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ABSTRACT

The medical diagnosis process starts with an interview with the patient, and continues with the

physical exam. In practice, the medical professional may require additional screenings to precisely

diagnose. Medical imaging is one of the most frequently used non-invasive screening methods to

acquire insight of human body. Medical imaging is not only essential for accurate diagnosis, but

also it can enable early prevention. Medical data visualization refers to projecting the medical data

into a human understandable format at mediums such as 2D or head-mounted displays without

causing any interpretation which may lead to clinical intervention. In contrast to the medical

visualization, quantification refers to extracting the information in the medical scan to enable the

clinicians to make fast and accurate decisions.

Despite the extraordinary process both in medical visualization and quantitative radiology, efforts

to improve these two complementary fields are often performed independently and synergistic

combination is under-studied. Existing image-based software platforms mostly fail to be used

in routine clinics due to lack of a unified strategy that guides clinicians both visually and quan-

titatively. Hence, there is an urgent need for a bridge connecting the medical visualization and

automatic quantification algorithms in the same software platform. In this thesis, we aim to fill this

research gap by visualizing medical images interactively from anywhere, and performing a fast,

accurate and fully-automatic quantification of the medical imaging data. To end this, we propose

several innovative and novel methods. Specifically, we solve the following sub-problems of the ul-

timate goal: (1) direct web-based out-of-core volume rendering, (2) robust, accurate, and efficient

learning based algorithms to segment highly pathological medical data, (3) automatic landmark-

ing for aiding diagnosis and surgical planning and (4) novel artificial intelligence algorithms to

determine the sufficient and necessary data to derive large-scale problems.

iii



To the memory of my beloved cousin, Hakan Tuntaş
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CHAPTER 1: INTRODUCTION

The ultimate goal of the clinicians is to provide correct and fast clinical interpretation of the dis-

eases and provide treatment options. After the clinical examination, medical imaging is one of the

most frequently used tools by the clinicians for diagnosis, prognosis, therapy planning, and man-

agement of the diseases. There are a wide range of imaging modalities used to acquire the medical

data such as X-ray, computed tomography (CT), magnetic resonance imaging (MRI), ultrasound,

and positron emission tomography (PET). Each modality is well suited to evaluate different types

of the tissues and different types of the anomalies. 2D X-ray, which is the cheapest, most typical

and most-widely used modality all around the world is introduced by Wilhelm Röntgen in 1895. In

1968, Godfrey Hounsfield and Allan McLeod introduced the first volumetric scanner - CT, which

was recognized by a Nobel prize in 1979. Investigation of CT opened a new era in the medical

visualization world. MRI is introduced in 1973 by Lauterbur and Mansfield. CT employes X-rays

to acquire medical data, in contrast, MRI utilizes radio waves and powerful magnetic fields. CT

scans are more often used for exploring the bony regions and the tumors, while MRI is used for

exploring mainly the soft tissues. Compared to CT and MRI, the ultrasound scanners are based on

the high frequency sound waves. Although, precise reading of the ultrasound requires consider-

able experience, it is a cheap real-time imaging modality. Nuclear imaging is the method used to

explore the metabolic activity. Nuclear imaging such as PET is usually used as hybrid PET/CT or

PET/MRI scans [5].

1.1 Medical Data Visualization

In the old days, an X-ray light box was sufficient to visualize and explore the information of a

2D X-ray. Volumetric scan is a series of 2D scans. If there are no visualization tools available,

1



clinicians still employ an X-ray light box to visually explore the small scaled 2D slices one by

one. However, this is a very tedious process, and it is more likely to miss the useful 3D volumetric

information available. The invaluable insight of the human body provided by the medical scans is

useful to the extent it is interpreted. To visualize, volumetric medical data is projected to the view-

ing space in such a way that the mapping is correct, and visually meaningful and understandable

frames are generated at interactive rates. There are multiple number of medical data visualization

tools such as Slicer3D [6]. However, to our knowledge none of the tools available serves to the

current computer technology where the cloud-based mobile devices are trending.

1.2 Quantitative Image Analysis

The core image analysis framework in the bony regions is based on the variations of the CT scans.

This framework includes detection and measurement of the abnormality, which requires precise

segmentation of the bones in the region of interest (ROI). However, automatically and accurately

segmenting bones is a significant challenge and still an open problem. The statement “Fully au-

tomatic, completely reliable segmentation in medical images is an unrealistic expectation with

today’s technology”[7] is still true when especially low-quality scans taken in the hospitals and se-

rious deformities are considered [5]. Measurement of abnormalities is performed through anatom-

ically distinct locations (called landmarks). Yet another challenge and open problem introduced is

automatic and accurate localization of the landmarks in the ROI. Severity of the diseases, as well

as the treatment/surgery plans are built upon these measurements.
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1.3 Clinical Motivations of this thesis

Craniomaxillofacial (CMF) is the head region which consists of all the structures of the mouth,

the jaws, the face, and the skull. There are more than 17 million patients with the congenital

and the developmental deformities in the craniomaxillofacial (CMF) region in the United States.

Post-traumatic defects, deformities of the temporamandibular joints, defects of tumor ablation,

and congenital diseases are some of the leading causes of these deformities [8]. The number of

patients who need orthodontic treatment is far beyond this number. Among the CMF conditions,

deformation or injury in the mandibular region is the most prevalent condition. For instance, a

significant percent of the skeletal traumas affects the facial area, of which around 76% is in the

mandibular region [9].

Cone-beam computed tomography (CBCT) scan, a variation of traditional computed tomography

(CT), is the conventional imaging modality for the diagnosis and treatment planning of the patients

with CMF deformities. It is because not only the CBCT scanners produces higher resolution data

and lower radiation dose compared to the traditional CT scanners, but also CBCT scanners are

compact, fast and less expensive, which makes them affordable in the office settings.

CBCT based image analysis framework, specifically segmentation of CMF bones and measure-

ments of certain anatomical locations in CMF regions, plays a significant role in diagnosing the

diseases, understanding severity, planning the treatment options, and estimating the risk of po-

tential interventions. However, automatically segmenting the bones from CMF regions and iden-

tifying the clinically justified anatomical landmarks in these bones for deformation analysis is a

significant challenge and still an open problem. Despite some recent elaborative efforts towards

making a fully automated and accurate software for segmentation and landmark digitization for

dental applications, the problem remains unsolved for general purpose CMF deformity analysis.
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(a) Surgical treatment, genioplasty with resultant chin advancement and fixation plate (implant) (Adult).

(b) Missing condyle-ramus unit in the mandible in left dominant hemifacial microsomia (Adult).

(c) Plate and screws (implants) in the anterior mandible for rigid fixation and reduction of an oblique fracture

(Adult).
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(d) Bilateral bicortical positional screws (implants) in the ascending ramus of the mandible for rigid fixation after

a bileteral sagittal split osteotomy (Adult).

(e) Unerupted teeth in the anterior mandible with distorted anatomy (Pediatric).

(f) Mid-sagittal plane with respect to lower jaw incisors have a serious degradation from the 90 degrees (Pediatric).

Figure 1.1: Some examples in our dataset.
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The main reason for this research gap is the challenging nature of the problem due to an extremely

high variation in the anatomy of the bones and their deformities in the CMF regions. Figure 1.1

shows some of the known deformities in the CMF, including the missing bones, and the surgical

effects. Other reasons are due to the imaging artifacts of the CBCT such as noise, inhomogeneity,

truncation, beam hardening, and low resolution. Due to all these problems, clinicians still perform

their analysis either manually or semi-automatically with a limited software support. However,

manually extracting the quantitative information from a 3D CBCT scan is an extremely tedious

process and prone to the repeatability problems. Eventually, there is a strong need for creating

a general purpose CMF image analysis platform that can help clinicians (1) to visualize, (2) to

create a surface model (through segmentation) and (3) to define anatomically known points (called

landmarks) for precise deformation analysis. Hence, this thesis is focused on:

• Development of web-based volumetric medical data visualization framework (Chapter 3),

• Development of fast and robust CMF bone segmentation algorithms (Chapters 4 and 5),

• Development of learning-based CMF landmark localization algorithms (Chapters 5 and 6)

The rest of this chapter will explain more and necessary details on Medical Data Visualization

to make this thesis self-explanatory. Literature survey will be provided in Chapter 2. Chapters

3, 4, 5 and 6 are concerned with the methodologies employed. Finally, Chapter 7 will conclude the

dissertation .

1.4 Medical Visualization

Medical scan is a volumetric data which is simply a 3D array of intensity values (voxels). The

intensity values usually range from −2000s to 3000s in the CBCT scans.
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Volumetric visualization consists of a set of techniques to extract and to display a 2D graphical

representation of the meaningful information in the volumetric data. The visualization can be

performed using (1) Indirect or (2) Direct approaches.

In the indirect volume visualization approach, in a pre-processing step, volumetric data is mapped

into a surface (mesh) model which is composed of graphical primitives. After generation of the

mesh model, traditional Computer Graphics rendering techniques are applied. Marching cubes is

a common Indirect Volume Rendering algorithm [10, 1]. This algorithm uses a threshold based

segmentation technique. Using a user set threshold, iso-value, each voxel is classified as inside the

object, outside the object or on the boundary of the object. Triangulation follows the classification

step, it is computed by visiting the volume grid cells one at a time. The classification status of

the corners of the grid cell determines if the threshold surface intersects the grid cell and if does

then determines the polygonal shape of the intersecting surface. The final mesh is constructed by

combining all such polygonal shapes.

The main disadvantage of the marching cubes algorithms is that the mesh model generated may be

complex and may contain holes. In addition, multiple-object mesh generation requires multi-pass

application of the algorithm.

In contrast, in the direct volume rendering (DVR) approach, useful information in the volumetric

data is interactively extracted according to the camera position and lighting status of the scene.

The rendering is performed without explicitly generating the surface model. In this approach, each

voxel is assumed to be a light emitting, reflecting, scattering, absorbing and occluding entity [11].

Light passing through the volume is simulated and final rendering is obtained by computing the

interaction of each voxel with the light [12] in the field of view.

Direct volume rendering is a well-studied field-of-study. There are open-source desktop appli-

cations with DVR capability such as 3D Slicer [6], which can be freely downloaded and used.
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However, the current trend in computing is towards the on-line applications which can be accessed

from anywhere including a wide range of computing platforms. Eventually, web based applica-

tions are becoming increasingly popular because browsers are supported on nearly all computing

platforms, and the new HTML5 standards enable graphical interaction without any need for pro-

prietary plugins or additional APIs.

The size of modern day biological/medical volumes increases by the advancements in the volu-

metric capture devices. Volume rendering algorithms are easily parallelizable and make effective

utilization of the GPU processing capabilities using OpenCL/Cuda or OpenGL/DirectX APIs [13].

However, the available GPU memory (and even CPU memory) is often inadequate for the size of

modern day biological/medical volumes. Ultimately, volume rendering is still challenging for

larger volumes that exceed the resources available on the rendering hardware. This is particularly

true for the mobile clients. Although there are some large-scale volumetric visualization tools

available such as Vaa3D-TeraFly [14, 15, 16], none of them fulfill requirements especially for

the mobile clients. Hence comes the need for a volume visualization architecture that can scale in

performance by using server-based computing, yet deliver the volumes to small or mobile devices.

In this thesis, out-of-core techniques have been proposed to handle the above mentioned prob-

lem [16, 17, 18]. Such techniques often use a standard memory-paging scheme, in which large

volumes are broken into smaller chunks (called bricks) such that multiple bricks can easily fit into

the GPU memory.

The wide availability of the GPU-cloud based systems enable development of the web-based out-

of-core volume rendering platforms using a client-server architecture. The compute/storage/memory

intensive component is executed on a server equipped with high-performance CPU and/or GPU

hardware. The output is then delivered to one or more (usually less powerful) client devices such

as smart-phones through a connected network.
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The literature review for (1) Web-based volumetric data visualization, (2) CMF bone segmentation

(3) CMF bone landmark localization is presented in the following Chapter 2.
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CHAPTER 2: LITERATURE REVIEW

2.1 Volumetric Medical Data Visualization

The term volumetric medical data has been used to describe 3D medical data, hence volumetric

medical data visualization refers to 3D medical data visualization. By the advent of the modern

medical visualization technologies, “invisible depths” are turned into “visible surfaces”[19]. Tra-

ditional 2D X-ray visualization means are not sufficient to visualize this invaluable 3D insight

into the invisible parts of the body, but rather volumetric medical data visualization algorithms are

needed. Volumetric medical data visualization algorithms should allow projecting the meaningful

information in the volumetric medical dataset to the 2D viewing screen in such a way that 3D

to 2D mapping is correct and meaningful, and understandable frames are generated interactively

[20, 21].

There are two typical volumetric data visualization approaches Indirect (aka. surface rendering)

and Direct Volume Rendering.

Figure 2.1: Marching Cubes algorithm: possible marking scenarios and facetization when reflec-
tive and rotational symmetries are considered [1].

10



2.1.1 Indirect Volume Rendering

The existing literature on indirect volume rendering is extensive and focuses particularly on iso-

surface algorithms, root of which is the marching cubes algorithm [10]. Marching cubes algo-

rithm [1] is successfully applied in a wide range of application areas including biochemistry [22],

biomedicine [23], and environmental sciences [24], etc. Eventually, many variations of the stan-

dard algorithm [10] are proposed.

The standard algorithm, in the first pass, assigns each voxel to an iso-value or leaves it unmarked.

Black dots on the corners of the cubes in Figure 2.1 are the iso-values. In the second pass, facets,

dashed line in Figure 2.1, are generated. When no symmetry is considered, for each cube there are

28(256) different iso-value markings possible. Taking the reflective and rotational symmetries into

consideration, the number of possible markings is decreased to 15 (Figure 2.1). The intersection

points of the facets are estimated using linear interpolation. The triangular primitives are computed

based on the facets generated in the previous step.

At the end of 1990, Payne et al. [25] applied marching cubes algorithm to visualize the cortical

surface, and the curvilinear surfaces deep in the cortex with the aim to achieve both realistic and

quantitatively precise 2D renderings. Similarly, in 1991, Wallin et al. applied the marching cubes

algorithm to visualize CT scans to display the normal and also the pathological anatomies [26]. In

1993, Takanori et al. [27] extended the marching cubes algorithm to resolve the ambiguous cases

and verified the extended algorithm on a CT dataset.

In 2001, Delibasis et al. [28] proposed a generic rule-based approach where the ambiguities such

as ’hole problem’ are resolved, and applied to full resolution CT and MRI dataset of human heads.

Meanwhile, Tory et al [29] visualized time-varying data in two different modalities: MRI and

dynamic SPECT. The authors applied both iso-surfaces and direct volume rendering approaches,
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and compared their performances. In 2003, Yim [30] proposed a deformable iso-surface algorithm

and applied to the magnetic resonance angiography (MRA) of three renal arteries with anomalies.

Several other works in the literature focused on the number of the marking scenarios. In [31, 32, 33]

14 scenarios rather than 15 are proposed. Later, the algorithm is extended to serve for variations of

data such as multi-resolution data [34] and higher dimensional data [35]. There are also efforts to

extend the traversal methods to octree traversal [36]. For a detailed discussion on the variations of

the marching cubes algorithm, the survey [1] is recommended.

Limitations: iso-surface algorithms is that multiple-object generation requires multi-pass execu-

tion of the algorithm. In [37] Gerstner proposed a method to interactively generate multiple trans-

parent iso-surfaces using the tetrahedral bisection hierarchy. Compared to direct volume rendering

approaches, the computational complexity of the proposed method is simple. However, the authors

applied the algorithm to comparably small-sized scans. The proposed algorithm also suffers from

losing the details between the iso-surfaces.

2.1.2 Direct Volume Rendering (DVR)

In the direct volume rendering (DVR) approach, useful information in the volumetric data is inter-

actively extracted according to the camera position and lighting status of the scene without creating

any models. The first direct volume rendering algorithms are proposed simultaneously in 1988 by

Dreblin et al. [38] and by Levoy [39] and the current state-of-art direct volume rendering algo-

rithms are based on these 2 studies. The rendering pipeline proposed by Levoy [39] starts with

data preparation (pre-processing), where each voxel was assigned a shaded color and opacity in

the parallel shading and the classification steps respectively. Blinn-Phong shading [40, 41] was im-

plemented in the shading step where normals are approximated with the input data gradients. In the

last step, sampled color and opacity values were composited using linear interpolations [39, 42].
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This algorithm, which is also known as ray casting, requires just two optical properties: the color

and the opacity. Similar to modern approaches using lookup-table transfer functions, Levoy [39]

also mentioned using a 2D lookup table. However, the intention of this lookup table was just the

opacity computation.

In the modern volume rendering approaches multi-dimensional transfer functions are employed for

both color and opacity assignments. However, designing a transfer function, which is equivalent

to accurate segmentation of the structures in the volumetric data is a challenging, and an open

problem.

The core direct volume rendering algorithms after the pioneers [39, 38, 12] has come to a maturity

point in the beginning of 2000s. Further studies rather than improving the core algorithm focuses

on visualizing the out-of-core data which do not fit into the GPU memory [17, 43], multi-core

implementation of the algorithm [44, 45, 46], or semi-or-fully automatic design of the transfer

functions [47, 48]. Designing a transfer function or multi-core implementation of the algorithm is

out of scope of this dissertation. Literature survey of the out-of-core volume rendering algorithms

is detailed in the next section.

2.1.3 Out of Core Volume Rendering

GPU accelerated volume rendering approaches are introduced in the beginnings of 2000s [49].

Despite the highly-parallel nature of the volume rendering algorithm and high performance gains

of the GPU-based algorithms, the large gap between the limited GPU memory and big data sizes

and the long GPU-to-CPU (and CPU-to-GPU) transfer durations introduced new challenges to the

researchers.

In 2003 Hadwiger et al. [50] proposed a two-level GPU-based volume rendering approach using
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different rendering approaches and different transfer functions for each tissue on the segmented

dataset. The tissues that share the same rendering mode are processed in the same pass. Applica-

tion of alpha-blending and mip-map construction (MIP) yielded a high-quality GPU implementa-

tion. The proposed approach is verified on a comparably smaller 256 × 128 × 256 dataset. Later

in 2008 Gobbetti et al. [51] employed a hierarchical octree structure. In this octree structure, the

leaves are the original resolution bricked data, whereas the root is the whole scan downsampled

to the brick size. View and transfer function-dependent working set of the bricks are adaptively

transferred to the GPU. The indexing structure spatially organizes the working set into an octree

hierarchy. In 2009 Crassin et al. [17] traversed the N3 − tree data structure to achieve a high

quality rendering at interactive rates with billions of voxels. In 2010 Fogal et al. [43] demonstrated

that the inability to switch the data sampling rate and data sizes are the major bottlenecks of the

volume rendering frameworks, and implemented a ray-guided volume rendering application. Later

in 2011 Engel et al. [52] proposed a framework to interactively render teravoxel scale volume on

standard PCs using a progressive multi-resolution out-of-core volume rendering approach. Data

loading was initiated as needed by the rays that are cast through the volume. Eventually, occluded

or empty data were never transferred to the GPU. Meanwhile, in 2011 Knoll et al [53] introduced a

fast and scalable CPU volume rendering framework. The proposed approach did not perform well

for smaller datasets, however its performance was comparable to the performance of machines

with strong GPUs for larger datasets.

Limitations: Although brick-based approaches resolve the discord of data sizes and GPU memory

limitations to a degree, access of the bricks at the GPU introduce additional latencies. We address

this problem by proposing a different index structure in our volume rendering framework based

on [51]. Furthermore, there has not been any documented study on web-based out-of-core med-

ical data visualization. To address this, we proposed a web-based client-server volume rendering

framework [54] which enables employing a scalable cloud-based server.
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2.1.4 Web-based Medical Data Visualization

The first web browser was introduced by Tim Berners-Lee in 1990. In the beginning, the web pages

have static text content and remote pages are shared on the internet. In spite of the 28 years of the

web development, web-based visualization of medical data is started recently in the beginning of

2010s. In practice, medical visualization algorithms are computationally complex and dedicated

high-end machines are employed to visualize the medical data. In addition, medical data sizes in-

crease rapidly each year. In 2010, Settapat et al. [55] proposed an iso-surface rendering application

in a client-server architecture using the Web3D standard. Later in 2012 Jacinto et al. [56] proposed

a client-server medical image processing framework utilizing WebGL technologies. A standalone

WebGL based medical data visualization application [57] has been proposed in this thesis that

allows employing customizable transfer functions.

2.1.5 Web-based Out-of-Core Medical Data Visualization

To our knowledge, there has not been any documented study on web-based out-of-core medical

data visualization. The work [54] presented in this thesis fills this gap. The study is a volume

rendering framework based on [51]. The proposed framework works in a Client-Server architecture

enabling a scalable cloud-based server.

2.2 Medical Data Segmentation

Historically, active contour, shape, and appearance models have been used extensively to segment

CMF bones [58]. In the later years, energy based segmentation methods such as Markov Ran-

dom Field (MRF) and Conditional Random Fields (CRF) have replaced such methods. In parallel,

registration (atlas-based) methods [59] have been reported to achieve relatively higher accuracy
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when shape and appearance information are integrated. However, registration methods suffer from

the computational complexity where convergence may take several hours [4]. Furthermore, non-

linear registration may not be sufficient when the large morphological variances among the patients

are considered. In contrast to the model and registration-based methods, learning based methods

become popular recently. Basically, these methods employ either hand-crafted or self-learned fea-

tures by utilizing machine learning classifiers. With the rise of the deep learning methods, the field

of medical image segmentation shifted to depend largely on the learning based methods. These

features are fed into the learning network to perform the segmentation. In 2015, Ronneberger et

al. [60] employed a U-Net framework to perform biomedical image segmentation and this method

has been considered as one of the state-of-art segmentation methods. Çiçek et al in 2016 extended

this work by employing 3D convolutional kernels. Meanwhile, Milletari et al. [61] applied both

3D convolutional kernels and also residual blocks to segment prostate MRI scans. Later in 2017,

Kayalibay et al. [62] applied an U-Net-like architecture with three-dimensional filters to segment

hand and brain MRI scans. Examples are vast; hence we will only consider major innovations in

this field.

2.2.1 CMF Bone Segmentation

In 2012, Gollmer et al. [63] applied a statistical shape model (SSM) to segment mandible from

the CBCT scans. In 2017, Zhang et al. [4] and Chuang et al. [64] also proposed two separate

studies to segment the mandible. Zhang et al. [4] employed a cascaded U-Net architecture to

segment the head-neck CT scans into 2 groups as midface and mandible. While, Chuang et al. [64]

developed a registration-based semiautomatic mandible segmentation (SAMS) framework. The

initial work presented in this thesis [65] also proposed a data-driven random forest regression

and fuzzy connectivity approach to segment Mandible in CT scans. In this thesis, we further

improved our segmentation framework via deep-learning based algorithms, and employed a Fully
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Convolutional DenseNet architecture by which we obtained state-of-art segmentation accuracies.

Despite all available research methods to perform medical data segmentation, to our knowledge

there isn’t any commercial software available to perform fast CMF bone segmentation accurately

and automatically. Hence, in practice, the clinicians perform the CMF bone segmentation manu-

ally.

2.3 Anatomical Landmark Localization

There are two main approaches to localize landmarks on the medical images: 1) model-based

and 2) machine-learning. In recent years, machine learning approaches have proven to be more

successful compared to the atlas-based ones.

In 2008, Zhan et al. [66] employed confidence maximizing sequential scheduling to detect anatom-

ical landmarks of multiple organs. In 2011, Cheng et al. [67] applied a random forest classifier

to localize anatomical dental landmarks. Meanwhile, Zhan et al. [66] applied a cascaded Ada-

boost classifier to localize knee anatomical landmarks on the MRI scans. In 2013, Criminisi et

al. published a nice study [68] to predict the 3D displacement of each voxel via regression forest.

Likewise Cheng et al, Ebner et al. [69] in 2014 also employed multiple random regression forests

to localize the joints between the hand bones. Meanwhile in 2014, Gao et al. [70] employed a

two-layer context-aware regression forest to localize the prostate landmarks. Following Gao, Chen

et al. [71, 72] proposed a data-driven approach to localize landmarks on X-ray and also on MR

scans of intervertebral discs. In 2015, Cootes et al. [73] extended Criminisi et al. [68] method

to detect facial anatomical landmarks. Similar to Ebner [69], Payer et al. [74] employed a fully

convolutional network (FCN) for landmark heatmap regression to localize anatomical landmarks

on two different datasets of hand images (2D radiographs, and 3D MRI). Although Payer et al used
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a limited dataset, promising experimental results are achieved.

2.3.1 Relational Reasoning

In 2009, Scarselli et al. [75] introduced graph neural network (GNN) by extending the neural

network models to process graph data which encoded relationship information. Later in 2016

Li et al. [76] proposed a machine learning model based on the gated recurrent units to learn the

distributed vector representations from heap graphs. Despite the promising nature of the GNN ar-

chitectures [77], there is limited understanding of their representational properties and limitations.

Recently, four important works were published for relational reasoning of the objects by the Deep-

Mind teams, Battaglia et al. [78], Raposo and Santoro et al. [79], Santoro and Raposo et al. [80]

and Battaglia et al. [81]. Battaglia et al. [78] introduced interaction networks to reason about the

objects and the relations in the complex environments. The authors proposed a simple and accu-

rate system to reason about difficult problems such as n-body problems, rigid-body collision, and

non-rigid dynamics. The proposed system can predict the dynamics in the next step with order of

magnitude lower error and higher accuracy. Later in 2017, Raposa and Santoro et al. [79] intro-

duced the Relational Network (RN) which can learn the object relations from the scene description.

Following this study, Santoro and Raposa et al. [80] presented a relational reasoning architecture

for tasks such as visual question-answer, text-based question-answer, and dynamic physical sys-

tems. The proposed model is highly accurate and gets most answers correctly. In 2018, Battaglia et

al. [81] studied the relational inductive biases to learn the relations of the entities and presented the

graph networks. To the best of our knowledge, such advanced reasoning algorithms have neither

been developed for nor applied to the medical imaging applications. Besides, medical imaging

applications require fundamentally different reasoning paradigms as the anatomy-anatomy and

anatomy-pathology relationships are extremely different from the conventional object-object rela-
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tionships in conventional vision tasks.

2.3.2 CMF Landmark Localization

In 2016, Zhang et al. [82] proposed a segmentation-guided partially-joint regression forest (S-

PRF) model to automatically localize 15 CMF anatomical landmarks. Later in 2017, Zhang et

al. [4] employed a cascaded U-Net architecture to localize 15 CMF anatomical landmarks.

Despite the successes, machine-learning algorithms suffer from two major drawbacks. First, de-

pending only on the local appearance is misguiding, especially when high-morphological varia-

tions of the patients are considered. Next, in all the proposed methods, spatial coherence is consid-

ered to a degree in the Euclidean space. However it is not possible to learn the spatial consistency

of a manifold in the Euclidean space of the medical scan. Hence, in this thesis for the quantifica-

tion of the medical data, we proposed two different approaches. First, in contrast to the Euclidean

space, we proposed a joint segmentation and landmark localization framework in the Geodseic

space. Next, we constrained the problem; and without employing the segmentation information

we introduced a relational reasoning landmark localization framework.
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CHAPTER 3: VOLUMETRIC DATA VISUALIZATION

3.1 Direct Volume Rendering

Figure 3.1: Rendering Pipeline.

Figure 3.2: Ray Casting.

Direct volume rendering methods refers to the generation of 2D images of a 3D volumetric data

set without explicitly extracting geometric surfaces from the data [39]. In the basic algorithm, rays

are cast from the camera point to each image pixel. Each ray traverses through the volume data,

and accumulates color and opacity values (Figure 3.2) according to an optical model. The core

direct volume rendering pipeline is composed of four steps as displayed in Figure 3.1. Volume

data is a discrete 3D grid. Sampling refers to accessing this discrete grid as if it is a continuous 3D
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data, and computing the value of arbitrary voxels, volumetric element, at any point along the ray

by employing tri-linear interpolation. Each sampled voxel is assigned a color and an opacity in the

classification step. The intensity of the voxel is mapped to a color and an opacity using a Transfer

Function. Transfer functions can be a simple lookup table or a multi-dimensional function. In the

shading step, the lighting effects are computed using a lighting model. The lighting computation

requires the surface normal which is defined by the gradient. However, computing the differential

value at each sample is computationally inefficient. In practice, gradients are computed in a pre-

processing step, and used through out the volume rendering process. In the last compositing step,

the samples along the ray are blended (Figure 3.2). The order of composition depends on the

algorithm being applied: front-to-back or back-to-front. In practice front-to-back integration is

preferred due to early-ray-termination optimization. Once the blended opacity reaches a maximum

opacity value (such as 1) the volume at that step is considered to be opaque, it is not possible to

see the voxels behind, hence the ray-casting is stopped.

Direct volume rendering assumes that the volumetric data is a semi-transparent emitting medium

and each voxel is a tiny entity (like water droplet in the cloud [11]) that interacts with the light

passing through it. This interaction can be modeled based on the laws of physics including absorp-

tion and scattering.
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3.1.1 Optical Models

Figure 3.3: Radiant Energy Emission and Absorption

Emission-absorption optical model (Figure 3.6) is sufficient for an insight real-time visualization

in the clinical settings. Although, scattering adds a high sense of realism to the rendered image, it

suffers from high computational complexity, which is difficult to employ in a real-time application.

A ray cast to the volume is parametrized by its distance t to the camera (camera is assumed to

be at the origin 0). Let vt be the volume point at distance t to the camera, emission of vt refers

to the color of the voxel (ct), whereas absorption is specified by the extinction (κt). Some of the

radiant energy emitted by vt is absorbed by each voxel along the light travel path from vt to the

camera (Figure 3.6). The amount of radiant energy reaching the camera from vt is decreased by

the integral of the absorptions along the path:

ĉt = ct.e
−

∫ t
0 κ(t̂)dt̂ (3.1)

The cumulative amount of radiant energy received at the camera from the volume along the ray is

the integral of the radiant energy along the path:

C =

∫
ct.e

−
∫ t
0 κ(t̂)dt̂dt (3.2)
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The integral computations are approximated by Reimann sum. Equation 3.1 becomes:

ĉt = ct.e
−

∑bt/∆tc
i=0 κ(i.∆t)∆t (3.3)

e−
∑bt/∆tc

i=0 κ(i.∆t) =

bt/∆tc∏
i=0

e−κ(i.∆t)∆t (3.4)

ĉt = ct.

bt/∆tc∏
i=0

e−κ(i.∆t)∆t (3.5)

The color emitted at the ith sample point in the volume along the ray, Ci is the tri-linear interpolated

color of the 26-neighboring voxels around that point. The equation 3.5 becomes:

Ĉi = Ci.

bt/∆tc∏
i=0

e−κ(i.∆t)∆t (3.6)

Opacity at the sample point i, is represented by:

Ai = 1− e−κ(i.∆t)∆t (3.7)

Hence the equation 3.4 is simplified to:

bt/∆tc∏
i=0

e−κ(i.∆t)∆t =

bt/∆tc∏
i=0

(1− Ai) (3.8)

Cumulative amount of radiant energy received along a light travel direction in the discrete volume
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becomes:

Ĉ =
n∑
i=0

Ci.

bt/∆tc∏
j=0

(1− Aj) (3.9)

Equation 3.9 can be implemented using back-to-front or front-to-back algorithms. In the back-to-

front implementation, the integration starts at the farthest voxel to the camera in the ray direction,

and iterates towards to the camera. Whereas, in the front-to-back, integration starts at the clos-

est voxel to the camera in the ray direction, and iterates in the reverse direction of the camera.

However, it is not possible to employ early ray termination optimization in the back-to-front im-

plementation.

Front-to-back (See Algorithm 1) ray-casting has been implemented independently using WebGL,

OpenGL and OpenCL languages. WebGL has been used for the standalone web-based visualiza-

tion [57]. Both OpenGL and OpenCL have been used independently for the implementation of

the client-server model [54]. OpenGL has been used for the implementation when using the local

server, whereas OpenCL has been used when using the remote server.

The visual quality obtained by both implementations are similar, however OpenCL rendering has

been found to be a little slow compared to the OpenGL version. The difficulty in getting OpenGL

device context for remove servers, has been the main factor for using OpenCL implementation for

the remote servers.

3.1.2 Lighting

Lighting refers to modeling the interaction of each voxel with the light rays. Once the light rays

are emitted from the light source, they get reflected and scattered around in the scene until some

24



Algorithm 1 Front-to-back Rendering.
1: procedure FRONT TO BACK(camera, rayStart, rayEnd, uPhysicalDim)
2: currentPos← rayStart
3: rayDirection← normalize(rayEnd− currentPos)
4: stepSize = uPhysicalDim/MAX STEPS
5: stepSzScaledRayDirection← rayDirection× stepSize
6: resultColor ← 0
7: for i less than MAX STEPS do
8: ijk ← physical space to image space(currentPos)
9: gradient← sample(uGradientSampler, ijk).rgb

10: intensity ← sample(uV olumeData, ijk).r
11: color.rgba← sample(uTransferFunction, intensity)
12: color ← blinnPhong(camera, currentPos, color, gradient)
13: resultColor ← resultColor + ((1− resultColor.a)× color)
14: if resultColor.a > 0.95 then . early ray termination optimization
15: break
16: currentPos + = stepSzScaledRayDirection

17: return resultColor . accumulated color and opacity is returned

of them reach the camera. However, implementations of the full scattering and the inter-reflection

algorithms are computationally expensive. In the medical volume rendering implementations, full

scattering and inter-reflections are not employed. Often a simple lighting model such as Phong

model [41] is sufficient. This model computes the lighting using three computationally sim-

ple components: ambient, diffuse and specular lighting. Ambient lighting approximates inter-

reflection and scattering by a user defined constant parameter. Diffuse lighting models the matte

material behavior, whereas specular lighting models the shiny material behavior. Specular lighting

adds visual realism to the rendered volume (See Figure 3.4). In the specular reflection, in contrast

to the equal reflection to all directions of the diffuse reflection model, the light is reflected more in

some particular directions. Unlike the diffuse lighting where the light is uniform in all directions,

in the specular lighting, the light intensity varies with the direction. The variation is modeled by

the Phong [41] or the Blinn-Phong [40] equation. Implementation for this thesis employs the

Blinn-Phong illumination model.
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(a) (b) (c)

Figure 3.4: (a) Ambient Lighting (b) Ambient + Diffuse Lighting (c) Ambient + Diffuse + Specular
Lighting.

In computer graphics applications, the lighting models that we discussed above are used for com-

puting the reflection from the opaque surfaces. Each surface is assigned reflection properties using

the reflectivity parameters; Ka, Kd and Ks for modeling the ambient, the diffuse and the specular

reflections respectively. The specular highlights are controlled by the fourth parameter: shininess

(a).

Ambient color of the surface is computed according to the ambient reflectivity and ambient inten-

sity:

Ca = Ka × Ia (3.10)
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(a) (b)

Figure 3.5: Light source and surface angles a) Perpendicular b) Other.

For the diffuse surfaces, the light received per unit area of the surface is assumed to follow the

Lambert’s law, which is the angle between the surface and the light direction (Figure 3.5). When

the surface is perpendicular to the light source, it receives more light per unit area compared to

the surfaces at the other angles. The cosine of the angle of the surface and the light direction

is computed by employing the dot product of the surface normal and the light direction. Hence

the diffuse component of the reflected light is the product of the diffuse reflectivity, the diffuse

intensity and the cosine of the angle between the surface normal and the light direction:

Cd = Kd × Id × (N · L) (3.11)
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Figure 3.6: Blinn-Phong Model.

In contrast to the matte appearance of the diffuse lighting, the specular lighting adds a shiny appear-

ance to the surfaces (Figure 3.4). In the Phong equation, the specular component of the reflected

light depends on the angle between the reflected light and the view direction. When the angle

is zero, that means the view direction matches with the mirror reflection direction, the reflection

strength is maximum, and the strength of the reflection degrades as the angle increases. The Phong

equation is as follows:

Cs = Ks × Is × (V ·R)a (3.12)

The Blinn-Phong equation, a small variation of the Phong equation, is proposed as a physically

correct model of the specular reflection. This model simply replaces the reflection vector of the

Phong equation with the half vector. The half vector, H, is the average of the light and the view

directions. Hence, the Blinn-Phong equation is:

Cs = Ks × Is × (N ·H)a (3.13)
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In this thesis, it is assumed that there is a light source at the camera location, hence the light vector

is the vector from the center of the volume to the camera location.

3.2 Web-based Medical Data Visualization

WebGL (Web Graphics Library) is a cross-platform, royalty-free web standard for 3D graphics

API. It is based on OpenGL ES, and it runs on any compatible web browser without using any plug-

in. WebGL enables the GPU-accelerated graphics applications on the web page canvases. WebGL

programs are composed of two main parts: the JavaScript code and the shader code (OpenGL

Shading Language (GLSL)). Khronos Group maintains the WebGL [83]. At the end of 2007, both

Mozilla and Opera developed their WebGL implementations. Today, all major browser vendors

Apple (Safari), Google (Chrome), Microsoft (Edge), and Mozilla (Firefox) support WebGL.

VOLREN [57] is a web-based medical data visualization application developed using WebGL

(http://graphics.cs.ucf.edu/tools/VOLREN/) (See Figure 3.7). We employed front-

to-back ray casting approach, hence applied early-ray-termination optimization. For lighting, we

applied the Blinn-Phong [41] lighting model. The X Toolkit [84] is used to parse the medical files.

The user interface allows selecting among 1D or 2D transfer functions. We employed D3 [85] to

develop the customizable 1D transfer function. Zoom, rotation and translation functionalities are

implemented for both the mouse and the touch events which makes the application accessible at

the non-touch displays by the mouse events, and at the touch displays by the touch events.

VOLREN enables interactive and customizable rendering of the medical data on any portable

device with WebGL supported browser. However, WebGL applications are limited with the GPU

power of the device the software runs on. When the rapid increase in the medical data sizes, and

the limited GPU capabilities of the low-end portable devices are considered, it is not possible to
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achieve interactive rates by using standalone WebGL based software.

(a) 1D Transfer Function

(b) 2D Transfer Function [39]

Figure 3.7: VOLREN [2] Transfer Functions
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3.3 Out-of-core Medical Scan Visualization

Many applications in a wide range of domains such as medicine, biology, physics, and engineering

benefit from the visualization of the volumetric data at the interactive rates. The performance of the

GPUs has been increasing rapidly in the recent years and their parallel processing power can now

be harnessed in the visualization applications using OpenCL/Cuda or OpenGL/DirectX APIs [86].

However, volume rendering is still challenging for larger volumes that exceed the resources avail-

able on the rendering hardware. This is particularly true for the mobile clients. Although there

are some large-scale volumetric visualization tools available such as Vaa3D-TeraFly [87], none

of them fulfill the requirements especially for the mobile clients. Hence comes the need for a

large volume interactive visualization architecture that can scale in the performance by using the

server-based computing, yet deliver the volumes to the low-end (e.g. mobile) devices.

To be interactive requires rendering the volume at the interactive rates (generally more than five

frames per second). The computation cost associated with a volume renderer, makes it nearly im-

possible to guarantee the interactive frame rates independent of the computing power of the user’s

device. To address this problem, we have developed a client-server framework; where the server is

responsible for the compute/storage/memory intensive tasks, such as volume processing and ren-

dering the view. The client is responsible for the interaction, the transfer function manipulation and

the display of the image frames rendered by the server (see Figure 3.8). The appropriate choice

of the server hardware configuration and a decent network connectivity will deliver the interactive

frame-rates. Any browser-based device, serving as a client, will allow the user to interact with the

volume and interactively view the image rendered by the server. To our knowledge, ours is the first

web-based out-of-core volume visualization system.
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Figure 3.8: Client-Server architecture.

On the server side, we employed front-to-back ray casting approach, hence applied early-ray-

termination optimization. For lighting, we applied the Blinn-Phong [41] lighting model. The

Insight Segmentation and Registration Toolkit (ITK) [88] is used to parse the medical files. Both

OpenGL and OpenCL have been used independently for volume rendering. OpenGL has been used

for the implementation when using the local server, whereas OpenCL has been used when using

the remote server. The difficulty in getting the OpenGL device context for the remote servers, has

been the main factor for using the OpenCL implementation for the remote servers.

On the client side, we used HTML5 and Javascript to develop the user-interface. The user interface

allows customizing the transfer function using D3 [85]. Zoom, rotation and translation functional-

ities are implemented for both mouse and touch events which makes the application accessible at

the non-touch displays by the mouse events, and at the touch displays by the touch events.
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3.3.1 Server

On the server side, the volume dataset is partitioned into an octree hierarchy of bricks, and as

needed, before rendering each frame, a view dependent candidate set of the bricks from this hier-

archy is computed and transferred to the GPU along with an index texture describing the mapping

of the available bricks to the GPU memory. The volume is first partitioned into bricks. The brick

size is set to be some power of 2-cube (say a cube of size 32× 32× 32). Processing of the volume

data, which includes partitioning of the volume data into the octree hierarchy and pre-computing

gradients, is a time-consuming task and hence is, carried out in the GPU in a preprocessing step.

The results are stored for later use. In the pre-processing stage, in addition to the volume data and

the octree structure, histograms and lookup tables are also computed and stored. Since an octree

inherently requires the size to be a power of 2 cube, processing any rectangular, non-power of 2

volume, requires us to create non-existing (hereto called “ghost”) bricks, that are not physically

stored anywhere, but are required for the octree handling. We use a lookup table to keep track

of such ghost bricks. Depending on the data size, the preprocessing step can be very time con-

suming. For example: preprocessing Visible Human Project female dataset takes around 1 hour to

preprocess data on Intel Core i7-4770K Processor and GeForce GTX 780 GPU, with 3GB GPU

and 15.6GB CPU Memory. In our system, every brick in the octree hierarchy is assigned a unique

id consisting of a two-component tuple (level#, index), where index is the flattened 3D index of

the brick in the volume. Depending on the system memory capacity, bricks are stored in physical

or virtual CPU memory. For each rendered frame (triggered by interactive viewing and/or transfer

function update) we traverse through the octree hierarchy in top-down order to compute a candi-

date brick set (see Figure 3.9). The resolution of the bricks in the candidate set are chosen such

that the number of voxels on the face of the brick closely matches with the number of the pixels

in the foot-print of the view-dependent projection of the brick bounding volume on the display

window.
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Figure 3.9: View dependent brick computation.

The required bricks′ resolutions are identified according to their locations by traversing the octree

in the breadth-first order. The allocated GPU memory is organized as a cubic volume whose size

is an exact multiple of brick size. Thus each brick in the candidate set can be assigned a unique

location in the GPU resident volume.
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Once the candidate brick set computation is completed, an index table is created to map the voxels

encountered at render time to the appropriate brick in the GPU cubic volume. The size of the

index table is set to be equal to the number of the bricks at the leaf level. The candidate set is

processed one brick at a time in the order in which they appear, and a tuple, composed of the

octree level of the candidate brick and its location at the GPU memory, is assigned to the cells of

the table that corresponds to all the descendant leaf bricks of the candidate brick. The index table

is stored as a two-channel 2D integer texture. Once the index table construction is completed,

view dependent candidate bricks and the index texture are sent to the GPU, and the front-to-back

ray-casting algorithm is executed. During the ray traversal in the front-to-back ray casting, for

each point along the ray in the volume, its corresponding CPU brick id is computed, and the index

texture pixel for this brick id is read to find the mapped GPU brick id and its octree resolution.

If the voxel maps to a brick, then the offset for the voxel data in the corresponding GPU volume

memory is computed, and the voxels properties (emission, its opacity and gradient) are read. If

the voxel does not map to any brick, computation continues to the next voxel until either the ray

exits the bounding volume or early ray termination occurs. Early ray termination is applied when

opacity of the voxel reaches 95 percent or above.

All the server side implementations are carried out in C++ using the Boost library. To speed-

up the brick lookup, the octree of image bricks is stored in a memory-mapped file. The GPU

programming for octree construction and gradient computation is carried out using OpenCL. If the

server is running locally then OpenGL implementation of volume ray casting is used otherwise

OpenCL implementation is used. For the former (i.e. locally run server) the user has an option to

run in OpenCL also. However, our OpenGL implementation runs faster. Front-to-back ray casting

is implemented using a two-pass rendering, where the first pass computes the ray exit points in

the volume, and the second pass executes the actual front-to-back ray casting and rendering. The

voxel gradients of the volume are used as the normal for shade computation using a Phong lighting
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model.

3.3.2 Client

We implement a web-based client to make our system accessible from a wide variety of platforms

without any setup requirement. The client and server connect over WebSockets[89]. Websockets

are chosen due to their full-duplex capabilities on a single socket connection. Although in our

implementation, clients trigger most of the actions in the server, full-duplex communication is

required as for instance when preprocessing is completed, server needs to send a message to the

appropriate client. Our client handles display and interaction with the volume and interactive

transfer function creation. Requests initiated by the client include load new file request, transfer

function update, and camera update, among others. The server renders the volume and sends back

the rendered frame to the client through the WebSocket connection [89].

WebSocket server side is developed using Boost Library. The server runs n + 1 threads running

in parallel, where n is the number of simultaneous client interfaces connected to the server. The

first thread is used for listening for socket requests and creating a new thread for each connection

request. Each successive thread created, handles the rendering requests of the client on the other

end of the connection, and transmits the rendered frame to the client.

Client requests are encoded in the JSON format. Each render request has an action tag; so the server

knows what to perform when it parses the request. There is a queue shared between the listening

thread and each client thread. When the listening thread receives the request in JSON format, it

parses the request, and puts the appropriate action request in the appropriate shared queue. Client

threads, on the other hand, polls the shared queue, and when there is an action request pushed to

the queue, the client thread performs the rendering request and transmits back the rendered frame

to the appropriate client through the open connection. The rendered frames are transmitted to the

36



clients as binary images.

Figure 3.10: Customizable transfer function.

D3 is used for implementing an interactive Transfer Function editor on the web page (Figure 3.10).

The Transfer Function is composed of an array of anchor points, where each anchor point has x, y,

r, g, and b float values. x represents gray scale voxel value, y represents transparency of the anchor
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point, and r, g, and b refer to red, green and blue color components of the mapped color value. The

user can interactively add/delete/modify the opacity and the color of an anchor point. The user is

allowed to save and retrieve the transfer function.

When client makes a load a new volume request, if the volume is not already preprocessed, then the

preprocessing is automatically triggered. When preprocessing is completed, server sends message

to the requesting client about completion of preprocessing stage. The bricks are stored sequentially

in a file. At the time of rendering, when a brick at a certain level is required, its data is fetched from

the appropriate position. Since spatially closer bricks are more likely to have similar projected area

and belong to the same octree level, they appear adjacent to each other, and hence fetching them

using the Memory Mapped File (available in the Boost library) is fast. We obtain an acceptable

visual quality, which is highly dependent on the transfer function, at an average frame rate of 10Hz.

The profiling results reveal that GPU-CPU communication and network connection capacity are

the two major bottlenecks of the application. Hence, management of bricks on the GPU is a

crucial part of our algorithm. Efficient mapping of the available brick slots in the GPU for the

adaptively-computed, view-dependent brick candidates is critical to the efficiency of the out-of-

core algorithm. In addition, considering the frame-to-frame coherence, and transferring just the

missing bricks to the GPU also resolves this problem to a degree. Although, the implementation of

the frame-to-frame coherence for two very big sets of data is not a computationally fast algorithm,

the loss is much lower than the gain [54].

To the best of our knowledge, our client-server application is the first out-of-core volumetric medi-

cal data visualization software which enables low-end devices with limited computing capabilities

such as smart-phones or mobile tablets to visualize large volumetric data at interactive rates. Local

server-based systems are designed to serve some limited number of clients. However, the GPU-

cloud servers provide highly scalable solutions.
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In the clinical point of view, gathering the 3D visual clues at interactive rates is very crucial.

However, in addition to the visual clues the clinicians need to make quantitative measurements

to diagnose, to determine the severity of diseases and to prepare the treament/surgery planning.

Hence, visualization, the indispensable part of a medical image analysis framework, is not by itself

sufficient in the clinical point of view. Therefore, additional smart quantification algorithms are

needed to provide a complete, and clinically useful image analysis framework.
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CHAPTER 4: MANDIBLE SEGMENTATION

This chapter is based on my paper entitled “Robust and Fully Automated Segmentation of Mandible

from CT Scans” published at the proceedings of the IEEE 14th International Symposium on

Biomedical Imaging (ISBI 2017). Copyright c©2017 IEEE.

4.1 Introduction

In the United States, there are more than 17 million patients with congenital and developmental

deformities in the anatomical area of the mouth, jaws, face, and skull, which is called the cranio-

maxillofacial (CMF) region [8]. Post-traumatic defects, deformities of the temporamandibular

joints, defects of tumor ablation, and congenital diseases are some of the leading causes of these

deformities [8]. The number of patients who need orthodontic treatment is far beyond this number.

Among the CMF conditions, the mandibular region (Figure 5.1(a)) is the part most often deformed

or injured. For instance, 76% of the skeleton traumas affects the mandibular region [9].

Hence, we started our quantification research in the mandibular region and developed a novel and

fast algorithm to fully-automatically and precisely segment the mandible bone in CT scans.

We consider the mandible segmentation procedure as consisting of two complementary tasks:

recognition and delineation. While recognition is the process of determining roughly “where”

the object is and distinguishing it from other object-like entities in the image, delineation is the act

of defining the spatial extent of the object region in the image [90]. In our previous publication, we

have shown the significance of having a successful recognition step for an efficient and accurate

segmentation process [90, 91]. In this study, an efficient recognition step avoids potential leakages

in the delineation by constraining the segmentation region into a tight search space.
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4.2 Step I: Recognition of mandibular bone

We assign a probability score for each slice (in a multi-view setting) if it includes the mandible

bone. Then, we combine these views (sagittal, axial, and coronal) to improve probabilistic deter-

mination of the mandible location. Labeled slices (0 or 1) are used to train an Random Forest(RF)

based regression algorithm. Probability scores from each view are fused, and we obtain a contin-

uous output scale for which probability value of 0.5 and higher for a particular slice is considered

to include mandible bone. Instead of multi-view setting, one may directly use 3D implementation

of the RF based classification. However, particularly in CMF analysis with low dose CT scans, or

CT scans with asymmetric pixel sizes, it is reasonable to use the limited information from certain

slices and views.

4.3 Step II: Gradient-based fuzzy connectivity

After identifying the object of interest through a bounding-box, tightly enclosing the mandible,

we propose to use the gradient-based Fuzzy Connectivity(FC) algorithm to minimize leakage pos-

sibilities while delineating the mandible. FC has shown to be very robust compared to the other

algorithms such as Graph-Cut (GC) and Level Set (LS) [92]. However, the FC algorithm requires

a pre-defined mean and standard deviation of object’s intensity distributions, and since there are

bones, joints, and other artifacts in the vicinity of mandible sharing strong intensity similarities, it

is still possible for the delineation algorithm to leak. Thus, we re-parametrize the FC algorithm

to accept only one parameter that is calculated through a gradient image instead of the original

gray-scale CT scan. By this change, we emphasize the boundary locations in delineation.

Let a topology on an image be given in terms of an adjacency relation (µα) such that if p and q

are α-adjacent to each other, then µα(p, q) = 1, ‘0’ otherwise. In practice, we set α = 26 for 3-D
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mandible bone analysis. While affinity is intended to be a local relation, a global fuzzy relation,

called fuzzy connectedness, is induced on the image domain by the affinity functions as described

in detail in [93]. This is done by considering all possible paths between any two voxels p and q in

the image domain, and assigning a strength of FC for each path. The level of the FC between any

two voxels p and q is considered to be the maximum of the strengths of all paths between p and

q. An affinity relation κ defines the strength of spatial and intensity-based similarity between two

voxels and is the most fundamental measure of local hanging togetherness of the nearby voxels.

For a path π, which is a sequence of the voxels 〈p1, p2, ..., pl〉 with every two successive voxels

being adjacent, given a fuzzy affinity function µκ(pi, pi+1), the strength of the path is defined as the

minimum affinity along the path [91, 93]:

µN (π) = min
1≤i<l

µκ(pi, pi+1). (4.1)

Then, the strength of connectedness µK(p, q) between any two voxels p and q is the strength of the

strongest path between them as

µK(p, q) = max
π∈P(p,q)

µN (π), (4.2)

where P(p, q) denotes the set of all paths between p and q. A FC object O (i.e., mandible) in an

image can be defined for a predetermined set of seeds S. Note that in our algorithm, there is only

one seed necessary to initiate FC delineation and we solve this issue by selecting the voxel with

highest intensity value and largest connected component in the bounding-box. The final object is

obtained by thresholding over the fuzzy object O for the strength of the connectedness.
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Figure 4.1: Separation of teeth and mandible, ground-truth (red) and FC (blue).

4.4 Step III: Boundary refinement for final segmentation

We present a new boundary refinement algorithm to handle the leaks. Although it is small, leakage

can still occur during this separation due to strong overlap between intensity distribution of these

structures (Figure 4.2). Based on anatomical knowledge, we design a state-machine, composed of

five states: initial state, base state, teeth state, leak state, and ending state (Figure 4.2). The number

of connected components and their sizes in consecutive axial slices are used to switch from one

state to another. Briefly, we utilize a state-machine heuristic approach to track potential leaks,

and then refine those regions by incorporating the domain knowledge: axially, mandible regions

include a few connected components with small sizes and this information is quite robust even

with highly deformed jaws (the initial state in shown in Figure 4.2-A). Following, the connected

components start merging and become large in physical size (base state in Figure 4.2-B). Next, the

number of connected components increases as teeth are introduced (teeth state in Figure 4.2-C).

In the teeth state, k-means clustering with two classes is used to separate teeth from mandible.

This rough separation allows us to automatically localize teeth, located in the front portion of the

axial slice, and mandible at the back (See Figure 4.1). In the leak state, we use the change in
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width and height of delineated mandible to track abrupt changes to detect leak areas (leak state in

Figure 4.2-E and Figure 4.3).

Figure 4.2: Boundary refinement using a five step state-machine.

Figure 4.3: Leak state, FC (blue) and the width and height of delineated mandible (red). Abrupt
change in width or height in consecutive slices means a leak in the mandible skull joint.
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4.5 Experiments and Results

Data: We clustered MICCAI Head-Neck Challenge 2015 data set [94] into 3 groups, based on

the severity of artifacts on the CT data as: No or Low, Medium, and High. This was done to

experimentally show robustness of our proposed system with respect to the varying amount of

artifact. While 17 volumes were classified as no or low artifact, 4 of them were labeled as medium,

and 19 of them were classified as high amount of artifacts. The in-plane resolution of the CT scans

was 1.12× 1.12mm, and the slice thickness was 3 mm.

We conducted our experiments on a low-end regular laptop, MacOS-X (2.6GHz Intel Core-i5)

with 8GB CPU memory. Three CT volumes were randomly selected for training and the rest

were used for testing in RF based recognition experiments. Based on a commonly used detec-

tion/recognition evaluation metric, called the intersection of union (IoU), we have performed a

detection accuracy of more than 96%. For delineation accuracy, we have used dice similarity co-

efficient (DSC) as well as a modified version of Hausdorff Distance (HD) to quantify boundary

shape mismatch. The delineation performances are summarized for all CT scans and with respect

to the varying amount of CT artifacts (low, medium, and high) in Figure 4.4.

Figure 4.4: IoU, DSC, and modified Hausdorff Distance (HD) metrics are shown for evaluation
of detection and segmentation methods with respect to varying amount of artifact (x-axis: low,
medium, high, and overall). Note that, high IoU indicates better recognition, lower HD and higher
DSC scores indicate accurate segmentation.
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Compared to the existing work of [95], the winning algorithm of the MICCAI 2015 Head-Neck

segmentation challenge, our algorithm provided similar DSC and HD metrics for all CT scans

regardless of the amount of artifacts, confirming the robustness of the proposed method. Fur-

thermore, we claim at least two superiorities: (1) our algorithm is completely data-driven, (2)

regardless of the amount of artifacts, we obtained similar accuracies for mandible segmentation,

hence the proposed algorithm is robust.

4.6 Discussions and Concluding Remarks

In this work, we develop a data-driven, robust, and accurate method for automatic mandible detec-

tion and delineation from CT scans. The proposed approach is based on RF regression algorithm

for determining rough location of the mandible, and region-based segmentation algorithm with

automatic initialization. We integrate anatomy knowledge in the final stage as a state-machine pro-

cedure. With this refinement, fine-tuning of the delineation is performed successfully regardless

of the amount of CT artifacts and high anatomical variability in the mandible bones. This veri-

fies the robustness of the overall system. By using publicly available segmentation challenge data

(MICCAI 2015- Head-Neck Data Set), we tested and evaluated the performance of the recognition

and delineation steps of the proposed framework, and obtained similar accuracies compared to the

work of [95] but with superiority in robustness, efficiency, and fully-automatic nature.

Even though the proposed algorithm is promising in several ways, the following limitations of our

work should be noted as well: performance of our algorithm is not tested in CT scans with bone

fractures or bone-loss in or nearby the mandible. Although these cases may be rare in this particular

settings, it may be desirable for clinicians to handle such cases (challenge data-set is pertaining

head-neck cancer) with the software tool as well. Furthermore, in our study, we integrated expert

knowledge on human anatomy (specifically mandible) in state-machine model for the refinement
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step. However, for congenital diseases and trauma cases, modeling expert knowledge may not

be accurate for leak tracking. Therefore, we continued our research using deep learning based

algorithms.
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CHAPTER 5: DEEP GEODESIC LEARNING FOR SEGMANTATION

AND ANATOMICAL LANDMARKING

This chapter is based on my paper entitled “Deep Geodesic Learning for Segmentation and Anatom-

ical Landmarking” published at the IEEE Transactions on Medical Imaging, 2018. Copyright

c©2018 IEEE.

5.1 Introduction

The mandible is the lower-jaw bone, and it is the only mobile bone in the CMF region. It is

the largest, the strongest, and the most complex bone in the CMF region that houses the lower

teeth and canals with blood vessels and nerves. Due to its complex structure and the significant

structural variations of the patients with CMF disorders, segmentation and landmark localization

in the mandibular region is a very challenging problem (See Figure 1.1). Although, there are ef-

forts with very promising performances, speed and accuracies [82, 4, 96, 97], the literature still

lacks a fully-automated, fast and generalized software solution in response to wide range of the

ages of the patients, deformities, and the imaging technology artifacts. Hence, the current con-

vention used in the clinics is either manual segmentation and annotations, or semi-automated with

computer software supports (in alphabetical order) 3dMDvultus (3dMD, Atlanta, Ga), Dolphin

Imaging (Dolphin Imaging, Chatsworth, Ca), and InVivoDental (Anatomage, San Jose, Ca).

The segmentation and landmark localization procedure is not trivial due to large morphological

variations among different patients, disease burden, and inevitable image artifacts including den-

tal fillings, orthodontic wires, bands, and braces. Towards a solution to this challenging problem,

there have been many attempts in the literature; however, most of the studies that have addressed
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(a) Mandible (b) Anatomical landmarks on the mandible

Figure 5.1: a) Skull and Mandible (colored in yellow), (b) Anatomical landmarks on the mandible:
Menton (Me), Gnathion (Gn), Pogonion (Pg), B Point (B), Infradentale (Id), Condylar Left
(CdL), Condylar Right (CdR), Coronoid Left (CorL), and Coronoid Right (CorR)

.

the mandible segmentation utilize statistical shape models [98]. Statistical shape models are specif-

ically insufficient especially when large morphological variations such as bone loss or bone frac-

tures are considered. In our previous study (Chapter 4) we also employed expert knowledge in the

refinement step which limits the performance of the software in such abnormal cases.

In this stage of our research we employed a data set which includes patients with congenital dis-

eases with extreme variations in CMF bones, and patient population is highly diverse: a wide

range of ages (9 to 50 years old), imposing high anatomical variations apart from the diseases.

The following image based variations have been confirmed in our database, too: aliasing artifacts

due to braces, metallic surgery nails, dental fillings, and missing bones or teeth. The overarching

goal of our study is to develop a fully-automated image analysis software for mandible segmen-

tation and anatomical landmarking on the mandible. Our proposed solution is based on a newly

designed deep learning architecture and trained in an end-to-end manner. To help clinicians in
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the measurement process, we include the landmarking process as a part of the segmentation algo-

rithm to make certain geometric measurements accurately, easier, and faster. Our proposed novel

deep learning algorithm includes three inter-connected steps (See Figure 5.2 for overview of the

proposed method). In the first step, we propose a convolutional neural network (CNN) based seg-

mentation engine for mandibular bone extraction from 3D CBCT scans. In Step 2, we present

a learning based geodesic map generation algorithm for each anatomically defined landmark on

the mandibular. Finally, in Step 3, inspired by recurrent neural networks (RNN), we demonstrate

an LSTM (long short term memory) based algorithm to learn the relationship among anatomical

landmarks distributed on the same bone. We utilize both segmentation results and geodesic maps

of each landmark in this step. The proposed system is trained in a fully automated fashion, and run

over the Geodesic space of the landmarks instead of Euclidean space, which makes it attractive for

manifold learning applications too.

The overview of the proposed approach is shown in Figure 5.2. Overall, we solve the segmentation

and landmarking problem in three steps. Step I includes a newly proposed segmentation network

for mandible based on a unified algorithm combining U-Net and DenseNET with carefully de-

signed network architecture parameters. In Step II , we propose a geodesic learning method to

learn true and more accurate spatial relationship of landmarks on the mandible. Finally, in Step

III , we identify each landmark’s location by a classification framework where we utilize an LSTM

learning algorithm. Mandible landmarks that we aim to locate are the following: Menton (Me),

Condylar Left (CdL), Condylar Right (CdR) , Coronoid Left (CorL), Coronoid Right (CorR),

Infradentale(Id), B point (B), Pogonion (Pg), and Gnathion (Gn). Positions of these landmarks

are shown in Figure 5.1(b).
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Figure 5.2: The framework implemented in this dissertation starts with a Fully Convolutional
DenseNet for Mandible Segmentation. Following the Mandible Segmentation, Linear Time Dis-
tance Transform (LTDT) of the Mandible Bone is generated. Next, a U-NET is used for Mandibular
Geodesic Learning which transforms 3D LTDT into combined 3D Geodesic Map of the mandibu-
lar landmarks Menton (Me), Condylar Left (CdL), Condylar Right (CdR), Coronoid Left (CdL),
and Coronoid Right (CdR). After classification of 5 Mandibular Landmarks, a long short-term
memory (LSTM) Network is used to detect Infradentale (Id), B point (B), Pogonion (Pg), and
Gnathion (Gn) mandibular landmarks according to the detected position of the Menton (Me)
landmark.

5.2 Step 1: Segmentation Network

CNN based approaches such as U-Net [60], fully convolutional network (FCN) [99], and encoder-

decoder CNNs [100] have achieved increasing success in image segmentation. These methods

share the same spirit of obtaining images at different resolutions by consecutive downsampling and

upsampling to make pixel level predictions. Despite the significant progress made by such standard

approaches towards segmentation, they often fail to converge in training when faced with objects

with high variations in shape and/or texture, and complexities in the structure. Another challenge

is the optimization of massive amount of hyper-parameters in deep nets. Inspired by the recently
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(a) Mandible Segmentation Fully Convolutional DenseNet

(b) Geodesic Learning U-Net

Figure 5.3: (a) Mandibular bone segmentation framework (b) Geodesic Landmark Detection
framework for landmarks Menton (Me), Condylar Left (CdL), Condylar Right (CdR) , Coronoid
Left (CorL), and Coronoid Right (CorR), (Figure 5.1(b)).

introduced notion of densely connected networks (DenseNET) for object recognition [101], a new

network architecture was presented by Jégou et al. [3] for semantic segmentation of natural im-

ages, called Fully Convolutional DenseNET (or Tiramisu in short). In this study, we adapted this

Tiramisu network for medical image segmentation domain through significant modifications:

(1) We set all default pooling functions (often they are defined as max pooling) with average

pooling to increase pixel-level predictions. Although pooling functions in the literature have been

reported to perform similarly in various tasks, we hypothesized that average pooling was more

suitable for pixel level predictions because average pooling identifies the extent of an object while

max-pooling only identifies the discriminative part.
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(2) We explored the role of dropout regularization on segmentation performance with respect to

the commonly used batch normalization (BN) and pooling functions. Literature provides mixed

evidence for the role of these regularizers.

(3) We investigated the effect of growth rate (of dense block(s)) on the segmentation performance.

While a relatively small growth rate has been found successful in various computer vision tasks,

the growth rate of dense blocks is often fixed and its optimal choice for segmentation task has not

been explored yet.

(4) We examined appropriate regularization as well as network architecture parameters, including

number of layers, to avoid the use of post-processing methods such as CRF (conditional random

field). It is common in many CNN-based segmentation methods to use such algorithms so that

the model predictions are further refined because the segmentation accuracy is below an expected

range.

Figure 5 illustrates the Tiramisu network architecture (a) and the content of a dense block (b),

respectively. Tiramisu network is extremely deep, including 103 layers [3] as compared to the

U-Net which has only 19 layers in our implementation. The input of the Tiramisu network was

the 2D sagittal slices of the CBCT scan of patients with CMF deformities, and the output was the

binary 2D sagittal slices with the mandible segmented (see Figure 4 for an example workflow of

a 2D slice). The architecture consisted of 11 dense blocks with 103 convolutional layers. Each

dense block contained a variable length of layers and the growth rate was set specifically for each

dense block based on extensive experimental results and comparison. The network was composed

of approximately 9M trainable parameters. We trained the revised Tiramisu from scratch without

the need for data augmentation and complex post-processing. Details of the network parameters

are given in Tables 5.1 and 5.2.
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(a) Fully Convolutional DenseNet with 103 layers. (b) Content of a dense block.

Figure 5.4: (a) General architecture of the Tiramisu [3] is illustrated. The architecture is composed
of downsampling and upsampling paths including Convolution, Dense Block, Concatenation (C),
Skip Connection (dashed lines), Transition Down, and Transition Up layers. Concatenation layer
appends the input of the dense block layer to the output of it. Skip connection copies the concate-
nated feature maps to the upsampling path. (b) A sample dense block with 4 layers is shown to
its connections. With a growth rate of k, each layer in dense block appends k feature maps to the
input. Hence, the output contains 4× k features maps.

5.3 Step 2: Geodesic Learning for Landmarking

We approach the problem of anatomical landmarking (landmark detection) as a learning problem.

The state-of-the-art method in the literature adopts a U-Net architecture to learn the locations of

the anatomical landmarks [4]. For a given 3D CBCT scan X and a landmark l, authors [4] created
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Table 5.1: The network architecture of the Tiramisu segmentation engine.

Layers applied # of feature maps
Input 1
3× 3 Convolution 48
Dense Block (4 layers) + Transition Down 112
Dense Block (5 layers) + Transition Down 192
Dense Block (7 layers) + Transition Down 304
Dense Block (10 layers) + Transition Down 464
Dense Block (12 layers) + Transition Down 656
Dense Block (15 layers) 896
Transition Up + Dense Block (12 layers) 1088
Transition Up + Dense Block (10 layers) 816
Transition Up + Dense Block (7 layers) 578
Transition Up + Dense Block (5 layers) 384
Transition Up + Dense Block (4 layers) 256
1× 1 Convolution 2
Softmax 2

three displacement maps Dl,x,Dl,y,Dl,z corresponding to x, y, and z axes [4]. That is, if there are

Nl landmarks, Nl×3 displacement maps are generated. Displacement maps, also called heatmaps,

were created using a simple Euclidean metric measuring the distance of a landmark to a reference

point ((0,0) index of image). Although the method is simple to implement and efficient within

the multi-task learning platform, it does not incorporate information about the object of interest

(mandible) and works on the image space. In addition, the method generates a large number of

heatmaps when the number of landmarks is high. Lastly, the method operates directly on the

Euclidean space and it does not capture the underlying data distribution, which is non-Euclidean

in nature.

To alleviate these problems and to solve the landmarking problem directly on the shape space,

we propose to use a Geodesic Distance Transform to learn the relationship of landmarks directly

on the shape space (mandible surface). To this end, we first apply linear time distance transform
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Table 5.2: The network architecture parameters of the Tiramisu segmentation engine

Hyper-Parameters Value
Learning-Rate 0.00005
Drop-out 0.2
Network Weight Initialization Xavier Initializer
Bias Initializer Zero Initializer
Activation Function ReLu
Growth Rate 24
Normalization Batch Normalization
Network Parameters Value
Pooling Average
Batch-Size 3
Optimization Adam

(LTDT) [102] to the segmented mandible images (i.e., binary) and generate signed distance maps.

Assuming I is a 3D-segmented binary image (mandible) obtained at Step 1 from a given CBCT

scan X in the domain Ω = {1, ..., n} × {1, ...,m}, Mandible M is represented by all white voxels

(I(v) = 1), while Mandible complement (background) MC is represented by all black voxels

(I(v) = 0) [103]:

M = {v ∈ Ω|I(v) = 1},

MC = {v ∈ Ω|I(v) = 0}.
(5.1)

LTDT represents a map such that each voxel v is the smallest Euclidean distance from this voxel

to the MC:

LTDT (v) = min{dist(v, q)|q ∈MC}. (5.2)
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Then, the signed LTDT, namely sLTDT, of I for a voxel v can be represented as:

sLTDT (v) =


LTDT (v) if v ∈M,

−min{dist(v, q)|q ∈M} if v ∈MC.

(5.3)

For each landmark l, we generate a geodesic distance map DG
l . To do so, we find the shortest

distance between landmark l and each voxel v as:

DG
l (v) =


minπ(l, v) if v ∈M,

inf if v ∈MC,

(5.4)

where π indicates all possible paths from the landmark l to the voxel v(v ∈M). Since the shortest

distance between two points is found on the surface, it is called geodesic distance [104, 105] as a

convention. To find the shortest path π, we applied Dijkstra’s shortest path algorithm. For each

landmark l, we generated one geodesic map as DG
l . For multiple landmarks, as is the case in our

problem, we simply combined the geodesic maps to generate one final heatmap, which includes

location information for all landmarks. Final geodesic map for all landmarks was obtained through

hard minimum function DG
I = min(DG

l1
◦DG

l2
◦ ...◦DG

ln
), where ◦ indicates pixel-wise comparison

of all maps. In other words, the final geodesic map DG
I includes n extrema (minimum) identifying

the locations of the n landmarks.

To learn the relationship of n landmark points on the mandible surface, we designed a landmark

localization network, based on the Zhang’s U-Net architecture [4]. Tiramisu network could perhaps

be used for the same purpose. However, the data was simplified in landmark localization due to

geodesic distance mapping, and Zhang’s U-Net uses only 10% of the overall parameter space for
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landmark localization. The improved Zhang’s U-Net accepts 2D slices of the signed distance

transform of the segmented mandible (I) as the input, and produces the 2D geodesic map (DG
I )

revealing the location of Nl landmarks as the output. The details of the landmark localization

architecture (improved version of the Zhang’s U-Net) with 19 layers and parameters are given in

Tables 5.3 and 5.4, respectively. Briefly, the encoder path of the U-Net was composed of 3 levels.

Each level consisted of (multiple) application(s) of convolutional nodes: 5× 5 convolutions, batch

normalization (BN), rectified linear unit (ReLU), and dropout. Between each level max pooling,

downsampling with a stride of 2, was performed. Similar to the encoder path, the decoder path

was also composed of 3 levels. In contrast to encoder path, dropout was not applied in the decoder

path. Between the levels in the decoder path, upsampling operation was applied. To emphasize

the high-resolution features that may be lost in the encoder path, copy operation was used in the

decoder path. Copy operation, as the name implies, concatenated the features at the same 2D

resolution levels from the encoder path to the decoder path.

We have chosen the optimization algorithm as RMSProp [106] due to its fast convergence and

adaptive nature. The initial learning rate was set to 1e-3 with an exponential decay of 0.995 after

each epoch (Table 5.4). At the end of the decoder path, softmax cross entropy was applied as a

loss function because mean squared error (MSE) caused serious convergence issues. We quantized

the geodesic map in the range [0 − 20], where the limit 20 was set empirically. The network was

composed of ≈ 1M trainable parameters. Compared to the Zhang’s U-Net [4], in our improved

implementation, in addition to the 5 × 5 convolutions, on the expanding path at level 2, we kept

the symmetry in the number of features obtained as in the contracting path. These alterations made

sure Zhang’s U-Net to work without failures.
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Table 5.3: The network architecture of the improved Zhang’s U-Net for sparsely-spaced landmarks

Layers applied Slice Size
Number of

feature
maps

Input 256× 256 1
5× 5 Convolution 256× 256 32
5× 5 Convolution 256× 256 32
Max-pooling 128× 128 32
5× 5 Convolution 128× 128 64
5× 5 Convolution 128× 128 64
Max-pooling 64× 64 64
5× 5 Convolution 64× 64 128
5× 5 Deconvolution 64× 64 64
Upsampling + Copy 128× 128 128
5× 5 Deconvolution 128× 128 64
5× 5 Deconvolution 128× 128 32
Upsampling + Copy 256× 256 64
5× 5 Deconvolution 256× 256 32
5× 5 Deconvolution 256× 256 32
5× 5 Deconvolution 256× 256 21
Softmax 256× 256 21

5.4 Step 3: Localization of Closely-Spaced Landmarks

Fusion of geodesic maps through pixel-wise hard-coded minimum function is reliable when land-

marks are sufficiently distant from each other. In other words, if landmarks are very close to each

other, then the combined geodesic map DG
I may have instabilities in locating its extrema points.

In particular for our case, it was not possible to localize specifically “Menton” and other mid-

sagittal closely-spaced landmarks in a clinically acceptable error range (i.e., 6 3mm). In order to

avoid such scenarios, we divided the landmarking process into two distinct cases: learning closely-

spaced and sparsely-spaced landmarks separately. First, we classified the mandible landmarks into
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Table 5.4: The network architecture parameters of the improved Zhang’s U-Net for sparsely-spaced
landmarks

Hyper-Parameters Value
Learning-Rate 1e-3
Decay-Rate 0.995
Drop-out 0.2
Network Weight Initialization Xavier Initializer
Bias Initializer Zero Initializer
Normalization Batch Normalization
Pooling Maxpool
Batch-Size 3
Optimization RMSProp

sparsely and closely-spaced sets. Sparsely-spaced landmarks (N=5) were defined in the inferior,

superior-posterior-left, superior-posterior-right, superior-anterior-left, and superior-anterior-right

regions. Closely-spaced landmarks (N=4) were defined as the ones that were closely tied together

(Infradentale (Id), B point (B), Pogonion (Pg), and Gnathion (Gn)).

Note that these anatomical landmarks often reside on the same sagittal plane in the same order

according to the mid-point of the lower-jaw incisors. We propose to capture this order dependence

by using an LSTM architecture in the sagittal axis of the images containing the landmark “Men-

ton” (Figure 5.5). The rationale behind this choice was that LSTM network is a type of RNN

introduced by Hochreiter et al. [107] in 1997, modeling the temporal information of the data ef-

fectively. Although the imaging data that we used does not include temporal information in the

standard meaning, we modeled the landmark relationship as a temporal information due to their

close positioning in the same plane. This phenomenon is illustrated in Figure 5.5. The input data

to the LSTM network was a 64 × 64 mandible binary boundary image of the sagittal plane of the

landmark Me, and the output was a vector of 0’s and 1’s: while 0 refers to non-landmark location,

1 refers to a landmark location in the sagittal axis. Figure 5.6 shows further details of the LSTM
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Figure 5.5: LSTM network input-output. Each row of the scaled sagittal boundary image is input
to the corresponding LSTM block, and binary 1D vector of locations annotated as landmark (1),
or no-landmark (0) is output.

network and content of a sample LSTM block that we used for effective learning of closely-spaced

landmarks.

To generate the training data, the sagittal slice containing the closely-spaced landmarks “Menton”,

“Gnathion”, “Pogonion”, “B-point” and “Infradentale” was scaled into a binary boundary image

of size 64 × 64. The 5 landmark locations (marked by red circles in Figure 5.5) on this boundary

image were parameterized as (x,y), where y is the row number in the range 0 to 64, and x is the

white boundary column number of the corresponding row y.

61



(a) LSTM Network (b) LSTM Block

Figure 5.6: Details of the network architecture (LSTM) for identifying closely-spaced landmarks.
Gnathion (Gn), Pogonion (Pg), B Point (B), and Infradentale (Id) are determined once the Men-
ton (Me) is detected through U-Net architecture as shown in Step 3 of the Figure 5.2. Input image
resolution is RxK, and the LSTM cell is composed of 512 hidden units.

LSTM network was composed of 64 cells (Figure 5.6), and each cell in the LSTM network con-

sisted of 512 units. The training images were row-wise input to the LSTM network such that nth

row was input to the corresponding nth cell of the network. The output of each cell was multi-

plied by 512 × 2 weight and 1 × 2 bias was added. The resultant 1 × 2 tensors at each cell were

concatenated and softmax cross entropy was applied as a loss function.

5.5 Training Framework: End-to-end vs. Sequential vs Mixed

Since the proposed learning system is complex, it is worth to explore whether gradient-descent

learning system can be applied to the system as a whole (called end-to-end). For this purpose,
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(a) Pixel Space Errors (b) Volume Space Errors (c) Expert Reading Variations

Figure 5.7: (a) Errors in pixel space, (b) errors in the volume space, (c) inter-observer reading
variations in pixel space.

first, we evaluated the performances of each network individually, so named sequential training

followed by an engineering approach for concatenation of the three networks. Since end-to-end

learning systems require all modules of the complex system to be differentiable, our proposed

system was not fully eligible for this learning type. It is because the 3rd module (LSTM network

for closely-spaced landmark localization) had differentiability issues for the given loss function.

Therefore, we trained the first and second modules in an end-to-end manner while integrating

the third network module into this system sequentially. In summary, we devised two alternative

methods to solve our overall goal: in the first solution, the overall system was considered as a

sequential system. In the second solution, the first two modules of the system were trained in an

end-to-end manner with the inclusion of the third module as a sequential block. Owing to the usage

of sequential and end-to-end frameworks together, we named the second solution as “mixed”.

Although end-to-end networks are conceptually and mathematically beautiful, it has a strict con-

dition that each module should be differentiable with respect to the loss function so that a positive

impact can be obtained on the final objective. However, as stated in [108] and [109], when some

modules are not differentiable (as the third module of our proposed method), or when the system

is too complex with sparse modules, the overall results may be inferior compared to the sequential
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method. Due to the differentiability issue in the third module, our system falls into this category.

That is, the input to the 3rd module was the 2D sagittal slice containing the anatomical landmark

“Menton”. Since not every output slice in the training could be used for the 3rd module, differ-

entiability was lost. In addition, we observed that unless the first two modules were close to the

converging state, it was not possible to locate “Menton” more precisely than a random guess. Due

to the requirement of convergence within this module, eventually, it was not possible to apply

LSTM training in a truly end-to-end manner.

5.6 Experiments and Results

5.6.1 Data description:

Anonymized CBCT scans of 50 patients (30 female and 20 male, mean age = 22.4 years, standard

deviation = 9.6 years) were included in our analysis through an IRB-approved protocol and data

sharing agreement between UCF and NIH. These patients had craniofacial congenital birth defects,

developmental growth anomalies, trauma to the CMF, surgical intervention, and included pediatric

and adult patients. All images were obtained on a CB MercuRay CBCT system (Hitachi Medical

Corporation, Tokyo, Japan). The 12-inch field of view was required for this study to capture the

entire length of the airway and was scanned at 10 mA and 100 Kvp. The equivalent radiation

dosage for each scan was approximately 300 mSv. After the study had begun, the machine was

modified to accommodate 2 mA for the same 12-inch field of view, thus lowering the equivalent

radiation dosage for each scan to approximately 132.3 mSv. Each patient’s scan was re-sampled

from 512× 512× 512 to 256× 256× 512 to reduce computational cost. In-plane resolution of the

scans was noted either as 0.754mm×0.754mm×0.377mm or 0.584mm×0.584mm×0.292mm.

Apart from highly diverse nature of this data set, the following image-based variations have also

been confirmed: aliasing artifacts due to braces, metal alloy surgical implants (screws and plates),
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dental fillings, and missing bones or teeth.

Additionally, we tested and evaluated our algorithm(s) using the MICCAI Head-Neck Challenge

2015 dataset [110]. MICCAI Head-Neck Challenge 2015 dataset was composed of manually an-

notated CT scans of 48 patients from the Radiation Therapy Oncology Group (RTOG) 0522 study

(a multi-institutional clinical trial [111]). For all data, the reconstruction matrix was 512 × 512

pixels. The in-plane pixel spacing was isotropic, and varied between 0.76mm × 0.76mm and

1.27mm × 1.27mm. The range of the number of slices of the scans were 110-190. The spacing

in the z-direction was between 1.25mm and 3mm [110]. In the challenge, there were three test

results provided, where test data part 1 (off-site data) and part 2 (on-site data) did not have pub-

licly available manual annotations to compare to our performances. Hence, we compared our test

results to the the cross-validation results as provided in [112].

Training deep networks: We have trained our deep networks with 50 patients’ volumetric CBCT

scans in a 5-fold cross validation experimental design. Since each patient’s scan includes 512

slices (i.e., 2D images with 256 × 256 pixels in-plane), we had a total of 25, 600 images to train

and test. In each training experiment, we have used 20, 480 2D images to train the network while

the remaining slices (5, 120) were used for testing. This procedure was repeated for each fold of

the data, and average of the overall scores were presented in the following subsections.

5.6.2 Evaluation metrics and annotations:

Three expert interpreters annotated the data (one from the NIH team, two from the UCF team)

independently. Inter-observer agreement values were computed based on these three annotations.

Later, second and third experts (from the UCF team) repeated their manual annotations (after

one month period of their initial annotations) for intra-observer evaluations. Experts used freely

available 3D Slicer software for the annotations. Annotated landmarks were saved in the same
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format of the original images, where landmark positions in a neighborhood of 3 × 3 × 3 were

marked according to the landmark ID while the background pixels were marked as 0.

A simple median filtering was used to minimize noise in the scans. No other particular preprocess-

ing algorithm was used. Experiments were performed through a 5-fold cross-validation method.

Intersection of Union (IoU) metric was used to evaluate object detection performance. For evalu-

ating segmentation, we used the standard DSC (dice similarity coefficient), Sensitivity, Specificity,

and HD (Hausdorff Distance) (100% percentile). As a convention, high DSC, sensitivity, speci-

ficity and low HD indicate a good performance. The accuracy of the landmark localization was

evaluated using the detection error in pixel space within a 3× 3× 3 bounding box. Inter-observer

agreement rate was found to be 91.69% for segmentation (via DSC).

5.6.3 Evaluation of Segmentation

The proposed segmentation framework achieved highly accurate segmentation results despite the

large variations in the imaging data due to severe CMF deformities. Table 5.5 summarizes the

segmentation evaluation metrics and number of parameters used for the proposed and the com-

pared networks. The proposed segmentation network outperformed the state-of-the-art U-Net [60].

Specifically, we have improved the success of the baseline U-Net framework by increasing the

number of layers into 19. In terms of the dice similarity metric, both improved Zhang’s U-Net and

the proposed segmentation network were statistically significantly better than the baseline U-Net

(P = 0.02, t-test). In summary, (i) there is no statistically significant difference noted between

our proposed method and the manual segmentation method (P = 0.77); (ii) there is a statistically

significant difference between our proposed method and the baseline U-Net (P = 0.02); (iii) there

is no statistically significant difference noted between the proposed method and our improvement

over the Zhangs U-Net (P = 0.28). It is also worth to note that the proposed Tiramisu network
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performed more robustly in training, converging faster than the improved Zhang’s U-Net despite

the larger number of parameters in the Tiramisu.

Table 5.5: Evaluation of the segmentation algorithms. Higher IoU(%) and DSC (%), and lower
HD (mm) indicate better segmentation performance. Improved Zhang’s U-Net is built on top of
Zhang’s U-Net implementation [4].

Method IoU DSC HD Layers # of params.
Baseline U-Net [60] 100 91.93 5.27 31 ≈ 50M
Improved Zhang’s U-Net 100 93.07 5.87 19 ≈ 1M
Proposed (Tiramisu) 100 93.82 5.47 103 ≈ 9M

We evaluated the segmentation performances on different datasets and training styles (sequen-

tial vs. mixed learning) and summarized the results in Table 5.6. With the MICCAI Head-Neck

Challenge 2015 dataset, we obtained a dice accuracy of 93.86% compared to 90% [112]. High ac-

curacies of the MICCAI Head-Neck Challenge 2015 and the NIH datasets imply the robustness of

the Tiramisu segmentation network. It should be noted that MICCAI Head-Neck Challenge 2015

dataset contains mainly scans with imaging artifacts as well as different diseases. Closer inspection

of Table 5.6 also shows that a simple post-processing step such as “Connected Component Analy-

sis” and “3D fill” were important to decrease the number of the false positives and false negatives

in the challenge dataset. The slightly lower performances of mixed training with Tiramisu network

for both segmentation and landmark localization can be explained by the increased number of pa-

rameters but insufficient dataset size to derive learning procedure as a whole. Sequential learning

was sufficient to obtain good results in segmentation, though.

5.6.4 Evaluation of Landmark Localization

Ground truth annotations (manual segmentation and anatomical landmarking) were performed by

three experts independently. Inter-observer agreement rate was 91.69%. Figure 5.7(c) presents per

67



Table 5.6: Segmentation performances in different datasets, training paradigms (mixed vs. sequen-
tial), and post-processing algorithms.

Post-processing DSC(%) Sensitivity(%) Specificity(%) HD(mm)

Sequential
Tiramisu Segmentation

MICCAI 2015

– 92.30 86.43 99.96 5.09

connected component
analysis, 3D fill 93.86 95.23 99.99 4.58

Sequential
Tiramisu Segmentation

NIH Dataset

– 92.61 93.42 99.97 8.80

connected component
analysis, 3D fill 93.82 93.42 99.97 6.36

Mixed
Tiramisu Segmentation

→ U-Net Landmark Localization
NIH Dataset

– 92.09 92.10 99.96 8.30

connected component
analysis, 3D fill 92.28 92.10 99.96 7.11

Mixed
Tiramisu Segmentation

→ Tiramisu Landmark Localization
NIH Dataset

– 90.10 90.53 99.97 8.80

Connected component
analysis, 3D fill 90.10 90.52 99.97 6.36

landmark and overall expert reading variations of landmarking in the pixel space. We observed

that there was an average 3 pixel errors among the experts. Hence, any landmarking algorithm

leading to error within 3 pixel range can be considered a clinically acceptable level of success.

Figures 5.7(a) and 5.7(b) summarize the proposed algorithm’s landmark localization errors in the

pixel space and the volume space, respectively.

The mean and median volume space errors for each landmark are presented at Table 5.7. The errors

in the pixel space (Figure 5.7(a)) were less than 3 pixels for all 9 landmarks, indicating that our

method is highly accurate and can be used for clinical applications as it results in less variations

than the inter-observer variation rate as explained earlier (Figure 5.7(c)).
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(a) Patient-1 (b) Patient-2 (c) Patient-3

Figure 5.8: Experimental renderings demonstrating segmentation and landmark localization re-
sults of patients with high anatomical variability due to deformities and surgical intervention a)
Genioplasty/chin advancement (43 yo), b) Absent left condyle-ramus unit (15 yo), c) Mandibular
implant (17 yo).

Figure 5.8 presents three experimental results when there was high morphological variation and

deformity. In Figure 5.8(a), due to the genioplasty with chin advancement and rigid fixation, there

is a protuberance on the mandible distorting the normal anatomy. In Figure 5.8(b), condyle-ramus

unit is absent on the left side of the mandible due to a congenital birth defect. The Geodesic Land-

mark Localization network successfully detected 4 landmarks. Note that the fifth landmark was on

the missing bone, and it was not located as an outcome of the landmarking process. This is one of

the strengths of the proposed method. In Figure 5.8(c), the patient had bilateral surgical implants

along the ascending ramus (bicortical positional screws), and bilateral condyle and coronoid pro-

cesses are fixed with these implants. The landmarking process was successful in this challenging

case too.

We also evaluated the impact of segmentation accuracy on the landmark localization error (Fig-

ure 5.9). In this evaluation, we first grouped the testing scans into 2 groups according to their dice

values as lower and higher segmentation accuracies (i.e.,≤ 90% as lower, > 90% as higher). Next,

we compared the landmark localization errors in pixel space for these two groups. In Figure 5.9,

the landmarking process was robust to changes in segmentation accuracy, and never reached more

than 3 pixels errors. It should also be noted that the mean and median segmentation accuracy were
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Table 5.7: Landmark localization performances are evaluated for each anatomical landmark and
with respect to different pooling functions. Errors (in mm) are given both in average (avg) and
median (md) values.

max pool avg pool stoc. pool max pool +
wo drop out

Me
avg 0.33 1.35 0.37 0.03
md 0 0 0 0

CorL
avg 0.27 0.07 0 0
md 0 0 0 0

CorR
avg 0.03 0.3 0.37 0.45
md 0 0 0 0

CdL
avg 1.01 0.037 0.56 0.33
md 0 0 0 0

CdR
avg 0 0.11 0.07 0.07
md 0 0 0 0

Gn
avg 0.41 1.64 1.35 0.49
md 0 0 0.18 0

Pg
avg 1.36 2.34 2.4 1.54
md 1.17 0.75 1.6 0.75

B
avg 0.68 1.47 1.24 0.33
md 0.18 0 0.56 0

Id
avg 0.35 1.74 0.75 0.52
md 0 1.131 1.67 0

still very high in our experiments, leading to successful landmark localization even at the low end

of the dice values. Overall, the landmark localization was robust to the segmentation step and a

potential (visible) error may happen only when the Menton (closely-spaced landmark) is located

incorrectly due to a potential segmentation error.

Table 5.7 summarizes the average and median errors of localized landmarks in millimeters with

respect to different regularization methods, in particular pooling strategies. We observed that max

pooling consistently outperformed other regularization methods. Unlike the segmentation prob-

lem, where average pooling was most effective in pixel level predictions, landmarking was driven

by discriminative features, enhanced by max pool operation. All average and median errors of the

70



Figure 5.9: Impact of segmentation accuracy on the landmark localization process.

landmark localizations were within the clinically acceptable limits (less than 3 pixels).

5.6.5 Evaluation of the Segmentation Network Parameters

Table 5.8: Resulting segmentation DSC accuracies with respect to the drop ratio (avg pooling,
ReLU, and growth rate of 24). Note that drop ratio of 0 denotes “no” use of dropout layer.

Drop Ratio 0.5 0.3 0.2 0.1 0.0
DSC(%) 91.21 93.37 93.82 92.90 92.88

5.6.5.1 Effect of pooling functions

After extensive experimental comparisons, we found that average pooling acts as a robust regular-

izer compared to other pooling functions such as max pooling and stochastic pooling (Table 5.8).

71



5.6.5.2 Disharmony between BN and dropout

We found that when BN is used in the network for segmentation purpose, the use of dropout is

often detrimental except for only a drop rate of 20%. Similarly, we found that average pooling was

the most robust pooling function compared to others when BN and dropout were used together.

Table 5.9: Effect of different growth rates on segmentation performance using Tiramisu with avg.
pooling.

Growth Rate (k) 12 16 24 32
DSC(%) 92.63 93.36 93.82 92.60
HD(mm) 6.44 5.50 5.47 5.02

5.6.5.3 The role of growth rate in dense blocks

Tiramisu network with 103 layers (growth rate of 16) has a proven success in the computer vision

tasks. In our experiments, we observed that a Tiramisu network with a growth rate of 24 and drop

rate of 0.2 produces the best accuracies instead of growth rate of 16 as in computer vision tasks

(See Table 5.9). Further, when no dropout is used (drop rate is 0), the growth rate performance

inverses (See Table 5.10), implying the regularizing impact of employing dropout on the neural

networks.

Table 5.10: Comparison of segmentation accuracies with respect to different regularization
choices. Drop ratio of 0 denotes “no” use of dropout layer.

Pooling max pool max pool avg pool avg pool stoc. pool stoc. pool avg pool avg pool
Activation ReLU ReLU ReLU ReLU ReLU ReLU SWISH SWISH

Growth Rate 16 24 16 24 16 24 16 24

DSC(%) drop ratio=0.0 93.09 92.64 93.16 92.16 92.59 90.93 93.14 92.60
drop ratio=0.2 93.10 93.08 93.36 93.82 92.14 92.53 91.79 93.67
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5.6.6 Qualitative Evaluation

Figure 5.10: Summary of qualitative evaluation of 250 scans from the NIDCR/NIH dataset evalu-
ated by 2 experts, A and B

.

5.6.6.1 The choice of activation functions

Although there have been many hand-designed activation functions proposed for deep networks,

ReLU (rectified linear unit) became an almost standard choice for most CNNs. The main reason

is due to its significant effect on the training dynamics and high task performances. More recently,

another activation function, called “Swish” [113], was proposed. Unlike other activation functions,

Swish was automatically determined based on a combination of exhaustive and reinforcement

learning-based search. Authors showed that Swish tend to perform better than ReLU for very

deep models. Since the proposed Tiramisu has 103 layers, we replaced all ReLU functions with

Swish, which is a weighted sigmoid function f(x) = x.sigmoid(βx), and explored the network

behaviors. We summarized the network performance in Table 5.10. Overall, we did not observe

significant differences between ReLU and Swish, but ReLU led into slightly better results in all

sub-experiments.
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Our total CBCT dataset is composed of 250 patient CBCT images provided by our collaborators at

the NIDCR/NIH. Only 50 of them were manually annotated by the three experts. To measure the

performance of the algorithm on all available scans, by following the routine radiologic evaluation

of the scans, two experts visually scored the segmentation results in the range from 0 to 4, where

1 is unacceptable, 2 is borderline, 3 is acceptable at clinical level, and 4 is superior (excellent)

(Figures 5.10 and 5.11). When the scan is completely distorted or mandible does not exist in its

entirety in the scan, it is not possible to automatically segment mandible, hence a score of 0 is

given.

(a) Score 4

(a1) (a2) (a3)

(a4) (a5) (a6)
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(b) Score 3

(b1) (b2) (b3)

(c) Score 2

(c1) (c2) (c3)

(d) Score 1

(d1) (d2) (d3)

Figure 5.11: Qualitative Evaluation Scores of the Segmentation Results. The experts visually
evaluated the performance of the segmentation of the 250 patient scans in the score range 1 to 4,
where 1 is inferior. Examples of scans with scores 1-4 are presented.
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Scores of 3 and 4 represent clinically acceptable segmentation, where score 3 may correspond

to minor deformations in the segmentation. The left top part of the Mandible (Figure 5.11-a6)

was missing, for instance, but it was still precisely segmented. The mandible (Figure 5.11-c2),

for another example, was composed of two separate parts, and the algorithm detected the larger

portion of the mandible. Further analysis showed that the scans that were scored as 1 or 2 were

typically the ones with serious anatomical deformations. Approximately 5% of the segmentation

results were scored as 1 by both experts A and B (Figure 5.10).

5.7 Discussion and Conclusion

Overall, the proposed networks (Tiramisu and improved Zhang’s U-Net) have enjoyed fast conver-

gence (around 20 epochs) and high accuracy in a very challenging CBCT dataset. Tiramisu was

observed to have better converging and training ability compared to improved Zhang’s U-Net. For

landmark localization, improved Zhang’s U-Net in the geodesic space has performed comparably

to the validated operator manual landmarking (e.g., median displacement error of 0 mm in most

landmarks). We also addressed some of the poorly understood concepts in deep network architec-

ture (particularly designed for medical image analysis applications) such as the use of dropout and

pooling functions for regularization, activation functions for modeling non-linearity, and growth

rate for information flow in densely connected layers (See Chapter 5.6.5).

Fully convolution network (FCN) [99] has significantly changed the landscape of semantic image

segmentation frameworks. Based on the FCN, Ronneberger et al. [60] introduced the U-Net which

became the baseline for the current medical image segmentation tasks. The literature for particular

medical image segmentation applications based on U-Net is vast; employing the encoder-decoder

structure, dense connections, skip connections, residual blocks, and other types of architectural

additions to improve segmentation accuracy for particular medical imaging applications. One
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major drawback of the U-Net framework is the inefficiency introduced by the significantly higher

number of parameters to learn [114]. Hence, there is an anticipation for improvements in the

efficiency and robustness of the U-Net type of architecture in the medical imaging field in the near

future. One example of such studies, called Capsules [114], may be a good future alternative to

what we propose herein.

In our study, we have focused on individual aspects of segmentation and landmarking, and have

proposed novel architectural designs to address problems in both processes that have not been

corrected in currently available systems. The natural extension of our work will be to formulate

segmentation and landmarking problem within the multi-task learning algorithm, similar to the one

proposed by Zhang et al. [4].

There are some limitations to our proposed method. Due to extensive memory and hardware

requirement, we used pseudo-3D image analysis instead of fully 3D. A possible extension of our

study will be to work on completely 3D space once hardware and memory supports are available.

Another limitation of our work is to have a two-cascaded system for landmark localization instead

of one because the hard-coded minimum function that we used for combining geodesic distances

created additional artificial landmarks between those closely distributed landmarks. To overcome

this problem, we showed a practical and novel use of LSTM-based algorithm to learn the locations

of closely-spaced landmarks and avoided such problems. Exploration of different functions other

than hard-coded minimum for closely-spaced landmark localization is subject to further theoretical

investigation in geodesic distance maps.

A more radical approach to handle the two-cascaded system is anatomical landmarking without

performing any segmentation. Although, CMF landmarks always reside on the boundaries of the

CMF bones, and segmentation provides a very valuable input in this respect, in Chapter 6 we

further explored the detection of the anatomical landmarks without employing segmentation.
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CHAPTER 6: RELATIONAL REASONING NETWORK (RRN) FOR

ANATOMICAL LANDMARKING

(a) Mandible [115] (b) Maxilla [116]

Figure 6.1: Mandible and Maxilla anatomies, a) Mandibular Landmarks: Menton (Me), Condy-
lar Left (CdL), Condylar Right (CdR) , Coronoid Left (CorL), Coronoid Right (CorR),
Infradentale(Id), B point (B), Pogonion (Pg), and Gnathion (Gn), b) Maxillary Landmarks: An-
terior Nasal Spine (ANS), Posterior Nasal Spine (PNS), A-Point (A), and Prostion (Pr), Nasal
Bones Landmark: Nasion (Na).

Accurately identifying anatomical landmarks is a crucial step in the deformation analysis and sur-

gical planning of the craniomaxillofacial (CMF) region. Unlike most of the methods requiring

segmentation of the object of interest for precise landmarking, our purpose is to perform anatom-

ical landmarking using the inherent relation among the anatomy in the CMF region without ex-

plicitly segmenting the CMF bones. To achieve this, we propose a new deep network architecture,

relational reasoning network (RRN), to accurately learn the local and the global relations of the

landmarks. Specifically we are interested in learning landmarks in mandible, maxilla, and nasal

bones where maxilla and nasal bones are extremely difficult to segment while mandible segmenta-

tion poses unique challenges such as having the most deformities on the mandible. The proposed

RRN works in an end-to-end manner, utilizing learned relations of the landmarks based on dense-

block units and without the need for explicit segmentation. For a given a few landmark (spatial)
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locations as input, the proposed system accurately and efficiently localizes the remaining land-

marks on the aforementioned bones. For a comprehensive evaluation of our proposed method, we

used cone-beam computed tomography (CBCT) scans of 250 patients who have congenital defor-

mities in their skulls. Without using any segmentation guidance, the proposed system identifies

the landmark locations very accurately even when there is severe pathology or deformation in the

bones. The proposed RRN has also revealed unique relationships among the landmarks that help

us infer several reasoning about informativeness of the landmark points. Our proposed system is

invariant to order of landmarks and it allowed us to discover the optimum configurations (num-

ber and location) for landmarks to be localized within the object of interest (mandible) or nearby

objects (maxilla and nasal). To the best of our knowledge, this is the first of its kind algorithm

finding anatomical relations of the objects using deep learning to reason the locations of the target

landmarks.

(a) Menton-Condylar
Left Relation

(b) Menton-Coronoid
Left Relation

(c) Menton-Condylar
Right Relation

(d) Menton-Coronoid
Right Relation

(e) Menton Relations

Figure 6.2: For the input domain Linput = {Me,CdL, CorL, CdR, CorR}: (a)-(d) pairwise re-
lations of landmark Menton a) Menton-Condylar Left, b) Menton-Coronoid Left, c) Menton-
Condylar Right, d) Menton-Coronoid Right, e) combined relations of Menton.

6.1 Overview of the proposed method

In the CMF region, the most frequently deformed or injured bone is the lower jaw bone mandible,

the only mobile and the most functional [9]. In our previous study [115], we developed a frame-
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work to segment mandible from CBCT scans and identify the mandibular landmarks in a fully-

automated way. Herein, we approach the same problem from a significantly different perspective

and focusing on anatomical landmarking without the need for explicit segmentation, and extending

the learned landmarks into other bones (maxilla and nasal) apart from mandible. Overall, we seek

the answers for the following important questions:

• Q1: Can we automatically identify all anatomical landmarks of a bone if only a subset of the

landmarks are given as input? If so, what is the least effort for performing this procedure? In

other words, how many landmarks are necessary and which landmarks are more informative

to perform this whole procedure?

• Q2: Can we identify anatomical landmarks of nasal and maxilla bones if we only know

locations of a few landmarks in the mandible? In other words, do relations of landmarks

hold true even when they belong to different anatomical structures (manifold)?

Although modern AI algorithms have made tremendous progress solving problems in biomedical

imaging, relations between objects within the data are often not modeled as separate tasks. In this

study, we explore inherent relations among anatomical landmarks at the local and global levels in

order to explore availability of structured data samples helping anatomical landmark localization.

Inferred from the morphological integration of the CMF bones, we claim that landmarks of the

same bone should carry common properties of the bone so that one landmark should give clues

about the positions of the other landmarks with respect to a common reference. This reference is

often chosen as segmentation of the bone to enhance information flow, but in our study we leverage

this reference point from the whole segmented bone into a reference landmark point. Throughout

the text, we use the following definitions:

Definition 1: A landmark is an anatomically distinct point, helping clinicians to make reliable
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measurement about a condition, diagnosis, modeling a surgical model, or even creating a treatment

plan.

Definition 2: A relation is defined as a geometric property between landmarks. Relations between

two landmarks might include the following geometric features: size, distance, shape, and other

implicit structural information. In this study, we focus on pairwise relations between landmarks.

Definition 3: A reason is defined as an inference about relationships of the landmarks. For in-

stance, compared to closely localized landmarks (if given as input), a few of sparsely localized

landmarks can help predicting landmarks better. The reason is that sparsely localized input land-

mark configuration captures the anatomy of region of interest and infers better global relationships

of the landmarks.

Once relationships of landmarks are learned effectively, we can use this relationship to identify

the landmarks on the same or different CMF bones without the need for a precise segmentation.

Towards this goal, we propose to learn relationship of anatomical landmarks in two stages as illus-

trated in Figure ??. In the first stage, pairwise relations (local) of landmarks are learned (shown

as function g) with a simple neural network algorithm based on dense-blocks (DBs). Figure 6.2

shows example pairwise relations for different pairs of mandible landmarks. There are five sparsely

localized landmarks, and the figure shows how we assess the relationship per landmark. The ba-

sis/reference is Menton, in this example, hence, four pairwise relations of Menton are illustrated.

Ideally, a reliable relation should consider manifold of the data pertaining to useful structural in-

formation.

In the second stage of the proposed algorithm (shown as function f in Figure ??), we simply

combine pairwise relations of landmarks (g) with another neural network setting based on RUs.

Figure 6.2(e) illustrates all four relationships of the landmark Menton (reference) with respect

to other landmarks on the mandible. In this study, we confine ourselves to manifold data only
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(position of the landmarks and their geometric relations) without use of appearance information

because one of our aims is to avoid explicit segmentation from our system to be able to use simple

reasoning networks.

6.1.0.1 Summary of our contributions

• To our knowledge, the proposed method is the first in the literature to successfully apply

the spatial reasoning of the anatomical landmarks for accurate and robust landmarking using

deep learning.

• Many anatomical landmarking methods, including our previous work, [115, 117, 118] use

bone segmentation as a guidance for finding the location of the landmarks on the surface of

the bone. The major limitation imposed by such approaches is that it may not be always

possible to have an accurate segmentation. Our proposed RRN system enables accurate

prediction of anatomical landmarks without employing explicit object segmentation.

• Since efficiency is a significant barrier for medical AI applications, we explore new deep

learning architecture designs for a better efficacy in the system performance. For this pur-

pose, we propose to use variational dropout [119] and targeted dropout [?] for faster conver-

gence of the overall system (∼ 5 times faster than baselines).

• Unlike other studies, our data set includes highly variable bone deformities along with other

challenges of the CBCT scans. Hence, the proposed algorithm is considered highly-robust

and identifies anatomical landmarks accurately under varying conditions (Table 6.3).

The proposed method is described in detail in Section 6.2. Next in Section 6.3, our dataset, data

augmentation method, evaluation metrics, the experiments and the experimental results are pre-

sented. We discuss and conclude our study in the Section 6.4.
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6.2 Materials and Methods

6.2.1 Relational Reasoning Architecture

Anatomical landmarking has been an active research topic for several years in the medical imaging

field. The question that remains unsolved is how to build a reliable/universal relationship between

landmark points for a given clinical problem. While anatomical similarities at the local and global

levels are agreed to be viable solutions, thus far, features that can represent anatomical landmarks

from the medical images have not achieved the desired efficacy and interpretation.

We propose a new network framework called RRN to learn pairwise and global relations of anatom-

ical landmarks (oi) through its units called RU (relationship unit). The relation of two landmarks

are encoded as the major spatial properties of the landmarks. We define RU as multi-layer percep-

tron (MLP) (Figure 6.3(b)) (similar to [79]) or a network of Dense-Blocks (DBs) (Figure 6.3(c))

architectural unit. Our objective is to locate all anatomical landmarks by inputting a few landmarks

to RRN, which provides reasoning inferred from the learned relationships of landmarks.

Figures 6.3(a), 6.3(b) and 6.3(c) summarize the proposed RRN architecture, and its RU sub-

architectures, respectively. In the pairwise learning/reasoning stage (stage 1), 5-landmarks based

system is assumed as an example network (other configurations are possible too, see experiments

and results section). Sparsely-spaced landmarks (Figure ??) and their pairwise relationships are

learned in this stage (gθ). These pairwise relationship(s) are later combined in a separate DBs

setting in the second stage (fφ). It should be noted that this combination is employed through a

joint loss function and an RU to infer an average relation information. In other words, for each

individual landmark, the combined relationship vector is assigned a secondary learning function

through a single RU (DBs function fφ).
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(a) Relational Reasoning Network (RRN) (b) MLP Relational Unit
(RU)

(c) Dense
Relational
Unit (RU)

(d) Dense Block
(DB) [115]

Figure 6.3: Network Architecture; a) Relational Reasoning Network for 5-
input landmarks RRN(Linput): Linput={Me,CorL, CorR, CdL, CdR}, L̂ =
{Gn, Pg,B, Id, Ans,A, Pr, Pns,Na} and µ is the average operator. b) Relation Unit (RU)
composed of 2 DBs, convolution and concatanation (C) units. c) Dense Block (DB) architecture
composed of 4 layers and concatanation layers.

The RU is the core component of the RRN architecture and it is designed as a unit with 1 dense-

block. Each dense block has a growth-rate of 4 and composed of 4 layers. Each RU is designed

as an end-to-end fashion; hence, they are differentiable. For n landmarks in the input domain, the

proposed RRN architecture learns n × (n − 1) pairwise and n combined relations (global) with

a total of n2 RUs. Therefore, depending on the number of input domain landmarks, RRN can be

either shallow or dense.

Assuming Linput and L̂ indicate vectors including input and output anatomical landmarks, respec-

tively. Then, two stages of the RRN of the input domain landmarks Linput can be defined as:

Gθi =
1

(n− 1)

n∑
j=1,j 6=i

(gθ(oi, oj)),

RRN(Linput; θ, φ) =
1

n

n∑
i=1

fφi(Gθi).

(6.1)
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whereGθi is the mean pairwise relation vector of the landmark oi to every other landmark oj(j 6=i) ∈

Linput. The functions fφ and gθ are the DBs functions with the free parameters φ and θ, and fφ

indicates a global relation (in other words, combined pairwise relations) of landmarks.

6.2.2 gθ (pairwise relation)

For given input landmarks (Linput), our objective is to predict the 3D spatial locations of the tar-

get domain landmarks (∈ L̂) by using the 3D spatial locations of the input domain landmarks

(∈ Linput). According to the the relative locations of the input domain landmarks, we reason about

the locations of the target domain landmarks. The RU function gθ(oi, oj) represents the relation of

two input domain landmarks oi and oj where i 6= j (Figure 6.2). The output of gθ(oi, oj) describes

relative spatial context of two landmarks, defined for each pair of input domain landmarks (pair-

wise relation at Figure 6.3(a)). According to each input domain landmark oi, the structure of the

manifold is captured and this is represented by Gθi at Equation 6.1.

6.2.3 fφ (global relation)

The mean pairwise relation Gθi is calculated with respect to each input domain landmark oi, and

it is given as input to the second stage where global (combined) relation fφi is learned. fφi is a

RU function and the output of fφi is the predicted 3D coordinates of the target domain landmarks

(∈ L̂). Each input domain landmark oi learns and predicts the target domain landmarks by the RU

function fφi. The terminal prediction of the target domain landmarks is the average of individual

predictions of each input domain landmark, represented by RRN(Linput; θ, φ) at Equation 6.1.

There are totally n2 RUs, hence n2 RU functions, in the architecture. Note that the number of

trainable parameters used for each experimental configuration are directly proportional with n2

(Table 6.2). Since all pairwise relations are leveraged under Gθi and fφ with mean operation,
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we can conclude that RRN is invariant to the order of landmarks in the input (i.e., permutation-

invariant).

6.2.4 Loss Function

In our proposed network, the natural choice for the loss function is the mean squared error (MSE)

because it is a differentiable distance metric measuring how well landmarks are localized/matched,

and it allows output of the proposed network to be real-valued functions of the input landmarks.

For n input landmarks and m target landmarks, MSE simply penalizes large distances between

landmarks as follows:

Loss(θ, φ) =
1

n ∗m

n∑
i=1

(
m∑
k=1

||(fφ(Gθi))k − ok||
2

)
(6.2)

where ok are target domain landmarks (ok ∈ L̂). The landmark localization is inherently a regres-

sion problem; therefore, MSE suits well to our problem. However, other loss functions can still be

explored in a separate study for incremental improvements.

6.2.5 Variational Dropout

Given training input dataset X = {x1, x2, .., xN} and the corresponding output dataset Y =

{y1, y2, .., yN}, the goal is to learn the parameters ω such that y = fω(x). In the Bayesian ap-

proach, given the input and output datasets X, Y , we seek for the posterior distribution p(ω|X, Y ),
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by which we can predict output y∗ for a new input point x∗ by solving the integral [?]:

p(y∗|x∗, X, Y ) =

∫
p(y∗|X∗, ω)p(ω|X, Y )dω (6.3)

In practice, this computation involves intractable integrals [119]. To obtain the posterior distribu-

tions, a Gaussian prior distribution N(0, I) is placed over the network weights [?] which leads to

a much faster convergence [119]. In our experiments, we observed a 5 times faster convergence

when variational dropout is applied.

6.2.6 Targeted Dropout

Given a neural network parameterized by Θ, the goal is to find the optimal parameters WΘ such

that the loss Loss(WΘ) is minimized. In addition, |WΘ| ≤ k, i.e. only k weights of highest

magnitude in the network are employed. Common solution applied is to drop the lowest |WΘ| − k

weights. In the targeted dropout, using a target rate γ and a drop out rate α, first a target set T is

generated with the lowest weights with the target rate γ. Next, weights are stochasticity dropped

out from the target set T with the dropout rate α [?]. Targeted dropout enables very fast and robust

convergence of the networks in our experimental setup.

6.2.7 Features

Pairwise relations are learned through RU functions. Each RU accepts input features to be mod-

elled as a pairwise relation. It is desirable to have such features characterizing the landmark and

its interactions with other landmarks. These input features can either be learned throughout a more

complicated network design, or through feature engineering. In this study, for simplicity, we define
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Table 6.1: Input landmarks have the following feature(s) to be used only in stage I. 19D feature
vector includes only structural information.

Pairwise Feature (oA, oB)
3D pixel-space position of the oA (Ax, Ay, Az)
Spherical coordinate of the vector
from landmark Menton (o1) to oA

(rme→A, θme→A, φme→A)

3D pixel-space position of the oB (Bx, By, Bz)
Spherical coordinate of the vector
from landmark Menton to lB

(rme→B, θme→B, φme→B)

3D pixel-space position of the
landmark Menton

(Mex,Mey,Mez)

Spherical coordinate of the vector
from oA to oB

(rA→B, θA→B, φA→B)

Diagonal length of the bounding box
capturing Mandible roughly, computed as the
distance between the minimum and the
maximum spatial locations of the
input domain mandibular landmarks
(L1) in the pixel space.

d1

a set of simple yet explainable geometric features. Since RUs model relations between two land-

marks (oA and oB), we use 3D coordinates of these landmarks (both in pixel and spherical space),

their relative positions with respect to each other and a well-defined landmark point (reference),

and approximate size of the mandible. The mandible size is estimated as the distance between the

maximum and the minimum coordinates of the input domain mandibular landmarks (Table 6.1).

At final, a 19-dimensional feature vector is considered to be an input to local relationship function

g in our implementation. For the reference well-defined landmark, we use Menton (Me) as the

origin of the Mandible (See Figure 6.1(a)).
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6.3 Experiments and Results

6.3.1 Data Description

Anonymized CBCT scans of 250 patients (142 female and 108 male, mean age = 23.6 years, stan-

dard deviation = 9.34 years) were included in our analysis through an IRB-approved protocol and

data sharing agreement between UCF and the NIH. The data set includes both pediatric and adult

patients with craniofacial congenital birth defects, developmental growth anomalies, trauma to

the CMF, and surgical interventions. CB MercuRay CBCT system (Hitachi Medical Corporation,

Tokyo, Japan) was used to scan the data at 10 mA and 100 Kvp. The 12-inch field of view was

required for this study to capture the entire length of the airway. The equivalent radiation dosage

for each scan was approximately 300 mSv. To handle the computational cost, each patient’s scan

was re-sampled from 512× 512× 512 to 256× 256× 512. In-plane resolution of the scans were

noted (in mm) either as 0.754 × 0.754 × 0.377 or 0.584 × 0.584 × 0.292. We also confirmed

the following image-based variations in the data set: aliasing artifacts due to braces, metal alloy

surgical implants (screws and plates), dental fillings, and missing bones or teeth [115].

The data was annotated independently by three expert interpreters, one from the NIH team, and

two from UCF team. Among them, inter-observer agreement values were computed as circa 3

pixels. Experts used freely available 3D Slicer software for the annotations [115].

6.3.2 Data Augmentation

Our data set includes fully-annotated mandibular, maxillary and nasal bones’ landmarks. Due to

insufficiency of 250 samples for a deep-learning algorithm, we applied data-augmentation. In our

study, the common usage of random scaling or rotations for data-augmentation were not found to
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Table 6.2: Experimental Landmark Configurations: Linput and L̂, and the number of relational
units and the number of trainable parameters used in the configuration.

Configuration Linput L̂ #RUs

3-Landmarks
Regular

Me, CdL,
CdR

Gn,Pg,B, Id,
CorL, CorR,
Ans,A,Pr,
Pns, Na

9

3-Landmarks
Cross

Me, CdR,
CorL

Gn,Pg,B,
Id, CdL, CorR,
Ans,A,Pr,
Pns, Na

9

5-landmarks
Me, CdL,
CdR, CorL,

CorR

Gn,Pg,B,
Id,Ans,A,
Pr,Pns, Na

25

6-landmarks
Me, CdL,
CdR, CorL,
CorR, Na

Gn,Pg,B,
Id,Ans,A,
Pr,Pns

36

9-landmarks
Me, CdL,
CdR, CorL,
CorR, Gn,
Pg, B, Id

Ans,A,Pr,
Pns, Na

81

be useful for new landmark data generation. Because we want to learn the specific relations of

the CMF region anatomical landmarks, the scaled version of a relation of landmarks, is the same

as the original relation, and the rotation would cause the loss of the available relation completely.

Therefore, we instead used random interpolation in our data augmentation. Briefly, we interpolated

2 (or 3) randomly selected scans with randomly computed weight per-interpolation. We merged

the relation information at different scans to a new relation. We also added a random noise to each

landmark with a maximum in the range ±5 pixels, defined empirically based on the resolution of

the images as well as the observed high-deformity of the bones.
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6.3.3 Evaluation Methods and Metrics

We used root-mean squared error (RMSE) in the anatomical space (in mm) to evaluate the goodness

of the landmarking algorithm. Lower RMSE indicates successful landmarking process. For statis-

tical comparisons of different methods and their variants, we used P-value of 0.05 as a threshold

to define significance and applied t-tests where applicable.

6.3.4 Input Landmark Configurations

In our experimental setup, there were three groups of landmarks (Figure 6.1) defined based on

the bones they reside: Mandibular L1 = {o1, ..., o9}, Maxillary L2 = {o10, ..., o13}, and Nasal

L3 = {o14}, where subscripts in o denote the specific landmark in that bone:

• L1 = {Me,Gn, Pg,B, Id, CorL, CorR, CdL, CdR},

• L2 = {Ans,A, Pr, Pns, },

• L3 = {Na}.

In each experiment (Table 6.2), we designed a specific input set Linput where Linput ⊆ L1 ∪ L2,

|Linput| = n and 1 < n <= (|L1|+ |L2|). The target domain landmarks for each experiment were

L̂ = (L1 ∪ L2 ∪ L3) \ Linput and |L̂| = m such that n + m = 14. With carefully designed input

domain configurations Linput, and pairwise relationships of the landmarks in the input set, we seek

the answers to the following questions:

• What configuration of the input landmarks can capture the manifold of bones so that other

landmarks can be localized successfully?
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• What is the minimum number and configuration of the input landmarks for successful iden-

tification of other landmarks?

Overall, we designed 5 different input landmark configurations called 3-landmarks regular, 3-

landmarks cross, 5-landmarks, 6-landmarks and 9-landmarks (Table 6.2). Each configuration is

explained in the following section.

6.3.5 Experiments and Results

We ran a set of experiments to evaluate the performance of the proposed system. We summarized

the experimental configurations in Table 6.2, error rates in Table 6.3 and corresponding renderings

in Figure 6.4.

We designed two different RU architectures as Multi-Layer Perceptron (MLP) (Figure 6.3(b)) and

Dense-Block (DB) (Figure 6.3(c)). DB architecture is evaluated to be more robust and fast to con-

verge compared to the MLP architecture in our experiments. To be self-complete, we provided the

MLP experimental configuration performances just for the 5-landmark experiment (See Table 6.3).

In the first experimental setup, to have an understanding of the performance of the RRN, we used

the landmark grouping sparsely-spaced and closely-spaced as proposed in Neslisah et al. [115]. We

named our first experimental setup as “5-landmarks” where closely-spaced, maxillary and nasal

bones landmarks are predicted based on the relation of sparsely-spaced landmarks (Table 6.2). In

the 5-landmarks RRN architecture, there are totally 20 RUs. Using the DB RU architecture, we

trained the network for 20 epochs on 1 Nvidia Titan-XP GPU with 12GB memory. It takes more

than 100 epochs to converge when the MLP architecture is employed.

In the second experimental setup, we explored the impact of a configuration with less number
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(a) Patient-1 (b) Patient-2 (c) Patient-3

Figure 6.4: Landmark annotations using the 5-landmarks configuration: Ground truth in blue and
computed landmarks in pink. a) Genioplasty/chin advancement (male 43 yo), b) Malocclusion
(mandibular hyperplasia, maxillary hypoplasia) surgery (male 19 yo), c) Malocclusion (mandibular
hyperplasia, maxillary hypoplasia) surgery (female 14 yo).

of input mandibular landmarks on the learning performance. Compared to the 5 sparsely-spaced

input landmarks used in the first experimental configuration, herein we learned the relation of 3

landmarks, Me, CdL and CdR, and predicted the closely-spaced landmark locations (as in the

5-landmarks experiment) plus superior-anterior landmarks CorL and CorR and maxillary and

nasal bones’ landmark locations. The network was composed of 9 RUs. The training was rela-

tively fast compared to the 5-landmarks configuration due to low number of RUs. We named this

method as “3-Landmarks Regular”. After observing statistically similar accuracy compared to the

5-landmarks method for the closely-spaced landmarks (p − value > 0.005), and high error rates

at the superior-anterior landmarks CorL and CorR, we setup a new experiment which we named

“3-Landmarks Cross”.

We designed 3-landmarks cross configuration for the third experimental setup in which we used 1
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Table 6.3: Landmark Localization Errors (mm). The symbol ’-’ means not applicable (N/A).

Method
Mandibular Landmarks

CorR CorL CdL Gn Pg B Id

3-Landmarks Regular (Dense) 3.32± 0.30 3.03± 0.31 - 0.01± 0.03 0.09± 0.11 0.60± 0.15 0.56± 0.19

3-Landmarks Cross (Dense) 1.88± 0.24 - 1.70± 0.23 0.007± 0.03 0.10± 0.11 0.77± 0.18 0.58± 0.20

5-landmarks Var. Dropout (MLP) - - - 0.05± 0.05 0.22± 0.13 0.91± 0.16 0.95± 0.19

5-landmarks (Dense) - - - 0.0002± 0.03 0.13± 0.11 0.87± 0.16 0.78± 0.19

5-landmarks Var. Dropout (Dense) - - - 0.0008± 0.02 0.07± 0.02 0.76± 0.10 0.64± 0.18

5-landmarks Targeted Dropout (Dense) - - - 0.004± 0.03 0.063± 0.11 0.71± 0.16 0.64± 0.20

6-landmarks (Dense) - - - 1.52± 0.30 0.86± 0.29 1.07± 0.25 1.24± 0.24

6-landmarks Var. Dropout (Dense) - - - 1.04± 0.30 1.18± 0.30 0.86± 0.28 1.06± 0.24

6-landmarks Targeted Dropout(Dense) - - - 1.20± 0.29 0.92± 0.28 1.09± 0.24 1.21± 0.25

9-landmarks (Dense) - - - - - - -
Neslisah et al. [115] 0.03 0.27 1.01 0.41 1.36 0.68 0.35

Gupta et al. [117] - - 3.20 1.62 1.53 2.08 -

Method
Maxillary-Nasal Bone Landmarks

Ans A Pr Pns Na

3-Landmarks Regular (Dense) 3.04± 0.39 3.04± 0.40 2.89± 0.40 2.04± 0.29 3.15± 0.34

3-Landmarks Cross (Dense) 3.18± 0.39 3.14± 0.39 3.17± 0.38 2.61± 0.33 3.13± 0.37

5-landmarks Var. Dropout (MLP) 3.80± 0.44 3.95± 0.48 3.06± 0.01 3.85± 0.42 3.20± 0.34

5-landmarks (Dense) 3.21± 0.27 3.16± 0.41 2.92± 0.42 2.37± 0.35 2.91± 0.40

5-landmarks Var. Dropout (Dense) 3.15± 0.21 3.07± 0.38 3.09± 0.40 2.35± 0.32 3.14± 0.36

5-landmarks Targeted Dropout (Dense) 3.17± 0.38 3.09± 0.39 2.85± 0.39 2.46± 0.32 3.14± 0.40

6-landmarks (Dense) 0.79± 0.23 1.65± 0.29 1.51± 0.30 1.35± 0.34 -
6-landmarks Var. Dropout (Dense) 1.16± 0.25 0.74± 0.22 1.60± 0.29 1.54± 0.31 -

6-landmarks Targeted Dropout (Dense) 0.76± 0.22 1.61± 0.28 1.51± 0.30 1.46± 0.36 -
9-landmarks (Dense) 3.06± 0.37 3.05± 0.37 2.82± 0.35 2.42± 0.32 3.02± 0.33

Neslisah et al. [115] - - - - -
Gupta et al. [117] 1.42 1.73 - 2.08 1.17

superior-posterior and 1 superior-anterior landmarks on the right and left sides respectively. This

network was similar to 3-landmarks regular one in terms of number of RUs used.

In the fourth experimental setup, we evaluated the performance of the system in learning the

closely-spaced mandibular landmarks (Gn, Pg,B, Id) and the maxillary landmarks (ANS,A, Pr, PNS)

using the relation information of the sparsely-spaced and the nasal-bones landmarks which is

named as “6-landmarks”. There are totally 36 RUs in this configuration.

In the fifth experimental setup, we aimed to learn the maxillary landmarks (ANS,A, Pr, PNS)

and nasal bones landmark (Na) using the relation of the mandibular networks; hence, this network

configuration is called “9-landmarks”. The architecture was composed of 81 RUs. Owing to the
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high number of RUs in the architecture, the training of this network was the slowest among all the

experiments performed.

We compared our results with Gupta et al. [117]. First, our results are significantly better for all

landmarks except the Na landmark in spite of our highly challenging dataset which includes pedi-

atric and adult patients with craniofacial congenital birth defects, developmental growth anomalies,

trauma to the CMF, surgical intervention. The framework proposed at [117] uses an initial seed

point using a 3D template registration at the inferior-anterior region where fractures are the most

common. Eventually, any anatomical deformity that alters the anterior mandible may cause an

error in the seed localization which can lead to a sub-optimal outcome.

We also evaluated the performance of the proposed system when variational [119] and targeted [?]

dropouts were employed. Although statistically there was no accuracy-wise difference in the reg-

ular, variational and targeted dropout implementations, variational and targeted dropout imple-

mentations converge very fast in around epoch 20 compared to 100 of the regular dropout for the

MLP architecture. Hence, for the MLP architecture, in terms of computational resources, varia-

tional and targeted dropout implementations are far more efficient for our proposed system. This

is particularly important because when there are large number of RUs, one may focus more on the

efficiency rather than accuracy. When the DB architecture is employed, we did not observe any

performance improvement among different dropout implementations.

6.4 Discussions and Conclusion

We proposed an end-to-end RRN framework which learns the spatial dependencies between the

CMF region landmarks. Based on the spatial relations of some mandibular landmarks, the rest

of the landmarks on the mandible, the maxilla, and the nasal bones are identified. The proposed
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system is trained and tested on an augmented data set of circa 100K scans using 4-fold cross

validation.

We hypothesized that there is an inherent relation of the CMF landmarks which can be learned

using the relation reasoning architecture. In our experiments, we first evaluated this claim. We

observed that 1) despite the large amount of deformities that may exist in the CMF anatomy, there

is a functional relation between the CMF landmarks, and 2) RNN frameworks are strong enough to

reveal this latent relation information. Next, we evaluated the detection performance of five differ-

ent configurations of the input landmarks to find out the optimum configuration. We observed that

not all landmarks are equally informative in the detection performance. Some landmark configu-

rations are good in capturing the local information, while some have both good local and global

prediction performance.

The mandibular landmarks can be classified into two groups as closely-spaced and sparsely-spaced.

This grouping is useful in the reasoning architecture to grasp the informative nature of the mandibu-

lar landmarks. When we compared the 9-landmarks configuration to the 5-landmarks configura-

tion, we observed that closely-spaced landmarks being closely-tied to the landmarkMe on the mid-

sagittal plane do not have additional impact on the performance of the identification of maxillary

and nasal bones landmarks. In addition, in terms of the number of RUs and the number of trainable

parameters, hence the training duration, 5-landmarks configuration is far more efficient compared

to the 9-landmarks configuration. Comparing the performance of the 5-landmarks configuration to

the 3 landmark configurations: 3-landmarks regular and 3-landmarks cross, first: 3-landmarks may

reveal the local information closely-tied to the landmark Me for the closely-spaced landmarks,

however these methods failed completely in identification of the global information: Condylar

and/or Coronoid landmarks. This can be explained by the fact that 3 landmarks’ configurations

are not sufficient to grasp the global mandible manifold information. Interestingly, for the maxil-

lary and nasal bone landmarks, 3-landmark configurations show statistically similar performances
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as the 5-landmarks configuration. This may be due to the fact that the maxillary and nasal bone

landmarks are spatially in relation with the mid-sagittal plane, whereas spatially the Condylar and

Coronoid landmarks are completely independent of this plane. Comparing the performances of the

5-landmarks configuration to the 6-landmarks configuration: 6-landmarks configuration perform

statistically significantly better for the maxillary landmarks, in contrast, 5-landmarks configuration

perform statistically significantly better for the mandibular Gn and Pg landmarks. This can be

explained by the fact that, 5-landmarks configuration is sufficient to capture the local mandibular

information, and extra information induced by the 6-landmarks configuration causes the preci-

sion to decrease slightly. In spite of this decrease, the 6-landmarks configuration still localizes all

landmarks with an error less than 2mm. for all landmarks.

To summarize, this study focused on using the relation reasoning of the input domain CMF land-

marks to predict the target domain landmarks on the mandible, maxilla, and the nasal bones. We

showed that relational reasoning might be sufficient to predict the landmark locations without us-

ing the segmentation information as a guidance. As an extension study, we will design a separate

deep network to learn pairwise features instead of design them ourselves. In parallel, we will in-

corporate appearance features from medical images to explore whether these features are superior

to purely geometric features, or combined (hybrid) features can have additive values into the cur-

rent research. One alternative way to pursue the research that we initiated herein will be to explore

deeper and more efficient networks that can scale up the problem that we have here into a much

wider platform, useful especially large number of landmarks are being explored.
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CHAPTER 7: CONCLUSION

Clinicians aim to perform correct and fast interpretation of the diseases and provide treatment

options for the patients. One of the most frequently used non-invasive screening method by the

clinicians is medical imaging. The invaluable insight of human body provided by the medical scans

is useful to the extent it can be interpreted. Two complementary parts of such an interpretation

framework are medical visualization and quantitative radiology.

To visualize, volumetric medical data is projected to the viewing space in such a way that the

mapping is correct, and visually meaningful and understandable frames are generated at interactive

rates. Owing to the very large sizes of the current medical data scans, the clinicians usually need

to work at the high-end server rooms for interpretation purposes. However, the current trend in

the computing is towards the on-line applications which can be accessed from anywhere including

a wide range of computing platforms. Hence, web based applications are becoming increasingly

popular because browsers are supported on nearly all computing platforms. This introduces the

need for a volume visualization architecture that can scale in performance by using server-based

computing, yet deliver the volumes to low end devices. In the first part of this dissertation, we

introduced a client-server architecture, where large data, which do not fit to neither GPU nor CPU

memory is visualized at low-end mobile client devices at interactive rates.

To quantify, segmentation and anatomical landmarking are the two often used methods. In the sec-

ond part of this dissertation, we presented novel quantification algorithms in the CMF region using

the CT/CBCT scans. First, to segment Mandible from the CT scans, we proposed a conventional

machine learning algorithm employing random forest regression, and state-machine approach. In

spite of the high-accuracies obtained, traditional machine learning algorithms are limited with the

nature of the hand-crafted features which may not reveal the latent information beyond human
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understanding. Taking into account all the limitations of the studies in the literature, we proposed

a framework where deep learning algorithms are employed in the geodesic space for accurate

segmentation and anatomical landmarking. We evaluated the proposed framework on a CBCT

dataset with high amount of CMF deformities and imaging artifacts. As a future improvement, the

Tiramisu architecture used for pixel-wise segmentation may be replaced by the Capsules [114].

In addition, a natural extension of our work will be to formulate segmentation and landmarking

problem within the multi-task learning algorithm. Following this study, to further answer the ques-

tion, “what if segmentation information is not available”, we introduced a deep learning framework

where spatial relations of a few of the landmarks are employed to predict other landmarks in the

CMF region. We found that the relations of sparsely-spaced mandibular landmarks and the Nasion

landmark is sufficient for accurate detection of closely-spaced mandibular landmarks and maxil-

lary landmarks landmark in the acceptable clinical precision. As a future extension of this study,

rather than using hand-crafted features, a separate deep network may be designed to learn the pair-

wise features. In addition, appearance features from medical images can be explored whether these

features are superior topurely geometric features, or combined (hybrid) features can have additive

values into the current research.
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[51] Enrico Gobbetti, Fabio Marton, and José Antonio Iglesias Guitián. A single-pass gpu ray

casting framework for interactive out-of-core rendering of massive volumetric datasets. The

Visual Computer, 24(7):797–806, Jul 2008.

[52] K. Engel. Cera-tvr: A framework for interactive high-quality teravoxel volume visualization

on standard pcs. In 2011 IEEE Symposium on Large Data Analysis and Visualization, pages

123–124, Oct 2011.

[53] Aaron Knoll, Sebastian Thelen, Ingo Wald, Charles D. Hansen, Hans Hagen, and Michael E.

Papka. Full-resolution interactive cpu volume rendering with coherent bvh traversal. In

Proceedings of the 2011 IEEE Pacific Visualization Symposium, PACIFICVIS ’11, pages

3–10, Washington, DC, USA, 2011. IEEE Computer Society.

[54] Neslisah Torosdagli, Sumanta Pattanaik, Curtis Lisle, and Yanling Liu. Web based out-

of-core volume visualization in client-server architectures. In 2015 BioImage Informatics

Conference, Washington, DC, USA, Oct 2015.

106



[55] S. Settapat, T. Achalakul, and M. Ohkura. Web-based 3d visualization and interaction of

medical data using web3d. In Proceedings of SICE Annual Conference 2010, pages 2986–

2991, Aug 2010.
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