
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

1973

Investigation of Sequential Machine Design Techniques for Investigation of Sequential Machine Design Techniques for

Implementation of a TRAC Scanning Algorithm Implementation of a TRAC Scanning Algorithm

Raymond F. Cotton
University of Central Florida

 Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Cotton, Raymond F., "Investigation of Sequential Machine Design Techniques for Implementation of a
TRAC Scanning Algorithm" (1973). Retrospective Theses and Dissertations. 49.
https://stars.library.ucf.edu/rtd/49

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Frtd%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/49?utm_source=stars.library.ucf.edu%2Frtd%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

INVESTIGATION OF SEQUENTIAL MACHI~c DESIGN TECHNIQUES FOR

IMPLEMENTATION OF A TRAC SCANNING ALGORITHM ,

BY

RAY~DND F. COTTON
B.S.E., University of South Florida, 1968

RESEARCH REPORT

Submitted in par · al fulfillment of the requirements
for the degree of Master of Science in Engineering

in the Graduate Studies Program of
Florida Technological University, 1973

Orlando, Florida

ABSTRACT

INVESTIGATION OF SEQUENTIAL MACHINE DESIGN TECHNIQUES FOR

IMPLEP.ffiNTATION OF A TRAC SCANNING ALGORITIIM

BY

RAYMOND F. COTTON

This report will demonstrate the design techniques to translate

a given scanning algorithm into a hardwired pre-processor. The

language to be ''pre-processed" is TRAC (Text Reckoning and Compiling)

devised by Mooers and Deutsch.

The major drawback in the current implementation of TRAC is

speed. The software overhead required for string manipulations and

execution of the input scanning algorithm is the major degrading

factor. A TRAC machine consisting of a hardwired pre-processor to

scan the input and produce formatted data for a stack oriented

evaluator is proposed.

The control machine for the input scanning algorithm for the

pre-processor is designed using various sequential machine design

techniques.

The one-hot code and the minimum state variable design represent

the two extremes which are presented.

/

TABLE OF CONTENTS

INTRODUCTION • , • • • • • • 1

Chapter
I. SYSTEM OVERVIEW: TRAC LANGUAGE •••••••••• • • • • • • 2

II. TRAC IMPLE~ENTATION •••••••• • • • • • • • • • • • • • 5

III. PRE-PROCESSOR DESCRIPTION • • • • • • • • • • • • • • • • • • 9

IV. STATE DIAGRAM DESCRIPTION • • • • • • • • • • • • • • • • • • 14

V. STATE MINIMIZATION •••••••••• • • • • • • • • • • • • 18

VI. IMPLEMENTATION OF TilE CONTROL MAOIINE • • • • • • • • • • • • 19

One-hot Flip-flop per State
Minimum Flip-flop Control Machine

VII. COMPARISON OF niE TWO CONTROL t.fAOIINES • • • • • • • • • • • • 39

CONCLUSION • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • 41
...

LIST OF REFERENCES • 43

1ii

1

INTRODUCTION

A class of hardware/software trades which is of partic~lar
~

interest is the SRecialized system. One such specialized machine is

the machine which is optimized to execute programs written in a higher

level language. Such a machine is described in this paper. The higher

language is TRAC.l This machine will offer a hardwired pre-p~o~essor

plus an architecture which is tailored to provide specialized run time

support for the functions provided by the language.

The intent of this report is to give insight into the pre-processor

design. This will be given by demonstrating the techniques and steps

required in the design of the state control machine. This control

machine is the segment of sequential logic that controls the state

sequence of the machine and the various support registers, counters,

etc., as well as controlling the data flow. The techniques presented

are not intended as the complete design, but only to take that one step

further from concept to implementation.

The constraints of this report are that portions of the pre-

processor, such a~ the interrupt and data transfer sequences will be

generalized and presented as plausible concepts for eventual implementa-

tion i~ e future system.

Furthermore, certain aspects of the TRAC language such as diag-

nostics, error recovery, invalid statements, etc., will not be covered.

lThe name TRAC is a trademark for a specific text-handling
language ~hat was developed and is being maintained by the Rockford
Research Institute Inc., Cambridge, Mass.

2

r

CHAPTER I

SYSTEM OVERVIEW: TRAC LANGUAGE

In the TRAC language, one can write procedures for accepting,

naming and storing any character string from the source; for modifying

any string in any way; for treating any string at any time as an
...

executable procedure, or as a name, or as a text; and for printing

out any string. The TRAC language is based upon an extension and

generalization to character strings of the programming concept of the

''macro." Through the ability of TRAC to accept and store definitions

of procedures, the capabilities of the language can be indefinitely

extended. TRAC can handle iterative and recursive procedures, and

can deal with character strings, integers and Boolean vector

variables. (1)

The advantage of the TRAC language is that it provides (i) high

capability in dealing with back-and-forth communications between an

operator at a terminal and the machine, so as to allow him to make

insertions and interventions during the running of his work; (ii) max-

imUm versat~lity in the definition and performance of any well-defined

procedure on text; (iii) ability to define, store and subsequently use

such procedures to extend the capabilities of the language; and finally

(iv) maximum clarity in the language chosen. (1)

A TRAC string may contain a substring enclosed by a matching pair

of parentheses, such as (···)where the dots indicate a string. The

matching parentheses indicate the scope of some particular action.

·.

3

There are three cases, represented by 1(•••), II(•••) and (•••). The

first two formats indicate the presence of a TRAC "primitive f\D\ction."

The format I(···) denotes an "active function," while the format

If(···) denotes a "neutral f\Dlction." This distinction is clarified

below. The strin~ interior to either kind of function is generally

divided into substrings by commas as in 1(-,-,~) where these substrings

constitute the arguments of the function. Parentheses in the ·format

(·•·) have roughly the same role as paired quotation marks, and, in

particular, whatever string is inside the paired parentheses is

protected from functional evaluation.

TRAC strings are dealt with by the pre-processor according to a

scanning algorithm which works from left to right and obtains the

evaluation of nested expressions from inside outward. In the

expression

:•c .•c
4 3

• • I(j , II()))

1 2

the functions are evaluated in the order indicated. As each function

is evaluated by the system, it is replaced in the TRAC string by the

string which is its value. The evaluation of an active function is

followed directly by the evaluation of any function in its value

string not protected by matched parentheses. The value string of a

neutral function is not further evaluated.

· Currently TRAC expressions are scanned and evaluated by a soft­

ware algorithm. At the begining, the unevaluated strings are in the

"active string" and the "scanning pointer" points to the leftmost

character in this string. As characte s have been treated by the . .
scanning algorithm, they may be added to the right hand end of a

"neutral string," which is so called because its characters have been

fully treated by the algorithm and are thus neutral like alphebetic

characters. Thus, in software, execution of a TRAC instruction is

performed by scanning successive characters in the active string and

performing certain actions depending on the character being scanned.

Unless one of the control symbo~s is encountered, characters are

·normally copied from the active string to the neutral string •.

Unfortunately, the software overhead required for string

manipulations and execution of the input scanning algorithm is quite

prohibitive in obtaining an acceptable performance.

4

OIAPTER II

TRAC I~fPLEMENTATION

A stack oriented TRAC processor is proposed. The processor

consists of a pre-processor and an evaluator. This division is, as

has been stated, in the interest of upgrading performance.

SOURCE PRE-PROCESSOR EVALUATOR . OUTPUT

'\

5

By keeping these two parts of the processor, the pre-processor and

the evaluator, onceptually and physically separate, either the

language or the evaluator primitives may be redesigned without extensive

design changes. (2) In other words, if another language is chosen,

only the pre-processor need to be redesigned to scan the new language

and p ovide formatted data to the exist·ng stack oriented evaluator.

Conversely, if the evaluator is substituted it must have a stack

oriented replacement. Hence, only half of the TRAC processor is

affected.

The sta k has some rather unique properties that aid in the

eomp·lation and evaluation of nested eYpressions. Stacks turn out to

be a natural structure in a number of .different programming appli-

cations. In particular, stacks crop up during the evaluation of

expressions which are nested in other expressions. Therefore stacks

whose entries are created and deleted in a last in, first out order

but which permit access to information below the top of th~ stack are

useful in the implementation of the TRAC language. (3)

The internal organization of single-address computers forces the

6

wasting of both programming and running time for the storage and recall

of the intermediate results in the sequence of computation. Before

an operation can be executed the data must be placed into the proper

registers and memory cells, and their contents must often be completely

rearranged before the next operation can be performed. Multi-address

computers are constructed to make the execution of a few selected

operations more efficient, but at the expense of building inefficiencies

into all the rest. To overcome the limitations of their internal

organization most conventional computers require the wasteful expen-
,

diture of programming effort, memory capacity, and running time.

This problem may be attacked directly by the use of "pushdown/

popup" stacks, which elimdnate the need for instructions to store or

recall immediate results. The Burroughs class of machines apply the

stack concept. (4) An addition operation could expect to find its

two arguments in the top two registers of the operand stack an9 the

add operator in the top of the operator stack. After execution the

result could be placed into the top register of the operand stack.

The source strings in the Burroughs machines are composed of

strings of syllables. There are four types of syllables. The first

of these, the operat~r syllable, causes operations to be performed.

A second syllable, the literal syllable, is used for placing constants

7

in the stack to be used as operands.

The other two syllables, the operand call and descriptor call

syllables, address locations in a program reference table. The purpose

-Of the operand call syllable is to place an operand in the stack. The

purpose of the descriptor call syllable is to place the' address of an

operand in the stack.

In a Burroughs machine, such as the B-5000, the stack is composed

of a pair of registers, the A and B registers, and a memory area. As

operands are picked up by the programs by use of above mentioned

syllables, they are placed in the A register. If the A register al­

ready contains a word of information, that word is transferred to the

B register prior to loading the operand into the A register. If the

B register is also occupied by information, then the word in B is

stored in a memory area defined by an address register S. Then the

word in A can be transferred to B and the operand brouglit into the A

egister. The new word coming into the stack has pushed down the

information previously held in the registers. As each pushdown occurs,

the address in the S register is automatically increased by one. The

information contained in the registers is the last information entered

into the stack. The stack operates on a "last in-first out" principle.

As information is operated on in the stack, operands are eliminated

from the stack and results of operations are returned to the stack.

As information in the stack is used up by operations being performed,

it is possible to bring a word from the memory area addressed by the

S register, and the S register is decreased by one. In this manner,

processing of data is. accomplished without the need for instructions

t~ store or recall intermediate results.

The pre-processor presented in this paper generates similar type

strings to the stack oriented evaluator. The major difference will be

that the evaluator will contain both an operator stack and a operand

stack.

- '

8

9

QIAPTER III

PRE-PROCESSOR DESCRIPTION

The functional block diagram of the pre-processor shown ~n

Figure 1 operates according to the State Transition Diagram of

Figure 2. The pre-processor includes a control machine, an input

buffer, a character hold register, a decoder, an encoder, two counters,

an operator hold register, control tag lines to the system, and an

unspecified control machine for interrupt handling and data transfer

sequences to the evaluator. For simplicity, the complexity of the

block diagram is kept to a minimum.

The purpose of the pre-processo~ is to receive and scan a given

source string and provide stack formatted data, as well as execute

signals, to the evaluator for analysis. For nested functions the

results are placed back into the input stream to be scanned again. The

following is an attempt to describe the necessary control signals and

data flow of the pre-processor.

The signal "STEP" is generated to introduce the next cha~acter of

the source input to the character hold register. This signal also

transfers the information in the character register to the buffer.

'~en the transfer is complete, both the buffer and the character

register are decoded. The character register decode presents either

a "control character" or an "any other character" signal to the control

!!lachine.

Depending upon which state the control machine is in and the

10

character decoded, various output control signals will be generated to

·allow the pre-processor to function according to the State Diagram.

As the operator from the input TRAC statement is . two characters,

it is sequentially loaded into a holding register as it is scanned.

The signals OPLOAD and SHR are for this purpose. The operator is then

encoded and subsequently presented to the evaluator for insertion into

an operator stack.

' A flip-flop is set if the sequence ~~ control character dictate

· that the function is an active function. This signal BAF is part of

the encoding of the operator. Another flip-flop provides a similar

function for a neutral function.

If an argument string is to be presented to the evaluator's operand

stack the output of the character register is transmitted to the system

by the signal STORE. As each character is transmitted to the system an

argument counter is being incremented for future notification to the

evaluator via an interrupt giving the argument length.

To prov de the quote mode, in which input strings may be protected

from evaluation, a parentheses counter is employed. This counter is

generally incremented for the left parenthesis control character and

deczemented for the right parenthesis control character. The counter

is decoded to provide an input to the control machine for a count or

no count status.

Prior to an interrupt sequence, a flip-flop EDONE is reset by the

control machine. The signal En will keep the control machine in the

interrupt state until this flip-flop is set by the evaluator.

The signal STORER will gate to the system the encoded I control

character. This is required for the third I control character. ~n

example would be the sequence

I(PS,PARTI##S67)

A similar signal STORE CO, exists for the concatenate operator.

This is required for the sequence

I(PS,S671(AD,S,4))

11

The buffer register is decoded for the control character comma. The

concatenate store signal is generated if the signal I in the character

register is not preceded by a comma. This allows the evaluator stack

processing to concatenate arguments.

The interrupt signals are possibly control tag signals to the

valuator. Again, the interrupt handling and data transfer sequence

is not described in this paper but are assumed to be a plausible

method for presenting data and execute signals to the evaluator.

With the functional block diagram and the desired inppt scanning

algorithm a state sequencing diagram may be devised.

. \

. .
12

COUNT- CONTROL

~ c D
E
c
0
D

CONTROL
MACHINE SIGNALS

H
INPUT ---J A
SOURCE ---y R ~

R

--r
'l

'

.,,

'
~ E

G
~ E

rY•-------1~1

B
u

ll F ..__--'lM, F

y y'
---t' 4-13 ll/1.__ __

FF's i\1

J E
r--r R

STEr~~~~~--~'
~----------------------~~, ,

0 0
p p

~ R L...__t.. R -,,

STORE -
STORE# ...
STORE "CO"---...

l.---i E ~ fl' E
G G E
1 2

,
I

N y c
SHR • 9 ...

OPLOAD
l - 0 r

D I

E
SET BNF.--~· BNF ~---------~-...,.
RSTpt-- ... FF
SET BAF BAF .,__ _ __...,(

-

~ FF

ARG

INTERRUPT 1-~

INTERRUPT 2 -~

CNTR ~----------------------~,

PAREN
CNTR

COUNT

.......... :
EDONE '

RESET En-... FF

Figure 1 - Functional Block Diagram

DATA
TRANSFER-
INTERRUPT
MACHINE

..

.

~

T
0

E
v
A
L
u ..
A
T
0
R

1 SET Eo
~

13

' - ..

I

-;(STEP, .
. .STDR.E1

. ~Af4

%f\1
Figure 2 - S~at~ Diagram

OIAPTER IV

STATE DIAGRAM. DESCRIPTION

The first requirement in the preliminary design of the pre­

processor is to model the given TRAC scanning algorithm.

In general, the scanner-recognizer algorithm is as follows:

1. If the string of characters begins with "I(" these two

characters are deleted, and the two characters that follow

are stored in an operator register. A signal BAF (begin

active function) is generated. An operator interrupt is

generated to present the encoded operator to the evaluator.

When the evaluator relenquishes control the pre-processor

returns to "NEXT CHARI" state.

2. If the string of characters begins with "#I(" these three

characters are deleted, and the two characters that follow

are stored in an operator register. A signal BNF (begin

neutral function) is generated. An operator inter1~pt is

generated to present the encoded operator to the evaluator.

After the evaluator has completed its task the pre-proces~or

is notified and control returns to "NEXT OIARl" state.

3. If the character "'" is detected in the "NEXT OIARl" state

the machine generates an argument interrupt to the evaluator

to indicate the ~nd of an argument. The data transfer will

" give the length of the argument. \'/hen the interrupt is

completed control returns to "NEXT CHARI" state.

14

4. If the character ")" is detected in the "NEXT OlARl" state

and the parentheses counter is zero, two interrupts are

given. First an argument interrupt to indicate the closing

argument length and second, an execute interrupt to allow the

evaluator to evaluate the specified function.

S. If the character "(" is detected in the "NEXT OlARl" state

and again the parentheses counter is zero, the control ·.

machine moves to the "QUOTE" state. l'lhile in the "QUOTE"

state and the parentheses count is not zero, all other

characters enclosed by parentheses are transferred to the

evaluator as an argument string. Only when the parentheses

counter is decrimented to zero does control return to the

"TEST OIARl" state.

6. All noncontrol characters "A" are transferred to the evaluator

by a command "STORE." As each character is transferred, an

argument counter is incremented.

7. If the character "I" is detected and the preceding character

is not a "'" a concatenate signal and operator interrupt is

generated. This is required when active or neutral functions

are nested within an argument.

lS

The object of the pre-processor is to delete all control ·characters

to present the operators to the evaluator for storage in an OP stack,

and to present all operands to the evaluator for insertion into an

operand stack. The signals BAF and BNF are used to identify the type

of function. Upon detection of a closing parenthesis the function is

evaluated by the evaluator. The results may or may not be inserted

back into the input string.

16

The State Diagram is shown in Figure 2. The State Di_agram represents

the state transitions and output signals required to implement the given

scanning algorithm. Careful examination of the state transitions will

show subtleties not easily described above. For further insight an

example of the language is the string

I(EQ,I(CL,C),##(CL,I(CL,B)),(WOW),(I#(CL,C)))

.. NAME OF FORM

A
B
c
AB

·vALUE

I(CL,B)
I(CL,C)
I(CL,AB)
A

The pre-processor will cause EqA and cLA to be stored in the

operator stack, and C in the operand stack. The first closing parenthesis

will result in the system evaluating the active function CL,C. As a

result, I(CL,AB) will be placed in the input string. Again the pre­

processor will cause CLA and AB to be placed in the operator and operand

stacks respectively. The closing parenthesis will cause the system to

evaluate CL,AB resulting in A being placed in the operand stack. At

this point EQA is in the operator stack and A in the operand stack.

The pre-processor will move onto the next argument. EQA will be

pushed down in the operator stack and replaced by a neutral CLN. The

second cLA will push EQ and cLN down in the operator stack. In the

operand stack, B will push A down. The first closing parenthesis will

cause the system to evaluate cLA,B resulting in #(CL,C) being placed

into the input stream. Again cLA and C are subsequently placed into

the operator and operand stacks (with the previous CLA,B being deleted).

This sequence is followed until the active function results in

the value A being placed in the op rand.stack. At this time cLN EQA

. 17

is in the operator stack and AA resides in the operand stack. The

second closed parenthesis causes CLN,A to be evaluated and placed into

operand stack as I(CL,B). At this point EQ is in the operator stack

and A followed by I(CL,B) is in the operand stack.

The pre-processor will move onto the next argument; As the

argument is protected by parentheses the pre-processor will simply

cause WOW to be placed in the operand stack, pushing down A and

I (CL,B).

The pre-processor moves to the last argument and places #I(CL,C)

into the operand stack as it is protected from evaluation by parentheses • .
At this point in the processing of the language statement, the operator

stack contains EQA and the operand stack has A followed by I(CL,B)

followed by WOl~ followed by I## (CL,C). \\'hen the pre-processor reco~izes

the last closing parenthesis the system evaluates the contents of the

two stacks. A and I(CL,B) are examined in the operand stack and compared.

As they are not equal, #I(CL,C) is selected and evaluated. The result

I(CL,AB) is placed in the operand stack. Control is then passed back

to the pre-processor and scanning of the source string is continued.

OIAPTER V

STATE MINIMIZATION

It is often desirable, from economic and other viewpoints, to

eliminate the duplication of equivalent states.

TWo states of a machine are said to be equivalent if it is

impossible to distinguish between them by submitting input sequences

and observing the output sequences generated by the machine.

An intuitive approach may locate the equivalent state by exami-

nation of random pairs of states. However, an algorithm exists that

is more efficient. It is as follows: (5)

1. Partition the set of all states into sets such
that all members of a set have identical output
rows in the STT.

2. Under each state, for each ·nput symbol record
the number of the set of which the following
state is a member.

3. Divide existing states sets so that all members
of a new set possess the same subscripts. When
no sets are formed the algorithm terminates. The
states within the set groupings may be considered
as equivalent.

In the control machine for the pre-processor and its associated

18

State Transiti~n Table (STT) of Figure 3a and 3b, the first and second

step in the above algorithm will result in no two states being

equivalent. By inspection, it is seen that no two states have the

same output sequences and therefore there are no equivalent states

represented in the State Oiagram.

19

OIAPTER VI

IMPLEMENTATION OF niE CONTROL MACHINE

The State Diagram of Figure 2 and the State Transition Table of
.

Pigure 3a and 3b list the conditions under which a transition from one

state to another is required. It is seen that a 13-state machine must

be synthesized. Many input signals are involved and many output signals

must be generated. A formal design procedure for finite-state machines

using Karnaugh maps in their general sense is not very effective for

large problems with a large number of input variables.

Implementation is required of a 13-state machine with 9 input

variables and 17 output signals. At a minimum, 4 flip-flops are

equired; owever, at the other extreme, 13 flip-flops could be used,

one for each state. The latter state assignment greatly simplifies

design effort.

Two common approaches will be discussed in the following sections.

One-hot Flip-flop per State

For simplicity of design, the one-hot flip-flop per state·. control

machine is presented.

The information contained in the State Diagram allows us imme-

diately to draw the logic of the 13 f~ip•flop maChine. This set of

flip-flops is in essence a "state sequencing" register in as much as it

resembles a serial shift register. Wi~h this approach one and only one
. . .

flip-flop is set at all times. Each flip-flop thus acts as the source

. ..
20

0 1 . 9 5 0 12 d. s d d

1
I • • •

d 2 2 0 8 3 3 0 0

2 2 2 0 10 3 3 0 0 d

3 7 7 7 7 7 7 7 7 d

'
4 d d 0 d d d d d 4

s d 1 0 d d d 11 d s

6 6 6 4 6 6 6 6 6 d

7 6 6 6 6 6 6 6 6 d

8 0 0 0 0 0 0 0 0 d

9 d s d d d d d d 9

10 8 8 8 8 8 8 8 8 d

11 d d d d d d 0 d 11

12 12 12 12 12 12 12 0 12 d

d c don't care - invalid input

F1gur 3a - State Transition Table

PRESENT
STATE

xl

0 A

1 A

2 ~
c

3 ~

4 d

x2

w
Q

A

~

c

~

d

x3 x4

~~ AB
c

BC BC
p p

BC BC
p p

~ ~

A d

O~P~*

Xs x6 x7 Xg

~ d ~ d d

AG AG BC BC d
p p

AH AH BC BC d I

p p

~ ~ ~ ~ a

d d d d

S d A AD d d d IN d ~

Q

6 A A ~ A A A A A d

7 ~ ~ ~ ~ ~ M ~ M d I

K K K K K K K K

8 ~ ~ ~ ~ ~ ~ ~ ~ d
c c c c c c c c

9 d ~ d d d d d d ~

10 AB AB AB AB ~ AB AB AB d
p p p p p p p p

11 d d d d d d A d ~

12 ~ AB AB ~ AB AB A ~ d
C C C C C CE CF

*See Table 1 for output designations

· Figure 3b - Sta~~rr~~sition Output Table

21

'

TABLE 1 - OUTPUT DESIGNATIONS

A -= STEP

B -= STORE

C c ~ ARG

D c RST ARG

E=~P
F = fP
G c BAFpp

H c BNFpp

I = RSTFF

J c OPLOAD

K = SHR

L = INTRPT 1

M = INTRPT 2

N = INTRPT 3

0 = GATE CO

P c GATE I

Step Buffer and Charreg

Store Tag

Upcotmt argument cotmter

Reset argument counter

Upcount parentheses counter

Downcount parentheses counter

Set Begin Active Function FF

Set Begin Neutral Function FF

Reset BAFpp and BNFpF

Load Opreg 1

Shift Opreg 1 into Opreg 2

Interrupt 1 Tag

Interrupt 2 Tag

Interrupt 3 Tag

Gate concatenate operator

Gate I character

Reset EnoNEpp

22

23

for the state terminals NEXT CHARI, FNCTA, etc., which we have assumed

to exist.

With a one-hot code the ith flip-flop is set when the· machine is

in the ith state, all other flip-flops being reset. Thus the states

of the control machine might be encoded

STATE Yl Y2 Y3 Y4 Ys . y13 • • •

0 1 0 0 0 0 • • • 0

1 0 1 0 0 0 0 -•
.,.

• •

2 0 0 1 0 0 • • • 0

3 0 0 0 1 0 • • • 0
• • • • • • • • • •
• • • • • • • • • •

12 0 0 0 0 0 • • • 1

This assignment is desirable if the design utilizes small scale

integration (20 circuits per chip) and the emphasis is on maintenance

of the machine. We can identify the state of the machine by deter-

·ning which flip-flop is set. Also, another advantage exists.

Suppose the following network were available at the module level.

Yi
GLFF

Figure 4 - One-hot rer State t.fodule

,

24

This module utilizes the Gated Latch flip-flop (GLFF) for the

memory element. The GLFF assumes a state equal to the value of the L

input signal when the gate input G is present. As long as G = 0, the

flip-flop does not change state.

This flip-flop is useful when information must be. transferred from

one memory element to another· as in a state sequencing register. This

transfer of information can be accomplished by the JK flip-flop with

additional logic. Such a Gated Latch flip-flop could be the following

circuit.

r-----~---~--------------~-,
I

L I

I
I
I
I
I
I

J

JKFF
.....

~~-y.
1

-~---------------~

Figure S - GLFF Wi~h JKFF Implementation

With this module of Figure 4 we can synthesize directly from the

State Diagram. One module would be required for each state. For each

transition into a state, we connect the input signals to terminals of

an AND gate to form the latch signa • The present state signal is then

connected to one of the OR gate terminals to form the gate signal. The

clock is, of course, assumed.

For example, choosing the transition from FNCTA to NEXT CHARI,

Figure 6 represents the logic required •

. :

·~la·Eo-+-+-4

NEXT
OIARl

· ARG
INTRPT

t--~

r---STEP

. ,

25

FNCT A ...,_.____. __ .,__ TO FNCTN CKT

GLFF TO STORE2 I CKT

TO NEXT OIARl CKT

BAFFF
(___ +--t

~-~To

.... ··---------

NEXT NEXT
OIAR2 I CHAR3

GLFF CKT

Figure 6 - One-hot State Sequence Example

·.
The above module logic represents the transition shown in

Figure 7.

•

...

I• 'B/
/STEP

.. -, .
s ·-o~

. /STEP

Figure 7 - Tr~,sitiun frou1 FNCTA to NEXT CHAR2

For the complete control machine the above process must be

repeated for each of the remaining twelve state transitions. The

26

outputs generated by the control machine will also have to be generated

in a similar fashion.

Mlnimum Flip-flop Control Machine

The other extreme in the design of the control machine for the pre-

processor is the minimum state variable machine. Here, only the

minimum number of flip-flops required will be used.

A machine with a states can only be realized with B or more

binary flip-flops where a and a satisfy.

For the minimum flip-flop machine the equality of the above

expression is desired. Thus for a of 16 states, B must be 4. However,

in the pre-processor control machine only 13 states are required, but

since a must be an integer, 4 flip-flops must be used.

Therefore, a second approaCh is to use 4 flip-flops and formally

design the 13 state control machine. This approach will lead to a

most desirable control unit. However, the size of the State Transition

Table and State Diagram prohibits the use of standard Karnaugh map

techniques.

One alternative, would be to use the Quine-McCluskey algorith;,.

However, the State Transition Table shows that this would include

manipulation of a thirteen variable function2 such as:

2A redesign of the decode block of Figure 1 could reduce the
size of the function to 8 variables, four state variables and 4
nput variables.

27

F • Y1 Y2 Y3 Y4 X1 X2 X3 X4 Xs x6 X7 Xs Xg

where the input X1 X2 X3 ••• Xg is a one-hot code and Y1 Y2 Y3 Y4

represents the four state variables.

In general, as the number of variables increases so does the

labor. Minimizing an eleven variable function by hand is not considered

a small task. The addition of don't cares into the array further

complicates the already large amount of bookkeeping required. -

Computer assistance is available in performing array manipulations.

There are a number of programs that utilize the Quine-McCluskey tabu­

lation approach. Such programs are available using FORTRAN V sub-

routines for the UNIVAC 1108 digital computer. (5)

States of the four flip-flops to be used in the control machine

have been assigned as shown in the State Diagram. The code chosen is

important as it reflects the required amount of combinatorial logic.

However, no simple method is available for determining whether or not

the assigned states will lead to the most economical combinatorial

logic.

State assignment may be suggested by the problem or State Diagram,

or it may be completely arbitrary. The following rules of thumb may

enable the design of the combinatorial driving equations at reduced

cost. (5)

1. Use the minimum number of states.

2. Assign adjacent code words to a state and
the state that follows it.

3. If two present states have the same next
state, assign those present states adjacent
code words.

For the given State Diagram of F~gure 2 these rules were impossible

to apply in all cases. Rule 2 was applied in this case. However, to

28

the extent they were satisfied, these rules tend to minimize the

state-transition and flip-flop input equations of the control machine.

In the particular case that exists here, that is, ~he input

variables to the control machine are of a one-hot code. This allows

use of piecewise minimization using the State Transition Table in

conjunction with Karnaugh map techniques. To do this, Marcus' (6)

procedure for deriving flip-flop driving equations from a State

Transition Table may be used. This procedure is not complex but does

require knowledge of the logic of each type of flip-flop.

Exactly what flip-flop input signals are appropriate depends on

the type of flip-flop we expect to use. The following Table 2 shows

the values that flip-flop input variables must take to accomplish

state transitions.

TABLE 2 - INPUT VARIABLE VALUES

~mANING TRANSITION
SYMBOL

DESIRED
TRANSITION

y + y'

Retain "0" 0 0

Set "S" 0 1

Reset "R" 1 c

Retain "1" 1 1

The transition symbols defined as follows:

"S" Dteans "must take setting action."
"R" means "must take resetting action."
"ln denotes FF remains set.
non denotes FF remains reset.

RSFF
S R

0 d

1 0

0 1

d 0

TFF
T

0

1

1

0

JKFF
J K

0 d

1 d

d 1

d 0

GLFF
G L

0 d
d 0

1 1

1 0

0 d
d 1

29

The above table is useful in implementing state transition

equations. For example, if JKFF implementation were desired, for every

transition of y toy', the proper value would be placed into a value

map for that particular flip-flop. For the J and K lines, _the values
.

0, 1, or d would appear in the map according to the values listed

under the J and K lines in the above table. From this, map minimization

could be used.

We can simplify the above technique by using a state transition

map, transition symbols, and flip-flop equations in terms of the

transition symbols. This state transition map may be called an "action"

map as it describes in symbol form the transition required.

In order to use this action map, equations in terms of action

symbols must be described. The following are such equations:

For a RSFF, s = t
1
s + tdl,d

R·= I 1R + IdO,d

For a TFF, T= I 1s,R + Idd

For a J FF, J = t 1s + IdR,l,d

IC = I 1R + IdS,O,d

For a GLFF, G = I 1S,R + I d 1* 0** d J J

L = I 1S + Idd,l*,O**

The summation sign indicates that all cells having the following

symbols are to be given the value found at the base of the summation

s1gn. For example, in the JKFF, for the J line, the S cells constitute

the ON-array (l's); the R, the 1, and the d cells constitute the

"don't care" array and all other cells are the OFF-array.

With the GLFF special consideration of the don't cares noted by

~he aster sks is required. If in mjnfmizing G we assign one of these

1* or 0** don't care cells the value of 1, we must assign 1 and 0

respectively for L. If in minimizing L we assign one of these 1* or

30

0** don't care cells to the ON-array of L, G must be d or 0 respectively.

The advantage of writing the "action" STI is that it can be a base

for implementation of any flip-flop desired. All one h~s to do is use

the as ociated flip-flop input equations given earlier to insert into

~ value map. The action map is an interim tool to help avoid careless

mistakes in determining the value map.

For implementation of the pre-processor control 'machine, the

following steps will be taken. First, the State Transition Table of

Figure 3a and 3b will be converted into action tables using the

ppropriate transition symbols. Second, the flip-flop input equations

will be applied to generate value maps. Third, from the value maps,

minimization techniques will be applied to generate the flip-flop input

equations.

Implementation of the State Transiti~n Table of Figure 3a and

3b may, at first, appear to be an ~mpossible task. However, when broken

down into its lesser component parts, piecewise analysis is possible.

As the input variables are in a one-hot code format, minimization of

the input variables is not required. Therefore, the piecewise approach

will be the optimized design provided the same covers are used in the

mapping echniques wherever possible.

The following piecewise approach is presented. The JK flip-flop

will be the memory element used as this is the most popular in the

industry. The J and K lines for the Y1 flip-flop will be developed.

First the action table for this flip-flop must be constructed.

Figure 8 represents this action table for Y1. This table was con-

31

Xs ! Xg
, I

0 0 5 0 0 5 d 0 d d

1 0 0 0 5 0 0 0 0 d

2 0 0 0 5 0 0 0 0 d

3 0 0 0 0 0 0 0 0 d

4 d d 0 d d d d d 0 I

s d d 0 d d d s d 0

6 0 0 0 0 0 0 0 0 d

7 0 0 0 0 Q 0 0 0 d

8 R R R R R R R R d

9 d 1 d d d d d d 1 I

10 1 1 1 1 1 1 1 1 d

11 d d d d d d R d 1

12 1 1 1 1 1 1 R 1 d

F gure 8 - Y1 Action Table

32

structed by determining all the transitions taking place on the State

Transition Table of Figure 3a and placing the applicable symbol, from

Table :z, in the table for each tnput column.

Figure 9 represents the value table for the input J 1 . to the Y1

JK flip-flop. This table was constructed by using the J line input

equation

Since minimization will be :done on a piecewise basis, the following

figure represents the value map for only the '·iB·En input variable.

00 01 11 10

00 1 0 0 0

01 d d 0 0
,
,

11 d d d d

10 d d d d

·It will be noted that states 13, 14, and 15 are represented as

don't cares •. These states will never occur and therefore are don't

cares and will apply for ·all subsequent value maps.

It can be seen from the above value map that the •·iB·En1ipput

contribution is

The next input variable of consequence is the A input variable.

!he following map represents its contribution

0 0 1 0 0 1 d 0 d d

I
I

1 0 0 0 1 0 0 0 0 d I

2 0 0 0 1 0 0 0 0 d

3 0 0 0 0 0 0 0 0 d

4 d d 0 d d d d d 0

5 d d 0 d d d 1 d 0 I

6 0 0 0 0 0 0 0 0 d

7 0 0 0 0 0 0 0 0 d

8 d d d d d d d d d

9 d d d d d d d d d

10 d d d d d d d d d

11 d d d d d d d d d

12 d d d d d d d d d

Figure 9 - J 1 Value Table

33

00 01 11 10

2
00 0 1 I 0 1

01 d d 0 0
I

I

11 d d d d

10 d d d d

Minimization gives

J1 c "[A] {Y3Y4 + Y2Yif4l

orking with the) COUNT•En variable

00 01 11 10

2
00 0 0 0 0

01 d 1 0 0

I
I I

11 d d d d
.L_

10 d d d d

Minimization gives

34

I

I

+ ••• . .

I
I

The last input for the J1 driving equation analysis is the

(•COUNT input variable. Again the value map for this input is shown.
I

00 01 11 10
I

00 I 1 0 0 : 0
I

01 d d 0 0
I .

I

11 d d . d d

I

10 d d d I d

Minimization gives

35

The other input variables of Figure do not contain any "l's" in

the input column. Therefore, these inputs are not represented in the

total J1 driving equations.

Summing the 1nput contributions for J1 gives

The Kl driving equations may be found by using the K1 value table

of FigurelO. This table was constructed by using the Kline input

equation

K = I1R + IdS,O,d

Again minimization for the K1 line will be done on a piece\...-ise

basis. However, instead of individual maps for each input, a composite

value map will be shown. This composite map will give a better

indication of common covers that are available for better minimization.

I

0 d d d d d d d d d

1 d d . d d d d d d d

...

2 d d d d d d d d d
,

3 d d d d d d d d d

4 d d d d d d d d d

s d d d d d d d d d

6 d d d d d d d d d

7 d d d d d d d d d

8 1 1 1 1 1 1 1 1 d

9 d 0 d d d d d d 0

10 0 0 0 0 0 0 0 0 d

11 d d d d d d 1 d 0

12 0 0 0 0 . 0 0 1 0 d I

Figure 110- K1 Value Table

37

Using the input nom~nclature of x
1
-x

9
for neatness, the composite

value map is then

r 00 ' ; . 01
•

11

• • • • r-----~------~-

• r-----~ - ----1-
• • !

00 l' d • d

: ~ _j 1 l

01

11

t
I

I d I d
I I

! ! !
I I I

lx c:l i I
I 7 ~ I

:Xg=d I 'd I
I I I

O~herwise = 0 ~ I

d

d

d

d

d

d

For the inputs x1, X2, x3, x4, Xs. X6 and x8, the cover represented

by the dotted line will give

For the x7 input, the covers shown by the dashed lines will result

in the minimization

• • •

As the Xg inpu has no l's repr sented in its column the K1 value

table, it has no contribution to the K1 input equation.

• I

38

With all the input variables taken into account, the total K1 input

equation may be given. For completeness the J 1 equation will be rep~ated.

J 1 • (l•fs·Eo + (•COUNT](Y3V4) + [A]{Y3Y4 + Y2Y~4)
+ [)•COUNT Eo](Y2Y3)

t1 c ei2Y3Y4) + [)•COUNT E0]Ci3 +.Y4)

So far, only the driving equations for J1 and K1 of the Y1 JK flip­

flop have been developed. By a similar procedure the input driving

equations may be generated for the remaining three JK flip-flops.

For the complete design of the control machine, outputs must be

generated. The output signals required are represented both on the

State Diagram of Figure 2 and the State Transition Table of Figure 3b •

Although output generation will not be presented, similar techniques

as discussed in this report may be used.

Since two extreme variations of the control machine have been

presented, a comparison between the two will be presented.

CHAPTER VII

COMPARISON OF 1lfE TWO CONTROL MACHINES

Two control machines for the pre-processor have been presented.

The first machine required the maximum number of flip-flops. The

second was developed using the minimtun number of flip-flops.

39

'~ich control machine is the most economical depends not only upon

the ~umber of flip-flops used but also on the amount of combinatorial

logic required for its implementation.

If the one-hot code control machine were implemented using the

module containing the Gated Latch flip-flop of Figure 4, a comparison

could be made with the minimum state variable machine. The latter

chine being i mplemented in JK flip-flops. As the GL flip-flop

contains a JK flip-flop, as shown in Figure S, this comparison is

valid.

For the one-hot code machine and its associated module imple­

mentation the number of gates required may be found using the State

Diagram of Figure 2. For every input that results in a state ·

transition an AND gate is required. !f two or more AND's are required,

this necessitates the use of two OR circuits. Each GLFF in the module

requires two AND gates and an inverter to gate the JK flip-flop.

Investigation of the State Diagram using the above method will

result in approximately 79 gates being required to sequence the one­

la~t cooe control machine.

40

The minimum state variable machine gating may be estimated using

the J1 and K1 input equations previously derived. Assuming that the

input equations for the Y1 flip-flop are representative of the remaining

three flip-flops, the following estimate is obtained.

For the J1 input equation, eight gates are requir~d. · For the K1

input equation four gates are required. The total number of gates

_for the Y1 flip-flop is twelve. As four flip-flops are requ~~ed for

the 13 state machine the total number of gates for the machine will be

pproximately 48.

At this point, since both control machine implementations use JK

flip-flops, it appears that the minimum state machine is more economical.

However, the latter estimate assumed that the Y1 flip-flop input logic

was representative of all four flip-flops. Therefore, the apparent

advantage of the minimum state variable machine may be reduced. But

the fact that the one-hot machine requires an additional nine flip­

flops for implementati on does tend to increase the appeal of the

nimum state variable machine.

,

41

CONCLUSION

The preceding chapters illustrate some of the design techniques

available to translate the given scanning algorithm into a hardwired

pre-processor. Two extremes were presented for implementation of the

state control machine. The one-hot code machine offers not only ease

of maintenance and testability, but that it has the potential of

sharing a common module part number. On the other hand, the minimum

state variable machine offers a more minimal design. Either approach

will require an assessment of the requirements that may exist. Also,

the design of the supportive hardware, such as registers, counters,

etc., may be accomplished using similar techniques as those presented.

The implication of this investigation is that one~ support soft­

ware has been specified, such as the scanning algorithm in this case,

it may be translated from a flow chart to a State Diagram. In turn,

this State Diagram may be translated to logic equations and their

associated logic d·agrams. In other words, with the use of Large

Scale Integration (LSI), system support software can ultimately be

converted to ha dware.

In respect to "hardwired pre processing," individual pre-processors

can be used, provided the specified intermediate output required for

the evaluator is satisfied.

An example is University of California's Eclectic computer which

uses a FORTRAN-like source language. (2) The difficulty in pre­

processing this type of language is rnt'tch more complex, hence the

42

pre-processor can be performed by a micro-coded processor or even

another mini-class computer.

More in line with the concept of a hardwired .pre-processor has .
been proposed for a FORTRAN machine by Bashkow, et al. (4) Their

approach is based o~ a recognition that once the allowable syntax and

associated sematics of language statements have been firmly specified

a hardware interpreter, or machine, seems feasible.

The processor proposed in this pape~ has the p~e-processor and

evaluator both physically and conceptually separate. Therefore, with

this approach and the advances being made in LSI technology, it is not

Wllikely that pre-processor "chips" may serve a variety of us.ers with­

out impacting specialized system software.

LIST OF REFERENCES

1. Calvin N. Mooers, "TRAC, A Procedure-Describing Language
for the Reactive Typewriter," Communications of the ACM,
Vol. 9, No. 3, March, 1966, pp. 215-19.

2. R. Cutts, et al, "An Eclectic Infonnation Processing System,"
AFIPS Conference Proc., Fall Joint Computer Conference
Vol. 41, Part 1, 1972, pp. 473-77.

3. P. Wegner, Programming Languages, Information Structures,
and Machine Organ1zat1on. New York: McGraw-Hill, 1968,
pp. 52-56.

4. G. C. Bell and A. Newall, Computer Structures: Readings
and Examples. New York: McGraw-Hill, 1971, pp. 267~73.

S. D. L. Dietmeyer, Logic Design of Digital Systems. Boston:
Allyn and Bacon, Inc., 1971, pp. 429-550.

6. M. P. Marcus, Switching Circuits for Engineers. New Jersey:
Prentice-Hall, 967, pp. 162-76.

43

	Investigation of Sequential Machine Design Techniques for Implementation of a TRAC Scanning Algorithm
	STARS Citation

	TITLE PAGE

	i

	ABSTRACT

	ii

	TABLE OF CONTENTS

	iii

	INTRODUCTION
	01

	CHAPTER I. SYSTEM OVERVIEW: TRAC LANGUAGE

	02
	03
	04

	CHAPTER II. TRAC IMPLEMENTATION

	05
	06
	07
	08

	CHAPTER III. PRE-PROCESSOR DESCRIPTION

	09
	10
	11
	12
	13

	CHAPTER IV. STATE DIAGRAM DESCRIPTION

	14
	15
	16
	17

	CHAPTER V. STATE MINIMIZATION

	18

	CHAPTER VI. IMPLEMENTATION OF THE CONTROL MACHINE

	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38

	CHAPTER VII. COMPARISON OF THE TWO CONTROL MACHINES

	39
	40

	CONCLUSION

	41
	42

	LIST OF REFERENCES

	43

