery, invalid statements, etc., will not be covered. 

lThe name TRAC is a trademark for a specific text-handling 
language ~hat was developed and is being maintained by the Rockford 
Research Institute Inc., Cambridge, Mass. 
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CHAPTER I 

SYSTEM OVERVIEW: TRAC LANGUAGE 

In the TRAC language, one can write procedures for accepting, 

naming and storing any character string from the source; for modifying 

any string in any way; for treating any string at any time as an 
... 

executable procedure, or as a name, or as a text; and for printing 

out any string. The TRAC language is based upon an extension and 

generalization to character strings of the programming concept of the 

''macro." Through the ability of TRAC to accept and store definitions 

of procedures, the capabilities of the language can be indefinitely 

extended. TRAC can handle iterative and recursive procedures, and 

can deal with character strings, integers and Boolean vector 

variables. (1) 

The advantage of the TRAC language is that it provides (i) high 

capability in dealing with back-and-forth communications between an 

operator at a terminal and the machine, so as to allow him to make 

insertions and interventions during the running of his work; (ii) max-

imUm versat~lity in the definition and performance of any well-defined 

procedure on text; (iii) ability to define, store and subsequently use 

such procedures to extend the capabilities of the language; and finally 

(iv) maximum clarity in the language chosen. (1) 

A TRAC string may contain a substring enclosed by a matching pair 

of parentheses, such as (···)where the dots indicate a string. The 

matching parentheses indicate the scope of some particular action. 

·. 
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There are three cases, represented by 1(•••), II(•••) and (•••). The 

first two formats indicate the presence of a TRAC "primitive f\D\ction." 

The format I(···) denotes an "active function," while the format 

If(···) denotes a "neutral f\Dlction." This distinction is clarified 

below. The strin~ interior to either kind of function is generally 

divided into substrings by commas as in 1(-,-,~) where these substrings 

constitute the arguments of the function. Parentheses in the ·format 

(·•·) have roughly the same role as paired quotation marks, and, in 

particular, whatever string is inside the paired parentheses is 

protected from functional evaluation. 

TRAC strings are dealt with by the pre-processor according to a 

scanning algorithm which works from left to right and obtains the 

evaluation of nested expressions from inside outward. In the 

expression 

:•c .•c 
4 3 

• • I( j , II( ) )) 

1 2 

the functions are evaluated in the order indicated. As each function 

is evaluated by the system, it is replaced in the TRAC string by the 

string which is its value. The evaluation of an active function is 

followed directly by the evaluation of any function in its value 

string not protected by matched parentheses. The value string of a 

neutral function is not further evaluated. 

· Currently TRAC expressions are scanned and evaluated by a soft­

ware algorithm. At the begining, the unevaluated strings are in the 

"active string" and the "scanning pointer" points to the leftmost 

character in this string. As characte s have been treated by the . . 
scanning algorithm, they may be added to the right hand end of a 



"neutral string," which is so called because its characters have been 

fully treated by the algorithm and are thus neutral like alphebetic 

characters. Thus, in software, execution of a TRAC instruction is 

performed by scanning successive characters in the active string and 

performing certain actions depending on the character being scanned. 

Unless one of the control symbo~s is encountered, characters are 

·normally copied from the active string to the neutral string •. 

Unfortunately, the software overhead required for string 

manipulations and execution of the input scanning algorithm is quite 

prohibitive in obtaining an acceptable performance. 

4 



OIAPTER II 

TRAC I~fPLEMENTATION 

A stack oriented TRAC processor is proposed. The processor 

consists of a pre-processor and an evaluator. This division is, as 

has been stated, in the interest of upgrading performance. 

SOURCE PRE-PROCESSOR EVALUATOR . OUTPUT 

'\ 
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By keeping these two parts of the processor, the pre-processor and 

the evaluator, onceptually and physically separate, either the 

language or the evaluator primitives may be redesigned without extensive 

design changes. (2) In other words, if another language is chosen, 

only the pre-processor need to be redesigned to scan the new language 

and p ovide formatted data to the exist·ng stack oriented evaluator. 

Conversely, if the evaluator is substituted it must have a stack 

oriented replacement. Hence, only half of the TRAC processor is 

affected. 

The sta k has some rather unique properties that aid in the 

eomp·lation and evaluation of nested eYpressions. Stacks turn out to 

be a natural structure in a number of .different programming appli-



cations. In particular, stacks crop up during the evaluation of 

expressions which are nested in other expressions. Therefore stacks 

whose entries are created and deleted in a last in, first out order 

but which permit access to information below the top of th~ stack are 

useful in the implementation of the TRAC language. (3) 

The internal organization of single-address computers forces the 

6 

wasting of both programming and running time for the storage and recall 

of the intermediate results in the sequence of computation. Before 

an operation can be executed the data must be placed into the proper 

registers and memory cells, and their contents must often be completely 

rearranged before the next operation can be performed. Multi-address 

computers are constructed to make the execution of a few selected 

operations more efficient, but at the expense of building inefficiencies 

into all the rest. To overcome the limitations of their internal 

organization most conventional computers require the wasteful expen-
, 

diture of programming effort, memory capacity, and running time. 

This problem may be attacked directly by the use of "pushdown/ 

popup" stacks, which elimdnate the need for instructions to store or 

recall immediate results. The Burroughs class of machines apply the 

stack concept. (4) An addition operation could expect to find its 

two arguments in the top two registers of the operand stack an9 the 

add operator in the top of the operator stack. After execution the 

result could be placed into the top register of the operand stack. 

The source strings in the Burroughs machines are composed of 

strings of syllables. There are four types of syllables. The first 

of these, the operat~r syllable, causes operations to be performed. 

A second syllable, the literal syllable, is used for placing constants 
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in the stack to be used as operands. 

The other two syllables, the operand call and descriptor call 

syllables, address locations in a program reference table. The purpose 

-Of the operand call syllable is to place an operand in the stack. The 

purpose of the descriptor call syllable is to place the' address of an 

operand in the stack. 

In a Burroughs machine, such as the B-5000, the stack is composed 

of a pair of registers, the A and B registers, and a memory area. As 

operands are picked up by the programs by use of above mentioned 

syllables, they are placed in the A register. If the A register al­

ready contains a word of information, that word is transferred to the 

B register prior to loading the operand into the A register. If the 

B register is also occupied by information, then the word in B is 

stored in a memory area defined by an address register S. Then the 

word in A can be transferred to B and the operand brouglit into the A 

egister. The new word coming into the stack has pushed down the 

information previously held in the registers. As each pushdown occurs, 

the address in the S register is automatically increased by one. The 

information contained in the registers is the last information entered 

into the stack. The stack operates on a "last in-first out" principle. 

As information is operated on in the stack, operands are eliminated 

from the stack and results of operations are returned to the stack. 

As information in the stack is used up by operations being performed, 

it is possible to bring a word from the memory area addressed by the 

S register, and the S register is decreased by one. In this manner, 

processing of data is. accomplished without the need for instructions 

t~ store or recall intermediate results. 



The pre-processor presented in this paper generates similar type 

strings to the stack oriented evaluator. The major difference will be 

that the evaluator will contain both an operator stack and a operand 

stack. 

- ' 

8 
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QIAPTER III 

PRE-PROCESSOR DESCRIPTION 

The functional block diagram of the pre-processor shown ~n 

Figure 1 operates according to the State Transition Diagram of 

Figure 2. The pre-processor includes a control machine, an input 

buffer, a character hold register, a decoder, an encoder, two counters, 

an operator hold register, control tag lines to the system, and an 

unspecified control machine for interrupt handling and data transfer 

sequences to the evaluator. For simplicity, the complexity of the 

block diagram is kept to a minimum. 

The purpose of the pre-processo~ is to receive and scan a given 

source string and provide stack formatted data, as well as execute 

signals, to the evaluator for analysis. For nested functions the 

results are placed back into the input stream to be scanned again. The 

following is an attempt to describe the necessary control signals and 

data flow of the pre-processor. 

The signal "STEP" is generated to introduce the next cha~acter of 

the source input to the character hold register. This signal also 

transfers the information in the character register to the buffer. 

'~en the transfer is complete, both the buffer and the character 

register are decoded. The character register decode presents either 

a "control character" or an "any other character" signal to the control 

!!lachine. 

Depending upon which state the control machine is in and the 
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character decoded, various output control signals will be generated to 

·allow the pre-processor to function according to the State Diagram. 

As the operator from the input TRAC statement is . two characters, 

it is sequentially loaded into a holding register as it is scanned. 

The signals OPLOAD and SHR are for this purpose. The operator is then 

encoded and subsequently presented to the evaluator for insertion into 

an operator stack. 

' A flip-flop is set if the sequence ~~ control character dictate 

· that the function is an active function. This signal BAF is part of 

the encoding of the operator. Another flip-flop provides a similar 

function for a neutral function. 

If an argument string is to be presented to the evaluator's operand 

stack the output of the character register is transmitted to the system 

by the signal STORE. As each character is transmitted to the system an 

argument counter is being incremented for future notification to the 

evaluator via an interrupt giving the argument length. 

To prov de the quote mode, in which input strings may be protected 

from evaluation, a parentheses counter is employed. This counter is 

generally incremented for the left parenthesis control character and 

deczemented for the right parenthesis control character. The counter 

is decoded to provide an input to the control machine for a count or 

no count status. 

Prior to an interrupt sequence, a flip-flop EDONE is reset by the 

control machine. The signal En will keep the control machine in the 

interrupt state until this flip-flop is set by the evaluator. 

The signal STORER will gate to the system the encoded I control 

character. This is required for the third I control character. ~n 



example would be the sequence 

I(PS,PARTI##S67) 

A similar signal STORE CO, exists for the concatenate operator. 

This is required for the sequence 

I(PS,S671(AD,S,4)) 

11 

The buffer register is decoded for the control character comma. The 

concatenate store signal is generated if the signal I in the character 

register is not preceded by a comma. This allows the evaluator stack 

processing to concatenate arguments. 

The interrupt signals are possibly control tag signals to the 

valuator. Again, the interrupt handling and data transfer sequence 

is not described in this paper but are assumed to be a plausible 

method for presenting data and execute signals to the evaluator. 

With the functional block diagram and the desired inppt scanning 

algorithm a state sequencing diagram may be devised. 



. \ 

. . 
12 

COUNT- CONTROL 

~ c D 
E 
c 
0 
D 

CONTROL 
MACHINE SIGNALS 

H 
INPUT ---J A 
SOURCE ---y R ~ 

R 

--r 
'l 

' 

.,, 

' 
~ E 

G 
~ E 

rY•-------1~1 

B 
u 

ll F ..__--'lM, F 

y y' 
---t' 4-13 ll/1.__ __ 

FF's i\1 

J E 
r--r R 

STEr~~~~~--~' 
~----------------------~~, , 

0 0 
p p 

~ R L...__t.. R -,, 

STORE -
STORE# ... 
STORE "CO"---... 

l.---i E ~ fl' E 
G G E 
1 2 

, 
I 

N y c 
SHR • 9 ... 

OPLOAD 
l - 0 r 

D I 

E 
SET BNF.--~· BNF ~---------~-...,. 
RSTpt-- ... FF 
SET BAF BAF .,__ _ __...,( 

-

~ FF 

ARG 

INTERRUPT 1-~ 

INTERRUPT 2 -~ 

CNTR ~----------------------~, 

PAREN 
CNTR 

COUNT 

.......... : 
EDONE ' 

RESET En-... FF 

Figure 1 - Functional Block Diagram 

DATA 
TRANSFER-
INTERRUPT 
MACHINE 

.. 

. 

~ 

T 
0 

E 
v 
A 
L 
u .. 
A 
T 
0 
R 

1 SET Eo 
~ 



13 

' - .. 

I 

-;(STEP, . 
. .STDR.E1 

. ~Af4 

%f\1 
Figure 2 - S~at~ Diagram 



OIAPTER IV 

STATE DIAGRAM. DESCRIPTION 

The first requirement in the preliminary design of the pre­

processor is to model the given TRAC scanning algorithm. 

In general, the scanner-recognizer algorithm is as follows: 

1. If the string of characters begins with "I(" these two 

characters are deleted, and the two characters that follow 

are stored in an operator register. A signal BAF (begin 

active function) is generated. An operator interrupt is 

generated to present the encoded operator to the evaluator. 

When the evaluator relenquishes control the pre-processor 

returns to "NEXT CHARI" state. 

2. If the string of characters begins with "#I(" these three 

characters are deleted, and the two characters that follow 

are stored in an operator register. A signal BNF (begin 

neutral function) is generated. An operator inter1~pt is 

generated to present the encoded operator to the evaluator. 

After the evaluator has completed its task the pre-proces~or 

is notified and control returns to "NEXT OIARl" state. 

3. If the character "'" is detected in the "NEXT OIARl" state 

the machine generates an argument interrupt to the evaluator 

to indicate the ~nd of an argument. The data transfer will 

" give the length of the argument. \'/hen the interrupt is 

completed control returns to "NEXT CHARI" state. 

14 



4. If the character ")" is detected in the "NEXT OlARl" state 

and the parentheses counter is zero, two interrupts are 

given. First an argument interrupt to indicate the closing 

argument length and second, an execute interrupt to allow the 

evaluator to evaluate the specified function. 

S. If the character "(" is detected in the "NEXT OlARl" state 

and again the parentheses counter is zero, the control ·. 

machine moves to the "QUOTE" state. l'lhile in the "QUOTE" 

state and the parentheses count is not zero, all other 

characters enclosed by parentheses are transferred to the 

evaluator as an argument string. Only when the parentheses 

counter is decrimented to zero does control return to the 

"TEST OIARl" state. 

6. All noncontrol characters "A" are transferred to the evaluator 

by a command "STORE." As each character is transferred, an 

argument counter is incremented. 

7. If the character "I" is detected and the preceding character 

is not a "'" a concatenate signal and operator interrupt is 

generated. This is required when active or neutral functions 

are nested within an argument. 

lS 

The object of the pre-processor is to delete all control ·characters 

to present the operators to the evaluator for storage in an OP stack, 

and to present all operands to the evaluator for insertion into an 

operand stack. The signals BAF and BNF are used to identify the type 

of function. Upon detection of a closing parenthesis the function is 

evaluated by the evaluator. The results may or may not be inserted 

back into the input string. 



16 

The State Diagram is shown in Figure 2. The State Di_agram represents 

the state transitions and output signals required to implement the given 

scanning algorithm. Careful examination of the state transitions will 

show subtleties not easily described above. For further insight an 

example of the language is the string 

I(EQ,I(CL,C),##(CL,I(CL,B)),(WOW),(I#(CL,C))) 

.. NAME OF FORM 

A 
B 
c 
AB 

·vALUE 

I(CL,B) 
I(CL,C) 
I(CL,AB) 
A 

The pre-processor will cause EqA and cLA to be stored in the 

operator stack, and C in the operand stack. The first closing parenthesis 

will result in the system evaluating the active function CL,C. As a 

result, I(CL,AB) will be placed in the input string. Again the pre­

processor will cause CLA and AB to be placed in the operator and operand 

stacks respectively. The closing parenthesis will cause the system to 

evaluate CL,AB resulting in A being placed in the operand stack. At 

this point EQA is in the operator stack and A in the operand stack. 

The pre-processor will move onto the next argument. EQA will be 

pushed down in the operator stack and replaced by a neutral CLN. The 

second cLA will push EQ and cLN down in the operator stack. In the 

operand stack, B will push A down. The first closing parenthesis will 

cause the system to evaluate cLA,B resulting in #(CL,C) being placed 

into the input stream. Again cLA and C are subsequently placed into 

the operator and operand stacks (with the previous CLA,B being deleted). 

This sequence is followed until the active function results in 

the value A being placed in the op rand.stack. At this time cLN EQA 
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is in the operator stack and AA resides in the operand stack. The 

second closed parenthesis causes CLN,A to be evaluated and placed into 

operand stack as I(CL,B). At this point EQ is in the operator stack 

and A followed by I(CL,B) is in the operand stack. 

The pre-processor will move onto the next argument; As the 

argument is protected by parentheses the pre-processor will simply 

cause WOW to be placed in the operand stack, pushing down A and 

I (CL,B). 

The pre-processor moves to the last argument and places #I(CL,C) 

into the operand stack as it is protected from evaluation by parentheses • . 
At this point in the processing of the language statement, the operator 

stack contains EQA and the operand stack has A followed by I(CL,B) 

followed by WOl~ followed by I## (CL,C). \\'hen the pre-processor reco~izes 

the last closing parenthesis the system evaluates the contents of the 

two stacks. A and I(CL,B) are examined in the operand stack and compared. 

As they are not equal, #I(CL,C) is selected and evaluated. The result 

I(CL,AB) is placed in the operand stack. Control is then passed back 

to the pre-processor and scanning of the source string is continued. 



OIAPTER V 

STATE MINIMIZATION 

It is often desirable, from economic and other viewpoints, to 

eliminate the duplication of equivalent states. 

TWo states of a machine are said to be equivalent if it is 

impossible to distinguish between them by submitting input sequences 

and observing the output sequences generated by the machine. 

An intuitive approach may locate the equivalent state by exami-

nation of random pairs of states. However, an algorithm exists that 

is more efficient. It is as follows: (5) 

1. Partition the set of all states into sets such 
that all members of a set have identical output 
rows in the STT. 

2. Under each state, for each ·nput symbol record 
the number of the set of which the following 
state is a member. 

3. Divide existing states sets so that all members 
of a new set possess the same subscripts. When 
no sets are formed the algorithm terminates. The 
states within the set groupings may be considered 
as equivalent. 

In the control machine for the pre-processor and its associated 

18 

State Transiti~n Table (STT) of Figure 3a and 3b, the first and second 

step in the above algorithm will result in no two states being 

equivalent. By inspection, it is seen that no two states have the 

same output sequences and therefore there are no equivalent states 

represented in the State Oiagram. 
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OIAPTER VI 

IMPLEMENTATION OF niE CONTROL MACHINE 

The State Diagram of Figure 2 and the State Transition Table of 
. 

Pigure 3a and 3b list the conditions under which a transition from one 

state to another is required. It is seen that a 13-state machine must 

be synthesized. Many input signals are involved and many output signals 

must be generated. A formal design procedure for finite-state machines 

using Karnaugh maps in their general sense is not very effective for 

large problems with a large number of input variables. 

Implementation is required of a 13-state machine with 9 input 

variables and 17 output signals. At a minimum, 4 flip-flops are 

equired; owever, at the other extreme, 13 flip-flops could be used, 

one for each state. The latter state assignment greatly simplifies 

design effort. 

Two common approaches will be discussed in the following sections. 

One-hot Flip-flop per State 

For simplicity of design, the one-hot flip-flop per state·. control 

machine is presented. 

The information contained in the State Diagram allows us imme-

diately to draw the logic of the 13 f~ip•flop maChine. This set of 

flip-flops is in essence a "state sequencing" register in as much as it 

resembles a serial shift register. Wi~h this approach one and only one 
. . . 

flip-flop is set at all times. Each flip-flop thus acts as the source 
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0 1 . 9 5 0 12 d. s d d 

1 
I • • • 

d 2 2 0 8 3 3 0 0 

2 2 2 0 10 3 3 0 0 d 

3 7 7 7 7 7 7 7 7 d 

' 
4 d d 0 d d d d d 4 

s d 1 0 d d d 11 d s 

6 6 6 4 6 6 6 6 6 d 

7 6 6 6 6 6 6 6 6 d 

8 0 0 0 0 0 0 0 0 d 

9 d s d d d d d d 9 

10 8 8 8 8 8 8 8 8 d 

11 d d d d d d 0 d 11 

12 12 12 12 12 12 12 0 12 d 

d c don't care - invalid input 

F1gur 3a - State Transition Table 



PRESENT 
STATE 

xl 

0 A 

1 A 

2 ~ 
c 

3 ~ 

4 d 

x2 

w 
Q 

A 

~ 

c 

~ 

d 

x3 x4 

~~ AB 
c 

BC BC 
p p 

BC BC 
p p 

~ ~ 

A d 

O~P~* 

Xs x6 x7 Xg 

~ d ~ d d 

AG AG BC BC d 
p p 

AH AH BC BC d I 

p p 

~ ~ ~ ~ a 

d d d d 

S d A AD d d d IN d ~ 

Q 

6 A A ~ A A A A A d 

7 ~ ~ ~ ~ ~ M ~ M d I 

K K K K K K K K 

8 ~ ~ ~ ~ ~ ~ ~ ~ d 
c c c c c c c c 

9 d ~ d d d d d d ~ 

10 AB AB AB AB ~ AB AB AB d 
p p p p p p p p 

11 d d d d d d A d ~ 

12 ~ AB AB ~ AB AB A ~ d 
C C C C C CE CF 

*See Table 1 for output designations 

· Figure 3b - Sta~~rr~~sition Output Table . . .. .. 
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TABLE 1 - OUTPUT DESIGNATIONS 

A -= STEP 

B -= STORE 

C c ~ ARG 

D c RST ARG 

E=~P 
F = fP 
G c BAFpp 

H c BNFpp 

I = RSTFF 

J c OPLOAD 

K = SHR 

L = INTRPT 1 

M = INTRPT 2 

N = INTRPT 3 

0 = GATE CO 

P c GATE I 

Step Buffer and Charreg 

Store Tag 

Upcotmt argument cotmter 

Reset argument counter 

Upcount parentheses counter 

Downcount parentheses counter 

Set Begin Active Function FF 

Set Begin Neutral Function FF 

Reset BAFpp and BNFpF 

Load Opreg 1 

Shift Opreg 1 into Opreg 2 

Interrupt 1 Tag 

Interrupt 2 Tag 

Interrupt 3 Tag 

Gate concatenate operator 

Gate I character 

Reset EnoNEpp 

22 
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for the state terminals NEXT CHARI, FNCTA, etc., which we have assumed 

to exist. 

With a one-hot code the ith flip-flop is set when the· machine is 

in the ith state, all other flip-flops being reset. Thus the states 

of the control machine might be encoded 

STATE Yl Y2 Y3 Y4 Ys . y13 • • • 

0 1 0 0 0 0 • • • 0 

1 0 1 0 0 0 0 -• 
.,. 

• • 

2 0 0 1 0 0 • • • 0 

3 0 0 0 1 0 • • • 0 
• • • • • • • • • • 
• • • • • • • • • • 

12 0 0 0 0 0 • • • 1 

This assignment is desirable if the design utilizes small scale 

integration (20 circuits per chip) and the emphasis is on maintenance 

of the machine. We can identify the state of the machine by deter-

·ning which flip-flop is set. Also, another advantage exists. 

Suppose the following network were available at the module level. 

Yi 
GLFF 

Figure 4 - One-hot rer State t.fodule 
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This module utilizes the Gated Latch flip-flop (GLFF) for the 

memory element. The GLFF assumes a state equal to the value of the L 

input signal when the gate input G is present. As long as G = 0, the 

flip-flop does not change state. 

This flip-flop is useful when information must be. transferred from 

one memory element to another· as in a state sequencing register. This 

transfer of information can be accomplished by the JK flip-flop with 

additional logic. Such a Gated Latch flip-flop could be the following 

circuit. 

r-----~---~--------------~-, 
I 

L I 

I 
I 
I 
I 
I 
I 

J 

JKFF 
..... 

~~-y. 
1 

-~---------------~ 

Figure S - GLFF Wi~h JKFF Implementation 

With this module of Figure 4 we can synthesize directly from the 

State Diagram. One module would be required for each state. For each 

transition into a state, we connect the input signals to terminals of 

an AND gate to form the latch signa • The present state signal is then 

connected to one of the OR gate terminals to form the gate signal. The 

clock is, of course, assumed. 

For example, choosing the transition from FNCTA to NEXT CHARI, 

Figure 6 represents the logic required • 

. : 



·~la·Eo-+-+-4 

NEXT 
OIARl 

· ARG 
INTRPT 

t--~ 

r---STEP 

. , 
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FNCT A ...,_.____. __ .,__ TO FNCTN CKT 

GLFF TO STORE2 I CKT 

TO NEXT OIARl CKT 

BAFFF 
( ___ +--t 

~-~To 

.... ··---------

NEXT NEXT 
OIAR2 I CHAR3 

GLFF CKT 

Figure 6 - One-hot State Sequence Example 

·. 
The above module logic represents the transition shown in 

Figure 7. 

• 

... 

I• 'B/ 
/STEP 

.. -, . 
s ·-o~ 

. /STEP 

Figure 7 - Tr~,sitiun frou1 FNCTA to NEXT CHAR2 



For the complete control machine the above process must be 

repeated for each of the remaining twelve state transitions. The 
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outputs generated by the control machine will also have to be generated 

in a similar fashion. 

Mlnimum Flip-flop Control Machine 

The other extreme in the design of the control machine for the pre-

processor is the minimum state variable machine. Here, only the 

minimum number of flip-flops required will be used. 

A machine with a states can only be realized with B or more 

binary flip-flops where a and a satisfy. 

For the minimum flip-flop machine the equality of the above 

expression is desired. Thus for a of 16 states, B must be 4. However, 

in the pre-processor control machine only 13 states are required, but 

since a must be an integer, 4 flip-flops must be used. 

Therefore, a second approaCh is to use 4 flip-flops and formally 

design the 13 state control machine. This approach will lead to a 

most desirable control unit. However, the size of the State Transition 

Table and State Diagram prohibits the use of standard Karnaugh map 

techniques. 

One alternative, would be to use the Quine-McCluskey algorith;,. 

However, the State Transition Table shows that this would include 

manipulation of a thirteen variable function2 such as: 

2A redesign of the decode block of Figure 1 could reduce the 
size of the function to 8 variables, four state variables and 4 
nput variables. 
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F • Y1 Y2 Y3 Y4 X1 X2 X3 X4 Xs x6 X7 Xs Xg 

where the input X1 X2 X3 ••• Xg is a one-hot code and Y1 Y2 Y3 Y4 

represents the four state variables. 

In general, as the number of variables increases so does the 

labor. Minimizing an eleven variable function by hand is not considered 

a small task. The addition of don't cares into the array further 

complicates the already large amount of bookkeeping required. -

Computer assistance is available in performing array manipulations. 

There are a number of programs that utilize the Quine-McCluskey tabu­

lation approach. Such programs are available using FORTRAN V sub-

routines for the UNIVAC 1108 digital computer. (5) 

States of the four flip-flops to be used in the control machine 

have been assigned as shown in the State Diagram. The code chosen is 

important as it reflects the required amount of combinatorial logic. 

However, no simple method is available for determining whether or not 

the assigned states will lead to the most economical combinatorial 

logic. 

State assignment may be suggested by the problem or State Diagram, 

or it may be completely arbitrary. The following rules of thumb may 

enable the design of the combinatorial driving equations at reduced 

cost. (5) 

1. Use the minimum number of states. 

2. Assign adjacent code words to a state and 
the state that follows it. 

3. If two present states have the same next 
state, assign those present states adjacent 
code words. 

For the given State Diagram of F~gure 2 these rules were impossible 

to apply in all cases. Rule 2 was applied in this case. However, to 
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the extent they were satisfied, these rules tend to minimize the 

state-transition and flip-flop input equations of the control machine. 

In the particular case that exists here, that is, ~he input 

variables to the control machine are of a one-hot code. This allows 

use of piecewise minimization using the State Transition Table in 

conjunction with Karnaugh map techniques. To do this, Marcus' (6) 

procedure for deriving flip-flop driving equations from a State 

Transition Table may be used. This procedure is not complex but does 

require knowledge of the logic of each type of flip-flop. 

Exactly what flip-flop input signals are appropriate depends on 

the type of flip-flop we expect to use. The following Table 2 shows 

the values that flip-flop input variables must take to accomplish 

state transitions. 

TABLE 2 - INPUT VARIABLE VALUES 

~mANING TRANSITION 
SYMBOL 

DESIRED 
TRANSITION 

y + y' 

Retain "0" 0 0 

Set "S" 0 1 

Reset "R" 1 c 

Retain "1" 1 1 

The transition symbols defined as follows: 

"S" Dteans "must take setting action." 
"R" means "must take resetting action." 
"ln denotes FF remains set. 
non denotes FF remains reset. 

RSFF 
S R 

0 d 

1 0 

0 1 

d 0 

TFF 
T 

0 

1 

1 

0 

JKFF 
J K 

0 d 

1 d 

d 1 

d 0 

GLFF 
G L 

0 d 
d 0 

1 1 

1 0 

0 d 
d 1 
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The above table is useful in implementing state transition 

equations. For example, if JKFF implementation were desired, for every 

transition of y toy', the proper value would be placed into a value 

map for that particular flip-flop. For the J and K lines, _the values 
. 

0, 1, or d would appear in the map according to the values listed 

under the J and K lines in the above table. From this, map minimization 

could be used. 

We can simplify the above technique by using a state transition 

map, transition symbols, and flip-flop equations in terms of the 

transition symbols. This state transition map may be called an "action" 

map as it describes in symbol form the transition required. 

In order to use this action map, equations in terms of action 

symbols must be described. The following are such equations: 

For a RSFF, s = t
1
s + tdl,d 

R·= I 1R + IdO,d 

For a TFF, T= I 1s,R + Idd 

For a J FF, J = t 1s + IdR,l,d 

IC = I 1R + IdS,O,d 

For a GLFF, G = I 1S,R + I d 1* 0** d J J 

L = I 1S + Idd,l*,O** 

The summation sign indicates that all cells having the following 

symbols are to be given the value found at the base of the summation 

s1gn. For example, in the JKFF, for the J line, the S cells constitute 

the ON-array (l's); the R, the 1, and the d cells constitute the 

"don't care" array and all other cells are the OFF-array. 

With the GLFF special consideration of the don't cares noted by 

~he aster sks is required. If in mjnfmizing G we assign one of these 



1* or 0** don't care cells the value of 1, we must assign 1 and 0 

respectively for L. If in minimizing L we assign one of these 1* or 
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0** don't care cells to the ON-array of L, G must be d or 0 respectively. 

The advantage of writing the "action" STI is that it can be a base 

for implementation of any flip-flop desired. All one h~s to do is use 

the as ociated flip-flop input equations given earlier to insert into 

~ value map. The action map is an interim tool to help avoid careless 

mistakes in determining the value map. 

For implementation of the pre-processor control 'machine, the 

following steps will be taken. First, the State Transition Table of 

Figure 3a and 3b will be converted into action tables using the 

ppropriate transition symbols. Second, the flip-flop input equations 

will be applied to generate value maps. Third, from the value maps, 

minimization techniques will be applied to generate the flip-flop input 

equations. 

Implementation of the State Transiti~n Table of Figure 3a and 

3b may, at first, appear to be an ~mpossible task. However, when broken 

down into its lesser component parts, piecewise analysis is possible. 

As the input variables are in a one-hot code format, minimization of 

the input variables is not required. Therefore, the piecewise approach 

will be the optimized design provided the same covers are used in the 

mapping echniques wherever possible. 

The following piecewise approach is presented. The JK flip-flop 

will be the memory element used as this is the most popular in the 

industry. The J and K lines for the Y1 flip-flop will be developed. 

First the action table for this flip-flop must be constructed. 

Figure 8 represents this action table for Y1. This table was con-
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Xs ! Xg 
, I 

0 0 5 0 0 5 d 0 d d 

1 0 0 0 5 0 0 0 0 d 

2 0 0 0 5 0 0 0 0 d 

3 0 0 0 0 0 0 0 0 d 

4 d d 0 d d d d d 0 I 

s d d 0 d d d s d 0 

6 0 0 0 0 0 0 0 0 d 

7 0 0 0 0 Q 0 0 0 d 

8 R R R R R R R R d 

9 d 1 d d d d d d 1 I 

10 1 1 1 1 1 1 1 1 d 

11 d d d d d d R d 1 

12 1 1 1 1 1 1 R 1 d 

F gure 8 - Y1 Action Table 
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structed by determining all the transitions taking place on the State 

Transition Table of Figure 3a and placing the applicable symbol, from 

Table :z, in the table for each tnput column. 

Figure 9 represents the value table for the input J 1 . to the Y1 

JK flip-flop. This table was constructed by using the J line input 

equation 

Since minimization will be :done on a piecewise basis, the following 

figure represents the value map for only the '·iB·En input variable. 

00 01 11 10 

00 1 0 0 0 

01 d d 0 0 
, 
, 

11 d d d d 

10 d d d d 

·It will be noted that states 13, 14, and 15 are represented as 

don't cares •. These states will never occur and therefore are don't 

cares and will apply for ·all subsequent value maps. 

It can be seen from the above value map that the •·iB·En1ipput 

contribution is 

The next input variable of consequence is the A input variable. 

!he following map represents its contribution 



0 0 1 0 0 1 d 0 d d 

I 
I 

1 0 0 0 1 0 0 0 0 d I 

2 0 0 0 1 0 0 0 0 d 

3 0 0 0 0 0 0 0 0 d 

4 d d 0 d d d d d 0 

5 d d 0 d d d 1 d 0 I 

6 0 0 0 0 0 0 0 0 d 

7 0 0 0 0 0 0 0 0 d 

8 d d d d d d d d d 

9 d d d d d d d d d 

10 d d d d d d d d d 

11 d d d d d d d d d 

12 d d d d d d d d d 

Figure 9 - J 1 Value Table 
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00 01 11 10 

2 
00 0 1 I 0 1 

01 d d 0 0 
I 

I 

11 d d d d 

10 d d d d 

Minimization gives 

J1 c "[A] {Y3Y4 + Y2Yif4l 

orking with the ) COUNT•En variable 

00 01 11 10 

2 
00 0 0 0 0 

01 d 1 0 0 

I 
I I 

11 d d d d 
.L_ 

10 d d d d 

Minimization gives 
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I 

+ ••• . . 

I 
I 



The last input for the J1 driving equation analysis is the 

(•COUNT input variable. Again the value map for this input is shown. 
I 

00 01 11 10 
I 

00 I 1 0 0 : 0 
I 

01 d d 0 0 
I . 

I 

11 d d . d d 

I 

10 d d d I d 

Minimization gives 
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The other input variables of Figure do not contain any "l's" in 

the input column. Therefore, these inputs are not represented in the 

total J1 driving equations. 

Summing the 1nput contributions for J1 gives 

The Kl driving equations may be found by using the K1 value table 

of FigurelO. This table was constructed by using the Kline input 

equation 

K = I1R + IdS,O,d 

Again minimization for the K1 line will be done on a piece\...-ise 

basis. However, instead of individual maps for each input, a composite 

value map will be shown. This composite map will give a better 

indication of common covers that are available for better minimization. 
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0 d d d d d d d d d 

1 d d . d d d d d d d 

... 

2 d d d d d d d d d 
, 

3 d d d d d d d d d 

4 d d d d d d d d d 

s d d d d d d d d d 

6 d d d d d d d d d 

7 d d d d d d d d d 

8 1 1 1 1 1 1 1 1 d 

9 d 0 d d d d d d 0 

10 0 0 0 0 0 0 0 0 d 

11 d d d d d d 1 d 0 

12 0 0 0 0 . 0 0 1 0 d I 

Figure 110- K1 Value Table 
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Using the input nom~nclature of x
1
-x

9 
for neatness, the composite 

value map is then 

r 00 ' ; . 01 
• 

11 

• • • • r-----~------~-

• r-----~ - ----1-
• • ! 

00 l' d • d 

: ~ _j 1 l 

01 

11 

t 
I 

I d I d 
I I 

! ! ! 
I I I 

lx c:l i I 
I 7 ~ I 

:Xg=d I 'd I 
I I I 

O~herwise = 0 ~ I 

d 

d 

d 

d 

d 

d 

For the inputs x1, X2, x3, x4, Xs. X6 and x8, the cover represented 

by the dotted line will give 

For the x7 input, the covers shown by the dashed lines will result 

in the minimization 

• • • 

As the Xg inpu has no l's repr sented in its column the K1 value 

table, it has no contribution to the K1 input equation. 

• I 
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With all the input variables taken into account, the total K1 input 

equation may be given. For completeness the J 1 equation will be rep~ated. 

J 1 • (l•fs·Eo + (•COUNT](Y3V4) + [A]{Y3Y4 + Y2Y~4) 
+ [)•COUNT Eo](Y2Y3) 

t1 c ei2Y3Y4) + [)•COUNT E0]Ci3 +.Y4) 

So far, only the driving equations for J1 and K1 of the Y1 JK flip­

flop have been developed. By a similar procedure the input driving 

equations may be generated for the remaining three JK flip-flops. 

For the complete design of the control machine, outputs must be 

generated. The output signals required are represented both on the 

State Diagram of Figure 2 and the State Transition Table of Figure 3b • 

Although output generation will not be presented, similar techniques 

as discussed in this report may be used. 

Since two extreme variations of the control machine have been 

presented, a comparison between the two will be presented. 



CHAPTER VII 

COMPARISON OF 1lfE TWO CONTROL MACHINES 

Two control machines for the pre-processor have been presented. 

The first machine required the maximum number of flip-flops. The 

second was developed using the minimtun number of flip-flops. 
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'~ich control machine is the most economical depends not only upon 

the ~umber of flip-flops used but also on the amount of combinatorial 

logic required for its implementation. 

If the one-hot code control machine were implemented using the 

module containing the Gated Latch flip-flop of Figure 4, a comparison 

could be made with the minimum state variable machine. The latter 

chine being i mplemented in JK flip-flops. As the GL flip-flop 

contains a JK flip-flop, as shown in Figure S, this comparison is 

valid. 

For the one-hot code machine and its associated module imple­

mentation the number of gates required may be found using the State 

Diagram of Figure 2. For every input that results in a state · 

transition an AND gate is required. !f two or more AND's are required, 

this necessitates the use of two OR circuits. Each GLFF in the module 

requires two AND gates and an inverter to gate the JK flip-flop. 

Investigation of the State Diagram using the above method will 

result in approximately 79 gates being required to sequence the one­

la~t cooe control machine. 
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The minimum state variable machine gating may be estimated using 

the J1 and K1 input equations previously derived. Assuming that the 

input equations for the Y1 flip-flop are representative of the remaining 

three flip-flops, the following estimate is obtained. 

For the J1 input equation, eight gates are requir~d. · For the K1 

input equation four gates are required. The total number of gates 

_for the Y1 flip-flop is twelve. As four flip-flops are requ~~ed for 

the 13 state machine the total number of gates for the machine will be 

pproximately 48. 

At this point, since both control machine implementations use JK 

flip-flops, it appears that the minimum state machine is more economical. 

However, the latter estimate assumed that the Y1 flip-flop input logic 

was representative of all four flip-flops. Therefore, the apparent 

advantage of the minimum state variable machine may be reduced. But 

the fact that the one-hot machine requires an additional nine flip­

flops for implementati on does tend to increase the appeal of the 

nimum state variable machine. 

, 
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CONCLUSION 

The preceding chapters illustrate some of the design techniques 

available to translate the given scanning algorithm into a hardwired 

pre-processor. Two extremes were presented for implementation of the 

state control machine. The one-hot code machine offers not only ease 

of maintenance and testability, but that it has the potential of 

sharing a common module part number. On the other hand, the minimum 

state variable machine offers a more minimal design. Either approach 

will require an assessment of the requirements that may exist. Also, 

the design of the supportive hardware, such as registers, counters, 

etc., may be accomplished using similar techniques as those presented. 

The implication of this investigation is that one~ support soft­

ware has been specified, such as the scanning algorithm in this case, 

it may be translated from a flow chart to a State Diagram. In turn, 

this State Diagram may be translated to logic equations and their 

associated logic d·agrams. In other words, with the use of Large 

Scale Integration (LSI), system support software can ultimately be 

converted to ha dware. 

In respect to "hardwired pre processing," individual pre-processors 

can be used, provided the specified intermediate output required for 

the evaluator is satisfied. 

An example is University of California's Eclectic computer which 

uses a FORTRAN-like source language. (2) The difficulty in pre­

processing this type of language is rnt'tch more complex, hence the 
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pre-processor can be performed by a micro-coded processor or even 

another mini-class computer. 

More in line with the concept of a hardwired .pre-processor has . 
been proposed for a FORTRAN machine by Bashkow, et al. (4) Their 

approach is based o~ a recognition that once the allowable syntax and 

associated sematics of language statements have been firmly specified 

a hardware interpreter, or machine, seems feasible. 

The processor proposed in this pape~ has the p~e-processor and 

evaluator both physically and conceptually separate. Therefore, with 

this approach and the advances being made in LSI technology, it is not 

Wllikely that pre-processor "chips" may serve a variety of us.ers with­

out impacting specialized system software. 
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