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ABSTRACT

In anticipation of the complex, dynamic battlefields of the future, military operations are
increasingly demanding robots with increased autonomous capabilities to support soldiers.
Effective communication is necessary to establish a common ground on which human-robot
teamwork can be established across the continuum of military operations. However, the types
and format of communication for mixed-initiative collaboration is still not fully understood. This
study explores two approaches to communication in human-robot interaction, transparency and
communication pattern, and examines how manipulating these elements with a robot teammate
affects its human counterpart in a collaborative exercise. Participants were coupled with a
computer-simulated robot to perform a cordon-and-search-like task. A human-robot interface
provided different transparency types—about the robot’s decision making process alone, or
about the robot’s decision making process and its prediction of the human teammate’s decision
making process—and different communication patterns—either conveying information to the
participant or both conveying information to and soliciting information from the participant. This
experiment revealed that participants found robots that both conveyed and solicited information
to be more animate, likeable, and intelligent than their less interactive counterparts, but working
with those robots led to more misses in a target classification task. Furthermore, the act of
responding to the robot led to a reduction in the number of correct identifications made, but only
when the robot was solely providing information about its own decision making process.
Findings from this effort inform the design of next-generation visual displays supporting human-

robot teaming.
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CHAPTER ONE: INTRODUCTION

As automated systems become more complex, it becomes increasingly difficult for humans
to understand the reasoning that leads these systems to their output (Chen & Barnes, 2014). To
ameliorate this issue, transparency has been examined as a way to make the system “visible,”
allowing humans to establish accurate mental models of the system’s actions (Chen et al., 2014;
Karsenty & Botherel, 2005; Lyons, 2013; Maass, 1983). The need for this visibility grows as
existing technology starts attempting to meet the desire for systems with greater intelligence and
more autonomous capabilities; consequently, the approach to working with these more complex
systems—autonomous systems with their own mental models— more closely resembles human
teamwork rather than merely tool usage (Bradshaw, Hoffman, Woods, & Johnson, 2013;
Defense Science Board, 2016; Ososky, Schuster, Phillips, & Jentsch, 2013). This paradigm shift
towards more agentic systems necessitates a change in the way we examine the informational

needs of humans and systems conducting shared tasks (Chen et al., 2018; Johnson et al., 2014).

Like other forms of automation, agents are machine or computer systems to which tasks are
delegated, but unlike other forms of automation, agents can proactively pursue a set of goals and
change its actions in response to its environment (Wooldridge & Jennings, 1995; Zhu & Hou,
2009). Not only do humans working with these agents have to establish accurate mental models
of these systems, as machines, but they also have to understand the rationale driving the actions
of those machines (Chen et al., 2014; Phillips, Ososky, Grove, & Jentsch, 2011). In the context
of human-agent interaction, transparency has been described as a method by which a human and

an agent can gain shared awareness, while maintaining their respective abilities to make



autonomous decisions (Lyons, 2013). A transparent system facilitates this understanding by
explaining its choices and behaviors, allowing its human operators to understand the way it

works (Cramer et al., 2008).

Transparency is particularly important when agents are used in dynamic, complex
environments where time-critical decision making is needed (Chen et al., 2018; Defense Science
Board, 2016; Lakhmani, Abich, Barber, & Chen, 2016). Soldiers are frequently in these
environments and thus the U.S. Military has invested resources into exploring the interaction
between humans and agents (Chen & Barnes, 2014; Defense Science Board, 2016; U.S. Army,
2017). The U.S. military is actively pursuing strategies where robots, physically embodied
agents, are teamed with soldiers to improve their overall combat effectiveness, though virtual
agents and decision aides are also used in military contexts (Chen et al., 2018; Defense Science
Board, 2016; Teo & Reinerman-Jones, 2014; U.S. Army, 2017). In order to meet the challenges
of an evolving global state of affairs, the military has set a number of goals to guide the
development and use of robots in the field (Defense Science Board, 2016; U.S. Army, 2017).
One of these goals is to increase situational awareness in the field (Sycara & Sukthankar, 2006;
U.S. Army, 2017). Given that robots can go places where soldiers cannot, they can gather
information that is unique, yet complementary to information gathered by soldiers (Schuster,
2013; U.S. Army, 2017). This information can be used to support the mission goals and provide
advantages to the team, such as increased survivability and more time to react (U.S. Army,
2017). In order to gain these benefits, however, human teammates must have a clear and accurate
understanding of how the robot gathers information, processes that information, and makes

decisions (Phillips et al., 2011). Not only must this information be available, but it must be



shared in a way that is accessible to humans (Sycara & Sukthankar, 2006). A common cognitive
framework can facilitate effective team communication, so robots with mentalistic architectures
can more easily translate their decision making process (Chen & Barnes, 2014; Fan & Yen,

2004).

The Situation Awareness-based Agent Transparency (SAT) model applies psychological
principles of situation awareness to robots’ cognitive architecture, creating a framework for
understanding the information needed to facilitate transparency in human-robot collaboration
(Chen et al., 2014). By defining the kind of information needed to support transparent
interaction, the SAT model allows designers to quantify and therefore assess a system’s
transparency (Chen et al., 2018; Chen et al., 2014). A more transparent system supports its
operators’ comprehension by providing them with information about its decision making
process, while a less transparent system omits this information (Chen et al., 2014; Helldin,
Falkman, Riveiro, Dahlbom, & Lebram, 2013; Miller, 2014). With the advancement of robots’
capabilities in the military domain, however, a transparency paradigm focused on operator
comprehension and the flow of information to the human may not be sufficient (Chen et al.,
2018; Ososky, Sanders, Jentsch, Hancock, & Chen, 2014). More intelligent, autonomous robots
can assume more responsibilities, to the extent that they can be thought of as collaborating team
members rather than mere tools (Allen, Guinn, & Horvtz, 1999; Ososky et al., 2014). Unlike
tools, synthetic collaborators act interdependently with their human counterparts, which
necessitates not only a shared awareness with them, but also mutual feedback to maintain this
awareness (Bradshaw et al., 2009; Bradshaw, Feltovich, & Johnson, 2012). This awareness, in

human-human teams, is comprised of information pertaining to both the tasks at hand and the



team members interacting to complete that task (Cannon-Bowers, Salas, & Converse, 1993;
Mathieu, Heffner, Goodwin, Salas, & Cannon-Bowers, 2000; Sycara & Sukthankar, 2006). In
human-robot teams, supporting mutual transparency—rather than agent transparency alone—
should provide awareness of both the task and the team that synthetic and human team members
should need to effectively collaborate (Chen et al., 2018; Johnson et al., 2012; Sycara &

Sukthankar, 2006).

A common cognitive framework and relevant information is a prerequisite for transparent
human-robot interaction (HRI), however, that interaction does not necessarily mimic human
interaction (Chen & Barnes, 2014). Recent research into military HRI has advocated for
bidirectional communication between human and robot team members (Barnes, Chen, & Hill,
2017; Shively et al., 2017). Under this communication paradigm, humans and robots can interact
by individually or simultaneously projecting a message that their teammates can interpret; robots
can both give and receive information, but this interaction does not necessitate a continuous,
circular transaction of information between teammates (Barber et al., 2015; Barnlund, 1970;
Héder, 2014; Marko, 1973; Schaefer, Straub, Chen, Putney, & Evans, 2017). Communication in
human teams presupposes a reciprocal exchange of ideas, creating a shared understanding
amongst teammates (Cooke, Gorman, Myers, & Duran, 2013; Salas, Shuffler, Thayer, Bedwell,
& Lazzara, 2015). Establishing conventions for information transactions between humans and
robots may bridge gaps between human-human and human-robot communication. The proposed
study will investigate the informational requirements of human collaborators in a human-robot

team and how that information can be communicated.



CHAPTER TWO: REVIEW OF THE LITERATURE

Agents

Automation can be defined as the delegation of tasks to a hardware or software system
(Kisner & Raju, 1984; Zhu & Hou, 2009). These delegated tasks can be either physical or mental
(Parasuraman, Sheridan, & Wickens, 2000). In order to delegate complex tasks, the system must
be complex enough to actually complete these tasks. The field of artificial intelligence, in
particular, has made great contributions to the development and study of these complex software
systems (Jennings, Sycara, & Wooldridge, 1998; Russell & Norvig, 2009). When these systems
are set up so that they can act to achieve the best expected outcome, then these systems can be

described as a kind of agent (Jennings et al., 1998; Russell & Norvig, 2009).

In general, an agent is defined as something that acts, but in the context of automation
and artificial intelligence, an agent is a hardware- or software-based system that perceives its
environment and performs actions (Fan & Yen, 2004; Jennings et al., 1998; Russell & Norvig,
2009). While there are a number of different kinds of agents (e.g. intelligent, software, robotic),
they all tend to be characterized by autonomy, proactivity, and reactivity (Fan & Yen, 2004;
Franklin & Graesser, 1996; Russell & Norvig, 2009; Wooldridge & Jennings, 1995). Autonomy
denotes that the agent is capable of functioning independently—without either direct intervention
or relying on the knowledge of their designer—for a significant length of time (Russell &
Norvig, 2009; Sycara & Sukthankar, 2006; Wooldridge & Jennings, 1995). Proactivity refers to
the agent’s ability to act in anticipation of future events in pursuit of a goal (Sycara &

Sukthankar, 2006; Wooldridge & Jennings, 1995). Reactivity—also known as situatedness—



describes an agent’s ability to receive input from its environment and respond in a timely fashion

to changes within the environment (Jennings et al., 1998; Wooldridge & Jennings, 1995).

Agents, automated systems with autonomous capabilities, are being leveraged in a
number of different fields—such as medicine, extractive industries, and the credit card industries
(Defense Science Board, 2016). The U.S. military is not only leveraging agents, but actively
pursuing agent technology and human-agent collaboration strategies in order to accomplish
operational goals and maximize soldier safety (Defense Science Board, 2016; U.S. Army, 2017).
One of the reasons why the U.S. military is allocating so many resources towards the
development of agent technology is due to the third offset strategy (Eaglen, 2016; Work, 2015).
Over the years, the U.S. military has pursued strategies to counteract—or offset—the great
conventional forces of adversarial nations (Work, 2015). In the 1950s, Eisenhower’s New Look
Strategy, the first offset strategy, had the U.S. reduce military manpower and instead leverage its
nuclear arsenal for deterrence (Work, 2015). In the 1970s and 1980s, when Soviet nuclear forces
grew large enough that the U.S. nuclear arsenal was no longer an effective deterrent, the second
offset strategy was developed—the development and use of light area sensor cueing aircraft that
could accurately deliver conventional munitions in a way that would achieve the same
destructive ends as tactical nuclear weapons (Work, 2015). With the advent of the new
geopolitical landscape, the U.S. military is pursuing a suite of new strategies—blanketed under
the title of the third offset strategy—in order to advance military dominance, which include: anti-
access and area denial, guided munitions, undersea warfare, cyberwarfare, wargaming, and
human-machine teaming (Eaglen, 2016; Work, 2015). In 2017, $201 million of the defense

budget was allocated to human-machine teaming research and development alone (Eaglen,



2016). As agent technology continues to advance, allowing agents to act more intelligently and
more autonomously, the relationship between the human and the agent will shift from Operator-

Tool to mutual collaborators (Ososky et al., 2013; Phillips et al., 2011).

This shift in perspective, from agent as tool to agent as teammate, stems from their role in
interactions with humans. Humans primarily use agents as individual support, to facilitate
teamwork between humans, or as a functioning “virtual human” (Sycara & Sukthankar, 2006). In
order to act as a “virtual human,” the agent must perform both task-specific skills as well as
teamwork skills (Sycara & Sukthankar, 2006). Using teamwork skills allow team members to
create and maintain the shared understanding needed to coordinate and act interdependently
(Bradshaw et al., 2009; Phillips et al., 2011). Agents can simulate these teammate skills, and thus
act as synthetic teammates, by supporting flexible automation strategy of mixed initiative
interaction. (Chen & Barnes, 2014). Mixed initiative interaction refers to an interaction strategy
between a human and a system where each supports joint actions and collaborative decision
making by each contributing to the task what they do best (Allen et al., 1999; Chen & Barnes,
2014). This form of automation allows humans to delegate complex tasks to the agent, but doing
so changes the nature of the task to one of management and facilitation (Parasuraman & Riley,
1997; Thompson, Whelan, & Coovert, 2009). When agents have the capability to act
autonomously, in pursuit of their own goals, humans teamed with these complex systems may be
locked out of the loop and may subsequently have difficulty understanding which factors
influenced the agent’s actions and why (Chen et al., 2014; Chen & Barnes, 2014; Stubbs,
Wettergreen, & Hinds, 2007). Consequently, human team members’ situation awareness must be

taken into account when designing agents (Endsley & Jones, 2016; Kilgore & Voshell, 2014).



Situation Awareness and Teams

Situation Awareness (SA) refers to an individual’s continuous diagnosis of factors within
an ever-shifting environment (Parasuraman, Sheridan, & Wickens, 2008; Smith & Hancock,
1995). While multiple models have been developed to explain situation awareness, the most
popular model of SA suggests that there are three phases to SA: perception of the elements in the
environment, comprehension of the current situation, and projection of future status (Endsley,
1995). According to Endsley (1995), an individual’s situation awareness equates to their
situation model, that individual’s constantly updated understanding of the current situation at any
point in time (Cooke, Salas, Cannon-Bowers, & Stout, 2000; Endsley, 2015). This situation
model is not only informed by the environment, but also by the individual’s relevant mental
models, as seen in Figure 1 (Endsley, 1995; Endsley, 2015). Furthermore, changes in the
situation model can yield changes in mental models, which can change the actions an individual
chooses to take (Endsley, 1995; Endsley, 2015). Exploring this constantly updating
understanding or awareness becomes even more complicated in the context of a team (Salmon et

al., 2008; Shu & Furuta, 2005).
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Figure 1. How individuals’ mental models, individuals’ situation awareness,
and environment interact and influence team knowledge, team situation
awareness, and team performance, adapted from Cooke et al (2004) and

Endsley (1995; 2015)

A team is comprised of multiple actors, each of whom have their own situation models,
mental models, and their own set of responsibilities (Cooke et al., 2004; Cooke, Stout, & Salas,
2001). Furthermore, different team members may have different responsibilities from their
teammates and thus, subsequently, may focus on different aspects of the situation (Cooke et al.,
2000; Cooke et al., 2004). In order for team members, who may have different situation and
mental models, to be able to successfully pursue a shared objective, they must maintain a shared
understanding of their situation (Salas, Sims, & Burke, 2005; Sycara & Sukthankar, 2006).
Given the disparate sets of responsibilities, and prerequisite knowledge needed to fulfill them,
that individual team members bring to the pursuit of a goal, a team’s shared understanding of a

situation does not require each team member to have identical knowledge (Cannon-Bowers &



Salas, 2001; Cooke et al., 2000). Instead, a team’s shared understanding can be made up of
individuals’ compatible knowledge—knowledge that may differ between team members, but
yields similar expectations in a situation (Cannon-Bowers & Salas, 2001). As seen in Figure 1,
individual team members can engage in team process behaviors— such as communication,
coordination, or planning—to integrate their individual situation models and relevant mental
models with their teammates’ to establish a shared knowledge and a shared awareness, which
can influence the overall team’s performance (Cooke et al., 2000; Cooke et al., 2004; Cooke et

al., 2001).

The shift in paradigm from agents being characterized as tools to agents being
characterized as teammates necessitates viewing the relationship more similarly to human teams
(Ososky et al., 2013; Phillips et al., 2011). Agents using a mentalistic architecture establish their
own model of the world, which they use to make decisions (Chen et al., 2018; Sycara &
Sukthankar, 2006). An agent can use not only observation to build and update its world model,
but it can also use its human team member as a source of information (Fong, Thorpe, & Baur,
2003; Kaupp, Makarenko, & Durrant-Whyte, 2010). For the human team member to use the
agent as a source of information, the agent has to be designed to provide this information (Chen
& Barnes, 2014; Endsley & Jones, 2016). Humans working with a “strong and silent” agent may
have difficulties with situation awareness, increased workload, and increased performance error
rates (Chen & Barnes 2014; Kilgore & Voshell 2014). Therefore, an agent that keeps humans
apprised of its inner workings would keep human teammates in the loop, avoiding the deleterious
effects of ignorance. However, the question of what specific information sharing requirements

are needed to keep human teammates properly informed is still unanswered.
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Transparency and Human-A gent Teamwork

By delegating tasks to automated systems, humans can accomplish more complex tasks
without having to comprehend all parts of the more complex task (Miller, 2014; Zhu & Hou,
2009). As humans are able to delegate more tasks to more capable—and more complex—
machines, they become further divorced from the tasks being accomplished (Chen & Barnes,
2014; Grote, Weyer, & Stanton, 2014). When humans are divorced from the tasks being
accomplished, when they are out of the loop, they can exhibit an increased potential for error,
higher cognitive load, lower trust in the system, and lower situation awareness (Grote et al.,
2014; Kilgore & Voshell, 2014; Stubbs et al., 2007). While a system, whose internal processes
are completely opaque to its human teammate, can cause this kind of difficulty for the overall
team, a system that is more transparent can alleviate these problems (Kilgore & Voshell, 2014;

Maass, 1983).

Transparency is an emergent property that results from human-system interaction, where the
human can build an internal model of the system, allowing the human to see through its logic
(Maass, 1983; Ososky et al., 2014; Stubbs et al., 2007). In a transparent interaction, the system is
able to support the human’s comprehension of relevant system information, so that both human
and system are aware of this information (Chen et al., 2014; Karsenty & Botherel, 2005; Lyons
et al., 2017; Sycara & Sukthankar, 2006).The content of this relevant information, however, can
take many forms (Helldin et al., 2013). Some approaches to supporting transparent interaction
include: disclosing system reliability (Wang, Jamieson, & Hollands, 2011), providing rationales
for errors (Dzindolet, Peterson, Pomranky, Pierce, & Beck, 2003), and providing real time status

updates (Zhou et al., 2016). These approaches to supporting transparency are relatively discrete
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and are appropriate for highly specific human-system interactions. For more complex systems,
such as agents, more descriptive, model based approaches to supporting transparent interaction

may be more appropriate.

Lyons (2013) suggests that transparent interaction can be supported by facilitating several
dimensions of relevant information—intention behind the system, task-related information, the
system’s underlying analytical principles, environmental conditions, teamwork information, and
the system’s awareness of the human’s state (Lyons & Havig, 2014; Lyons et al., 2017). Chen
and associates (2014), on the other hand, focus on an established psychological framework,
situation awareness, to specify the kind of information needed to support transparent interaction
between humans and agents. The Situation awareness-based Agent Transparency (SAT) model
establishes a breadth of information that can be communicated to the human without sacrificing

flexibility, and thus will be further explored in this manuscript (Chen et al., 2014).

The SAT model (see Figure 2) supports transparency by informing the human operator’s
situation awareness (Chen et al., 2014). In the SAT model, a transparent system communicates

three levels of information (Chen et al., 2014):
e Level 1 describes the agent’s current actions, plans, and knowledge of its environment
e Level 2 describes the agent’s underlying rationale behind its actions and plans

e Level 3 describes the agent’s predictions about the outcomes of its planned actions and
the uncertainties within those predictions
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Figure 2. Situation Awareness based Agent Transparency (SAT) Model, adapted from Chen and

associates’ (2014) visualization of the SAT model

The SAT model has been successfully leveraged in human-agent interfaces to support the
human’s situation awareness and their calibration of trust in an agent in a human-agent team
(Mercado et al., 2016; Selkowitz, Larios, Lakhmani, & Chen, 2017b; Wright, Chen, Barnes, &
Hancock, 2016). Transparency has been supported through interface modules describing the
three levels of SAT in an at-a-glance module, descriptions of the agent’s understanding of the
human’s actions, and environmental field iconography (Selkowitz et al., 2017b). Retrospective
analysis of this model and its implementation suggests that the SAT model, in this form, may not

sufficiently meet the anticipated needs of complex military environments (Chen et al., 2018).

The SAT model was developed in a paradigm where autonomous agents were examples of
silent, automated systems, and hence the SAT model was prescribed as a guide for developing
more usable tools (Chen et al., 2014). Projected advances in agent technology have expanded the
potential roles that agents can take, such that they can be expected to both commit tasks
independently of a human operator and independently engage in part of a shared task with a
human teammate (Barnes et al., 2017; Bradshaw et al., 2012; Chen et al., 2018). The U.S.
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Department of Defense is shifting to a paradigm that emphasizes collaboration with autonomous
agents, rather than the usage of a complex tool for a simple task (Defense Science Board, 2016;
Sycara & Sukthankar, 2006; U.S. Army, 2017). This transition from an agent-as-tool paradigm to
an agent-as-teammate paradigm necessitates a shift in the way human-agent teamwork and the
factors that influence it are approached (Chen et al., 2018; Ososky et al., 2013; Phillips et al.,
2011). Collaboration—defined as the pursuit of a shared goal through interdependent actions—
implies that all collaborating parties have their own, independent models of the situation, so
human collaboration with autonomous agents requires the maintenance of a shared awareness;
this maintenance requires that the agent both gives information to and receives information from
human teammates (Bradshaw et al., 2009; Bradshaw et al., 2012; Johnson et al., 2014). In
response to this emphasis on human-agent collaboration, Chen and associates (2018) reviewed
the SAT model and, using existing theories of teamwork, proposed a refinement of the SAT
model known as the dynamic SAT model (Defense Science Board, 2016). The dynamic SAT
model reframes transparent interaction by emphasizing the informational needs of human-agent
teams engaging in shared tasks; while untested, this iteration of the SAT model (as seen in
Figure 3) more strongly encompasses transactional feedback, emphasizing that transparency in a
human-agent team requires two-way communication between the human and agent team
members (Chen et al., 2018). The communication of information needed to maintain shared
awareness is necessary when the human and agent teammates collaborate (Bradshaw et al., 2012;

Chen & Barnes, 2014).
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Agent Shared Human
Transparency Task Transparency

Figure 3. Dynamic SAT Model, adapted from Chen and associates (2018), detailing
a bidirectional approach to transparency in human-agent teams. When engaging in a
shared task, both human and agent team members must maintain transparency

regarding their contributions to a shared task.

Communication, Team Cognition, and Transparency

Human teamwork can be a useful metaphor for human-agent teams, and consequently,
research pertaining to human teams is a valuable stepping off point for human-agent teams
(Morrow & Fiore, 2012). Sharing information has been a major concern for human-agent teams
and human teams alike, so research concerning communication in human teams can be useful in
informing research into communication for human-agent teams (Chen & Barnes, 2014;
Gutzwiller & Lange, 2016; Sycara & Sukthankar, 2006). In human teams, communication is
described as a reciprocal process where teammates send and receive information that form and
reform the team’s attitudes, behaviors, and cognitions (Salas et al., 2015). Forming and

reforming relevant cognition is particularly important in dynamic environments, where the
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environment, and consequently team members’ immediate understanding of the environment, is

in flux (Cooke et al., 2000; Cooke et al., 2001).

Communication in teams is a major factor in Interactive Team Cognition (ITC) theory.
ITC theory states that team interaction is cognitive activity at the team level (Cooke et al., 2013).
This is in contrast to the shared cognition paradigm that ITC sprang from, where communication
is a process by which individual team members share their individual models of the situation,
creating a shared body of knowledge (Cooke et al., 2013; DeChurch & Mesmer-Magnus, 2010).
In this approach, this shared body of knowledge can be used to develop shared expectations,
allowing for improved team performance without explicit coordination (Cooke et al., 2013;

MacMillan, Entin, & Serfaty, 2004).

The aforementioned descriptions of human team behavior, and the underlying factors,
can be used to describe humans’ interaction with artificial entities acting as team members,
agents in this case (Sukthankar, Shumaker, & Lewis, 2012; Sycara & Sukthankar, 2006). Like a
human team member, an agent acting as a team member shares information, about both task
performance and teamwork, with the human members of their team (Gutzwiller & Lange, 2016;
Lyons & Havig, 2014; Sycara & Sukthankar, 2006). The communication of rationale and other
relevant information supports not only a transparent interaction between humans and agents, but
also provides a pattern of communication from which team cognition emerges (Cooke, Demir, &

McNeese, 2016; Gutzwiller & Lange, 2016).

In dynamic situations where the agent’s responsibilities, and correspondingly its actions,

can vary, interface elements can be used to maintain transparency and keep the agent’s actions
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predictable (Hayes & Scassellati, 2013; Lyons, 2013; Nair, Tambe, & Marsella, 2003). In the
context of ITC, transparency— evoked through the communication of goals, rationale, and
projected outcomes—is the basis of a human-agent team’s cognition. Interface elements, used to
maintain transparency, dictate the kinds of interaction patterns available to the human-agent

team, which, in turn, influence the team cognition that emerges from that interaction (Cooke et

al., 2016; Fiore & Wiltshire, 2016).

Communication Patterns and Transactional Communication

Shannon, the father of information theory, describes how a message can be accurately
transmitted from a message source to a receiver (Marko, 1973; McDonnell, Ikeda, & Manton,
2011). As seen in Figure 4, this model describes the transmission of information from a source to

a receiver, through a possibly noisy channel.

Coder ,__.( Channel }—. Decoder Receiver

Noise

Figure 4. Unidirectional communication model, adapted from Marko (1973)

Marko (1973) extended Shannon’s theory to describe bidirectional communication—
where a message generator can transmit information along a communication channel to a second
message generator who can also send information along a different communication channel to
the initial message generator (see Figure 5).
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Figure 5. Bidirectional communication model adapted from Marko (1973)

In extant human-agent teams, these channels can be used by both human and agent team
members to either solicit or provide information, depending on the capabilities of the agent
(Kaupp et al., 2010; Sycara & Sukthankar, 2006). If the agent—often a variation of robotic
agent—solicits information from the human team member, then that communication pattern can
be referred to as robot-pull (Kaupp et al., 2010; Sweet, 2016). A robot-pull pattern can be a
query for information or a request for guidance (Fong et al., 2003; Sweet, 2016). If the robot
provides information, that communication pattern can be referred to as robot-push (Kaupp et al.,
2010; Sweet, 2016). A robot-push pattern can be any variation of a robotic agent volunteering
information to the human teammate (Kaupp et al., 2010; Sweet, 2016). Human team members
can pull or push information as well, as long as the robot can interpret the input (Fong et al.,

2005; Kaupp, 2008; Sweet, 2016). In human-pull patterns, humans can solicit information from
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the agent, while human-push ranges from volunteering information to assuming direct control

over the agent or its priorities (Chen et al., 2018; Kaupp et al., 2010; Sweet, 2016).

Interpersonal communication, in the context of human teams, encompasses more than
just the transfer of information between a sender and a receiver (Salas et al., 2015). Barnlund’s
transactional model of communication (see Figure 6) encompasses the factors that influence
information sending, interpretation, and response by approaching communication as the mutual
transmission of information between multiple communicators used to create a cumulative, shared
meaning (Barnlund, 1970; Salas et al., 2015). Unlike bidirectional communication, transactional
communication encompasses interactions where the communicators receive and build on each

other’s ideas, using a variety of cues (Foulger, 2004; Jurkowski & Hénze, 2015).
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Figure 6. Transactional model of communication, adapted from Barnlund (1970)

19



In discussions of human communication and human teamwork, the reciprocal process by
which human team members mutually transmit relevant information is a team process behavior
known as communication (Salas et al., 2015). Team processes can be described as members’
interdependent activities that convert inputs (e.g. individual taskwork knowledge, individual
dynamic knowledge) to outcomes (e.g. team performance, behaviors) (Cooke et al., 2007; Marks,

Mathieu, & Zaccaro, 2001; Mathieu, Maynard, Rapp, & Gilson, 2008; Salas et al., 2015).

A human-agent team, however, may not communicate like a human team does. Often, a
unidirectional approach to communication is all that is needed to successfully complete the
desired task—e.g. an agent continually pushing information to a human teammate, or a human
operator teloperating a robot (Sheridan, 1995; Sycara & Sukthankar, 2006). A bidirectional
approach may be useful in situations where an agent’s role is to send information to a human but
needs information or guidance from that human as well (Héder, 2014; Kaupp et al., 2010). In
situations where humans and agents are interdependently completing a shared task, however,
Chen and associates (2018) theorize that human and agent team members must mutually disclose
relevant information to one another in order to complete their task effectively (Chen & Barnes,
2014). This is particularly relevant during shared tasks where the actions of one agent can

influence the actions of the other.

As seen in Figure 1, human teams aggregate their individual situation awareness and
mental models in order to create a shared understanding of the overall situation (Cooke et al.,
2004). With the advent of more advanced, more mixed-initiative capable agents, these agents and
their human teammates may benefit from establishing a similar shared understanding (Allen et

al., 1999; Johnson et al., 2014). In order to create and update this understanding like human
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teams do, humans and agents in this situation need to be able to share information bidirectionally
(Chen et al., 2018). With both human and agents able to act as sender and receiver, they are able
to make the specific interchanges that allows for a shared understanding to be built (Olson-
Wenneker, 2012). Mutual disclosure, meant to maintain a shared understanding of a situation,
can be expressed as a dialogue between the human and the agent, with information reciprocally
flowing between them in both directions (Hayes & Scassellati, 2013; Kaupp et al., 2010; Thrun,
2004). This dialogue can be used to facilitate the communication of information needed to
predict future outcomes, allowing for the maintenance of compatible shared knowledge (Hayes
& Scassellati, 2013; Héder, 2014). Communication, and the pattern of communication, can
potentially impact attitudes, such as trust, towards agents (Chen & Barnes, 2014; Lee & See,

2004).

Trust and Attitudes Towards Automated Systems

In the context of human-agent teams, trust can be defined as “the attitude that an agent
will help achieve an individual’s goals in a situation characterized by uncertainty and
vulnerability” (Lee & See, 2004). In human teamwork, trust is an emergent state that influences
training effectiveness, task conflict, and perception of a teammate’s behavior (Mathieu et al.,
2008; Salas et al., 2005). In the context of human-agent teaming, before the two actually interact,
the human comes in with an initial propensity to trust or not trust machines (Merritt, Heimbaugh,
LaChapell, & Lee, 2012). This propensity to trust can be an explicit attitude, and hence

conscious, or an implicit attitude, and hence unconscious (Merritt et al., 2012).
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One’s trust in automated systems can influence the way that one reacts to the system,
leading to issues regarding overtrust, undertrust, and trust calibration (Hancock et al., 2011;
Merritt, Lee, Unnerstall, & Huber, 2015). Overtrust can lead to overreliance on the system, even
in inappropriate situations, while undertrust can lead to underutilization of automation (Lee &
See, 2004; Parasuraman & Riley, 1997). When the human is presented with accurate information
about the agent, they should be able to match their expectations of the agent to its capabilities
(Hancock et al., 2011). Accordingly, agent transparency should allow the human to calibrate
their trust to its performance (Chen et al., 2018; Chen et al., 2014; de Visser, Cohen, Freedy, &

Parasuraman, 2014).

A human’s perception of an agent can influence how a human develops and maintains
trust in an agent (Chen & Barnes, 2014; Sanders, Oleson, Billings, Chen, & Hancock, 2011).
Bartneck and associates’ (2009b) Godspeed Questionnaire Series details some of these
perceptions that are often discussed in HRI work. Some of these perceptions attribute
characteristics to an agent. Attribution of human form, characteristics, and behavior to non-
human things (i.e. Anthropomorphism) or attribution of life or independent movement (i.e.
Animacy) are common (Bartneck et al., 2009b). Nass and Moon (2000) suggest that even people
who consciously reject anthropomorphizing computers still do so, while Schillaci and associates
(2013) show that conveying information multimodally makes a robot seem more animate. A
third perception, Likeability, can be defined as the extent to which a human forms a positive first
impression of the agent (Bartneck et al., 2009b). In one study, where participants played a virtual
basketball game with either a competent agent or a less competent but more communicative

agent, participants liked the agent that non-verbally communicated with them more than the
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competent agent (Lala, Nitschke, & Nishida, 2015). Perceived intelligence, or the extent to
which an agent is perceived to perform functions associated with intelligent human behavior, is
another perception that humans can have about agents (Bartneck et al., 2009b). Computer agents
have been perceived as less intelligent than an otherwise identical human agent in a decision
making task (de Visser et al., 2016). An agent embodied in a more human-shaped container,
however, was considered more intelligent than one embodied in a less human-like container
(Bartneck, Kanda, Mubin, & Al Mahmud, 2009a). Finally, perceived safety refers to the human’s
perception of the level of danger when interacting with the agent (Bartneck et al., 2009b).
Perceived safety was shown to be correlated to legibility (human understanding of agent’s
intention), a factor similar to transparency, in the context of a human crossing an embodied

agent’s path (Lichtenthdler & Kirsch, 2016).

Workload

Workload can be conceptualized as the perceived impact of task demand imposed on the
human, as well as any corresponding physiological responses (Abich, 2013). Supporting
transparency can lead to additional information on a visual display (Chen et al., 2014). This
added information may influence the human’s workload. Additional information may cognitively
overload the operator, causing performance to suffer, but if that information mitigates its own
presence by reducing workload caused by another part of the task, then the display can have this
additional information without a noticeable increase in the human’s workload (Chen et al., 2014;
Hancock & Warm, 1989; Mercado et al., 2016). Workload, specifically perceived workload, will
be measured using the National Aeronautics and Space Administration task load index (NASA-

TLX) (Hart, 2006; Hart & Staveland, 1988).
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Purpose for the Present Study

The SAT model has been used to outline the information an agent conveys to support a
human teammates situation awareness of the agent (Chen et al., 2014; Mercado et al., 2016).
However, when autonomous agents work with humans interdependently to accomplish a shared
task, the knowledge requirements of humans and autonomous agents are different, especially
when operating in a complex, continuously changing environment (Bradshaw et al., 2009; Chen
et al., 2018; Johnson et al., 2014). Effective coordination among team members cannot take
place without mutual knowledge of shared history, current status, and other common ground;
each member—human and non-human—must be able to make good assumptions about what the
others know and can do (Bradshaw et al., 2012). The common ground, or shared relevant
knowledge, supports interdependent activity in a collaborative task (Bradshaw et al., 2009).
When human teams engage in a shared task, they communicate information about the task and
their teammates, which influences how the team will accomplish that shared task (Cooke et al.,

2013; Mathieu et al., 2000; Salas et al., 2005).

When the SAT model is applied to a human and agent collaborating on a shared task in a
rapidly changing environment, the dynamic SAT model can be used to represent the
interdependent teamwork interactions and continuously updated teammate knowledge involved
(Chen et al., 2018). Each team member needs to have a model of their own and their teammate’s
understanding of the shared task. The dynamic SAT model is a framework to understand the
interactions and knowledge shared by human and agent teammates collaborating on a shared
task. Given the importance of mutual information exchange—rather than feedback solely from

one teammate to the other—to successfully accomplish a joint action, this study seeks to
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examine the influence that an agent query concerning the human’s current state would have on a
human who is completing a shared task with an agent (Bradshaw et al., 2009; Marks et al.,

2001).

With the dynamic SAT model, both the agent’s reasoning and the agent’s understanding
of the human’s reasoning are made visible. While an agent’s understanding can be plausibly
based on inferences from observing the human’s behavior, inquiries can be used to confirm the
human’s reasoning and foster long-term learning of human behavior. The current study also
examines the effect of using an inference display—the at-a-glance module that is populated by
information inferred by the agent through observation—versus using an inference display that is

updated through queries to the human.

The goal for the current effort is to establish that transactional communication can
improve human-agent collaboration in a shared task. The specific aims for this study are
threefold. First, this study will determine the impact of transparency information regarding an
embodied agent (i.e. robot) and its teammate. Pursuant to this aim, the effects of two approaches
to supporting transparency are assessed: agent transparency and team transparency. Second, this
study will investigate the impact of transactional communication facilitating transparency.
Pursuant to this aim, two patterns of communication between a robot and a human will be
explored: unidirectional communication and transactional communication. True transactional
communication necessitates a continuous communication process, which is not currently feasible
for this particular human-robot interaction, so the transactional communication condition will
feature individual transactions between the human and robot, expressed as robot queries to the

human teammate. Third, this study will compare human responses to communication patterns in
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situations where the robot reports information about itself and its understanding of the human
teammate. In order to achieve these aims and subsequent objectives, the following will be

assessed:

e Participants’ situation awareness while working with a robot using differing
communication patterns and different transparency support.

e Participants’ implicit trust in automated systems (pre-study) and their current state of
trust after working with a robot (post-task) with differing communication patterns and
different transparency support.

e Participants’ self-reported workload while interacting with a robot using different
communication patterns and transparency support.

e Participants’ accuracy in identification of stimuli and behavior as well as their response
times, when working with robots with differing communication patterns and different

transparency displays.

Hypotheses

Communication Pattern

1.1.  When the robot queries participants, participants will exhibit more errors and greater
response times when identifying targets, than when the robot does not query.

1.2.  When the robot queries participants, participants will exhibit greater situation awareness,
greater workload, greater trust in the robot (controlling for implicit trust), and improved

attitudes towards the robot, than when they are not queried.
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Table 1. Communication pattern hypotheses, AT: Agent Transparency, TT: Team Transparency, UC:

Unidirectional Communication, TC: Transactional Communication, 1: Higher, |: Lower.

AT+UC TT+UC AT+TC TT+TC
Performance & Error ! ! 1 1
Performance & RT ! ! 1 1
Situation Awareness ! ! 1 1
Workload ! ! 1 1
Trust ! ! T T
Attitude (GQS) ! ! 1 1

Type of Transparency

2.1.  When the robot only supports agent transparency, participants will exhibit more errors
and greater response times when identifying targets, than when they are presented with a
robot that supports team transparency.

2.2. When the robot only supports agent transparency, participants will exhibit lower situation
awareness, lower workload, lower trust in the robot (controlling for implicit trust), and
worsened attitudes towards the robot, than when they are presented with a robot that

supports team transparency.

Table 2. Type of transparency hypotheses, AT: Agent Transparency, TT: Team Transparency, UC:

Unidirectional Communication, TC: Transactional Communication, 1: Higher, |: Lower.

AT+UC TT+UC AT+TC TT+TC
Performance & Error 0 ! 1 !
Performance & RT 0 ! 1 !
Situation Awareness ! 1 J 1
Workload ! 1 J 1
Trust ! 1 l i
Attitude (GQS) ! 1 ! 1
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Interactions

3.1.  When the robot only supports agent transparency and queries participants, participants
will exhibit more errors and greater response times when identifying targets, greater
workload, and lower trust in the robot (controlling for implicit trust) than in the other
conditions.

3.2. When the robot only supports agent transparency and does not query participants, they
will exhibit lower situation awareness than in the other conditions.

3.3.  When the robot supports team transparency and queries participants, they will exhibit

more improved attitudes towards the robot in than the other conditions.

Table 3. Interaction between communication pattern and type of transparency hypotheses, AT: Agent
Transparency, TT: Team Transparency, UC: Unidirectional Communication, TC: Transactional

Communication, 1: Higher, |: Lower.

AT+UC TT+UC AT+TC TT+TC
Performance & Error ! ! 1 !
Performance & RT ! ! 1 !
Situation Awareness ! 1 1 1
Workload ! ! 1 !
Trust T T ! T
Attitude (GQS) J J J 1
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CHAPTER THREE: METHODOLOGY

Participants

According to a power analysis, conducted using the software application G*Power, a
minimum of 36 participants will be needed to detect a medium-sized effect (=0.25), given an
alpha of .05, with a power criterion of .95. A total of 49 participants were recruited through
UCF’s IST Sona system, with 6 participants excluded from analysis due to either mechanical or
experimenter error, 1 removed for providing incomplete information, and 2 removed as outliers,
yielding 40 remaining participants. Thirteen men and 27 women participated in the study and
their age averaged 21.13 (Muge=21.13, SD = 3.95). These participants ranged from 18 to 43
years old, were U.S. citizens, and had adequate color vision, as determined through the Ishihara
test (Appendix C) for color vision (Ishihara, 1960). Participants were compensated $15/hr for

their participation.

Experiment Design

The experiment examined two variables. First, communication patterns, between a
simulated robot and a human avatar operating interdependently in a simulated environment, were
compared. Second, the type of information, in support of a transparent human-robot interaction,
that the robot provides to the human teammate was also be compared. In order to examine these
two variables, a 2 x 2 within-subjects design was employed. The independent variables were
communication pattern (Communication Pattern: Unidirectional Communication, Transactional

Communication) and type of transparency (Type of Transparency: Agent Transparency, Team
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Transparency). This research design is described in Table 4. The order in which participants

received these conditions was counterbalanced, using a Latin Squares randomization protocol.

Table 4. Experimental design for study. Conditions experienced by participants during a 2

(Transparency Type) x 2 (Communication Pattern) research design

Unidirectional Transactional
Communication Communication
Acent Agent Transparency + Agent Transparency +
Transg Arenc Unidirectional Transactional
P y Communication Communication
Team Team Transparency + Team Transparency +
Transparenc Unidirectional Transactional
P y Communication Communication

Experiment Equipment

Two custom software applications was used to present the stimuli to participants on a
standard desktop computer with two 22 monitors (1680 x 1050 resolution), standard keyboard,

and three-button mouse (see Figure 7).
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Figure 7. Experiment station with dual monitor set-up, standard keyboard,

and three button mouse.

The first application, developed in the Unreal Engine 4 (UE4), was used to represent the
physical environment and any subsequent events to the participant from a Soldier’s point of
view. Additionally, this application displayed a number of buttons corresponding to events they

saw in this virtual environment. The display using UE4 can be seen in Figure 8.
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Figure 8. Soldier’s point of view (POV) screen. This screen depicts the virtual
environment from the point of view of the Soldier as they observe the building that the
robot is searching, as well as the surrounding area. Participants are asked to click on
the relevant button when they see a person, a dangerous person, a vehicle, or a
dangerous vehicle. If a vehicle obstructs their view, they are asked to click the
obstacle button. If a person approaches the building, they are asked to click the

intruder button.

The second application is adapted from a multimodal interface (MMI) prototype developed
under the aegis of the Robotics Collaborative Technology Alliance (Barber et al., 2015; Barber,
Howard, & Walter, 2016). The MMI was developed to allow users to communicate with a robot
in real time (Barber et al., 2016). Users can send information to the robot via speech and
gestures, while the robot can send information to the human using visual, auditory, and other
channels (Barber et al., 2015; Barber et al., 2016). This study focused on the visual

communication channel, using icons and clicking as the means of communication. This MMI
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displayed information from the robot’s point of view, including information about the robot’s
current goals, priorities, and projected outcomes. The second display, using the second

application, can be seen in Figure 9 and Figure 10.

AlQ |8,
AR *

L4 COMMAND

- SEARCH BUILDING

STATUS

SEARCHING.....

Figure 9. The human-robot interaction interface. This projected interface includes a dynamic

map (left), a feed from the robot’s view (top right), at-a-glance modules supporting both
agent transparency (left, top icon set) and team transparency (left, bottom icon set), a feed
from command and current status (middle right), and an area where the robot can make

inquiries to its human teammate (bottom right).
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Figure 10. The human-robot interaction interface, making a transactional query. In Transactional

Communication conditions, the feed from command and current status modules (middle right) are
periodically replaced with a transactional query, where the robot asks the human teammates about their

rationale.

Independent Variables

Communication Pattern

Two types of communication patterns were examined in this study: Unidirectional
Communication and Transactional Communication. In the Transactional Communication
condition, the robot periodically asked the participant, using a query, to confirm their rationale in

the simulation (see APPENDIX E). In the Unidirectional Communication condition, the agent
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did not inquire about the human’s current rationale. The differences between these conditions are

displayed in Figure 11.

Unidirectional Transactional
Robot Interface Simulated Environment Interface Robot Interface Simulated Environment Interface

Agent

Transparency
(Robot)

Team

Transparency
(Robot+ Human)

Figure 11. Transparency design layout for the different conditions

Type of Transparency

Two types of transparency were examined in this study: agent transparency and team
transparency. In the agent transparency condition, the robot displayed information pertaining to
its own current goal, rationale, and projected future state. In the team transparency condition, the
robot displayed information pertaining to both its own current goal, rationale, and projected
future state as well as its understanding of the human’s current goal, rationale, and projected

future state. The differences between these conditions are displayed in Figure 11.
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Dependent Variables

Performance Measures

Classification Accuracy

Classification accuracy is recorded based on the participants’ clicking of a button on the
Soldier POV screen using a mouse. If the participant presses the button that correctly
corresponds with the event presented to them, that result will be scored as correct. This result
was reported for each participant, per condition, in terms of total number of correct
identifications in each condition. If the participant presses the wrong button, then that result will
be scored as an incorrect identification. If the participant does not press any button, then that
result is classified as a miss. These results are reported for each participant, per condition, as the

total number of identifications made or missed.

Reaction Time

Reaction time is recorded based on the speed of the participants’ clicking of the correct button on
the Soldier POV screen. The reaction time recorded will be from the time the event occurs,
depicted in the UE4 software application, to the time the participant presses the corresponding
button. If the participant does not press the corresponding button, then it will be marked as a
missing value and will be struck from the list of response times that will be used to compose the
final measure. The measure reported for each participant, per condition, will be median reaction

time for all correct identifications.
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Questionnaires and Surveys

Demographic Questionnaire

A demographics questionnaire was administered to participants at the beginning of the
experimental session (see APPENDIX B). This measure includes items related to age, gender,

video game expertise, military experience, and experience with robots.

Color Vision

Participants were asked to complete an Ishihara color vision test before beginning the
study (see APPENDIX C). The Ishihara color vision test that was used in this study is comprised
of nine plates, each of which displays a circle of dots, within which a pattern of dots show a
number visible to those with normal color vision (Ishihara, 1960). Identifying fewer than seven

of the nine plates correctly was grounds for removal from the study.

Situation Awareness

Participants received Situation Awareness probes during pre-determined freezes of the
simulation during the task under analysis (Jones & Kaber, 2004; Salmon et al., 2009; Stanton,
Salmon, & Rafferty, 2013). During a simulation, the displays were blanked and the participants’
knowledge of SA elements were elicited (Stanton et al., 2013). A total of five freezes occurred
during each condition, with each freeze being comprised of ten questions. The final measure
reported for each participant, per condition, was percentage of SA questions correct out of total

presented, for each level of SA. An overall SA score was determined by assessing percentage of
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SA queries correct out of total presented, per condition. SA questions that were asked during

freeze probes can be seen below (APPENDIX D).

Trust in Automated Systems

To measure a person’s state of trust in an agent, Jian and associates’ (2000) Checklist for
Trust between People and Automation was used. The twelve questions in the checklist, answered
using 7-point Likert-type scales was used to assess the human’s state of trust at the end of each
scenario (APPENDIX F). When scoring this measure, five of the twelve items must be reverse
coded. After these items were reversed, the resulting seven point Likert-type scores were

averaged together to create a mean trust score for each block.

Implicit Attitude Toward Automated Systems

Implicit attitude towards automation, defined as the positivity of an individual’s mental
associations with the concept of automation, can be measured using a variant of the Implicit
Attitude Test (Merritt et al., 2012). Implicit Attitude Tests (IATs) use response latencies to
measure implicit associations, with shorter response latencies representing stronger associations,
and thus, a stronger preference (Greenwald, Nosek, & Banaji, 2003; Nosek, Greenwald, &
Banaji, 2005). Before starting the experimental tasks, participants were given superordinate
categories—good, bad, human, person, automation, and machine in this instance—and they were
asked to associate “good” (e.g. Love, Peace) and “bad” (e.g. Hurt, Evil) words with those
categories (see APPENDIX G). Participants received two blocks where “automation” was

associated with “good” and “human” was associated with “bad” and two blocks where
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“automation” was associated with “bad” and “human” was associated with “good.” Half the
participants received the “automation” and “good” associations first, while the other half of the
participants received the “automation” and “bad” associations first, to counteract any systemic
order effects. The scoring algorithm used the difference in mean response times between two
opposite response blocks (e.g. Automation & Bad — Automation & Good) and divided that by the
pooled standard deviation of those two blocks (Greenwald et al., 2003). The quotients for both
sets of opposite response blocks were averaged to create something similar to an effect size
measure, with the final result being either a negative score, which indicates a stronger association
between automation and “good,” or a positive score, which indicates a stronger association
between automation and “bad.” These scores were used to determine how the participants’
implicit attitude towards automation influences their trust in the automated systems they were

exposed to.

Workload

This study measured participants’ perceived workload using the NASA Task Load Index
(Hart & Staveland, 1988). The NASA-Task Load Index is a six item task load index (Hart,
2006; Hart & Staveland, 1988) which provides workload assessment specific to mental demand,
physical demand, temporal demand, performance, effort, and frustration, as well as a single
combined measure of global workload based on the mean of the six subscales. Each subscale is
scored between 0 and 100, with 0 being low perceived workload and 100 being high perceived
workload. This measure (in APPENDIX H) was administered through a standard computer

program after each scenario.
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Godspeed Questionnaire Series

The Godspeed Questionnaire Series (GQS) comprises 24 questions in five scales that
evaluates user opinions of social aspects of a robot during a human-robot interaction task:
anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety. The GQS
items are rated according to a five-point Likert scale with end points that are semantic
differentials (e.g., Awful/Nice). The results yielded five mean scores, each corresponding to a
different subscale. This measure (available in APPENDIX I) was administered through a

standard computer program after each scenario.

Procedure

After being briefed on the purpose of the study and signing the informed consent form,
participants were tested for normal color vision using the Ishihara Color Vision Test. Failure to
pass the Ishihara Color Vision test (identifying fewer than seven of the nine color plates
successfully) was grounds for dismissal from the study. Participants who passed the Ishihara
Color Vision test completed the demographics questionnaire and implicit trust measure. Once
these measures were completed, participants were randomly assigned to one of four
counterbalanced experimental blocks. They were then given a training slideshow to familiarize
themselves with the display characteristics and the expectations from a cordon and search-like
task. This training was split into sections, each detailing an individual aspect of the experimental
task, culminating in a final practice scenario. During training, participants went through a series
of multiple choice evaluations, one after each section, to confirm that they have understood the

material that has been trained. If the participant scored 80% or more on an evaluation, they
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continued to the next section of training. If the participant scored less than 80% on one of these
evaluations, they were asked to review the material. Scoring less than 80% on a single evaluation
three times in a row was grounds for dismissal from the study. This process continued until the
participant reached the final section, a mock scenario. Participants who scored at least 80% on
this cumulative evaluation successfully completed the training. Following the final training

evaluation, participants completed a training scenario, using the UE4 and MML

Afterwards, participants began the experimental conditions. In the experimental task, the
participant worked with a simulated robot in a series of squad level cordon and search-like tasks.
The participant observed two monitors, one displaying a simulated environment, the other
displaying a robot interface. The robot acted as a search element, exploring a building for high-
value targets. During this scenario, the robot encountered events, which affected its goals,
rationale, and projected future state. Using the robot’s interface, the human monitored the robot’s
actions while simultaneously acting as a cordon element, identifying pre-specified stimuli of
interest in the simulated environment. Jointly, the human and the robot kept people out of the
building; the participant was tasked with alerting the robot when individuals approach the
building’s entrance and the robot chased away any intruders who enter the building. During each
scenario, participants received probes concerning their awareness of the situation. In transactional
query conditions, the participant was presented with a query on the robot’s interface while the

participant identified stimuli, asking them what their current rationale was.

There were four separate scenarios, each of which represented one combination of
communication pattern and transparency. Each scenario, absent any surveys or questions, lasted

approximately 6 minutes. During each scenario, participants received 5 freeze point probes,
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comprised of 10 SA questions, distributed throughout the scenario. After each scenario,
participants took the NASA Task Load Index (Hart & Staveland, 1988), the Jian trust in automated
systems scale (Jian, Bisantz, & Drury, 2000), and the GQS (Bartneck et al., 2009b). After
completing all scenarios, the participant was thanked for participation and any questions they had

pertaining to the study was answered. The entire session took at most 4 hours.
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CHAPTER FOUR: ANALYSIS

Data analysis was performed using SPSS Version 23. In this experiment, 2
(communication pattern: unidirectional, transactional) x 2 (transparency type: agent
transparency, team transparency) repeated measures ANOVAs (o = .05) were performed to
determine the independent variables’ effects on the dependent variables, unless stated otherwise.

Effect size was reported using omega squared (?).

Descriptive Statistics

Participants were asked about their level of education. Most participants reported some
college experience (77.5%), with the remaining reporting that they completed high school
(7.5%), completed an associate’s or technical degree (7.5%), or completed a Bachelor’s degree
(7.5%). Over half the participants needed to wear some form of corrective lens (60%), with
37.5% wearing glasses and 22.5% wearing contact lenses. No participants reported a color vision

deficiency.

Participants were also asked about their experience with computers and robots. The
majority of participants felt comfortable using several software packages (45%), while fewer
participants felt comfortable using only one type of software package (27.5%) or felt comfortable
using multiple software packages and programming in one computer language (25%). Only one
participant (2.5%) described themselves as a novice computer user. Participants reported that
their average weekly computer use ranged between 10 to 84 hours per week (M = 32.28, SD =
20.72), so the vast majority of participants were comfortable using computers. However, that

comfort did not extend to robots. Overall, participants rated their experience with robots (M =
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1.93, SD = 0.86, out of 5) and their knowledge regarding robotics technology (M = 1.40, SD =

0.71, out of 5) as relatively low.

Implicit Attitude Toward Automated Systems

Before undergoing any scenario, participants completed an implicit attitude test to
determine their implicit attitude toward automation. Participants’ reaction time was used to
determine a D score, where a positive D score denotes a negative attitude toward automation
and, conversely, a negative D score denotes a positive attitude toward automation. After each
scenario, participants were asked to rate their trust in the automated system with which they had

worked.

Counter to expectations, the order of association (“automation” and “good” first vs.
“automation” and “bad” first) had a significant effect on IAT score (F(7,39) = 103.63, p <.01).
A one-way ANOVA revealed participants who first saw “automation” and “good” (M = -0.34,
SD = 0.34) reported a more positive view of automation than those who first saw “automation”
and “bad” (M = 0.55, SD = 0.52). Table M - 1 provides descriptive statistics for IAT scores. To
facilitate the analysis of this data, along with post-scenario trust data, z-scores for these two

groups of people were calculated (see

Table M - 2 for more information). A one-way ANOVA revealed no significant
difference between these groups (F(1,39) = 0.01, p = .94). Correlation between standardized IAT
scores revealed weak relationships between IAT scores and the post-scenario trust scores, none

of which were significant (see Table M - 3 for more information). Due to the unexpectedly low
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correlation between these factors, standardized IAT scores were blocked—scores under 0 (N =

21) were compared to scores above 0 (N = 19).

Communication Pattern

Performance: Classification Accuracy

Participants’ correct identifications were determined by the number of times the
participant clicked on the correct button in response to a model or behavior on screen. The
maximum number of correct identifications a participant could make, per scenario, was 28.
Participants’ correct identification count, and other descriptive statistics, is available in Table J -
1. Incorrect identifications are defined by participants responding to a stimulus on the screen by
clicking on the wrong button. Participants, overall, made relatively few errors (see Table J - 2 for
descriptive statistics). A miss is defined as a participant not clicking any button after six seconds
of exposure to the stimulus. Overall, participants rarely missed identifying an event (see Table J -

3 for descriptive statistics).

In terms of correct identifications, a main effect for communication pattern was
revealed—F(1, 39) =5.55, p = .02, o* = .06. As seen in Figure 12, when participants were
exposed to a non-querying agent interface (M = 26.94, SD = 2.71), they answered slightly more
accurately than when they were exposed to a querying agent interface (M = 26.49, SD = 3.07). In
terms of incorrect identifications, no main effect for communication pattern were exhibited, F(1,

39)=227,p=14, o* = .02).
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Figure 12. Mean classification accuracy comparison of Transactional and
Unidirectional Communication Pattern combinations. Error bars represent standard

€1Tor.

In terms of misses, a main effect for communication pattern was revealed—F(1, 39) =
4.37, p= .04, o> = .03. As seen in Figure 13, when participants were exposed to a querying agent
interface (M = 1.15, SD = 2.27), they missed more events than when they were exposed to a non-

querying agent interface (M = 0.84, SD = 1.93).
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Figure 13. Mean error comparison of Transactional and Unidirectional Communication

Pattern combinations. Error bars represent standard error.

Performance: Reaction Time

Participants’ reaction time was determined by the median time that participants took to
select the correct answer in response to a model or behavior on screen during a scenario. In terms
of reaction time, no main effect for communication pattern (F(1, 39) = 1.45, p = .24, o = .00)

was exhibited. See Table J - 4 for descriptive statistics.

Situation Awareness

Situation awareness refers to the percentage of SA questions that participants answered
correctly during a scenario. The score for overall situation awareness was determined by pooling
participants’ SA Level 1, SA Level 2, and SA Level 3 scores together and creating an average.

SA Level 1 refers to the percentage of Level 1 SA questions answered correctly during a
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scenario. SA Level 2 refers to the percentage of Level 2 SA questions answered correctly during
a scenario. SA Level 3 refers to the percentage of Level 3 SA questions answered correctly

during a scenario.

In terms of overall SA, no main effect for communication pattern (£(7, 39) =0.00, p =
.99, ? = .00) was exhibited. See Table K - 1 for descriptive statistics. In terms of SA Level 1, no
main effect for communication pattern (F(1, 39) = 0.19, p = .66, »* = .00) was exhibited. See
Table K - 2 for descriptive statistics. In terms of SA Level 2, no main effect for communication
pattern (F(1, 39) = 0.05, p = .82, o* = .00) was exhibited. See Table K - 3 for descriptive
statistics. In terms of SA Level 3, no main effect for communication pattern (F(1, 39) =0.05, p =

.82, »* =.00) was exhibited. See Table K - 4 for descriptive statistics.

Overall Workload

Workload describes participants’ unweighted global workload score as determined by
their responses on the NASA-TLX after each scenario. Responses to each subscale were
averaged together to create an estimate of overall workload, an approach which has been referred
to as Raw TLX (Hart, 2006). In terms of overall workload, no main effect for communication
pattern (F(1, 39) =1.02, p = .32, o* = .00) was exhibited. See Table L - 1 for descriptive

statistics.

Trust

Trust was measured using Jian and Associates’ (2000) Trust in Automated Systems
survey after each scenario. IAT block was used as a between-subjects factor. A mixed-factorial

ANOVA was performed to determine the effect of transparency and communication pattern on
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trust in the robot, and how incoming attitude toward automation influences this trust. In terms of
post-scenario trust, no main effect for communication pattern (F(1, 38) = 1.27, p = .27, o = .00)

was exhibited. See Table M - 4 for descriptive statistics.

Godspeed Questionnaire Series

The Godspeed Questionnaire Series was used to determine the attitudes that participants
held towards the robot with which they worked. Participants were instructed that, in each
condition, they worked with a different robot, so the questionnaire series was administered after
each condition. Anthropomorphism was measured using the Anthropomorphism subscale of the
Godspeed Questionnaire Series (Bartneck et al., 2009b). Participants did not anthropomorphize
any one of the robots in the four conditions significantly more than any of the others.
.Specifically, no main effect for communication pattern (£ (7, 39) =0.74, p = .40, »* = .00) was

exhibited. See Table N - 1 for descriptive statistics.

Animacy was measured using the Animacy subscale of the Godspeed Questionnaire
Series (Bartneck et al., 2009b). Participants’ specific animacy attribution values are available in
Table N - 2. In terms of animacy, a main effect for communication pattern was revealed, F(1, 39)
=5.90,p =.02, o* = .07. As seen in Figure 14, when participants worked with a non-querying
agent interface (M = 2.67, SD = 0.75), they rated the robot as less animate than its querying

counterpart (M = 2.87, SD = 0.64).
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Figure 14. Mean Animacy score of Transactional and Unidirectional Communication

Pattern combinations. Error bars represent standard error.

Likeability was measured using the likeability subscale of the Godspeed Questionnaire
Series (Bartneck et al., 2009b). Participants’ specific likeability attribution values are available in
Table N - 3. In terms of likeability, a main effect for communication pattern was revealed, F(1,
39)=4.17, p = .05, o* = .06. As seen in Figure 15, when participants worked with a non-querying
agent interface (M = 3.14, SD = 0.10), they rated it as less likeable than its querying counterpart

(M=3.33, SD = 0.08).
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Figure 15. Mean Likeability score of Transactional and Unidirectional Communication

Pattern combinations. Error bars represent standard error.

Perceived intelligence was measured using the perceived intelligence subscale of the Godspeed
Questionnaire Series (Bartneck et al., 2009b). Participants’ specific perceived intelligence values
are available in Table N - 4. In terms of perceived intelligence, a main effect for communication
pattern was revealed, F(1, 39) =5.49, p = .02, > = 0.08. As seen in Figure 16, when participants
worked with a non-querying agent interface (M = 3.67, SD = 0.11), they perceived it as less

intelligent than its querying counterpart (M = 3.91, SD = 0.08).
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Figure 16. Mean Perceived Intelligence score of Transactional and Unidirectional

Communication Pattern combinations. Error bars represent standard error.

Perceived Safety was measured using the perceived safety subscale of the Godspeed
Questionnaire Series (Bartneck et al., 2009b). In terms of perceived safety, no main effect for
communication pattern (F(1, 39) = 0.40, p = .53, > = .00) was exhibited. See Table N - 5 for

descriptive statistics.

Type of Transparency

Performance: Classification Accuracy

Participants’ correct identifications were determined by the number of times the
participant clicked on the correct button in response to a model or behavior on screen. The
maximum number of correct identifications a participant could make, per scenario, was 28.
Participants’ correct identification count, and other descriptive statistics, is available in Table J -

1. Incorrect identifications are defined by participants responding to a stimulus on the screen by
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clicking on the wrong button. Participants, overall, made relatively few errors (see Table J - 2 for
descriptive statistics). A miss is defined as a participant not clicking any button after six seconds
of exposure to the stimulus. Overall, participants rarely missed identifying an event (see Table J -

3 for descriptive statistics).

In terms of correct identifications, no main effect for transparency was revealed, (1, 39)
=0.52, p = .48, o = .00. In terms of incorrect identifications, no main effect for transparency
(F(1, 39) =0.02, p = .89, v* =.00) was exhibited. In terms of misses, no main effect for

transparency was revealed, F(1, 39) = 1.06, p = .39, «? = .00.

Performance: Reaction Time

Participants’ reaction time was determined by the median time that participants took to
select the correct answer in response to a model or behavior on screen during a scenario. In terms
of reaction time, no main effect for transparency (F(1, 39) =2.01, p = .16, o> = .01) was

exhibited. See Table J - 4 for descriptive statistics.

Situation Awareness

Situation awareness refers to the percentage of SA questions that participants answered
correctly during a scenario. The score for overall situation awareness was determined by pooling
participants’ SA Level 1, SA Level 2, and SA Level 3 scores together and creating an average.
SA Level 1 refers to the percentage of Level 1 SA questions answered correctly during a
scenario. SA Level 2 refers to the percentage of Level 2 SA questions answered correctly during
a scenario. SA Level 3 refers to the percentage of Level 3 SA questions answered correctly

during a scenario.
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In terms of overall SA, no main effect for transparency (F(1, 39) = 0.15, p = .70, &* = .00)
was exhibited. See Table K - 1 for descriptive statistics. In terms of SA Level 1, no main effect
for transparency (F(1, 39) = 0.88, p = .36, »* = .00) was exhibited. See Table K - 2 for
descriptive statistics. In terms of SA Level 2, no main effect for transparency (F(1, 39) =3.48, p
=.07, o’ = .05) was exhibited. See Table K - 3 for descriptive statistics. In terms of SA Level 3,
no main effect for transparency (F(1, 39) = 3.48, p = .07, o = .05) was exhibited. See Table K - 4

for descriptive statistics.

Overall Workload

Workload describes participants’ unweighted global workload score as determined by
their responses on the NASA-TLX after each scenario. Responses to each subscale were
averaged together to create an estimate of overall workload, an approach which has been referred
to as Raw TLX (Hart, 2006). In terms of overall workload, no main effect for transparency (F(1,

39)=3.29, p = .08, »?* = .03) was exhibited. See Table L - 1 for descriptive statistics.

Trust

Trust was measured using Jian and Associates’ (2000) Trust in Automated Systems
survey after each scenario. IAT block was used as a between-subjects factor. A mixed-factorial
ANOVA was performed to determine the effect of transparency and communication pattern on
trust in the robot, and how incoming attitude toward automation influences this trust. In terms of
post-scenario trust, no main effect for transparency (F(1, 38) =2.84, p = .10, o* = .02) was

exhibited. See Table M - 4 for descriptive statistics.
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Godspeed Questionnaire Series

The Godspeed Questionnaire Series was used to determine the attitudes that participants
held towards the robot with which they worked. Participants were instructed that, in each
condition, they worked with a different robot, so the questionnaire series was administered after
each condition. Anthropomorphism was measured using the Anthropomorphism subscale of the
Godspeed Questionnaire Series (Bartneck et al., 2009b). Participants did not anthropomorphize
any one of the robots in the four conditions significantly more than any of the others.
Specifically, no main effect for transparency (F(1, 39) =1.93, p = .17, o = .01) was exhibited.
See Table N - 1 for descriptive statistics. Animacy was measured using the Animacy subscale of
the Godspeed Questionnaire Series (Bartneck et al., 2009b). In terms of animacy, no main effect
for transparency was exhibited, F(1, 39) =0.76, p = .39, «* = .00. Participants’ specific animacy
attribution values are available in Table N - 2. Likeability was measured using the Likeability
subscale of the Godspeed Questionnaire Series (Bartneck et al., 2009b). In terms of likeability,
no main effect for transparency was revealed, F(1, 39) =3.15, p = .08, * = .04. Participants’
specific likeability attribution values are available in Table N - 3. Perceived Intelligence was
measured using the Perceived Intelligence subscale of the Godspeed Questionnaire Series
(Bartneck et al., 2009b). In terms of perceived intelligence, no main effect for transparency was
revealed, F(1, 39) =2.30, p = .14, o* = 0.02. Participants’ specific perceived intelligence
attribution values are available in Table N - 4. Perceived Safety was measured using the
Perceived Safety subscale of the Godspeed Questionnaire Series (Bartneck et al., 2009b). In
terms of perceived safety, no main effect for transparency was revealed, F(1, 39) = 0.40, p = .53,

o® = .00. Participants’ specific perceived safety attribution values are available in Table N - 5.
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Interactions

Performance: Classification Accuracy

Participants’ correct identifications were determined by the number of times the
participant clicked on the correct button in response to a model or behavior on screen. The
maximum number of correct identifications a participant could make, per scenario, was 28.
Participants’ correct identification count, and other descriptive statistics, is available in Table J -
1. Incorrect identifications are defined by participants responding to a stimulus on the screen by
clicking on the wrong button. Participants, overall, made relatively few errors (see Table J - 2 for
descriptive statistics). A miss is defined as a participant not clicking any button after six seconds
of exposure to the stimulus. Overall, participants rarely missed identifying an event (see Table J -

3 for descriptive statistics).

In terms of correct identifications, there was an interaction between communication
pattern and transparency, F(1, 39) = 3.97, p = .05, o = .06. Participants’ correct identification

count is depicted in Figure 17, with specific values available in Table J - 1.
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Figure 17. Correct identifications for Transparency and Communication Pattern

combinations. Error bars represent standard error.

In terms of incorrect identifications, no interaction effect was found, F(1, 39) =2.94, p =
.09, »* =.03. In terms of misses, no interaction effect was found, F(7, 39) =3.08, p = .09, o’ =

.03.

Performance: Reaction Time

Participants’ reaction time was determined by the median time that participants took to
select the correct answer in response to a model or behavior on screen during a scenario. In terms
of reaction time, no interaction effect was found, F(1, 39) = 1.45, p = .24, o> = .01. See Table J -

4 for descriptive statistics.

57



Situation Awareness

Situation awareness refers to the percentage of SA questions that participants answered
correctly during a scenario. The score for overall situation awareness was determined by pooling
participants’ SA Level 1, SA Level 2, and SA Level 3 scores together and creating an average.
SA Level 1 refers to the percentage of Level 1 SA questions answered correctly during a
scenario. SA Level 2 refers to the percentage of Level 2 SA questions answered correctly during
a scenario. SA Level 3 refers to the percentage of Level 3 SA questions answered correctly

during a scenario.

In terms of overall SA, no interaction effect was found, F(1, 39) =0.22, p = .64, »* = .00.
In terms of SA Level 1, no interaction effect was found, F(1, 39) = 0.86, p = .36, »* = .00. In
terms of SA Level 2, no interaction effect was found, F(1, 39) = 0.00, p = 1.00, »? = .02. In terms

of SA Level 3, no interaction effect was found, F(1, 39) = 0.00, p = 1.00, »? = .00.

Overall Workload

Workload describes participants’ unweighted global workload score as determined by
their responses on the NASA-TLX after each scenario. Responses to each subscale were
averaged together to create an estimate of overall workload, an approach which has been referred
to as Raw TLX (Hart, 2006). No interaction effect was found, F(1, 39) =2.42, p =.13, o* = .02.

See Table L - 1 for descriptive statistics.
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Trust

Trust was measured using Jian and Associates’ (2000) Trust in Automated Systems
survey after each scenario. IAT block was used as a between-subjects factor. A mixed-factorial
ANOVA was performed to determine the effect of transparency and communication pattern on
trust in the robot, and how incoming attitude toward automation influences this trust. No three-
way interaction effect was found, F(7, 38) = 0.15, p =.71, «* = .00. No interaction effect
between either IAT block and communication pattern was found, (7, 38) = 0.19, p = .66, o’ =
.00, nor between IAT block and transparency, F(1, 38) = 0.03, p = .32, o = .00. No interaction
effect between communication pattern and transparency was found either, (1, 38) = 0.68, p =

42, o> =.00. See Table M - 4 for descriptive statistics.

Godspeed Questionnaire Series

The Godspeed Questionnaire Series was used to determine the attitudes that participants
held towards the robot with which they worked. Participants were instructed that, in each
condition, they worked with a different robot, so the questionnaire series was administered after
each condition. Anthropomorphism was measured using the Anthropomorphism subscale of the
Godspeed Questionnaire Series (Bartneck et al., 2009b). In terms of anthropomorphism, no
interaction effect was found, F(1, 39) = 1.80, p =.19, &* = .01. See Table N - 1 for descriptive
statistics. Animacy was measured using the Animacy subscale of the Godspeed Questionnaire
Series (Bartneck et al., 2009b). In terms of animacy, no interaction effect was found, F(1, 39) =
1.38, p = .25, o = .01. Participants’ specific animacy attribution values are available in Table N -

2. Likeability was measured using the Likeability subscale of the Godspeed Questionnaire Series
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(Bartneck et al., 2009b). In terms of likeability, no interaction effect was found, F(1, 39) = 0.08,
p=".78, o = .00. Participants’ specific likeability attribution values are available in Table N - 3.
Perceived Intelligence was measured using the Perceived Intelligence subscale of the Godspeed
Questionnaire Series (Bartneck et al., 2009b). In terms of perceived intelligence, no interaction
effect was found, F(1, 39) = 0.80, p = .38, o? = .00. Participants’ specific perceived intelligence
attribution values are available in Table N - 4. Perceived Safety was measured using the
Perceived Safety subscale of the Godspeed Questionnaire Series (Bartneck et al., 2009b). In
terms of perceived safety, no interaction effect was found, F(1, 39) = 0.26, p =.61, o = .00.

Participants’ specific perceived safety attribution values are available in Table N - 5.
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CHAPTER FIVE: DISCUSSION

Prior research into transparency focused on the human operator using a robot—or other
agent—to complete their task (Helldin, Ohlander, Falkman, & Riveiro, 2014; Kim & Hinds,
2006; Wright et al., 2016). In order to better deal with the direction of robot development in the
military and the dynamic nature of the battlefield, this research paradigm was shifted to envelop
more autonomous robots that could enable more complex forms of mixed-initiative interaction
(Chen et al., 2018; Defense Science Board, 2016; U.S. Army, 2017). This approach, however,
has been largely theoretical until now. Generally, this study used the previously established
theoretical approach to explore how humans and robots can communicate in order to build
shared understandings. Specifically, this study sought to examine how transparency type and
human-robot communication pattern could influence participant SA, trust in a robot, subjective
workload, performance, and attitude toward the robot. Overall, participants did not seem to be
affected by the type of transparency to which they were exposed. Instead, communication pattern
seemed to spark differences. Each outcome will be examined, then larger takeaways will be

discussed.

Communication Pattern

Performance: Classification Accuracy

Participants’ performance can be thought of as classification accuracy and reaction time.
Classification accuracy is divided into three major components, for the purposes of this study:
correct identifications, incorrect identifications, and misses. Correct identification, essentially the
participant correctly identifying an event, is a useful counterpart to participant errors. Both
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incorrect identifications and misses can be grouped as errors, the former as errors of
commission—the participant doing the wrong thing—and the latter as errors of omission—the

participant failing to do the correct thing.

When participants worked with a querying robot, they made fewer correct classifications
and missed more classifications than when they worked with a non-querying robot. The
increased errors, specifically misses, in conditions where the robot queried the participant,
partially supports hypothesis 1.1. The act of answering a query using the visual interface added
to the participants’ taskload, which was expected to split participants’ attention. Furthermore, the
participants missed classifying events rather than incorrectly classifying events, suggesting the
issue wasn’t misunderstanding so much as it was difficulty doing necessary tasks in the required
time. While significant, however, the effect sizes for the difference in correct identifications (? =
0.04) and misses (o? = 0.03) are small to medium. The additional task, answering queries,
affected performance, but did not affect perceived workload. Altogether, these findings suggest
that the addition of a query-answering task affected participants’ performance in an identification
task, but not so much that it would lead to an increase in perceived workload for the overall
cordon and search-like task. Furthermore, supporting verbal response to the robot may actually
obviate this issue entirely. Multiple resource theory states that people process information along
several dimensions, including both visual and auditory modalities (Wickens, 2008). When
participants have to commit concurrent tasks, like they do in this study, changing the dimension
of one of those tasks can reduce interference and extend mental limitations (Lakhmani et al.,
2016; Wickens, 2002). By changing the response from a button click to a vocal response,

participants would spend less time physical responding to the system.
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Performance: Reaction Time

Participants’ performance can also be measured in terms of reaction time. It was expected
that participants would take longer to identify relevant stimuli when they worked with a querying
agent than when they didn’t (hypothesis 1.1). Contrary to expectations, there was no difference
in reaction time, regardless of communication pattern. However, if participants take too long to
classify the event on the screen, it is considered a miss. Given the effect that communication
pattern had on correct identification and misses, as well as the dearth of effect on incorrect
identifications, the case can be made that participants’ decision making was delayed enough that

their responses could be categorized as misses.

Situation Awareness

In each condition, participants received a number of situation awareness probes. These
probes were used to assess the participants’ awareness of the simulated environment, including
not only specific events, but also rationales and projected outcomes relevant to both the human
and robot team members. It was expected that participants who were working with a querying
robot would correctly answer more of these SA probes than participants who worked with a non-
querying robot (hypothesis 1.2). Participants, however, correctly answered roughly the same
number of questions regardless of communication pattern, contrary to the expectations set by
hypothesis 1.2. These findings suggest that being asked about one’s priorities won’t make
someone more likely to pay more attention to the factors that would influence one’s priorities.
Greater robot autonomy was expected to increase human’s engagement with the robot (Morrow

& Fiore, 2012), but that engagement did not translate into greater situation awareness.
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Overall Workload

After participants completed each scenario, they were given the NASA-TLX and asked to
rate their subjective workload during that scenario. As stated in hypothesis 1.2, it was expected
that participants would report higher workload for scenarios where the robot queried them. In
fact, there was no difference in reported workload for participants. Curiously, while
communication pattern did not seem to affect subjective workload, it did affect performance.
While participants did not perceive greater workload when they worked with a querying robot,
they did classify fewer events correctly and miss more identifications than when they worked
with a non-querying agent. This finding suggests that either communication pattern did have an
effect, but not one strong enough for the participants to consciously detect, or communication
pattern had an effect on part of the task, but that effect vanished when the rest of the task was

taken into account.

Trust

Participants were asked to complete trust surveys after completing a scenario. Participants
reported similar trust scores, regardless of communication pattern, which contradicted hypothesis
1.2. Trust is based off of the knowledge that the trustee, i.e. the robot, can accomplish the
desired goal, i.e. keeping intruders out of the building (Lee & See, 2004). Schaefer and
associates surveyed the literature to find the factors that can affect humans’ trust in a robot;
relevant robot-specific factors include the robot’s behavior, feedback, and level of automation
(Schaefer, Chen, Szalma, & Hancock, 2016). The similar responses to both querying and non-

querying agents suggest that: queries were not considered a notably different behavior than an
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absence of queries; a querying robot did not convey a different level of automation than a non-
querying robot; and the amount of feedback provided by a robot pushing a binary-choice query

was not dissimilar to no robot query at all.

Godspeed Questionnaire Series

The Godspeed Questionnaire Series describes a series of attitudes that participants often
have towards a robot with which they interact. In hypothesis 1.2, participants were expected to
react to the robot on all five categories—i.e. Anthropomorphism, Animacy, Likeability,
Perceived Intelligence, and Perceived Safety. No experimental manipulation affected
participants’ attitude towards the robot in terms of anthropomorphism or perceived safety.
However, when participants worked with a querying robot, they found it to be more animate,
likeable, and intelligent than its non-querying counterpart, partially supporting hypothesis 1.2.
These findings suggest that the more explicitly interactive element of answering queries affected

participants’ attitudes towards the robot.

In the field of social robotics, one study—featuring a robot that matched the facial
expressions of its partner and a human playing a game then helping it label objects in pictures—
reported similar findings. The participants who worked with the robot when it explicitly asked
about their emotional state (in order to match its expression with the human’s mood) perceived it
as more anthropomorphic and more animate than the participants who worked with the robot
when it neither queried the human nor explicitly communicated its matching mood (Kiihnlenz et
al., 2013). Unlike the current study, Kiithnlenz and associates (2013) used a robot with a human-

like face, which may explain the similarity in animacy and dissimilarity in anthropomorphism.
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Furthermore, in a study where humans were charged with teaching concepts to a socially guided
machine-learning robot, they reported that they perceived the robot to be more intelligent and
more enjoyable to teach when it would query the human during the learning task (Cakmak,
Chao, & Thomaz, 2010). In these studies, as in the current study, participants saw the more

interactive robots as more animate, likeable, and intelligent, than their more passive counterparts.

Type of Transparency

Performance: Classification Accuracy

Type of transparency alone did not affect participants’ performance on the classification
task, which conflicts with the expectations set by hypothesis 2.1. Furthermore, while it was
expected that transparency type could mitigate the error rate that would occur from the added
taskload of answering queries, transparency type did not seem to have that effect, instead acting

as more of a distraction in some circumstances, as discussed above.

Performance: Reaction Time

It was expected that participants would take longer to classify events when they worked
with an agent that presented both transparency modules (hypothesis 2.1). This expectation was
not met. Instead, no significant difference was found between the agent transparency condition
and the team transparency condition. The similar reaction time between transparency types
suggest that the two interface options were considered similarly. This similar consideration may
have been due to either cognitive grouping of transparency modules or may have been due

participant neglect of said modules. While the participant could use the team transparency
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module to help them identify the target, it is likely that they, instead, looked at the target directly
and made a judgment based off of the mental model established through training. Given the low
number of incorrect identifications (see Table J-2), their target identification was not hampered

by the reliance of their mental models. Either way, the effect of the manipulation was minimal.

Situation Awareness

It was also expected that when participants were exposed to both types of transparency,
they would exhibit greater SA than when they were only exposed to agent transparency
(hypothesis 2.2). Contrary to expectations, participants exhibited an equal amount of SA,
regardless of transparency type. These findings suggest that participants were either only
intermittently focusing on the team transparency modules, or that they focused only on the agent
transparency module. All conditions include the agent transparency module, so participants
mental models may have focused on gaining information from features that were consistently
available, such as the agent transparency module or targets in the simulated environment. This
occurrence would not only explain why participants’ overall SA scores did not differ, regardless
of transparency type, but it would also explain why participants achieved the scores they did,
despite the fact that the transparency modules would provide the answer to between half and
two-thirds of the SA questions. When questions were considered by SA level, no difference in
SA was found regardless of communication pattern. Overall, participants answered fewer Level
3 SA questions correctly than Level 1 or Level 2 questions, but that result is not as surprising,
given the difficulty people often have with projecting future outcomes (Endsley & Jones, 2016).

Transparency type did not significantly affect participants’ SA, regardless of level, but the size of
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2
the effect in both levels 2 and 3 (v = .05) approached medium. This information, coupled with
greater Level 2 and 3 SA when participants had the team transparency module available,

suggests that further research and development of a team transparency module may yield fruit.

Overall Workload

Hypothesis 2.2 stated the expectation that participants would report higher workload for
scenarios where the robot displayed both transparency modules. However, the results defied
expectation and participants did not report a significant difference in workload, regardless of
transparency type. While transparency type did not influence perceived workload, transparency
type did influence performance, albeit as part of an interaction. Presumably, participants
perceived the second module. In terms of information quantity, the team transparency condition
added one module, comprised of three spaces, which could be populated from a sample of nine
icons. At any time, participants in a team transparency condition perceived three additional
icons, which was a small increase in the amount of information on screen. One study, focusing
on information quantit