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ABSTRACT 

Policy makers are considering several alternatives to counter the negative externalities of 

personal vehicle dependence. Towards this end, public transit investments are critical in growing 

urban regions such as Orlando, Florida. Transit system managers and planners mostly rely on 

statistical models to identify the factors that affect ridership as well as quantifying the magnitude 

of the impact on the society. These models provide vital feedback to agencies on the benefits of 

public transit investments which in turn act as lessons to improve the investment process. We 

contribute to public transit literature by addressing several methodological challenges for transit 

ridership modeling. Frist, we examine the impact of new transit investments (such as an addition 

of commuter rail to an urban region) on existing transit infrastructure (such as the traditional bus 

service already present in the urban region). The process of evaluating the impact of new 

investments on existing public transit requires a comprehensive analysis of the before and after 

measures of public transit usage in the region. Second, we accommodate for the presence of 

common unobserved factors associated with spatial factors by developing a spatial panel model 

using stop level public transit boarding and alighting data. Third, we contribute to literature on 

transit ridership by considering daily boarding and alighting data from a recently launched 

commuter rail system (SunRail). The model system developed will allow us to predict ridership 

for existing stations in the future as well as potential ridership for future expansion sites. Fourth, 

we accommodate for potential endogeneity between bus headway and ridership by proposing a 

simultaneous model system of headway and ridership. Finally, a cost benefit analysis exercise is 

conducted for examining the impact of Sunrail on the region. 
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CHAPTER ONE: INTRODUCTION 

1.1 Background 

The economic development and the associated growth in household incomes in the United 

States during the post-Second World War resulted in an increased household and vehicle 

ownership, population and employment decentralization and urban sprawl. While population has 

increased nearly 72% between 1950 and 1990, the aggregate population in central cities declined 

by 17% (Baum-Snow, 2007). Population and employment changes resulted in a drastic reduction 

in public transit ridership. In terms of commute to central cities, only 38% of commute trips in 

2000 were destined to central cities; a 66% reduction from 1960 (Baum-Snow, 2010).  In fact, in 

fifty years since 1940, transit ridership in the US reduced by 31% - a drop of about 4 billion trips 

(Baum-Snow and Kahn, 2000). The ridership reduction occurred while a near doubling of the 

population happened in the same time frame (O'Sullivan, 1996). Not surprisingly, the rapid decline 

in public transit ridership is associated with nearly 44% growth in personal vehicle miles traveled.  

The consequences of the drastic transformation of the transportation system include 

negative externalities such as traffic congestion and crashes, air pollution associated environmental 

and health concerns, and dependence on foreign fuel (Schrank, et. al, 2012). For instance, in 2014, 

traffic congestion has resulted in a loss of about 6.9 billion hours and 3.1 billion gallons of fuel 

amounting to a cumulative cost of nearly 160 billion dollars (Schrank et al., 2015). Furthermore, 

the increased private vehicular travel contributes to increasing air pollution and greenhouse gas 

(GHG) emissions - a matter receiving substantial attention given the significant impact on health 

and safety of future generations (Woodcock et al., 2009). In an endeavor to counter the negative 

externalities of personal vehicle dependence, policy makers have often found the development of 

an efficient multi-modal public transportation system to be the most suitable solution. Many urban 
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regions, across different parts of North America, are considering investments in public 

transportation alternatives such as bus, light rail, express bus service, metro and bicycle sharing 

systems (see TP, 2016 for public transportation projects under construction or consideration). 

While non-motorized modes of transportation are beneficial in the urban core, public transit with 

its reach to serve populations residing throughout the urban region can enhance mobility for a large 

share of urban residents.  

1.2 Motivation 

In recent years, transportation professionals and policymakers have recognized the 

potential of public transit in enhancing mobility for urban residents as well as reversing (or at least 

reducing) the negative externalities of car dependence. Several major investments in public transit 

projects are under consideration in cities including New York, San Francisco, Los Angeles, 

Detroit, Charlotte and Orlando (Barber, 2017). These investments include bus and subway system 

expansions, streetcar additions, light rail and commuter rail system addition (and expansion). The 

public transit investments are particularly critical in growing urban regions such as Orlando, 

Florida. In recent years, Greater Orlando region has experienced rapid growth. In fact, according 

to the US Census Bureau, among the country’s thirty large urban regions, Orlando is the fastest 

growing one (Brinkmann, 2016). It is reported that the majority (about 74%) of the population 

growth in this region is driven by domestic and international migration. The rapid growth in 

population increases the stress on the existing transportation system. Thus, it is not surprising that 

several transportations and public transit investments are underway in the region to alleviate traffic 

congestion and improve mobility for Greater Orlando residents.  

Recent construction for I-4 highway expansion causes excessive traffic congestion near 

downtown Orlando thus increasing the travel time and safety risk factors. SunRail system provides 
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viable transit options for Central Florida residents who live along the I-4 corridor. The service is 

expected to alleviate congestion along I-4 corridor that is currently under multi-year construction 

associated with its expansion. Further, the system has the potential for improving overall livability, 

property values, and reducing overall carbon footprint. An important tool to evaluate the influence 

of these public transit investments on transit ridership is the application of statistical models. 

Transit system managers and planners mostly rely on statistical models to identify the factors that 

affect ridership as well as quantifying the magnitude of the impact on the society (see Chakour 

and Eluru, 2016 and Pulugurtha and Agurla, 2012 for example). These models provide vital 

feedback to agencies on the benefits of public transit investments which in turn act as lessons to 

improve the investment process.  

While earlier research has explored the benefits of public transit ridership, the approach to 

quantifying the benefits from public transit investments is a field in its infancy. This is particularly 

so in the context of disaggregate level public transit analysis (such as ridership at a stop or route 

level). The growing emphasis of sustainability and livability improvements from transportation 

systems require us to undertake a rigorous analysis to quantify benefits form public transit 

investments. The greater Orlando region, serves as an ideal test bed to contribute research 

approaches to evaluate the impact of transit investments on public transit system usage.  

1.3 Objectives of the Research 

The specific objectives for the dissertation are described here: 

Objective 1. Evaluating the Impact of a Newly Added Commuter Rail System on Bus Ridership:  

A Grouped Ordered Logit Model Approach. 

The dissertation examines the impact of new transit investments (such as an addition of 

commuter rail to an urban region) on existing transit infrastructure (such as the traditional bus 
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service already present in the urban region). The process of evaluating the impact of new 

investments on existing public transit requires a comprehensive analysis of the before and after 

measure of public transit usage in the region. The main emphasis of the research is to develop a 

comprehensive and statistically valid framework to study the impact of new public transportation 

infrastructure (such as commuter rail) on existing public transit infrastructure (such as bus). 

Specifically, the current research effort contributes to transit literature by evaluating the influence 

of a recently inaugurated commuter rail system on traditional bus service. We examine the before 

and after impact of “SunRail” commuter rail system in the Orlando metropolitan region on the 

“Lynx” bus system. Given the relatively long-time span required for the influence of large scale 

public transportation system changes, any analysis of the value of new investments should consider 

adequate data before the system installation and after the system installation. The current research 

effort is focused on addressing two important data techniques. First, by employing data on stop 

level ridership (weekday boarding and alighting) for three 4-month time periods before and after 

commuter rail installation in a large metropolitan area, the current research effort makes a unique 

empirical contribution identifying the commuter rail impact while controlling for all other factors 

affecting ridership. Second, the study contributes methodologically, by developing a panel joint 

grouped response ordered modeling framework. The proposed model accommodates for common 

unobserved factors affecting boarding and alighting as well as repeated measures for each stop. 

Furthermore, the grouped response structure allows for flexible specification of the dependent 

variable while also not being restricted by additional threshold parameters to be estimated (see 

Chakour and Eluru, 2016). Additionally, the influence of SunRail on ridership has a positive 

temporal trend indicating the strengthening of the impact with the time of operation, a healthy 

metric for potential future expansion.  
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Objective 2. Incorporating the Impact of Spatio-Temporal Interactions on Bus Ridership. 

The dissertation accommodates for the presence of common unobserved factors associated 

with spatial factors by developing a spatial panel model by using stop level public transit boarding 

and alighting data, Specifically, two spatial models: 1) Spatial Error Model (SEM) and 2) Spatial 

Lag Model (SAR) are estimated for boarding and alighting separately by employing several 

exogenous variables including stop level attributes, transportation and transit infrastructure 

variables, built environment and land use attributes, sociodemographic and socioeconomic 

variables in the vicinity of the stop and spatial and spatio-temporal lagged variables. The repeated 

observation data at a stop-level offers multiple dimensions of unobserved factors including stop-

level, spatial and temporal factors. In our analysis, we apply a framework proposed by Elhorst 

(Elhorst, J.P., 2014) to accommodate for the aforementioned observed and unobserved factors. 

The results from the spatial error and lag models are compared with the results from traditional 

linear regression models to identify the improvement in model fit with accommodation of spatial 

unobserved effects and panel repeated measures. In the earlier literature on bus transit ridership 

has not accommodated for observed and unobserved spatial effects on ridership. Toward 

addressing these limitations, we formulate and estimate a spatial panel model structure that 

accommodates for repeated ridership data for the same stop as well as the impact of spatial and 

temporal observed and unobserved factors.  

Objective 3. Examining Determinants of Commuter Rail ridership: A Case Study of the Orlando 

SunRail System. 

The main objective is to identify the factors that affect the SunRail ridership in Orlando 

region. The current study contributes to literature on transit ridership by considering daily boarding 

and alighting data from a recently launched commuter rail system. With the rich panel of repeated 
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observations for every station, the potential impact of observed and unobserved factors affecting 

ridership variables are considered. Specifically, an estimation framework that accounts for these 

unobserved effects at multiple levels – station, station-week and station day are proposed and 

estimated. In addition, the study examines the impact of various observed exogenous factors such 

as station level attributes, transportation infrastructure variables, transit infrastructure variables, 

land use and built environment attributes, sociodemographic and weather variables on ridership. 

Separate models are developed for boarding and alighting. The model system developed will allow 

us to predict ridership for existing stations in the future as well as potential ridership for future 

expansion sites. 

Objective 4. Controlling for endogeneity between bus headway and bus ridership: A Case Study 

of the Orlando region.  

In transit ridership analysis, headway is considered an important determinant of ridership. 

However, the choice of headway at a bus stop is not made in isolation. Rather it is in response to 

expected demand. Thus, as headway reduces between buses it is likely to result in increased 

ridership. In traditional ridership studies, this is often neglected and headway is considered as a 

pure exogenous variable. The assumption violates the requirement that the dependent variable does 

not affect the independent variable. In this dissertation, we address this limitation by developing a 

headway prediction model and using its residual as an exogenous variable in the ridership model.  

Objective 5. Benefit cost analysis of Sunrail.  

Given the limited financial resources for urban transportation planning organizations it is 

important to quantitatively analyze the impacts of transportation investments in an effort to 

maximize the resource allocation efficiency across different transport needs. Cost-benefit analysis 

(CBA) is considered to be one of the most appropriate tools in evaluating transportation policies 
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and projects (Litman, 2001). A comprehensive CBA would allow analysts to predict several direct 

and/or indirect impacts of improvements in existing system or proposed new infrastructures. In 

terms of investments for transport infrastructure; spending money for transit infrastructures are 

often a low priority compared with investments on roads, improvements to traffic flow and other 

government expenditure. However, more recently investments in transit infrastructures have 

gained traction from transport authorities as a measure of reducing negative externalities of 

increasing private auto mode usage. A comprehensive CBA of public transit mode investments 

would assist the planners and policy makers to evaluate the “real” benefit of these investments and 

provide evidence to justify allocation of more funding for improving/building public transit 

infrastructures. The current research report focuses on CBA for Sunrail in Orlando region.  

1.4 Dissertation Structure 

This dissertation is divided by several chapters. A details overview of each chapter is given 

below. 

In Chapter 2, a detailed literature review is conducted on public transit ridership research 

efforts. Traditional travel demand modeling research has focused on automobile travel. In recent 

years, an increased number of studies are undertaking detailed analysis of transit systems and 

associated ridership. These studies examine transit ridership to identify the impact of 

socioeconomic characteristics, built environment, and transit attributes on ridership across 

different contexts.  In this chapter, we focus on different dimensions of transit mode such as bus 

transit (including bus rapid transit), light rail, subway and commuter rail. Besides the literature 

review on transit ridership, we will discuss some previous study on the cost benefit analysis  

Chapter 3 describes the data source and data preparation for analysis. The ridership data 

was obtained from Lynx transit authority and SunRail authority. The exogenous variable 
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information was generated based on multiple data sources including 2010 US census data, 

American Community Survey (ACS), Florida Geographic Data Library (FDGL), and Florida 

Department of Transportation (FDOT) databases. Details on data source and data preparation 

process is described in chapter 3.  

Chapter 4 examines the impact of new public transportation infrastructure (SunRail) on 

existing public transit infrastructure (Lynx) in the Orlando metropolitan region. This research 

formulates and estimates an innovative grouped ordered response model structure for the ridership 

analysis. The proposed model accommodates for common unobserved factors affecting boarding 

and alighting as well as repeated measures for each stop. To measure the impact of commuter rail 

on stop level bus ridership (defined as boarding and alighting), the model system controls for a 

host of exogenous variables including stop level attributes, transportation infrastructure variables, 

transit infrastructure variables, land use, built environment attributes, sociodemographic and 

socioeconomic variables. The results while highlighting the impact of the exogenous variables 

provide strong evidence of the positive impact of SunRail system on the ridership. Furthermore, 

the influence of SunRail on ridership has a positive temporal trend indicating the strengthening of 

the impact with the time of operation.  

Chapter 5 presents details on the development of a spatial panel model that accommodates 

for impact of spatial and temporal observed and unobserved factors on bus ridership. Two spatial 

models: Spatial Error Model (SEM) and Spatial Lag Model (SAR) are estimated for boarding and 

alighting separately by employing several exogenous variables including stop level attributes, 

transportation and transit infrastructure variables, built environment and land use attributes, 

sociodemographic and socioeconomic variables in the vicinity of the stop and spatial and spatio-

temporal lagged variables. These models are expected to provide feedback to agencies on the 
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benefits of public transit investments while also providing lessons to improve the investment 

process. 

Chapter 6 describes the study that contributes to literature on transit ridership by 

considering daily boarding and alighting data from a recently launched commuter rail system – 

SunRail in Orlando region. The analysis is conducted based on daily boarding and alighting data 

for ten months for the year 2015. With the rich panel of repeated observations for every station, 

the potential impact of common unobserved factors affecting ridership variables are considered. 

The research develops an estimation framework that accounts for these unobserved effects at 

multiple levels – station, station-week and station day. In addition, the study examines the impact 

of various observed exogenous factors such as station level attributes, transportation infrastructure 

variables, transit infrastructure variables, land use and built environment attributes, 

sociodemographic and weather variables on ridership. Separate models are developed for boarding 

and alighting. The model system developed will allow us to predict ridership for existing stations 

in the future as well as potential ridership for future expansion sites. Finally, a policy analysis is 

performed to demonstrate the implications of the developed models.  

Chapter 7 discusses the impact of bus frequency on bus ridership. Earlier research in public 

transportation has identified headway as one of the primary determinants affecting ridership. The 

stops with higher headway between buses are likely to have lower ridership. While this is a 

perfectly acceptable conclusion, most (if not all) studies in public transit literature ignore that the 

stop level headway was determined (by choice) in response to expected ridership i.e. stops with 

lower headway were expected to have higher ridership numbers. This potential endogeneity is 

often neglected and headway is considered as an independent variable. The approach violates the 

requirement that the unobserved factors that affect the dependent variable do not affect the 
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independent variable.  In this study, we address this limitation by proposing to model headway 

itself as a choice dimension and then using the residuals from headway model as an independent 

variable in modeling ridership. 

Chapter 8 discusses the cost benefit analysis of SunRail transit system in Orlando region. 

Transit systems are an integral part of the development of a community. But comprehensive 

benefits of these systems often are not estimated or remain unmeasured. Though the capital cost 

of developing a transit system is significantly higher, total benefits accrued from a transit system 

operation in the long run is likely to surpass the higher investment cost. With the focus of 

encouraging more people to use sustainable transportation alternatives, FDOT is constructing a 

new, 17.2-mile extension to the existing 31-mile SunRail commuter rail. A comprehensive CBA 

of the existing operational SunRail system would assist planners and policy makers to evaluate the 

“real” benefit of these investments and provide evidence to justify allocation of more funding for 

improving/building transit infrastructures.  

Finally, chapter 9 discusses the summary of the study and benefits from my study to 

society. The chapter also identifies future directions of research and concludes the dissertation. 
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CHAPTER TWO: LITERATURE REVIEW 

2.1 Literature Review on Bus Ridership 

Traditional travel demand modeling research has focused on automobile travel. Only 

recently studies have begun to undertake detailed analysis of transit systems and associated 

ridership. Examining the performance and/or the impact of public transportation systems is a 

burgeoning area of research. Of particular relevance to our research is earlier work examining 

transit ridership. While there have been few studies that explore transit ridership from a nation or 

regional perspective (see for example Taylor et al., 2009), a large number of studies examine transit 

ridership focusing on a specific urban region. These studies examine transit ridership to identify 

the impact of socioeconomic characteristics, built environment, and transit attributes on ridership 

across different contexts (Chakour & Eluru, 2016).  These studies broadly examine macro-level 

ridership (Chakraborty & Mishra, 2013 and Taylor et. al., 2009), study impact of financial 

attributes such as fares, fuel price and parking cost (Chen et. al., 2011, Currie & Phung, 2007, 

Hickey, R., 2005, Lane, B.W., 2010, Lane, B.W., 2012 and Mattson, J. W, 2008), and effect of 

transit attributes and built environment on transit ridership. The research on ridership can be 

broadly classified based on the public transit mode under consideration along two streams: (1) rail 

and metro ridership and (2) bus ridership. As the focus of our current work is bus transit ridership, 

we limit our review to bus ridership studies. For bus ridership studies, at the bus-stop level, the 

most common dependent variables of interest include daily level or time-period specific boarding 

and alighting variables or a sum of boarding and alighting variables. A brief review of most 

relevant literature follows. 

The first stream of studies on rail and metro ridership examined the influence of station 

characteristics, transit service attributes, and urban sociodemographic patterns and built 
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environment. A number of studies that examined station choice dimension observed that station 

attributes including parking space availability and bicycle standing areas, amenities and train 

frequency, vehicle ownership patterns affect station choice (see Debrezion et al., 2007, 2009; Fan 

et al., 1993; Wardman & Whelan, 1999; Chakour and Eluru, 2014). In a study evaluating rail 

ridership in Atlanta, Brown and Thompson (2008) observed that employment decentralization was 

responsible for drop in ridership. Transit Oriented Development (TOD) that comprises of dense 

commercial developments is expected to affect ridership positively (Shoup, 2008; Sung and Oh, 

2011). Population and job density variables are likely to positively influence ridership (Guerra and 

Cervero, 2011). Studies exploring ridership at metro stations found that retail, service and 

government land use, accessibility by bus, presence of transfer terminals, walkability in the 

vicinity of stations are positively correlated with ridership (Chan & Miranda-Moreno, 2013; 

Gutiérrez, 2001; Gutiérrez et al., 2011; Lin & Shin, 2008).  

The second stream of studies, closely related to the effort of current study, examine the 

impact of built environment and urban form at the stop level on bus ridership. The transit ridership 

variables considered include daily ridership computed as sum of boardings and alightings at a stop 

level (Ryan and Frank, 2009), daily boardings (Johnson, 2003; Chu, 2004; Banarjee et al., 2005; 

Estupiñán and Rodríguez, 2008; Pulugurtha and Agurla, 2012), time period specific boarding’s 

and alighting’s (Chakour and Eluru, 2016). The methodologies employed for the analysis range 

from simple linear or log-linear regression models, geographically weighted negative binomial 

count models, composite likelihood based ordered regression models. Major exogenous variables 

identified to affect transit ridership include land use and urban form and sociodemographic 

characteristics in the vicinity of the stop, walkability measures, real-time bus schedules 

transportation system attributes, transit system operational attributes and unobserved factors that 
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simultaneously affect boardings and alightings (Johnson, 2003; Chu, 2004; Banarjee et al., 2005; 

Estupiñán and Rodríguez, 2008; Pulugurtha and Agurla, 2012; Dill et al, 2013; Tang and 

Thakuriah, 2012; Chakour and Eluru, 2016). Tang and Thakuriah (Tang and Thakuriah, 2012) 

highlight the value of real-time bus information is slightly increasing the bus ridership in Chicago. 

2.2.1 Literature Review on endogeneity on bus ridership 

Transit ridership has been widely explored in transportation literature. Broadly, the earlier 

literature can be categorized into two groups. The first group of studies focus on the factors that 

affect transit adoption at a disaggregate level by exploring individual perceptions and behavioral 

responses (see Acker, et al, 2010; Handy, S. 1996; Handy, et al, 2005; Balcombe, 2004; Eavns 

2004; McCollom and Pratt, 2004; Pratt and Evans, 2004, Debrezion et al., 2007, 2009; Fan et al., 

1993; Wardman & Whelan, 1999; Chakour and Eluru, 2014). The second group of studies examine 

the impact of various factors on system level (or route level) ridership measures (Seskin and 

Cervero, 1996; Johnson, 2003; Babalik-Sutcliffe, 2002; Mackett and Babalik-Sutchliffe, 2003; 

FitzRoy and Smith, 1998; Kain and Liu, 1999; Ma et al., 2018). The proposed research effort falls 

into the second group of studies. A detailed review of all these studies is beyond the scope of the 

paper. The reader is referred to a recent study Rahman et al., 2017 that provides a detailed summary 

of literature across these two groups. In this section, we focus on literature particularly relevant to 

our research effort. We begin with an overview of studies in transportation that attempt to 

accommodate for endogeneity. Subsequently, we examine studies that consider endogeneity 

within transit literature.  

Addressing endogeneity in transportation 

The travel behavior field has extensively examined the influence of endogeneity across 

various decision processes. Specifically, these studies have explored the potential impact of 
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residential location choice – labelled as residential self-selection - on various travel behavior 

choices (see Bhat and Guo, 2007 Mokhtarian and Cao, 2008; Pinajri et al., 2009; Bhat and Eluru, 

2009; Cao, et al, 2010; Walker et al., 2011; Aditjandra, T., 2012; Vij and Walker, 2014; Ding, et. 

Al, 2017; Ettema & Nieuwenhuis, 2017). There are examples from other fields including seat belt 

choice in driver injury severity models (Eluru and Bhat, 2007; Abay et al., 2013); emergency 

medical response time affecting fatality timeline (see Yasmin et al., 2015) and bicycle sharing 

system station capacity decision influencing bicycle sharing demand (Faghih-Imani and Eluru, 

2016). The most commonly employed modeling approaches in these studies include developing a 

choice model for the endogenous variable to reduce/eliminate the bias associated with the 

endogenous variable. The endogenous variables and the choice variables could be examined as 

continuous or discrete indicators. Based on the nature of the variables involved, several approaches 

such as instrument variables regression, two-stage residual inclusion approach and Roy’s (1951) 

endogenous system or the treatment effects model (see Maddala, 1983; Chapter 9; Heckman and 

Vytlacil, 2005) and joint econometric modeling approaches (see Eluru and Bhat, 2007) are 

employed.  

Research in transit field accommodating endogeneity  

Given the prevalence of modeling approaches for addressing endogeneity bias in 

transportation field, it is not surprising that multiple studies have either alluded to the presence of 

endogeneity or specifically employed approaches to control for it in the context of public transit 

analysis. Earlier research in transit ridership analysis have discussed potential endogeneity of 

transit ridership and transit price, service and automobile ownership dimensions (Crutzig, 2014). 

Holmgren, (2007) conducted a meta-analysis of elasticity estimates of bus demand in transit 

literature and recommended that service variable (headway) should be treated as endogenous while 
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other variables such as car ownership, fuel price and ticket price be considered as exogenous 

variables. The studies that considered endogeneity have controlled for different dimensions 

governed by the author’s judgement. Voith (1991) develop community transit demand models 

while accommodating for the interaction between transit fare prices and service decisions on 

ridership. The authors estimate a dynamic fixed effects panel model with Instrumental Variables 

(IV) using data from Southeastern Pennsylvania Transportation Authority (SEPTA). Voith (1997) 

extends the model developed in Voith (1991) with a larger data sample with IV approach 

developing separate equations for price and service.  

Fitzroy and Smith (1999) developed a framework to examine the impact of season tickets 

on transit ridership across four Swiss cities. To account for the potential impact of investments on 

road and transit infrastructure on overall ridership the authors employed an IV approach. Further, 

the authors control for potential contemporaneous unobserved correlation by developing 

seemingly unrelated regression approach. Deka, 2002 examined the potential endogeneity of 

automobile ownership and transit availability in the Los Angeles region. Specifically, the author 

estimated a model for transit availability and employed its predicted value as an independent 

variable in modeling automobile ownership. Novak and Savage, (2013) studied the cross-elasticity 

between fuel price and transit usage for the Chicago region for various rail and bus services. The 

authors indicate that adopting a two stage least squares approach leads to counter-intuitive results 

in their data analysis.  The reader would note that a majority of these studies develop models at a 

system level i.e. employ aggregate measures of ridership. Table 1 shows the studies done by the 

researcher where endogeneity was considered. 
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Table 1. Summary of Literatures on Bus Ridership Analysis for endogenous variables 

Paper 
Study Region/Data 

Source 
Methodological Approach 

Dependent 

Variables 

Endogenous 

Variables 

Endogeneity in Transportation 

Bhat & Guo, 

2007 

Alameda County in 

the San Francisco 

Bay Area (2000) 

Unified mixed multinomial logit-

ordered response structure 
Travel behavior 

Residential 

choice and car 

ownership 

decisions 

Mokhtarian 

and Cao, 2008 
Review Paper Travel behavior 

Residential 

self-selection 

Pinajri et al., 

2009 

Alameda County in 

the San Francisco 

Bay Area (2000) 

Joint mixed Multinomial Logit–

Multiple Discrete-Continuous 

Extreme Value (MNL–MDCEV) 

structure 

Residential 

choice and 

individual 

activity time-

use behavior 

Residential 

self-selection 

Bhat and 

Eluru, 2009 

Alameda County in 

the San Francisco 

Bay Area (2000) 

Copula Methods Travel choice 
Residential 

self-selection 

Cao, et al, 

2010 
Raleigh, NC (2006) 

Propensity score matching (PSM) 

technique 

Vehicle miles 

driven (VMD) 

per day 

Residential 

self-selection 

Walker et al., 

2011 

Amsterdam and  

Amstelveen, 

Netherlands (1992-

1997) 

Berry, Levinsohn, and Pakes 

(BLP) method and linear 

regression model 

Mode choice  
Residential 

choice 

Aditjandra, T., 

2012 

The metropolitan 

area of Tyne and 

Wear, North East of 

England, UK 

Structural Equations Modelling 

(SEM) approach 
Travel choice 

Residential 

self-selection 

Vij and 

Walker, 2014 

Nine county San 

Francisco Bay Area 

of California (2000) 

Latent Class Choice Models 

(LCCMs) 

Travel/Mode 

choice 

Several factors 

(travel time, 

Residential 

location etc) 

Ding, et. Al, 

2017 

Baltimore 

metropolitan area 

(NHTS data) 

Structural Equation Model (SEM) 

and Discrete Choice Model (DCM) 

Travel/Mode 

choice 

Residential 

choice and car 

ownership 

decisions 

Ettema & 

Nieuwenhuis, 

2017 

Hague, Netherlands 

(2014) 
Statistical control approach 

Travel/Mode 

choice 

Residential 

self-selection 

Eluru and 

Bhat, 2007 

2003 General 

Estimates System 

(GES) data for 60 

areas across the U.S 

Ordered-Response models Injury Severity Seat belts use 

Abay et al., 

2013 

Denmark (2002-

2008) 

Multivariate ordered-response 

probit model 

Injury Severity 

of drivers 
Seat belts use 

Yasmin et al., 

2015 

Fatality Analysis 

Reporting System 

(FARS) (2010) 

Mixed Generalized Ordered Logit 

(MGOL) model 

Fatality 

Timeline 

Emergency 

Medical 

Service (EMS) 

response time 

Faghih-Imani 

and Eluru, 

2016 

New York city Spatial Panel Model 

Bicycle Sharing 

System Station 

Capacity 

Decision 

Bicycle 

Sharing 

Demand 
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Paper 
Study Region/Data 

Source 
Methodological Approach 

Dependent 

Variables 

Endogenous 

Variables 

Endogeneity in transit field 

Crutzig, 2014 --- 
Alonso– Mills–Muth model of a 

monocentric city 

Public Transit 

fare 

Fuel price and 

Urban form 

Holmgren, 

2007 
--- 

Two Stage Least Squares (2SLS) 

/Regression model 
Bus Demand Headway 

Voith, 1991 

and Voith 

1997 

Southeastern 

Pennsylvania 

Transportation 

Authority (SEPTA) 

Dynamic fixed effects panel model 

with Instrumental Variables (IV) 

Transit demand 

model 

Transit Fare 

Prices and 

Service 

Decisions 

Fitzroy and 

Smith, 1999 

Basel, Bern, Geneva 

& Zurich, 

Switzerland 

Instrumental Variables (IV) 

approach 

Transit 

ridership 
Season Tickets 

Deka, 2002 Los Angeles region Logit Model/Regression Model 
Transit 

Availability 

Automobile 

Ownership 

Novak and 

Savage, 2013 
Chicago region 

Two Stage Least Squares (2SLS) 

Approach 

Transit 

ridership 

Price of 

gasoline 

 

2.2 Literature Review on Rail Ridership 

In recent years, an increased number of studies are undertaking detailed analysis of transit 

systems and associated ridership. These studies examine how various exogenous variables 

influence system level ridership. Literature has focused on different dimensions of transit mode 

such as bus transit (including bus rapid transit), light rail, subway and commuter rail. A 

comprehensive review of literature along all these dimensions is beyond the scope of the paper 

(See Chakour & Eluru, 2016 for a review). In our review, we focus our attention only on the rail 

alternative. Table 2 provides a summary of the literature on rail ridership with information on study 

region, the level of analyses (macro or micro), modeling methodology, consideration for repeated 

observations, and attributes considered in ridership analysis. Based on the review of the literature, 

it is clear that rail ridership is typically analyzed along two streams – macro level and micro level.  

The macro level studies examine ridership for multiple urban regions or at the national 

level. In this stream, ridership is modeled as a function of population and employment, gasoline 

prices and transit fares, and transit service facilities. The preferred modeling approach employed 
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is the multivariate linear regression and its variants such as time series models, generalized least 

squares and auto-regressive models. The studies have spanned various countries including U.S., 

Canada, Greece, and Great Britain. It is interesting to note that across macro level studies a 

reasonable proportion of studies accounted for the presence of common unobserved factors in 

panel data (or data with repeated observations).  

The second stream of research is conducted at the micro-level (or station level) with the 

objective of identifying the determinants of ridership. In these studies, the emphasis is on station 

level infrastructure, transportation infrastructure in the vicinity of the station, urban form and built 

environment and socio-demographics. Multiple linear regression approach has been widely used 

in micro level rail ridership estimation at the station level. Advanced approaches considered 

include fixed effects linear regression models, distance-decay weighted regression models, 

network kriging regression. Within micro studies, accommodating for presence of repeated 

observation is not as common as the application of these methods is in macro level studies. It is 

possible that data availability at multiple time points is not as readily available. In micro level 

ridership analysis, most of the studies find significant effect of gasoline prices, transit fares, 

accessibility and reliability and land use patterns surroundings the rail station. In table 2, summary 

of the literature review of rail ridership is given. 
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Table 2. Summary of Literatures on Rail Ridership Analysis 

Paper Study Region Methodological Approach Level of 

Analysis 

Panel 

data/ 

Time 

series 
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Baum-Snow and 

Kahn 

Boston, Atlanta, 

Chicago, 

Portland, 

and Washington 

DC 

Multivariate regression Macro Yes Yes Yes Yes Yes No No Yes 

Baum-Snow and 

Kahn 

16 cities of US Regression analysis Macro Yes No No Yes Yes No No Yes 

Robert Montgomery 

County, Maryland 

Multinomial mode choice 

model 

Macro No Yes No Yes Yes No Yes Yes 

Kohn Canada Multiple regression analysis Macro Yes Yes No Yes Yes No Yes Yes 

Chen et al. New Jersey to 

New York 

ARFIMA (auto-regressive 

fractionally integrated 

moving average) model 

Macro Yes Yes No No No No Yes Yes 

Kain and Liu Houston Cross-section and time series 

model 

Macro Yes Yes Yes Yes Yes No Yes No 

Kim et al. St. Louis Metro 

Link 

Multinomial logit (MNL) 

model 

Macro No Yes Yes Yes Yes No Yes Yes 

Lane  35 cities of USA Multiple regression analysis Macro No Yes Yes No No No No Yes 

Taylor  265 urbanized 

areas of USA 

Multiple regression analysis  

and 

single-stage OLS model 

Macro No Yes Yes Yes Yes Yes No No 

Chiang et al.  Metropolitan 

Tulsa 

Regression analysis (with 

autoregressive error 

correction), neural networks, 

and ARIMA models 

Macro Yes No No Yes Yes No Yes No 

Gkritza et al.  Athens, Greece Generalized least squares 

method 

Macro Yes No No Yes Yes No Yes No 
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Paper Study Region Methodological Approach Level of 

Analysis 

Panel 

data/ 

Time 

series 
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Paulley et al.  Great Britain Comparison Macro No Yes No No Yes No Yes No 

Kuby et al.  Nine cities in 

USA 

Cross-sectional/Linear 

regression analysis 

Micro, 

Station level 

No Yes Yes Yes Yes Yes No Yes 

Voith  Southeastern 

Pennsylvania 

Fixed-effects ridership level 

model 

Micro, 

Station level 

Yes Yes No Yes Yes No Yes Yes 

Lee et al.  Korea Sketch level ridership models 

Linear Regression 

Micro, Block 

level 

No  No Yes Yes No No No 

Gutiérrez et al. Madrid, Spain Distance-decay weighted 

regression model 

Micro, 

Station level 

No Yes Yes Yes Yes Yes No Yes 

Huang et al.  Wuhan, China Accessibility-weighted 

ridership model 

Micro, 

Station level 

Yes Yes No No Yes No No Yes 

Liu et al.  Maryland Direct ridership models 

(DRM) 

Micro, 

station level 

No Yes Yes Yes Yes No No Yes 

Beko  Slovenia Multivariate Regression Micro, 

Station level 

No No No Yes Yes No Yes No 

Saur et al.  California Multivariate Regression Micro, 

Station level 

No No Yes Yes Yes No No No 

Lane et al.  17 U.S. regions Multivariate Regression Micro, 

Station level 

No No Yes Yes Yes No No Yes 

Choi et al.  Seoul, Korea Multiplicative model and the 

Poisson regression model 

Micro, 

Station level 

No Yes Yes Yes Yes No No Yes 

Parks et al.  U.S regions Linear Regression Micro, 

station level 

No Yes No Yes Yes No No Yes 

Zhao et al.  Nanjing, China Linear, Multiplicative 

Regression 

Micro, 

station level 

No Yes No Yes Yes No No Yes 
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Zhang and Wang  New York Network Kriging regression Micro, 

station level 

No Yes No Yes Yes No No Yes 

Sun et al.  Beijing, China Direct ridership models 

(DRM)/Multiple Regression 

Analysis 

Micro, 

station level 

No No No No No No No Yes 
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2.3 Literature Review of Cost-Benefit Analysis Studies 

Given the limited financial resources for urban transportation planning organizations it is 

important to quantitatively analyze the impacts of transportation investments in an effort to 

maximize the resource allocation efficiency across different transport needs. Cost-benefit analysis 

(CBA) is considered to be one of the most appropriate tools in evaluating transportation policies 

and projects (Litman, 2001). A comprehensive CBA would allow analysts to predict several direct 

and/or indirect impacts of improvements in existing system or proposed new infrastructures. A 

comprehensive CBA of public transit mode investments would assist the planners and policy 

makers to evaluate the “real” benefit of these investments and provide evidence to justify allocation 

of more funding for improving/building public transit infrastructures. The current research report 

focuses on reviewing existing literature of CBA for transit infrastructure investments. The 

literature review will enable the research team to identify several factors that are generally 

considered in different components of CBA and thus aid in developing a template for CBA for the 

Central Florida region.  

Several studies have evaluated CBA in terms of transit infrastructure investments. 

Weisbrod et al. (2014) performed an economic impact analysis of public transportation 

investments. From the long-term impact analysis, the study concluded that increased transit 

investments have potential for significant economic gain as well as societal benefits. They showed 

that a programme of enhanced public transit investment over twenty years will lead to an increase 

in income that is equivalent to approximately 50,000 additional jobs per $1 billion invested. 

Litman (2004) provided a framework for evaluating CBA of a particular transit service or 

improvements. The author pointed out that the conventional transport evaluation model is usually 

developed based on financial cost to government, vehicle operating cost, travel speed, crash risk 
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and project construction environmental impacts. These studies overlook many benefits factors; 

such as downstream congestion impact, parking cost, environmental impacts, strategic land use 

impact, equity impact, public health and transportation diversity value.  

Godavarthy et al. (2014) have documented and quantified benefits of small urban and rural 

transit systems in the US by employing CBA. The authors categorized transit benefits in three 

components: transit cost savings benefits (vehicle ownership and operation expenses, chauffeuring 

cost savings, taxi trip cost savings, travel time cost savings, crash cost savings and emission cost 

savings), low-cost mobility benefits and economic impact benefits. Cost component included 

capital, operation and maintenance costs. From the extensive analysis results, the authors 

concluded that the benefits (benefit-cost ratio greater than 1) provided by transit services in rural 

and small urban areas are greater than the costs of these services. With respect to rail transit system, 

Gordon and Kolesar (2011), in an effort to perform CBA for rail transit system in modern 

American cities, also considered non-user benefit in the benefits component other than 

conventional benefit measures. The non-user benefits included was number of auto trips avoided 

by any new-to-transit passengers. Based on the analysis, the authors found that rail transit system 

into modern American cities cannot be justified on economic ground even after accounting for 

non-user benefits in the assessments.    

Bus Rapid Transit (BRT) has emerged as an attractive public transit system to enhance 

level of accessibility, mobility and system capacity. Some of the studies have conducted CBA for 

BRT system as well. Ang-Olson and Mahendra (2011) discussed a methodology of CBA for 

evaluating the potential benefits of converting a mixed traffic lane to an exclusive BRT lane at a 

corridor, local and regional level. The costs quantified in the analysis were capital cost, operation 

and maintenance costs. The benefits component included change in crash cost, travel time change 
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cost, travel cost savings, emission and noise reduction costs and indirect social benefits (land 

development impacts, savings in parking costs, accessibility impacts and system reliability 

impacts). From the analysis of a hypothetical project, the authors showed that converting an arterial 

traffic lane for BRT can result in positive net benefits if the arterial has high person throughput 

and relatively high pre-project transit mode share. Blonn et al. (2006) analyzed costs and benefits 

of implementing a BRT system in the greater Madison metropolitan area. The analysis was 

conducted by considering several costs (raising local revenue, capital cost, operations and 

maintenance costs) and benefits (reduced travel time, reduced vehicle user cost, reduced emission 

and reduced crash cost). Based on the CBA, the authors concluded that implementing a BRT 

system in the greater Madison metropolitan area would return negative net benefits and hence 

would not be justified to implement on efficiency grounds. 
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CHAPTER THREE: DATA SOURCE AND DATA PREPARATION 

3.1 Study Area 

Orlando metropolitan region is the 24th largest metropolitan area in the United States. 

Greater Orlando region has experienced rapid growth. In fact, according to the US Census Bureau, 

Orlando is the fastest growing urban region among the country’s thirty large urban regions 

(Brinkmann, 2016). The rapid growth in population increases the stress on the existing 

transportation system. Thus, it is not surprising that several transportation and public transit 

investments are underway in the region to alleviate traffic congestion and improve mobility for 

Greater Orlando residents. The Greater Orlando region with a population of around 3.2 million in 

2016 is a typical American city in the south with an automobile oriented transportation system 

with the following mode share: automobile (85.7%), Public transit (1.0%), walk (9.2%) and bike 

(1.2%). The main public transit service in the region is the Lynx system that serves an area of 

approximately 2,500 square miles within Orange, Seminole, Osceola and Polk County in central 

Florida. The bus system operates 77 daily routes with average weekday ridership of around 

105,000. SunRail, a commuter rail system has been introduced in the city on May 1, 2014. SunRail 

system is 31 miles long with 12 stations that connect Volusia county and Orange county. The 

system served an average of 3,800 passengers on weekdays in 2015. Figure 1 represents the study 

area along with Lynx bus route, bus stop, SunRail line and SunRail station locations.  
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Figure 1. Public Transit System (LYNX and SUNRAIL) of Orlando 

3.2 Data Source and Preparation for Bus Ridership 

3.2.1 Data Source 

The bus ridership data was obtained from Lynx transit authority. GIS shape files from Lynx 

were used to identify the number of bus stops, bus route length. For creating the exogenous 

variables, we considered various buffer distances (800m, 600m, 400m, and 200m) from each bus 

stop. The exogenous variable information was generated based on multiple data sources including 

2010 US census data, American Community Survey (ACS), Florida Geographic Data Library 

(FDGL), and Florida Department of Transportation (FDOT) databases. 
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3.2.2 Data Preparation 

For the purpose of our analysis, stop level average weekday boarding and alighting 

ridership data for 6-time periods of 4-month each are considered. These include the following 6-

time period: May through August 2013, September through December 2013, January through 

April 2014, May through August 2014, September through December 2014, January through April 

2015. The ridership information was processed for all the 6-time periods and analyzed to ensure 

data availability and accuracy. The resulting data provided ridership information for 3,745 stops 

across the 6-time periods. The ridership data was augmented with stop level headway, route length 

as well as route to stop correspondence for Lynx across the 6-time periods. A summary of the 

system level ridership (boarding and alighting) are provided in Table 3. The average weekday 

boarding (alighting) across the 6-time periods range from 71,006 (71,029) to 77,940 (76,725). 

Table 3. Summary Statistics of Lynx Bus Ridership (August 2013 to April 2015) 

Time-

period 

Quarter Name Number of 

Observations 

Boarding Alighting 

Mean Standard 

Deviation 

Mean Standard 

Deviation 

1 August-13 

20970 

22.30 160.51 21.95 152.86 

2 December-13 20.88 151.85 20.61 143.49 

3 April-14 20.54 157.83 20.32 151.89 

4 August-14 21.51 162.01 21.38 154.30 

5 December-14 20.32 151.18 20.39 146.65 

6 April-15 20.65 156.02 20.52 149.57 

 

We consider thirteen categories/bins for analysis ridership as per the frequency of ridership 

and these categories/bins are: Bin 1 = 0~5; Bin 2 = >5~10; Bin 3 = >10~20, Bin 4 = >20~30, Bin 

5 = >30~40, Bin 6 = >40~50, Bin 7 = >50~60, Bin 8 = >60~70, Bin 9 = >70~80, Bin 10 = >80~90, 

Bin 11 = >90~100, Bin 12 = >100~120 and Bin 13= >120 ridership. Figure 2 and table 4 shows 

the frequency distribution for both boarding and alighting categories/bins.  
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Figure 2. Frequency Distribution for boarding and alighting 

Table 4. Frequency distribution of each ridership category for boarding and alighting 

Ridership 

Category 

Frequency Percent Cumulative Percent 

Boarding Alighting Boarding Alighting Boarding Alighting 

1 16182 15544 52.5 50.5 52.5 50.5 

2 5315 5306 17.3 17.2 69.8 67.7 

3 4224 4433 13.7 14.4 83.5 82.1 

4 1594 1906 5.2 6.2 88.7 88.3 

5 888 982 2.9 3.2 91.6 91.5 

6 581 683 1.9 2.2 93.5 93.7 

7 468 383 1.5 1.2 95.0 94.9 

8 302 298 1 1.0 96.0 95.9 

9 218 231 0.7 0.8 96.7 96.6 

10 157 158 0.5 0.5 97.2 97.2 

11 113 108 0.4 0.4 97.5 97.5 

12 182 190 0.6 0.6 98.1 98.1 

13 576 578 1.9 1.9 100.0 100.0 
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We identified specific bus routes that intersect or pass through the SunRail system. Of the 

77 bus routes operated by Lynx, we found that 60 routes are within the SunRail influence zone 

(i.e. pass through SunRail). These routes account for 3,321 out of the 3,745 stops considered in 

our analysis. To allow stops in the proximity of different SunRail stations, we identify influence 

stops separately for different stations. To capture the realization that the effects of SunRail on bus 

ridership would be only after the SunRail came into operation, interaction terms representing 

influence of SunRail and quarters representing SunRail operational period (May through August 

2014, September through December 2014, January through April 2015) are generated. Further, 

these interactions terms (SunRail synced stops*SunRail operation period) are employed as 

exogenous variables in the current study context. 

The exogenous variables considered for the empirical analysis can broadly be categorized 

as stop level attributes, transportation infrastructure characteristics, built environment attributes, 

demographic and socioeconomic characteristics, temporal effects and SunRail effects. Stop level 

attributes include headway, number of bus stops in a buffer around stops. Transportation 

infrastructure characteristics include bus route, side walk and rail road lengths in a buffer around 

stops. Built environment attributes include land use mix1 in a buffer around stops and distance of 

stop from central business district (CBD). Demographic and socioeconomic characteristics include 

number of population aged 17 and less, number of population with education at some college level, 

number of population with education at bachelor level, number of households with low income 

level and number of owned households by residents. The demographic and socioeconomic 

characteristics are generated at the census tract level. In terms of Temporal effect, we introduced 

                                                 
1 Land use mix = [

− ∑ (𝑝𝑘(𝑙𝑛𝑝𝑘))𝑘

𝑙𝑛𝑁
], where 𝑘 is the category of land-use, 𝑝 is the proportion of the developed land area 

devoted to a specific land-use, 𝑁  is the number of land-use categories within 1mile buffer of the roadway segment. 
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a variable called “time elapsed” which is the time difference between the most recent quarters from 

the base quarter (May through August 2013) considered in the current study context. In our case, 

for the 6-time periods, the variable takes the following values: 0, 1, 2, 3, 4 and 5. Finally the 

SunRail effect includes variables representing the interaction of SunRail synced stops and SunRail 

operation period. Temporal lagged variables were calculated for each bus stop by computing the 

boarding (alighting) variables from previous time period. Temporal and spatio-temporal lagged 

variables (such as stop boarding (alighting) in the last time period) is also considered. Spatio-

temporal lagged variables were created based on stops within the buffer. The boarding (alighting) 

from previous time period for stops within the buffer were generated for spatio-temporal lag 

variables. 

Several buffer sizes - 800m, 600m, 400m, and 200m - around the bus stop were employed 

for variable generation. A summary of the exogenous variables generated is provided in Table 5.  
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Table 5. Descriptive Statistics of Exogenous Variables for bus ridership 

Variable 

Name 
Variable Description 

No of 

obs., n 
Minimum Maximum Mean 

Stop Level Attributes  

Headway  Headway in minutes 

20970 

1.11 60.00 37.63 

Headway Ln of headway 0.11 4.09 3.49 

No of Bus stop 

in a  
        

800 m buffer 
Scale: (Number of bus stops in 800m 

buffer)/10 
0.10 9.30 1.79 

Transportation Infrastructure around the stop 

Bus route 

Length in a 
Bus route length in kilometers 

20970 

      

600 m buffer (Bus route length in 600 m buffer)/10 0.11 6.06 0.51 

400 m buffer (Bus route length in 400 m buffer)/10 0.05 4.17 0.27 

Side walk 

length in a 
Side walk length in kilometers    

800 m buffer   0.00 13.27 3.16 

Secondary 

highway length 

in a 

Secondary highway length in 

kilometers 
      

800 m buffer 

Secondary highway length in 800 m 

buffer / Total road length in 800 m 

buffer 

0.00 1.00 0.34 

Rail road 

length in a 
Rail road length in kilometers       

800 m buffer   0.00 6.04 0.31 

Local road 

length in a 
Local road length in kilometers       

800 m buffer 
Local road length in 800 m buffer / 

Total road length in 800 m buffer 
0.00 1.00 0.65 

Presence of 

shelter in bus 

stop 

(1 = Yes/0 = No) 0.00 1.00 0.23 

Built environment around the stop  

Residential 

area in a 
Residential area in square kilometers 

20970 

      

800 m buffer 
Residential area in 800 m buffer / 

Total area in 800m buffer 
0.00 1.00 0.32 

600 m buffer 
Residential area in 600 m buffer / 

Total area in 600m buffer 
0.00 1.00 0.31 

Land use mix 

area in an 800 

m buffer 

Land use mix = [
− ∑ (𝒑𝒌(𝒍𝒏𝒑𝒌))𝒌

𝒍𝒏𝑵
], where 

𝒌 is the category of land-use, 𝒑 is the 

proportion of the developed land area 

devoted to a specific land-use, 𝑵  is 

the number of land-use categories 

within 1mile buffer of the roadway 

segment. 

0.001 0.810 0.501 
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Variable 

Name 
Variable Description 

No of 

obs., n 
Minimum Maximum Mean 

Household 

density 
HH Density = HH size / Census 

area/1000 
0.005 3.718 0.476 

Employment 

density 
Employment Density = Employment / 

Census area/1000 
0.000 37.339 1.096 

Central 

Business area 

distance (km) 

(Central Business area distance)/10 0.00 5.06 1.18 

Sociodemographic and socioeconomic variables in census tract  

Age 0 to 17 

years 

Ln of (People age 0 to 17 

years)/Census Area 

20970 

-6.584 3.682 -0.282 

Age 65 and up 
Ln of (People age 65 and up)/Census 

Area 
-6.36 3.23 -1.07 

Education level 

- 9 to 12 grade 

Ln of (Education level 9 to 12 grade / 

Census Area) 
-8.04 2.41 -1.50 

Low Income 

Category 

(<30k) 

Ln of (Low income People 

(<30k)/Census Area) 
-8.55 2.85 -0.77 

High Income 

Category 

(>80k) 

Ln of (High income People 

(>80k)/Census Area) 
-8.526 2.740 -1.827 

Vehicle 

Ownership - 

No vehicle 

Ln of (Vehicle Ownership - No 

Vehicle / Census Area) 
-8.55 1.58 -2.11 

Household 

ownership 

Ln of (Household Ownership / Census 

Area) 
-6.87 3.36 -0.53 

Spatial and Spatio-Temporal Effect 

Temporal 

lagged 

variables 1 for 

boarding 

Ln of temporal lagged variables 1 for 

boarding 

20970 

0.00 8.857 1.459 

Temporal 

lagged 

variables 1 for 

alighting 

Ln of temporal lagged variables 1 for 

alighting 
0.00 8.820 1.490 

Spatio-

Temporal 

lagged 

variables 1 for 

boarding in a 

800 m buffer 

Ln of spatio-temporal lagged variables 

1 for boarding in a 800 m buffer 
0.00 9.623 3.811 

Spatio-

Temporal 

lagged 

variables 1 for 

alighting in a 

800 m buffer 

Ln of spatio-temporal lagged variables 

1 for alighting in a 800 m buffer 
0.00 9.584 3.815 
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3.3 Data Source and Preparation for Rail Ridership 

3.3.1 Data Source 

  The main data source of SunRail daily ridership is the SunRail authority. In our study, the 

rail ridership analysis is focused on the 12 active stations shown in Figure 3.  

 

Figure 3. SunRail line and station locations. 

 



34 

 

In addition to the rail ridership, we assembled variables from multiple sources including 

2010 US census data, American Community Survey (ACS), Florida Geographic Data Library 

(FDGL), Florida Department of Transportation (FDOT) and Florida Automated Weather Network 

(FAWN) databases. For the empirical analysis, the explanatory variables can be grouped into three 

broad categories: temporal and seasonal variables, transportation infrastructure, land use variables, 

sociodemographic variables, and weather variables.  

3.3.2 Data Preparation 

We have compiled stop level daily boarding and alighting ridership data for ten months 

from January 2015 to October 2015. The daily ridership data includes weekdays only as SunRail 

did not operate during weekends during the data collection period. This ridership data is processed 

and analyzed to ensure data availability and accuracy. A summary of the system level ridership 

(boarding and alighting) is provided in Table 6. The average daily boarding (alighting) across the 

10-month periods range from 124.26 (134.09) to 451.17 (512.18). It is interesting to observe that 

the two end stations (Sand Lake and Debary Stations) have the highest difference in daily boarding 

and alighting values relative to other stations. The 10-month, 12 station data provided us 2,496 

observations. Out of 2,496 observations, 2,124 observations were randomly selected for model 

estimation and remaining 372 observations were set aside for model validation.  

 

 

 

 

 

 



35 

 

Table 6. Summary Statistics for SunRail Average Daily Ridership (January 2015 to October 

2015) 

Station Name No of 

Observations,  

n 

Boarding Alighting 

Mean Standard 

Deviation 

Mean Standard 

Deviation 

Sand Lake Station (SLR) 

2124 

451.168 82.127 512.178 111.112 

Amtrak Station (ARTRAK) 124.260 20.507 134.091 16.969 

Church Street Station (CSS) 393.135 79.184 400.962 96.775 

Lynx Central Station (LCS) 403.769 35.282 377.813 34.610 

Florida Hospital (FLHS) 201.976 26.562 224.168 29.862 

Winter Park Station (WPS) 411.707 205.107 443.433 203.524 

Maitland Station (MLS) 180.962 27.084 183.697 23.986 

Altamonte Springs station (ATSS) 244.163 40.788 251.135 35.830 

Longwood Station (LWS) 240.909 36.959 227.024 29.418 

Lake Mary Station (LMS) 337.005 55.139 312.221 51.052 

Sanford Station (SFS) 258.952 45.735 235.202 38.199 

Debary Station (DBS) 445.178 90.608 391.260 93.938 

 

  For the empirical analysis, the explanatory variables can be grouped into three broad 

categories: temporal and seasonal variables, transportation infrastructure, land use variables, 

sociodemographic variables, and weather variables.  The data at the station level was generated by 

creating a buffer around the rail station using ArcGIS. However, the influence buffer size area may 

vary across different variables (see Chakour & Eluru, 2016 ). To accommodate for such an effect 

on transit ridership, we have computed attributes of different variables by using 1500m, 1250m, 

1000m, 750m, and 500m buffer sizes. Temporal and seasonal variables considered include day of 

week and month of the year. Transportation infrastructure variables considered include local 

roadway length, number of bus stops, and presence of free parking facilities at stations. Land use 

variables considered include number of commercial centers, number of educational centers, 

number of financial centers and land use mix. Sociodemographic variables considered include 

number of households with zero vehicle ownership level. Finally, weather variables considered 
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include temperature, average wind speed and rainfall. Table 6 offers a summary of the sample 

characteristics of the exogenous factors used in the estimation data set. Table 7 represents the 

definition of variables considered for final model estimation along with the minimum, maximum 

and average values of the exogenous variables. 

Table 7. Descriptive Statistics of Exogenous Variables for rail ridership 

Variable Name Variable Description 
No of 

obs. n 
Minimum Maximum Mean 

Temporal and Seasonal Variables 

Day of week  

Monday 
Rail ridership on Monday 

(Proportion) 
2124 

0.000 1.000 0.190 

Friday 
Rail ridership on Friday 

(Proportion) 
0.000 1.000 0.206 

Month of the Year 2015  

January 
Rail ridership on January 2015 

(Proportion) 

2124 

0.000 1.000 0.094 

February 
Rail ridership on February 2015 

(Proportion) 
0.000 1.000 0.095 

March 
Rail ridership on March 2015 

(Proportion) 
0.000 1.000 0.109 

April 
Rail ridership on April 2015 

(Proportion) 
0.000 1.000 0.105 

May 
Rail ridership on May 2015 

(Proportion) 
0.000 1.000 0.095 

June 
Rail ridership on June 2015 

(Proportion) 
0.000 1.000 0.106 

July 
Rail ridership on July 2015 

(Proportion) 
0.000 1.000 0.111 

August 
Rail ridership on August 2015 

(Proportion) 
0.000 1.000 0.103 

Transportation Infrastructures  

Local roadway length 

in a 1500 m buffer 

Local roadway length in 

kilometers 

2124 

16.113 141.443 77.956 

Number of bus stops 

in a 1500 m buffer 

Number of Lynx bus stop in 

1500 m buffer from SunRail 

station 

0.000 205.000 55.667 

Free Parking Facility  
Free Parking Facility (Yes and 

No) 
0.000 1.000 0.667 

Land Use Patterns 

Number of 

Commercial centers in 

a 1500 m buffer 

  

2124 

0.000 6.000 2.750 

Number of 

Educational centers in 

a 1500 m buffer 

  0.000 11.000 4.250 
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Variable Name Variable Description 
No of 

obs. n 
Minimum Maximum Mean 

Number of Financial 

centers in a 1500 m 

buffer 

  0.000 55.000 17.833 

Land Use mix in a 

1500 m buffer 
  0.263 0.811 0.638 

Sociodemographic Variables 

Vehicle Ownership – 

No vehicle 1500 m 

buffer 

Vehicle Ownership – No 

Vehicle  

  

2124 52.000 4532.000 1326.250 

Weather Variables 

Average Temperature 

in air 

Average Temperature in air at 2 

m height in degree Celsius  

2124 

4.889 30.204 23.222 

Average Wind speed 

in air 

Average wind speed in air at 10 

m height in miles per hour  
2.892 12.040 5.566 

Rainfall Sum of rainfall at 2 m in inches 0.000 1.577 0.132 
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CHAPTER FOUR: BUS RIDERSHIP ANALYSIS 

4.1 Introduction 

The major focus of the proposed research effort is to evaluate the influence of recently 

inaugurated commuter rail system “SunRail” in Orlando on bus ridership while controlling for 

host of other exogenous variables including stop level attributes, transportation infrastructure 

variables, transit infrastructure variables, land use and built environment attributes and 

sociodemographic and socioeconomic variables. Given the relatively long-time span required for 

the influence of large scale public transportation system changes, any analysis of the value of new 

investments should consider adequate data before the system installation and after the system 

installation. The data for the study is drawn from bus ridership information for six 4-month time 

periods - 3 prior to installation of SunRail and 3 after installation of SunRail - allowing us to study 

time varying effects of SunRail system on ridership.  

4.2 Current Study in Context 

While several research efforts have explored the influence of a host of exogenous variables 

on transit ridership, it is evident from the literature review (presented in section 2.1), that no earlier 

research effort has examined the impact of new transit investment on existing transit infrastructure. 

Of course, data availability was a major impediment for the analysis. Further, the earlier research 

studies on ridership have heavily focused on linear or log-linear regression approaches (with some 

exceptions). These approaches impose an implicit structure on the impact of exogenous variables. 

Chakour and Eluru (2016), in their recent research relaxed this assumption by estimating a flexible 

non-linear specification in the form of an ordered regression model. While the approach is 

definitely less restrictive relative to linear or log-linear models, it adds an additional burden for 

model estimation with the need to estimate threshold parameters. The number of threshold 
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parameters are associated with the number of ordered alternatives considered. Chakour and Eluru 

(2016) considered only 5 categories thus minimizing the additional burden. However, in cases 

where the range of ridership varies substantially, it might necessitate a large number of threshold 

parameters thus increasing the burden required for parameter estimation.  

The current research effort is focused on addressing these two aforementioned limitations. 

First, by employing data on stop level ridership (weekday boarding and alighting) for three 4-

month time periods before and after commuter rail installation in a large metropolitan area, the 

current research effort makes a unique empirical contribution identifying the commuter rail impact 

while controlling for all other factors affecting ridership. Second, the study contributes 

methodologically, by developing a panel joint grouped response ordered modeling framework. 

The proposed model accommodates for common unobserved factors affecting boarding and 

alighting as well as repeated measures for each stop. Furthermore, the grouped response structure 

allows for flexible specification of the dependent variable while also not being restricted by 

additional threshold parameters to be estimated (see Chakour and Eluru, 2016). Through our 

grouped response model structure, we avoid the estimation of thresholds by recognizing that the 

thresholds of bus ridership are observed and the propensity can be tied to the observed thresholds 

while relaxing the standard normal or logistic assumption for the variance. Thus, irrespective of 

the number of ridership categories generated there is no additional parameter burden. In fact, the 

approach allows us to estimate exactly the same number of parameters as in the linear or log-linear 

regression approaches. To be sure, the proposed application of the simple grouped response model 

is not the first of its kind in literature. Eluru et al. (2009) have employed the grouped response 

structure in a different empirical context (for examining residential mobility). However, the study 

does not explicitly provide details of the advantages of the framework. The reader would also note 
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that the panel joint grouped response structure proposed in our paper is different from the approach 

employed in Eluru et al. (2009), and is the first application of this methodology in transportation 

literature as well as econometric literature in general. 

4.3 Methodology for Bus Ridership 

The focus of this study is to examine stop-level boarding and alighting ridership 

simultaneously. Let q (q = 1, 2,…, Q) be an index to represent bus stops, let t (t = 1, 2, 3,…, T) 

represent the different time periods and j (j = 1, 2, 3,…, J = 13) be an index to represent the number 

of boardings or alightings. We consider thirteen categories for ridership analysis and these 

categories are: Bin 1 = ≤5; Bin 2 = 5-10; Bin 3 = 10-20, Bin 4 = 20-30, Bin 5 = 30-40, Bin 6 = 40-

50, Bin 7 = 50-60, Bin 8 = 60-70, Bin 9 = 70-80, Bin 10 = 80-90, Bin 11 = 90-100, Bin 12 = 100-

120 and Bin 13= >120. Then, the equation system for modeling boarding’s and alighting’s jointly 

may be written as follows: 

𝐵𝑞𝑡
∗  = (𝛼′ + 𝛾𝑞

′)𝑥′′𝑞𝑡 + (𝜃′ + 𝜇′𝑞)ℎ𝑞𝑡 ± (𝜂′
𝑞

)𝑦𝑞𝑡 +  𝜀𝑞𝑡, 𝐵𝑞𝑡 = 𝑗  𝑖𝑓 𝜓𝑗−1 <

𝐵𝑞𝑡
∗ ≤ 𝜓𝑗   

(1)  

𝐴𝑞𝑡
∗  = (𝛽′ + 𝛿𝑞

′ )𝑥′′𝑞𝑡 + (𝜃′′ + 𝜇′′𝑞)ℎ𝑞𝑡 ± (𝜂′𝑞)𝑦𝑞𝑡 + 𝜉𝑞𝑡, 𝐴𝑞𝑡 = 𝑗  𝑖𝑓 𝜓𝑗−1 < 𝐴𝑞𝑡
∗

≤ 𝜓𝑗 

(2)  

In equations 1 and 2, 𝐵𝑞𝑡
∗  (𝐴𝑞𝑡

∗ ) is the latent propensity for stop level boardings (alightings) 

of stop q for the tth time period. This latent propensity 𝐵𝑞𝑡
∗  (𝐴𝑞𝑡

∗ ) is mapped to the actual grouped 

ridership category j by the 𝜓 thresholds, in the usual ordered-response modeling framework. In 

our case, we consider J = 13 and thus the 𝜓 values are as follows: -∞, 5, 10, 20, 30, 40, 50, 60, 70, 

80, 90, 100, 120, and +∞.𝑥′′
𝑞𝑡 is a matrix of attributes that influences stop level boarding and 

alighting. ; 𝛼 (𝛽)is the corresponding vector of mean coefficients and 𝛾𝑞(𝛿𝑞) is a vector of 
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coefficients representing the impact of unobserved factors moderating the influence of 

corresponding element of 𝑥′
𝑞𝑡 (𝑥′′

𝑞𝑡) for boardings (alightings), ℎ𝑞𝑡 represents the headway 

variables generated from 𝐻𝑞𝑡 for consideration in boarding and alighting. 𝜃′ (𝜃′′) represents the 

corresponding vector of mean coefficients and 𝜇′𝑞 (𝜇′′𝑞) is a vector of coefficients representing 

the impact of unobserved factors moderating the influence of corresponding element ℎ𝑞𝑡 for 

boardings (alightings).  𝜀𝑞𝑡 (𝜉𝑞𝑡) is an idiosyncratic random error term assumed independently 

logistic distributed across choice stops and choice occasions for boardings (alightings) with 

variance 𝜆𝐵
2  (𝜆𝐴

2). The variance vectors for boarding’s and alighting’s are parameterized as a 

function of independent variables as follows: 𝜆𝐵 = exp (𝜃′𝑧𝑞𝑡) and: 𝜆𝐴 = exp (𝜗′𝑧𝑞𝑡). The 

parameterization allows for the variance to be different across the bus stops accommodating for 

heteroscedasticity.  

𝜂𝑞 present in all three equations represents the vector of coefficients that accommodates 

for the impact of stop level common unobserved factors that jointly influence boardings, alightings 

and headway. The ′ ± ′ sign indicates the potential impact could be either positive or negative. A 

positive sign implies that unobserved factors that increase the headway for a given reason will also 

increase the propensity for boarding/alighting, while a negative sign suggests that unobserved 

individual factors that increase the propensity for headway will decrease the propensity for 

boarding/alighting. In our empirical context, we expect the relationship to be positive.  

To complete the model structure of the Equations (1) and (2), it is necessary to define the 

structure for the unobserved vectors 𝛾𝑞 , 𝛿𝑞, 𝜎𝑞, 𝜇𝑞 (combined vector of 𝜇′𝑞 and 𝜇′′𝑞 and 𝜂𝑞. In this 

paper, we assume that the two vectors are independent realizations from normal distributions as 

follows: 𝛾𝑞𝑛 ~𝑁(0, 𝜅𝑛
2) 𝛿𝑞𝑛~𝑁(0, 𝜈𝑛

2), 𝜇𝑞𝑛~𝑁(0, 𝜊𝑛
2) and 𝜂𝑞𝑛 ~𝑁(0, 𝜚𝑛

2). 
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With these assumptions, the probability expressions for the ridership category may be 

derived. Conditional on 𝛾𝑞𝑚, 𝛿𝑞𝑚 and 𝜂𝑞𝑚, the probability for stop q to have boarding and alighting 

in category j in the tth time period is given by: 

𝑃(𝐵𝑗𝑡)|𝛾, 𝜂 =  Λ [
𝜓𝑗−((𝛼′+𝛾𝑞

′ )𝑥′′
𝑞𝑡+(𝜌𝑗

′)𝑧𝑞𝑗𝑡+(𝜃′+𝜇′
𝑞)ℎ𝑞𝑡±(𝜂′

𝑞)𝑦𝑞𝑡)

𝜆𝐵
] −

  Λ [
𝜓𝑗−1−((𝛼′+𝛾𝑞

′ )𝑥′′𝑞𝑡+(𝜌𝑗
′)𝑧𝑞𝑗𝑡+(𝜃′+𝜇′𝑞)ℎ𝑞𝑡±(𝜂′

𝑞)𝑦𝑞𝑡)

𝜆𝐵
]  

(3)  

𝑃(𝐴𝑗𝑡)|𝛿, 𝜂

=  Λ [
𝜓𝑗 − ((𝛽′ + 𝛿𝑞

′ )𝑥′′𝑞𝑡 + (𝜏𝑗
′)𝑧𝑞𝑗𝑡 + (𝜃′′ + 𝜇′′𝑞)ℎ𝑞𝑡 ± (𝜂′𝑞)𝑦𝑞𝑡)

𝜆𝐴
]

−  Λ [
𝜓𝑗−1 − ((𝛽′ + 𝛿𝑞

′ )𝑥′′𝑞𝑡 + (𝜏𝑗
′)𝑧𝑞𝑗𝑡 + (𝜃′′ + 𝜇′′𝑞)ℎ𝑞𝑡 ± (𝜂′𝑞)𝑦𝑞𝑡)

𝜆𝐴
] 

(4)  

where Λ (.) is the cumulative standard logistic distribution. 𝑧𝑞𝑗𝑡 is a vector of attributes 

specific to stop 𝑞 and ridership category alternative 𝑗 , while 𝜌𝑗 and 𝜏𝑗 is the vector of 

corresponding Ridership category-specific coefficients for boarding and alighting components, 

respectively. 

The complete set of parameters to be estimated in the joint model system of Equations (3) 

and (4) are 𝛼, 𝛽, 𝜌, 𝜏, 𝜃 and 𝜗 vectors and the following standard error terms: 𝜎𝑚 , 𝜈𝑚  and 𝜚𝑚. Let 

Ω  represent a vector that includes all the standard error parameters to be estimated. Given these 

assumptions the joint likelihood for stop level boarding and alighting is provided as follows  

𝐿𝑞 |Ω =  ∏ ∏ [(𝑃(𝐵𝑗𝑡|𝛾, 𝜂))]
𝑑𝑏𝑗𝑡𝐽

𝑗=1
[(𝑃(𝐴𝑗𝑡|𝛿, 𝜂))]

𝑑𝑎𝑗𝑡𝑇

𝑡=1
 

(5)  
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where 𝑑𝑏𝑗𝑡 and 𝑑𝑎𝑗𝑡 are dummy variables taking a value of 1 if stop q has ridership within 

the jth   category for the tth time period and 0 otherwise. Finally, the unconditional likelihood 

function may be computed for stop q as: 

𝐿𝑞 =  ∫ (𝐿𝑞|Ω)𝑓(Ω)𝑑Ω
Ω

 

 

(6)  

The log-likelihood function is given by 

Ln(L) =  ∑ ln 𝐿𝑞

𝑄

𝑞=1
 

 

(7)  

The likelihood function in Equation (7) involves the evaluation of a multi-dimensional 

integral of size equal to the number of rows in Ω. We apply Quasi-Monte Carlo simulation 

techniques based on the scrambled Halton sequence to approximate this integral in the likelihood 

function and maximize the logarithm of the resulting simulated likelihood function (See Bhat, 

2001; Yasmin and Eluru, 2013 for more details). The likelihood functions are programmed in 

Gauss (Aptech 2016).  

4.4 Model Specification and Overall Measures of Fit 

The empirical analysis involves estimation of different models: 1) independent grouped 

ordered logit (IGOL) models for boarding and alighting, 2) joint panel mixed grouped ordered 

logit (JPMGOL) model for boarding and alighting without correlation parameterization, and 3) 

joint panel mixed grouped ordered logit (JPMGOL) model for boarding and alighting with 

correlation parameterization. The independent models were estimated to establish a benchmark for 

comparison. Prior to discussing the estimation results, we compare the performance of these 
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models in this section. We employ the Bayesian Information Criterion (BIC) to determine the best 

model between independent and joint models. The BIC for a given empirical model is equal to: 

𝐵𝐼𝐶 =  − 2𝐿𝐿 +  𝐾 𝑙𝑛(𝑄) (8)  

where 𝐿𝐿 is the log likelihood value at convergence, 𝐾 is the number of parameters, and 𝑄 

is the number of observations. The model with the lower BIC is the preferred model. The log-

likelihood values at convergence for the models estimated are as follows: (1) IGOL (with 30 

parameters) is -65,230.750, (2) JPMGOL (with 37 parameters) without parameterization is -

44,234.747 and (3) JPMGOL (with 38 parameters) with parameterization is -44,232.650. The BIC 

values for the final specifications of IGOL, JPMGOL without parameterization and JPMGOL with 

parameterization are 130,760.025, 88,837.675 and 88,843.432, respectively. The comparison 

exercise clearly highlights the superiority of the joint model with the correlation parameterization 

in terms of data fit compared to independent model.  

4.5 Variable Effects 

The final specification of the model development was based on removing the statistically 

insignificant variables in a systematic process based on statistical significance (95% significance 

level). The specification process was also guided by prior research and parsimony considerations. 

In estimating the models, several functional forms and variable specifications were explored. The 

functional form that provided the best result was used for the final model specifications. For 

variables in various buffer sizes, each variable for a buffer size was systematically introduced 

(starting from 800m to 200m buffer size) and the buffer variable that offered the best fit was 

considered in the final specification. In presenting the effects of exogenous variables, we will 

restrict ourselves to the discussion of the JPMGOL model with parameterization. For simplicity, 
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we will refer JPMGOL with parameterization as JPMGOL in the following sections. The model 

estimates for boarding, alighting and joint effects are presented in Table 8. The variable results 

across different exogenous variable categories are presented below. 

Table 8. Group Ordered Logit Model Results for bus ridership 

Variable Name 
Boarding Alighting 

Estimates t-stat Estimates t-stat 

Constant -8.062 -4.634 -6.779 -4.828 

Stop Level Attributes     

Headway  -1.015 -48.520 -0.710 -40.330 

No of Bus stop in a      

800 m buffer -9.051 -21.032 -7.810 -19.086 

Transportation Infrastructure around the 

stop 
    

Bus route Length in a     

800 m buffer - - 9.91 26.995 

600 m buffer 16.479 26.689 - - 

Side walk length in a     

800 m buffer 4.645 23.496 3.518 19.328 

Rail road length in a     

600 m buffer - - -7.044 -11.654 

400 m buffer -17.429 -14.379 - - 

Built environment around the stop     

Land Use mix area in a     

800 m buffer - - 22.357 11.985 

400 m buffer 14.110 7.969 - - 

Central Business area distance (km) -13.849 -27.009 -9.696 -21.332 

Sociodemographic and socioeconomic 

variables in census tract 
    

Age up to 17 10.816 17.363 8.256 14.462 

Education at some college level -4.771 -12.647 - - 

Education bachelor -7.822 -18.026 -6.722 -17.780 

Low income (<30K) 7.720 12.399 4.717 8.141 

HH Ownership -5.733 -10.349 -6.160 -12.325 

SunRail Effect     

Temporal ID (0,1,2,3,4,5) - - -0.466 -6.005 
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Variable Name 
Boarding Alighting 

Estimates t-stat Estimates t-stat 

Bus stop sync with Church streets station  

and before after of SunRail 
-4.098 -4.543 0.963 2.301 

Bus stop sync with AMTRAK station 

and before after of SunRail 
3.605 3.391 - - 

Alternative Specific effect 

Constant – Alternative 1 (0-5 ridership) 50.755 106.590 28.919 74.165 

Constant – Alternative 2 (5-10 ridership) 24.148 67.405 13.248 42.599 

Scale parameter 

Constant 3.211 565.330 1.672 218.060 

Correlation Parameter 

Variable Name Estimates t-stat 

Constant 55.137 133.697 

Temporal ID (0,1,2,3,4,5) 1.945 28.823 

Headway 0.400 40.647 

4.5.1 Stop Level Attributes 

As is expected, headway at the stop level has a significant influence on ridership. We 

observe that with increasing headway, boarding and alighting are likely to reduce. The result 

highlights how transit frequency directly affects ridership. The results for number of Lynx bus 

stops in the 800m buffer indicates that the presence of more number of bus stops in an 800m buffer 

contributes to reduced ridership. The result is in contradiction to earlier work (see Chakour and 

Eluru, 2016). The result is perhaps indicating competition across the stops for the same ridership 

population. 

4.5.2 Transportation Infrastructure Characteristics 

Transportation infrastructure offered quite complex effects on total ridership. Bus route 

length in the buffer has a positive impact on ridership for both boarding and alighting. 

Interestingly, the influence of buffer size is slightly different for boarding and alighting. The bus 

route length in the 600m buffer offered the best fit for boarding whereas the corresponding buffer 
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for alighting was 800m. The result clearly demonstrates that increasing route length (an indication 

of higher transit accessibility) is correlated with higher ridership. A similar positive impact is 

observed for side walk length variables. On the other hand, increasing rail length in the different 

buffer size around a stop is related to lower boarding and alighting bus ridership. The rail length 

in the 600m buffer best fitted the results for alighting and corresponding buffer size for boarding 

is 400m. The presence of higher rail road length is a surrogate for the land use in the vicinity.  

4.5.3 Built Environment Attributes 

Built environment variable estimates indicate significant influence on bus ridership at the 

stop level. Land use mix variables in different buffer size near bus stop significantly increased the 

boarding and alighting ridership in Orlando. The impact of land use mix is observed for the 400 m 

buffer for boarding and the 800 m buffer for alighting. The distance from the central business 

district (CBD) variable highlights how in Orlando region, ridership reduces as the distance from 

CBD increases. 

4.5.4 Demographic and Socioeconomic Characteristics 

The demographic and socioeconomic variables based on census tract of the bus stop 

significantly affects the bus ridership in Orlando. The presence of larger share of young population 

(age 17 and below) indicates increased level of boarding and alighting. The presence of higher 

proportion of education level at bachelor level reduces ridership. After their bachelor degree, most 

of the people are capable to buy their own automobiles and thus reduces ridership. The increased 

presence of low income population is likely to be positively associated with bus ridership, as is 

expected. On the other hand, increased share of household ownership has a negative influence on 

public transit ridership, presumably is reflecting higher economic wealth and more private auto 

inclination of this group of population.  
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4.5.5 Temporal effects and SunRail Effect 

The major objective of the paper was to study the influence of SunRail system while 

controlling for all other attributes. The variable for SunRail impact is present only for the last three 

time-periods. As described earlier, we consider two variables related to SunRail: (1) Bus stop 

synchronized with SunRail stop and (2) time elapsed since SunRail inception in time periods. The 

two variables have a significant influence on the ridership components. Specifically, Bus stop 

synchronized with SunRail stop indicates a significant influence of bus ridership. The Church 

Streets SunRail station is synchronized with lynx bus stop and the interaction term between these 

variables along with SunRail before after variables positively affected the alighting ridership but 

opposite for boarding ridership. This is therefore, people are using SunRail to go downtown 

Orlando (as church streets station is at downtown) mostly but they are not using SunRail to return 

home. The AMTRAK SunRail station is synchronized with bus stop and the interaction term of 

this variables and before after of SunRail variables also significantly increased the boarding 

ridership but does not have any impact on alighting ridership. With time elapsed, we observe that 

the negative influence of SunRail increases over time i.e. alighting ridership is likely to less with 

longer time elapsed but do not have any impact on boarding ridership. While, we recognize that 

the coefficient is estimated on only 3 time periods, it is still an encouraging finding. The result will 

provide further impetus to the SunRail expansion projects.  

4.5.6 Alternative Specific Effects 

In the grouped ordered specification of the joint model, we also estimate alternative 

specific constants for categories considered across different ridership components. It is worthwhile 

to mention here that it is possible to estimate group-specific effects for each group considered 

across different components. However, in our joint model specifications, we estimate group-



49 

 

specific effects if it improves data fit. The results of these group specific effects are presented in 

second row panel of Table 7. With respect to boarding and alighting, group-specific components 

are estimated for one (ridership ≤5) and two (ridership 6-10) categories, respectively. Adding more 

group-specific components did not improve the data fit further in the current study context and 

hence are not included in our final joint model specifications. These parameters are similar to 

constants in discrete choice models and do not really have a substantive interpretation.  

4.5.7 Scale Parameter 

As indicated earlier, in the JPMGOL model specification, we introduce scale parameters 

both in the boarding and alighting components to reflect the variance of the unobserved portion 

for each group. From Table 3, in the second to last row panel, we can see that the scale parameters 

are significant for both the dimensions. The result confirms the presence of heteroscedasticity 

across stops highlighting the appropriateness of the proposed model structure.  

4.5.8 Correlation Effects 

The estimation results of the correlation effects are presented in last row panel of Table 7. 

We can see that the dependence effects are significant. Further, from the estimated results we can 

see that the dependencies are characterized by additional exogenous variables. This provides 

support to our hypothesis that the dependency structure is not the same across the observations. 

The various exogenous variables that contribute to the dependency include temporal effect and 

headway. The parameters represent common correlation between boarding and alighting. As 

shown in Equation 2, the correlation between the two components could be either positive or 

negative. In our analysis, we found the positive sign to offer better fit for common correlation. 

Overall, the results clearly support our hypothesis that common unobserved factors influence the 

two components. 
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4.6 Model Validation 

We also performed a validation exercise to evaluate the performance of the estimated 

models. To examine the fit of the model we used aggregate measures on the validation sample 

with 250 stops for 6 time periods (1,500 records). The most common approach of performing 

validation exercise for aggregate level model is to evaluate the in-sample predictive measures. To 

evaluate the in-sample goodness-of-fit measures, we employ different fit measures that are widely 

used in statistical analysis. For this models, we compute root mean square error (RMSE) and mean 

absolute deviation (MAD). These fit measures quantify the error associated with model predictions 

and the model with lower fit measures provides better predictions of the observed data. These 

measures are computed as: 

𝑅𝑀𝑆𝐸 =  √[
∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑛

𝑖=1

𝑛
] 

(9) 

𝑀𝐴𝐷 =  
∑ |𝑦̂𝑖 − 𝑦𝑖|

𝑛
𝑖=1

𝑛
 (10) 

where, 𝑦̂𝑖 and 𝑦𝑖 are the predicted and observed values for event 𝑖 (𝑖 be the index for event 

(𝑖 = 1,2,3, … , 𝑁)) and 𝑛 is the number of events. Table 9 presents the values for these measures 

for this model. Overall, the validation exercise indicates satisfactory performance of the proposed 

model.  
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Table 9. Predictive performance evaluation 

Bin 

Boarding Alighting 

Observed 

(𝒚 ) 

Predicted 

(𝒚̂ ) 
(𝒚̂𝒊 − 𝒚𝒊)  RMSE |𝒚̂𝒊 − 𝒚𝒊| MAD 

Observed 

(𝒚 ) 

Predicted 

(𝒚̂ ) 
(𝒚̂𝒊 − 𝒚𝒊)  RMSE  |𝒚̂𝒊 − 𝒚𝒊| MAD 

1 
848.000 804.81 -43.19 

22.07 

43.19 

18.99 

851.000 811.45 -39.55 

35.74 

39.55 

25.86 

2 
254.000 216.82 -37.18 37.18 255.000 159.45 -95.55 95.55 

3 
204.000 194.12 -9.88 9.88 187.000 165.94 -21.06 21.06 

4 
76.000 46.56 -29.44 29.44 74.000 62.68 -11.32 11.32 

5 
45.000 41.24 -3.76 3.76 31.000 61.00 30.00 30.00 

6 
23.000 35.76 12.76 12.76 16.000 60.76 44.76 44.76 

7 
12.000 30.37 18.37 18.37 18.000 56.41 38.41 38.41 

8 
4.000 25.31 21.31 21.31 15.000 38.36 23.36 23.36 

9 
6.000 20.79 14.79 14.79 4.000 18.04 14.04 14.04 

10 
5.000 16.92 11.92 11.92 10.000 9.36 -0.64 0.64 

11 
8.000 13.74 5.74 5.74 4.000 6.75 2.75 2.75 

12 
4.000 20.32 16.32 16.32 15.000 15.39 0.39 0.39 

13 
11.000 33.23 22.23 22.23 20.000 34.40 14.40 14.40 

  
   Sum -0.000007   246.90     Sum  -0.000002   336.23   
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4.7 Policy Analysis 

In order to highlight the effect of various attributes over time on boarding and alighting 

ridership, an elasticity analysis is also conducted (see Eluru and Bhat (2007) for a discussion on 

the methodology for computing elasticities). We investigate the change in ridership, due to the 

change in selected exogenous variables. Specifically, we compute the change in ridership (both 

boarding and alighting) for change in headway, sidewalk length, route length, and low income 

population percentage, CBD distance from bus stop, Young population percentage and Temporal 

ID for the thirteen ridership categories/bins considered. The total boardings and alightings are 

calculated for all the above categories/bins for the percentage changes of those exogenous 

variables considered. The results for the elasticity analysis are presented in Table 10.  

 Several observations can be made from the results presented in Table 10. First, headways, 

sidewalk length, CBD distance from bus stop and route length are the most important variables in 

terms of high ridership categories. These results indicate that ridership is more sensitive to transit 

attributes which endorse the need to invest in improving transit infrastructure and service in order 

to encourage transit usage. Second, the effect of higher percentage of low income population in 

HH further indicates that reduced accessibility to private automobile increases more transit usage.  

Thirdly, the increases of young population (aged between 0 to 17 years old), reduces the ridership 

over time. Finally, and most importantly, with time the SunRail temporal effect results in increased 

ridership – an encouraging result for SunRail expansion project under consideration. From the 

above policy analysis, it is clear that in the Orlando region addition of commuter rail has 

contributed to increased ridership in stops influenced by SunRail. Further, to increase the ridership, 

services related to public transit (improvement of headway and route length increasing) should be 

considered. 
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Table 10. Elasticity Analysis 

Categories Bin = 1 
Bin = 

2 
Bin = 3 

Bin = 

4 

Bin = 

5 

Bin = 

6 

Bin = 

7 

Bin = 

8 

Bin = 

9 

Bin = 

10 

Bin = 

11 

Bin = 

12 

Bin = 

13 

Boarding 

Headway                        

10% Decrease -4.21% 1.42% 3.10% 4.06% 4.44% 4.80% 5.14% 5.46% 5.75% 6.03% 6.29% 6.62% 7.30% 

25% Decrease 
-9.59% 3.19% 8.19% 

11.40

% 

12.74

% 

14.05

% 

15.33

% 

16.57

% 

17.76

% 

18.92

% 

20.02

% 21.49% 24.82% 

Sidewalk at 800 m buffer                        

10% Increase -1.52% 0.07% 0.98% 1.62% 1.90% 2.18% 2.46% 2.74% 3.03% 3.33% 3.62% 4.01% 5.15% 

25% Increase 
-3.77% 3.98% 4.72% 5.46% 6.21% 6.99% 7.80% 8.64% 9.49% 

10.68

% 

14.30

% -3.77% 3.98% 

Route Length at 600m 

buffer 
                       

10% increase -0.84% 0.00% 0.51% 0.89% 1.06% 1.23% 1.40% 1.59% 1.79% 2.00% 2.21% 2.49% 3.66% 

25% increase -2.08% -0.03% 1.24% 2.21% 2.65% 3.08% 3.53% 4.01% 4.52% 5.07% 5.64% 6.46% 9.89% 

Low Income population              

10% increase -0.61% 0.21% 0.49% 0.69% 0.78% 0.88% 0.98% 1.07% 1.15% 1.23% 1.28% 1.33% 1.35% 

25% increase -1.52% 0.47% 1.20% 1.73% 1.98% 2.25% 2.51% 2.76% 3.00% 3.20% 3.37% 3.52% 3.60% 

CBD from bus stop              

10% Decrease -1.69% 0.60% 1.37% 1.82% 2.01% 2.18% 2.36% 2.54% 2.71% 2.88% 3.04% 3.21% 3.56% 

25% Decrease 
-4.09% 1.41% 3.48% 4.78% 5.31% 5.83% 6.34% 6.86% 7.38% 7.90% 8.38% 8.97% 10.11% 

Young population (Age 0 

to 17 years old) 
                       

10% increase 
0.32% -0.11% -0.26% 

-

0.36% 

-

0.41% 

-

0.48% 

-

0.54% 

-

0.62% 

-

0.69% -0.75% -0.78% -0.78% -0.63% 

25% increase 
0.81% -0.38% -0.68% 

-

0.88% 

-

0.98% 

-

1.10% 

-

1.22% 

-

1.36% 

-

1.49% -1.59% -1.64% -1.57% -1.12% 

Alighting 
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Categories Bin = 1 
Bin = 

2 
Bin = 3 

Bin = 

4 

Bin = 

5 

Bin = 

6 

Bin = 

7 

Bin = 

8 

Bin = 

9 

Bin = 

10 

Bin = 

11 

Bin = 

12 

Bin = 

13 

Headway              

10% Decrease -3.59% 0.88% 2.64% 3.04% 3.35% 3.98% 3.84% 5.03% 6.20% 6.00% 5.53% 6.63% 7.26% 

25% Decrease 
-8.25% -8.25% -8.25% 

-

8.25% 

-

8.25% 

-

8.25% 

-

8.25% 

-

8.25% 

-

8.25% -8.25% -8.25% -8.25% -8.25% 

Sidewalk at 800 m buffer              

10% Increase -1.47% 0.08% 0.80% 0.98% 1.85% 1.90% 2.08% 2.37% 3.46% 3.88% 3.79% 4.18% 5.26% 

25% Increase 
-3.64% -0.05% 2.09% 2.11% 4.69% 4.83% 5.28% 5.72% 8.82% 

10.30

% 

10.77

% 10.81% 15.06% 

Route Length at 800m 

buffer 
             

10% increase -1.11% -0.04% 0.50% 0.81% 1.28% 1.48% 1.75% 1.68% 2.81% 3.93% 3.36% 3.20% 4.69% 

25% increase 
-2.70% -0.29% 1.25% 2.06% 3.56% 3.18% 4.21% 4.94% 7.07% 8.87% 

10.10

% 9.54% 13.12% 

Low Income population              

10% increase -0.47% 0.21% 0.31% 0.40% 0.34% 0.43% 0.88% 0.81% 1.26% 1.42% 1.05% 0.90% 0.93% 

25% increase -1.17% 0.45% 0.77% 0.98% 1.02% 0.91% 2.15% 2.09% 3.20% 3.85% 2.54% 2.26% 2.48% 

CBD from bus stop              

10% Decrease -1.46% 0.35% 1.17% 1.35% 1.54% 2.01% 1.86% 2.23% 2.46% 2.56% 2.88% 3.83% 3.00% 

25% Decrease -3.53% 0.76% 2.89% 3.67% 3.87% 5.15% 5.20% 6.01% 6.91% 6.42% 7.72% 10.93% 8.56% 

Young population (Age 0 

to 17 years old)              

10% increase 
0.30% -0.11% -0.20% 

-

0.35% 0.03% 

-

0.25% 

-

0.91% 

-

0.38% 

-

0.92% -1.20% -1.17% -0.69% -0.24% 

25% increase 
0.78% -0.48% -0.60% 

-

0.65% 0.33% 

-

1.00% 

-

2.26% 

-

0.91% 

-

1.43% -2.26% -2.80% -1.94% 0.13% 

Temp_ID               

2016 (6,7,8,9,10,11) 
3.53% -0.94% -2.58% 

-

3.57% 

-

3.91% 

-

4.48% 

-

4.76% 

-

6.92% 

-

8.99% -7.80% -8.21% -9.77% 

-

10.11% 

2017 (9,10,11,12,13,14) 
3.42% -0.95% -2.65% 

-

3.68% 

-

4.07% 

-

4.67% 

-

4.95% 

-

7.40% 

-

9.78% -8.36% -8.83% 

-

10.75% 

-

11.21% 

Note: Bin 1 = 0~5; Bin 2 = 5~10; Bin 3 = 10~20, Bin 4 = 20~30, Bin 5 = 30~40, Bin 6 = 40~50, Bin 7 = 50~60, Bin 8 = 60~70, Bin 9 = 70~80, Bin 10 = 

80~90, Bin 11 = 90~100, Bin 12 = 100~120 and Bin 13= 120+ ridership in each stop 
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4.8 Summary 

In this study, we examined the impact of new transit investments (such as an addition of 

commuter rail to an urban region) on an existing public transit system (such as the traditional bus 

service already present in the urban region). Specifically, the study developed a comprehensive 

and statistically valid framework in studying the impact of new public transportation infrastructure 

(such as commuter rail, “SunRail”) on existing public transit infrastructure (such as bus, “Lynx) 

in the Orlando metropolitan region.  

Two variables representing the impact of SunRail on bus ridership –and time elapsed since 

SunRail inception in time periods – were found to have significant impacts on bus ridership. In 

our research, in order to highlight the effect of various attributes over time on boarding and 

alighting ridership, an elasticity analysis was also presented. We investigated the change in 

ridership due to the change in selected exogenous variables. From the above policy analysis, it is 

clear that in the Orlando region adding of commuter rail has contributed to increased ridership in 

stops influenced by SunRail. Further, to increase the ridership, services related to public transit 

(improvement of headway and route length increasing) should be considered.   
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CHAPTER FIVE: SPATIO-TEMPORAL FACTORS ON BUS RIDERSHIP 

ANALYSIS 

5.1 Introduction 

Orlando provides an ideal test bed to identify factors influencing public transit ridership 

due to its increasing popularity and tourism. Drawing on stop level public transit boarding and 

alighting data for 6 four-month periods from May 2013 to April 2015, the current study estimates 

stop-level ridership models. Specifically, we apply a spatial panel regression model that 

accommodates for the influence of observed exogenous factors as well as unobserved factors. The 

repeated observation data at a stop-level offers multiple dimensions of unobserved factors 

including stop-level, spatial and temporal factors. In our analysis, we apply a framework to identify 

the observed and unobserved factors.  

5.2 Current Study in Context 

The review of earlier research (presented in section 2.1), indicates the burgeoning research 

in the bus transit ridership field. However, the literature is not without limitations. First, earlier 

work is usually based on a cross-sectional – a single time snapshot - ridership data. Second, earlier 

literature on bus transit ridership has not accommodated for observed and unobserved spatial 

effects on ridership. Toward addressing these limitations, we formulate and estimate a spatial panel 

model structure that accommodates for repeated ridership data for the same stop as well as the 

impact of spatial and temporal observed and unobserved factors.  

5.3 Econometric Methodology 

Let q = 1, 2, …, Q (in our study Q=3,495) be an index to represent each station (spatial 

unit) and t = 1, 2, …, T (in our study T=6) be an index for each time period. A pooled linear 
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regression model for panel data considering spatial specific effects without considering spatial 

dependency can be written as: 

𝑦𝑞𝑡 = 𝛽′𝑥𝑞𝑡 + 𝜇𝑞 + 𝜖𝑞𝑡                                                                                                                           (11) 

Where 𝑦𝑞𝑡 is the log-normal of boarding and alighting, 𝑥𝑞𝑡 is a column vector of attributes 

at station q and time t, and 𝛽 is the corresponding coefficient column vector of parameters to be 

estimated. The random error term, 𝜖𝑞𝑡, is assumed to be an independently and identically 

distributed normal error term for q and t with zero mean and variance σ2 , and 𝜇𝑞 represent a spatial 

specific effect to account for all the station-specific time-invariant unobserved attributes. This 

spatial specific effect can be treated as fixed effects or random effects. In the fixed effects model, 

for every station a dummy variable is created while in the random effects model, 𝜇𝑞 is treated as 

random term that is independently and identically distributed with zero mean and variance 𝜎𝜇
2. 

The spatial random effects and random error term are assumed to be independent. The fixed effects 

methodology is not appropriate in the presence of time-invariant independent variables. In 

addition, the fixed effects models estimate a large number of parameters (one parameter specific 

to each station) thus are computationally cumbersome for large systems as ours. Therefore, in the 

current study, we restrict ourselves to spatial random effects. 

In traditional econometric literature, spatial dependency is incorporated in model in two 

main forms: 1) by a spatially lagged dependent variable known as spatial lag or spatial 

autoregressive model (SAR), or 2) by a spatial autocorrelation process in the error term known as 

spatial error model (SEM). The first model comprises endogenous interactions effects with 

dependent variable at other stops and in the second model the spatial interaction is capture through 

the error term.  
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A spatial lag model can be written as follows: 

𝑦𝑞𝑡 = 𝛿 ∑ 𝑤𝑞𝑗𝑦𝑗𝑡

𝑄

𝑗=1

+ 𝛽′𝑥𝑞𝑡 + 𝜇𝑞 + 𝜖𝑞𝑡                                                                                                (12) 

Where 𝛿 is called the spatial autoregressive coefficient and 𝑤𝑞𝑗 is an element from a spatial 

weight matrix W. The diagonal elements of W matrix are zero and define the spatial arrangement 

of the stops. Again, in some literature, other types of spatial matrices are introduced. In our study, 

the spatial W matrix is a 3495×3495 matrix with elements equal to 1 for the stations that are within 

800m buffer area of each other and zeros for the rest of the elements. It must be noted that diagonal 

of W matrix is set to be zero to prevent the use of 𝑦𝑞𝑡 to model itself. For stability in estimation, a 

row-normalized form of the W matrix is employed as our spatial weight matrix (see Elhorst, 2014 

for more details on W matrix). 

A spatial error model may be written as follows:  

𝑦𝑞𝑡 = 𝛽′𝑥𝑞𝑡 + 𝜇𝑞 + 𝜑𝑞𝑡                                                                                                                        (13𝑎) 

𝜑𝑞𝑡 = 𝜌 ∑ 𝑤𝑞𝑗𝜑𝑗𝑡

𝑄

𝑗=1

+ 𝜖𝑞𝑡                                                                                                                     (13𝑏) 

where 𝜑𝑞𝑡 accounts for the spatial auto correlated error term and 𝜌 reflects the spatial 

autocorrelation coefficient. Both spatial lag model and spatial error model can be estimated using 

maximum likelihood approach (see Elhorst, 2014 for details on likelihood functions). In this paper, 

we use Matlab routines provided by Elhorst ( Elhorst, 2014 ; Elhorst, 2003 ), to estimate pooled 

spatial lag and error models with spatial specific random effects.  
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5.4 Model Specification and Overall Measures of Fit 

The empirical analysis in our study is based on two different models: 1) Spatial Error 

Model (SEM) and 2) Spatial Lag Model (SAR) for boarding and alighting ridership. The log linear 

independent models were estimated to serve as bench mark for advanced models. In this section, 

we compare SEM and SAR model. For each model type, the log likelihood at convergence, R 

square value, the number of parameters estimated, Akaike Information Criterion (AIC) and 

Bayesian Information Criterion (BIC) were calculated. The AIC and BIC for a given empirical 

model are equal to: 

𝐴𝐼𝐶 =  2𝐾 −  2𝐿𝐿  
(14) 

𝐵𝐼𝐶 =  − 2𝐿𝐿 +  𝐾 𝑙𝑛(𝑄) 
(15) 

where 𝐿𝐿 is the log likelihood value at convergence, 𝐾 is the number of parameters, and 𝑄 

is the number of observations. The model with the lower AIC or BIC is the preferred model. The 

log-likelihood values at convergence for the models estimated are as follows: (1) simple linear 

regression model for boarding (with 18 parameters) is -22,957.537, (2) simple linear regression 

model for alighting (with 18 parameters) is -22,911.193, (3) SEM for boarding (with 16 

parameters) is –13,029.935, (4) SEM for alighting (with 15 parameters) is –12,361.319, (5) SAR 

for boarding (with 13 parameters) is –12,801.731 and (6) SAR for alighting (with 11 parameters) 

is –12,022.572. The BIC (AIC) values for the six models are as follows: (1) simple linear 

regression for boarding – 46,094.188 (45,951.073), (2) simple linear regression for alighting – 

46,001.501 (45,858.386), (3) SEM for boarding is – 24,752.690 (26,091.870), (4) SEM for 

alighting is – 24,871.903 (26,219.084), (5) SAR for boarding is – 24,067.144 (25,629.462) and 6) 

SAR for alighting is – 24,154.603 (25,732.823). Based on the information criteria, SAR model 

performs better for boarding and alighting. However, the number of explanatory variable are 
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higher in SEM model. Hence, we consider both frameworks for our discussion. The results from 

the models for boarding and alighting are presented in Table 11.
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Table 11. Spatial Error Model (SEM) and Spatial Lag Model (SAR) Results 

Variable Name Boarding Alighting 

SEM SAR SEM SAR 

Estimates t-stat Estimates t-stat Estimates t-stat Estimates t-stat 

Constant 2.423 19.260 1.723 172.504 3.084 27.137 2.090 182.354 

Stop Level Attributes         

    Headway (Ln of headway)  -0.526 -29.285 -0.403 -3.473 -0.510 -28.956 -0.346 -3.894 

Transportation Infrastructure Around the 

Bus Stop 

        

    Bus route length in a 600m buffer 0.307 7.222 0.208 5.502 0.303 7.623 0.208 5.555 

Side walk length in a 800m buffer 0.044 5.360 - - 0.058 7.383 - - 

    Secondary highway length in a 600m  

    buffer 

0.769 7.047 0.677 36.325 - - - - 

Local road length in a 800m buffer 0.708 10.919 0.528 -16.331 - - - - 

    Rail road length in a 800m buffer - - - - -0.071 -3.006 - - 

    Presence of shelter in a bus stop 0.775 19.904 0.739 39.254 0.553 14.185 0.518 27.966 

Built environment around the stop         

    Land use mix area in a 800m buffer 0.409 2.712 0.316 3.230 0.628 4.027 0.472 41.242 

    Household density - - - - -0.114 -2.115 - - 

    Employment density -0.016 -2.242 - - - - - - 

    Central Business area distance (km) -0.110 -5.460 -0.064 -3.920 -0.148 -6.901 -0.055 -3.517 

Sociodemographic and Socioeconomic 

Variables in Census Tract 

        

    Age 0 to 17 years 0.116 4.685 0.102 1.725 0.100 4.165 - - 

    Age 65 and up -0.106 -5.086 -0.087 -4.737 -0.095 -4.591 - - 

    High income (>80k) -0.054 -4.122 - - -0.067 -5.178 -0.048 -3.941 

    Household rent 0.051 2.518 - - 0.065 3.114 0.056 1.741 
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Variable Name Boarding Alighting 

SEM SAR SEM SAR 

Estimates t-stat Estimates t-stat Estimates t-stat Estimates t-stat 

Spatial and Spatio-Temporal Effect         

    Temporal lagged variables 1 (Ln of  

    TL) 

0.052 13.320 0.050 0.349 0.051 13.513 0.048 0.344 

    Spatio-temporal lagged variables 1 in  

    a (Ln of STL) 800 m buffer 

-0.032 -12.685 -0.025 -6.305 -0.027 -11.098 -0.023 -6.087 

    Spatial auto correlated term 1.617 39.268 - - 1.710 104.83 - - 

    Spatial autoregressive term - - 0.336 174.130 - - 0.374 200.094 
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5.5 Variable Effects 

The final specification of the model development was based on removing the statistically 

insignificant (90% significance level) variables from the model. We considered various buffer size 

(800m, 600m, 400m and 200m buffer size) and considered the buffer size that offered the best data 

fit. Columns 2 through 5 present results from SEM and SAR models for boarding while columns 

6 through 9 present results from SEM and SAR models for alighting. The model results are 

described by variable categories below. 

5.5.1 Stop level Variables 

The headway between buses at a stop has a significant influence on ridership. The result 

from all models confirm this. An increase in headway is associated with significant drop in 

ridership. The findings are in accordance with the previous literature (Turnquist, 1981; Kuah & 

Perl, 1988; CHien, 2005; Ruan, 2009; Abkowitz & Tozzi, 1986; Ding & Chien, 2001).  

5.5.2 Transportation Infrastructures Variables 

Several transportation infrastructure variables significantly affect boarding and alighting. 

Bus route length in a 600m buffer is associated with increase in boarding and alighting across all 

models. Sidewalk length in an 800m buffer is observed to positively influence boarding and 

alighting in the SEM model. The corresponding coefficient was not significant in the SAR models. 

The secondary highway length in a 600m buffer and local road length in an 800m buffer is 

positively associated with boarding for SEM and SAR models. However, these variables are 

statistically insignificant in the alighting models. Rail road length in an 800m buffer is negatively 

associated with alighting in only the SEM model.  Finally, the presence of bus shelter at the bus 

stop is likely to positively influence boarding and alighting in SEM and SAR models. 
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5.5.3 Built Environment Variables 

Several built environment variables are found to influence boarding and alighting.  Land 

use mix variable is associated positively for boarding and alighting in SEM and SAR models. The 

result is quite encouraging policies favoring mixed land use developments in urban regions. An 

increase in household density of census tract, where the bus stop is located, is negatively associated 

with alighting in SEM model. On the other hand, increasing employment density (of census tract) 

is negatively associated with boarding in SEM model. The distance of the stop from CBD variable 

impact follows an expected trend. Specifically, as the stop is away from CBD, the ridership is 

likely to reduce.  

5.5.4 Sociodemographic and Socioeconomic Variables 

Several sociodemographic and socioeconomic variables based on census tract, where the 

bus stops are located, were found to significantly influence boarding and alighting. The proportion 

of people aged between 0 to 17 years is observed to positively influence boarding in both SEM 

and SAR model. The result is intuitive as an increase in the proportion of young individuals’ 

increases, population without access to car is also likely to increase. For alighting, the variable has 

a significant influence only in the SEM model. An increase in proportion of individuals 65 and 

higher is associated with a reduction in boarding and alighting (except for alighting in SAR model). 

The result while counter intuitive on first glance is representative of vehicle access among this age 

group. As the number of Households in the high-income category increase, the model results 

indicate a possible reduction in boarding and alighting (except for boarding SAR model). The 

result is expected in a city like Orlando where high income individuals are more likely to use their 

personal vehicle for travel. Finally, the number of households renting in a census tract is positively 
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associated with boarding and alighting (except for boarding SAR model). The relationship between 

rent and ridership is along expected lines. 

5.5.5 Spatial and Spatio-temporal Effects 

The temporal lagged variables are positively associated with boarding and alighting 

ridership for SEM and SAR models. On the other hand, spatio-temporal lag variables present a 

reverse trend. To elaborate, the results indicate that stops with larger ridership in adjacent station 

for previous time period are likely to have a lower ridership. The result is indicative of competition 

from nearby stops. The result is indicative of how the same ridership in the urban region is being 

split across stops.  

5.5.6 Spatial Error and Spatial Lag Effects 

The study estimated SEM and SAR models to account for the presence of spatial effects. 

The model fit measures clearly confirmed our hypothesis. In the SEM model, the results indicate 

the presence of a significant spatial auto-correlated error term. In the SAR model, the spatial 

autoregressive coefficient indicates a significant impact of unobserved effects. 

5.6 Model Validation 

A hold-out sample of 250 stops (250*6=1500 observation) was set aside for validation 

purposes. We used both SEM and SAR model to compute predicted boarding and alighting at the 

station level. The predicted rates were compared with the observed boarding and alighting in the 

sample. We computed Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) to 

compute the deviation from observed values. The MAE (RMSE) values for the four models are as 

follows: (1) boarding SEM – 0.815 (1.011), (2) boarding SAR – 0.837 (1.083), (3) alighting SEM 

– 0.809 (1.016), and (4) alighting SAR 0.897 (1.123). The results indicate a satisfactory 
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performance for boarding and alighting models across the two systems. Overall, between the two 

model systems the SEM models perform slightly better.  

5.7 Summary 

Two spatial models: 1) Spatial Error Model (SEM) and 2) Spatial Lag Model (SAR) are 

estimated for boarding and alighting separately by employing several exogenous variables 

including stop level attributes, transportation and transit infrastructure variables, built environment 

and land use attributes, sociodemographic and socioeconomic variables in the vicinity of the stop 

and spatial and spatio-temporal lagged variables. The model fit measures clearly confirmed our 

hypothesis that spatial unobserved effects influence boarding and alighting through the presence 

of spatial auto-correlated error term in SEM model and the spatial autoregressive coefficient in 

SAR model. Further, the validation exercise results confirmed that the two-model performed 

adequately. In our model, we have considered both boarding and alighting model separately. The 

observed and unobserved factors for boarding and alighting ridership at the same stop can have an 

impact on ridership. Incorporating such station level dependency between boarding and alighting 

along with spatial unobserved factors requires the development of an advanced model and is a 

potential avenue for future research.  
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CHAPTER SIX: RAIL RIDERSHIP ANALYSIS 

6.1 Introduction 

With the increasing investments in public transit, federal transit administration and various 

agencies supporting these initiatives are interested in examining the influence of investments on 

transit ridership. A major analytical tool to analyze the impact of these investments is the 

development of statistical models that consider the impact of various exogenous factors on 

ridership. The current study contributes to literature on transit ridership evaluation by considering 

daily boarding and alighting data form a recently launched commuter rail system - SunRail that 

began operating in May 2014 in the greater Orlando region. The service has potential to alter travel 

patterns in the Orlando region. The current study develops an estimation framework that accounts 

for these unobserved effects at multiple levels – station, station-week and station day.  

6.2 Current Study in Context 

Based on the literature review (presented in section 2.2), it is evident that earlier research on 

transit ridership has provided significant insights. However, the literature is not without 

limitations. At the micro level, the application of methodologies that accommodate for repeated 

observations is considered in only two studies. Even in these studies the authors have only 

accommodated for unobserved factors at a single level (such as station). However, transit ridership 

could potentially be influenced by unobserved factors at multiple levels. For example, in an urban 

region, regular weekend concerts could potentially influence Friday ridership at downtown 

stations. Thus, Fridays from different weeks are likely to exhibit potential correlation. Similar 

dependency can be envisioned for weeks with festivals in the city core. Thus, to get an accurate 

estimation of various exogenous factors, accommodating for presence of unobserved effects at 

multiple configurations is beneficial. The current study contributes to transit ridership literature by 
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developing a flexible panel linear regression model that accommodates for the presence of 

unobserved factors for various levels (such as station, station-week, station-day). The most 

appropriate model structure for the unobserved factors is guided by intuition and data fit metrics. 

6.3 Methodology for Rail Ridership 

  The focus of our study is to model average daily boarding and alighting by employing 

panel linear regression (PLR) modeling approach. The econometric framework for the PLR model 

is presented in this section. 

Let 𝑖 (𝑖 = 1,2,3, … , 𝑁)  be an index to represent weekdays, 𝑞 (𝑞 = 1,2,3, … , 𝑄) be the 

index to represent different level of repetition measures (station, station-day or station-week) and 

𝑟 (𝑟 = 0,1,2, … , 𝑅) be an index to represent the number of boarding or alighting. Then, the 

equation system for modeling boarding/alighting may be written as follows: 

𝑦𝑖𝑟 = (𝜷𝒓 + 𝜹𝒊𝒓 + 𝜸𝒒𝒓)𝒙𝑖𝑟 + 𝜀𝑞   (16) 

where,  𝒙𝒊𝒓 is a vector of exogenous variables specific to weekday 𝑖 and ridership 

component 𝑟, 𝜷𝒓 is the associated vector of unknown parameters to be estimated (including a 

constant). 𝜹𝒊𝒓 is a vector of unobserved factors moderating the influence of attributes in 𝒙𝒊𝒓. 𝜸𝒒𝒓 

is another vector of unobserved effects specific to repetition level 𝑞 and ridership component 𝑟. 𝜀𝑞 

is normal distributed error term.  

In estimating the PLR model, it is necessary to specify the structure for the unobserved 

vectors 𝜹 and 𝜸 represented by Ω. In this paper, it is assumed that these elements are drawn from 

independent realization from normal population: Ω~𝑁(0, (𝝅𝟐, 𝝈𝑞
2)). Thus, conditional on Ω, the 

likelihood function for the panel model can be expressed as: 

𝐿𝑞𝑟 = ∫ (∏ ∏ (𝑦𝑖𝑟)𝑁
𝑖=1

𝑄
𝑞=1 )

Ω
𝑑Ω   (17) 

Finally, the log-likelihood function is:       
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𝐿𝐿 = ∑ 𝐿𝑛(𝐿𝑞𝑟)

𝑞

 (18) 

The parameters to be estimated in the PLR model are: 𝜷𝒓, 𝝅 and 𝝈𝒒. In the current study 

context, we estimate 𝝈𝒒 for different levels of repetition measures (𝑞). Specifically, we evaluate 

unobserved effects at station, station-day and station-week levels. In accommodating unobserved 

effects at different levels, random numbers are assigned to the appropriate observations of the 

repetition measures. For example, at station level, we have 12 stations. Thus, in evaluating 

unobserved effect at the station level, 12 sets of different random numbers are generated specific 

to 12 stations and assigned to the data records based on their station ID. The station-day level 

repetition measure represents unobserved effects across different day of week (from Monday to 

Friday) at each station level. Thus, the station-day has a total 60 (12 stations*5days) records and 

in evaluating the unobserved effect at the station-day level, 60 sets of different random numbers 

are generated assigned to the data records based on their station-day combinations. Finally, the 

station-week level repetition measure represents unobserved effect across different weeks at a 

station level. In our data, we have total 43 weeks of ridership records for each station resulting in 

516 (12 stations*43 weeks) records. Thus, in evaluating unobserved effect at the station-week 

level, 516 sets of different random numbers are generated and assigned to the data records based 

on their station-week combinations. All the parameters in the model are estimated by maximizing 

the logarithmic function 𝐿𝐿 presented in equation 18. 

6.4 Model Specification and Overall Measures of Fit 

The empirical analysis of SunRail ridership is estimated based on Panel Linear Regression 

model (PLR). A simple linear regression model was estimated to serve as a benchmark for the 

panel models. The log-likelihood values for simple linear regression (LR) model of boarding and 

alighting are -11815.132 (with 23 parameters) and -12090.381 (with 23 parameters), respectively. 
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The log-likelihood values at convergence for the boarding and alighting models estimated are as 

follows: PLR for boarding (with 25 parameters) is -11,781.170, and PLR for alighting (with 24 

parameters) is -12,051.406. Prior to discussing the estimation results, we compare the performance 

of these models in this section. We employ log-likelihood ratio test for comparing these models. 

The log-likelihood test statistic is computed as 2[LLU − LLR], where LLU and LLR are the log-

likelihood of the unrestricted and the restricted models, respectively. The computed value of the 

LR test is compared with the ℵ2 value for the corresponding degrees of freedom (dof). The 

resulting LR test values for the comparison of LR/PNL for boarding and alighting models are 

67.926 (2 dof) and 77.951 (1 dof), respectively. The log-likelihood ratio test values indicate that 

PLR models outperform the LR models at any level of statistical significance for boarding and 

alighting models.  

6.5 Variable Effects 

The estimated results for boarding and alighting are presented in Table 12. In PLR models, 

the positive (negative) coefficient corresponds to increased (decreased) ridership propensities. The 

constant does not have any substantive interpretation after adding exogenous variables. The 

variable results across different exogenous variable categories are discussed below.  

Table 12. Station-Week Level Panel Linear Regression Model Results 

Variable Name Boarding Ridership Alighting Ridership 

Coefficient t-stat Coefficient t-stat 

Constant 410.053 20.191 228.535 8.818 

Temporal and Seasonal Variables         

Day of week (Base: Tuesday, Wednesday, Thursday)         

Monday -21.058 -3.978 -22.072 -3.492 

Friday 48.155 11.852 48.004 10.604 

Season/Month of the Year (Base: September, October)     

January 51.085 5.908 61.701 6.111 

February 48.283 4.248 53.774 4.305 
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Variable Name Boarding Ridership Alighting Ridership 

Coefficient t-stat Coefficient t-stat 

March 69.643 10.948 74.101 9.798 

April 40.127 5.655 44.357 5.125 

May 23.001 2.670 24.675 2.660 

June 43.559 4.368 41.215 4.078 

July 48.178 6.392 46.287 5.135 

August 26.462 3.803 28.013 3.246 

Transportation Infrastructures          

Local roadway length in a         

1500 m buffer -7.189 -38.125 -6.948 -36.956 

Number of bus stop in a      

1500 m buffer 9.587 22.573 10.096 23.146 

Free Parking Facility  18.315 2.210 91.194 10.437 

Land Use Patterns     

Number of Commercial centers in a      

1500 m buffer 50.317 13.918 68.541 16.568 

Standard Deviation 1.869 25.513 2.068 31.388 

Number of Educational centers in a      

1500 m buffer -46.088 -10.034 -38.291 -14.896 

Number of Financial centers in a      

1500 m buffer 5.442 5.924 - - 

Land Use mix in a      

1500 m buffer 347.969 20.089 538.002 29.858 

Sociodemographic Variables     

Vehicle Ownership - No vehicle     

1500 m buffer -0.307 -18.523 -0.326 -21.788 

Weather Variables     

Average Temperature in air 1.753 2.813 1.844 2.257 

Average Wind speed in air -3.924 -3.603 -3.832 -3.036 

Rainfall -27.756 -4.028 -25.528 -2.962 

Standard error of estimates 4.066 405.301 4.183 444.830 

Panel Effects     

Standard deviation at Station level  2.545 9.689 2.844 14.972 
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6.5.1 Temporal and Seasonal Variables 

The day of the week variables offer interesting results. Specifically, the result indicate that 

boarding and alighting are likely to be lower on Mondays while on Fridays an opposite trend is 

observed. The higher ridership value on Friday is possibly associated with transit being adopted 

for cultural, sports and social activities (such as Orlando Lions football games or restaurants) in 

downtown Orlando with limited parking. To accommodate for seasonal variation in ridership we 

also consider the month variable. Based on the estimates, month of March is associated with largest 

impact on boarding and alighting. Months of September and October have the lowest impact (as 

they are the base). It is also observed that the association of various months with boarding and 

alighting are very similar.  

6.5.2 Transportation Infrastructures 

  Several transportation infrastructure variables for various buffer sizes were considered in 

the model. Local highway length for a 1500m buffer area around rail stations presents a significant 

negative impact on boarding and alighting. On the other hand, number of bus stops within 1500m 

buffer variable highlights the symbiotic influence of bus transit on rail ridership. For both boarding 

and alighting, increase in number of bus stops is associated with higher ridership. The result while 

encouraging is also possibly indicative of presence of higher number of bus stops near the rail 

station. Finally, the availability of free parking space at SunRail stations also significantly affect 

both boarding and alighting ridership. The parking facilities have significantly higher impact on 

alighting relative to boarding.  

6.5.3 Land Use Variables 

Land use variables including presence of commercial centers, educational centers and 

financial centers within 1500 m distance from SunRail station have significant influence on 
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ridership. The presence of higher commercial centers in 1500m buffer surrounding the station 

positively influences boarding and alighting. The number of commercial centers variable impact 

varies substantially across the stations as evidenced by the significant standard deviation 

parameters for both boarding and alighting models. The presence of financial centers affects 

boarding positively while having no impact on alighting. SunRail stations are located near 

downtown Orlando and provide access to commercial and financial hubs of Orlando city. In these 

locations, availability of parking spaces, cost of parking, and traffic congestion encourage the 

adoption of SunRail. On the other hand, the presence of education centers around rail stations 

reduces rail ridership. The result is quite intriguing. It is possible that driving is the preferred option 

to educational centers; particularly for parents driving their children to the education center and 

then proceeding to another location.  

6.5.4 Sociodemographic Variables 

  Several socioeconomic variables under several buffer sizes were tested in the boarding and 

alighting models. Of these variables only one variable offered a statistically significant impact. 

The number of households with access to no vehicles in the 1500m buffer around the station is 

negatively associated with boarding and alighting. While the result is counter intuitive on first 

glance, it is possible that the result is a surrogate for lower job participation in these neighborhoods. 

The result warrants more detailed analysis.  

6.5.5 Weather Variables 

We also account for the impact of weather variables on ridership. While we cannot control 

weather patterns, these variables are included in the model to ensure that the impact of other 

attributes is accurately determined. The average temperature variable indicates that with higher 

temperature, boarding and alighting are likely to be higher. On the other hand, higher average wind 
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speed is associated with lower boarding and alighting. The wind speed might be an indicator for 

possible wind gusts from hurricanes in the Orlando region. Finally, rain occurrence discourages 

rail usage as indicated by the negative coefficient in boarding and alighting components. The result 

is expected for any public transit alternative.  

6.5.6 Station Specific Unobserved Effects 

In estimating SunRail daily average ridership models (for boarding and alighting), we 

estimated several station specific unobserved effects. Specifically, we estimated unobserved 

effects at station, station-day and station-week level. Among different considered levels, we found 

that the station level effects have significant influence on both boarding and alighting components 

of ridership. The estimation results of the station specific standard deviation is presented in last 

row panel of Table 11. The significant standard deviation parameters at station level provide 

evidence toward supporting our hypothesis that it is necessary to incorporate these unobserved 

effects in examining rail ridership. The station specific standard deviation variables for boarding 

and alighting indicate that the daily average ridership may vary for different stations based on the 

unobserved effects.    

6.6 Model Validation 

We also performed a validation exercise with the data set aside to evaluate model 

performance. To examine the fit of the model, we used (31*12 = 372) 372 records. We calculated 

the observed mean and predicted mean for panel regression model. The predictive mean for PLR 

models are calculated as 309.31 and 310.72 for boarding and alighting, respectively. The values 

are almost similar for observed mean ridership for the validation sample (309.42 and 308.13). The 

validation exercise shows that the predictive performance of the panel model is good.  
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6.7 Policy Analysis 

The parameter effects of exogenous variables in Table 11 do not directly provide the 

magnitude of the effects on exogenous variables on SunRail ridership. For this purpose, we 

compute aggregate level “elasticity effects” of exogenous variables. Specifically, we identified the 

average daily boarding and alighting ridership for changes in some selected exogenous variables. 

We consider the number of bus stops, land use mix and the number of commercial centers in 1500 

m buffer around the SunRail stations for this purpose. In calculating the expected average predicted 

daily ridership, we increase the value of these variable by 10% and 25%. The computed ridership 

due to the change in these variables are shown in Figure 4 along with the observed daily ridership. 
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Boarding Ridership Alighting Ridership 

Number of bus stop increased  in 1500 m buffer 

  

Land use mix increased  in 1500 m buffer 

  

Number of commercial center increased  in 1500 m buffer 

  

Figure 4. Policy analysis for rail ridership. 
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 Several observations can be made from Figure 4. First, increased number of bus stops in 

1500 m buffer have higher impacts in increasing the ridership on almost every SunRail station, 

with highest impact on AMTRAK, Church Street and Lynx Central stations. This results indicates 

that in the downtown area, the ridership is sensitive to bus stops around SunRail station; thus 

supporting =investments on transit infrastructure for encouraging an integrated transit system. 

Second, the effect of land use mix indicates that improving the mix of land use patterns has positive 

impact on ridership. The land-use mix variable has almost similar impact across all stations. 

Finally, increasing the number of the commercial centers also considerably increases the ridership. 

However, there was no impact on ridership for SFS and DBS stations. The elasticity analysis 

conducted provides an illustration on how the proposed model can be applied for policy evaluation 

for SunRail ridership.     

6.8 Summary 

The current study contributes to literature on transit ridership by considering daily boarding 

and alighting data from a recently launched commuter rail system - SunRail that began operating 

in May 2014 in the greater Orlando region. The analysis is conducted based on daily boarding and 

alighting data for ten months for the year 2015. With the rich panel of repeated observations for 

every station, the potential impact of common unobserved factors affecting ridership variables are 

considered. The current study developed an estimation framework that accounts for these 

unobserved effects at multiple levels – station, station-week and station day. In addition, the study 

examined the impact of various observed exogenous factors such as station level attributes, 

transportation infrastructure variables, transit infrastructure variables, land use and built 

environment attributes and sociodemographic and weather variables on ridership. Separate models 

were developed for boarding and alighting. The final specification of the model development was 
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based on removing the statistically insignificant variables in a systematic process (at the 95% 

confidence level). For variables in various buffer sizes, each variable for a buffer size was 

systematically introduced (starting from 1500m to 500m buffer size) and the buffer variable that 

offered the best fit was considered in the final specification. 

The day of the week variables offer interesting results. Specifically, the result indicate that 

boarding and alighting are likely to be lower on Mondays while on Fridays an opposite trend is 

observed. Based on the estimates, month of March is associated with largest impact on boarding 

and alighting. Local highway length and number of bus stop for a 1500m buffer area around rail 

stations presents a significant impact on boarding and alighting. The availability of free parking 

space at SunRail stations also significantly affect both boarding and alighting ridership. Land use 

variables including presence of commercial centers, educational centers and financial centers 

within 1500 m distance from SunRail station have significant influence on ridership. The number 

of households with access to no vehicles in the 1500m buffer around the station is negatively 

associated with boarding and alighting. The average temperature variable indicates that with higher 

temperature, boarding and alighting are likely to be higher. On the other hand, higher average wind 

speed is associated with lower boarding and alighting. Rain occurrence discourages rail usage as 

indicated by the negative coefficient in boarding and alighting components. In estimating SunRail 

daily average ridership models (for boarding and alighting), we estimated several station specific 

unobserved effects at station, station-day and station-week level. Among different considered 

levels, we found that the station level effects have significant influence on both boarding and 

alighting components of ridership. The station specific standard deviation variables for boarding 

and alighting indicate that the daily average ridership may vary for different stations based on the 

unobserved effects. The model system developed will allow us to predict ridership for existing 
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stations in the future as well as potential ridership for future expansion sites. Finally, a policy 

analysis was performed to demonstrate the implications of the developed models.   
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CHAPTER SEVEN: CONTROLLING FOR ENDOGENEITY BETWEEN 

BUS HEADWAY AND BUS RIDERSHIP  

7.1 Introduction 

According to 2016 American Community Survey data, transit mode only accounts for 

about 5% of the commute trips in the United States (ACS, 2016). In fact, in recent years, several 

urban transit systems have experienced declines in ridership (Gomez-Ibanez, 1996; Garrett and 

Taylor, 1999; Siddiqui 2018; Bliss 2017; Schmitt 2017; Lewyn 2018). Ideally, in the presence of 

a well-designed public transit system, urban residents irrespective of their ethnicity, household 

income, and vehicle ownership should have similar access to activity participation opportunities 

or employment opportunities. Several researchers have found evidence to the contrary while 

examining the influence of transportation on employment opportunities (e.g., Shen, 2001; 

Wenglenski and Orfeuil, 2004; Kawabata and Shen, 2006, 2007; Grengs, 2010; Boarnet et al., 

2017). These studies identified that access to employment by transit is substantially lower than 

access to employment by car mode. However, several public transit riders own no cars and are 

reliant on public transportation to arrive at work. Existing public transportation systems are either 

facing ridership declines and/or facing challenges with regards to providing equitable services to 

residents. In urban regions, public transportation systems ought to provide an equitable, safe and 

accessible transportation mode for residents. Thus, there is a need to examine public transportation 

system design and operations to enhance transit adoption and equity for urban residents.  

Policy makers and urban agencies across different parts of North America, are considering 

investments in various public transportation alternatives including bus, light rail, commuter rail, 

and metro (see TP, 2016 for public transportation projects under construction or consideration). A 

critical component to evaluating the success of these investments is the development of appropriate 

https://www.sciencedirect.com/science/article/pii/S0965856416302737#b0060
https://www.sciencedirect.com/science/article/pii/S0965856416302737#b0060
https://www.sciencedirect.com/science/article/pii/S0965856416302737#b0145
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statistical tools to examine the impact. Our proposed research contributes to public transit literature 

by developing econometric models that consider the potential endogeneity of stop level headway 

in modeling ridership. To elaborate, earlier research in public transportation has identified 

headway (alternatively bus frequency) as one of the primary determinants affecting ridership. The 

stops with higher headway (lower frequency) between buses are likely to have lower ridership. 

While this is a perfectly acceptable conclusion, most (if not all) studies in public transit literature 

ignore that the stop level headway was determined (by choice) in response to expected ridership 

i.e. stops with lower headway were expected to have higher ridership numbers. In traditional 

ridership studies, this potential endogeneity is often neglected and headway is considered as an 

independent variable. The approach violates the requirement that the unobserved factors that affect 

the dependent variable do not affect the independent variable. If this is the case, the estimated 

impact of headway on ridership would be biased (potentially over-estimated). More importantly, 

the estimated impact of all other variables (such as land use factors, bus infrastructure) will also 

be biased (possibly under-estimated). Traditional ridership models also consider transit ridership 

at a single time point for analysis using cross-sectional datasets. Ideally, it would be beneficial to 

consider data from multiple time points. The consideration of data from multiple time points is of 

particular value in accommodating for the impact of headway associated endogeneity.  

In this study, we address these challenges by proposing a simultaneous equation system 

that considers headway and ridership in a joint framework while accounting for the influence of 

common unobserved factors affecting headway and ridership. The proposed model is developed 

employing ridership data from Orlando region for the Lynx bus transit system. The ridership data 

includes stop level average weekday boarding and alighting information for 11 four-month time 

periods from May 2013 to December 2016. The presence of multiple data points for each stop 
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allows us to develop panel models for headway, boarding and alighting. The headway variable is 

modeled using a panel ordered logit model while the ridership variables are modeled using panel 

group ordered logit models. In addition to unobserved effects in the form panel random effects, 

several exogenous variables including stop level attributes (such as number of bus stop), 

transportation infrastructure variables (such as secondary highway length, rail road length and 

local road length, sidewalk length), transit infrastructure variables (bus route length, presence of 

shelter and distance of bus stop from central business district (CBD)), land use and built 

environment attributes (such as land use mix, residential area, recreational area, institutional area, 

office area, etc.) and sociodemographic and socioeconomic variables in the vicinity of the bus stop 

(income, vehicle ownership, age and gender distribution) were considered in the model estimation. 

The model estimation results identify that headway, number of the bus stops in the 800m buffer, 

presence of shelter at the bus stop, sidewalk length in a 400m buffer, bus stop distance from the 

central business district (CBD), distance between Sunrail station and bus stop, and automobile 

ownership are likely to impact bus ridership in Orlando. The bus route length in an 800m buffer is 

negatively affected the bus ridership in Orlando which is opposite of author’s earlier work 

(Rahman, et. al. 2017) because, in the earlier paper, endogeneity of headway in bus ridership was 

not considered but in this study, we have considered the endogeneity. This is a clear indication of 

the impact of the endogenous variable on the dependent variable.  

7.2 Current Study in Context 

The literature review highlights how well recognized the issue of endogeneity is within the 

transit filed. However, the literature is not without limitations. First, while several studies have 

explicitly considered/controlled for endogeneity the study frameworks focus on aggregate transit 

ridership metrics such as monthly boardings at the system level. There is no study that has 
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examined the endogeneity issue at a more disaggregate level such as bus route or stop level. The 

aggregate level models are adequate for planning at a system level. However, for any analysis of 

changes to the existing service for various bus routes, more detailed analysis at the bus route or 

stop level is warranted. Second, earlier analysis was explored using cross-sectional or panel data 

with very small data samples. This is expected because the analysis was conducted at a system 

level yielding smaller data samples. Third, while several studies developed IV and/or 2SLS 

approaches there is no effort in the discrete choice realm controlling for endogeneity. The current 

research effort addresses these limitations by undertaking a disaggregate stop level ridership 

analysis (for boarding and alighting) while controlling for endogeneity associated with stop-level 

headway. For the Orlando region, while headway is a continuous value in minutes, due to the 

nature of the service in the region, it is more accurate to consider headway as a discrete variable. 

In our study, we have considered three categories for headway model: (i) Category 1 (0-15 

minutes), (ii) Category 2 (15-30 minutes) and (iii) Category 3 (>30 minutes). Hence, we have 

considered headway as an ordered discrete variable. Further, to model ridership, building on our 

earlier work (Rahman et al., 2017), we categorize the boardings and alightings as grouped ordered 

variables. Thus, the overall econometric methodology employed results in a panel multivariate 

ordered system with three separate equations (for headway, boarding and alighting). The proposed 

model system is estimated using data for eleven 4-month periods from May 2013 to December 

2016. The proposed joint panel modeling approach is the first of its kind for transit ridership 

analysis to the best of the author’s knowledge. 

7.3 Methodology  

The focus of this study is to examine stop-level boarding, alighting and headway 

simultaneously. Let q (q = 1, 2,…, Q) be an index to represent bus stops, let t (t = 1, 2, 3,…, T) 
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represent the different time periods j (j = 1, 2, 3,…, J = 13) be an index to represent the number of 

boardings or alightings and m (m = 1,2,…M=3) be an index to represent headway categories. The 

thirteen categories for ridership analysis are: Bin 1 = ≤5; Bin 2 = 5-10; Bin 3 = 10-20, Bin 4 = 20-

30, Bin 5 = 30-40, Bin 6 = 40-50, Bin 7 = 50-60, Bin 8 = 60-70, Bin 9 = 70-80, Bin 10 = 80-90, 

Bin 11 = 90-100, Bin 12 = 100-120 and Bin 13= >120. For headway component, we consider three 

categories: category 1 = 0 to 15 minutes; category 2= 15 to 30 minutes and category 3= > 

30minutes. Then, the equation system for modeling headway, boarding and alighting jointly can 

written as: 

𝐻𝑞𝑡
∗  = (𝜈′ + 𝜎𝑞

′ )𝑥′𝑞𝑡 + (𝜂′𝑞)𝑦𝑞𝑡 +  𝛥𝑞𝑡, 𝐻𝑞𝑡 = 𝑚  𝑖𝑓 𝜛𝑚−1 < 𝐻𝑞𝑡
∗ ≤ 𝜛𝑚  (19) 

𝐵𝑞𝑡
∗  = (𝛼′ + 𝛾𝑞

′)𝑥′′𝑞𝑡 + (𝜃′ + 𝜇′𝑞)ℎ𝑞𝑡 ± (𝜂′
𝑞

)𝑦𝑞𝑡 +  𝜀𝑞𝑡, 𝐵𝑞𝑡 = 𝑗  𝑖𝑓 𝜓𝑗−1 < 𝐵𝑞𝑡
∗

≤ 𝜓𝑗 

(20) 

𝐴𝑞𝑡
∗  = (𝛽′ + 𝛿𝑞

′ )𝑥′′𝑞𝑡 + (𝜃′′ + 𝜇′′𝑞)ℎ𝑞𝑡 ± (𝜂′𝑞)𝑦𝑞𝑡 + 𝜉𝑞𝑡, 𝐴𝑞𝑡 = 𝑗  𝑖𝑓 𝜓𝑗−1

< 𝐴𝑞𝑡
∗ ≤ 𝜓𝑗 

(21) 

In equation 19, 𝐻𝑞𝑡
∗  is the latent (continuous) propensity for headway at stop q for the tth 

time period. This latent propensity 𝐻𝑞𝑡
∗  is mapped to the actual grouped headway category m by 

the 𝜛 thresholds, in the usual ordered-response modeling framework. 𝑥′𝑞𝑡 is a matrix of attributes 

that influences stop level headway, 𝜈 is the vector of mean coefficients and 𝜎𝑞 is a vector of 

coefficients representing the impact of unobserved factors moderating the influence of 

corresponding element of 𝑥′𝑞𝑡. 

In equations 20 and 21, 𝐵𝑞𝑡
∗  (𝐴𝑞𝑡

∗ ) is the latent propensity for stop level boardings 

(alightings) of stop q for the tth time period. This latent propensity 𝐵𝑞𝑡
∗  (𝐴𝑞𝑡

∗ ) is mapped to the actual 

grouped ridership category j by the 𝜓 thresholds, in the usual ordered-response modeling 
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framework. In our case, we consider J = 13 and thus the 𝜓 values are as follows: -∞, 5, 10, 20, 30, 

40, 50, 60, 70, 80, 90, 100, 120, and +∞.𝑥′′
𝑞𝑡 is a matrix of attributes that influences stop level 

boarding and alighting. ; 𝛼 (𝛽)is the corresponding vector of mean coefficients and 𝛾𝑞(𝛿𝑞) is a 

vector of coefficients representing the impact of unobserved factors moderating the influence of 

corresponding element of 𝑥′
𝑞𝑡 (𝑥′′

𝑞𝑡) for boardings (alightings), ℎ𝑞𝑡 represents the headway 

variables generated from 𝐻𝑞𝑡 for consideration in boarding and alighting. 𝜃′ (𝜃′′) represents the 

corresponding vector of mean coefficients and 𝜇′𝑞 (𝜇′′𝑞) is a vector of coefficients representing 

the impact of unobserved factors moderating the influence of corresponding element ℎ𝑞𝑡 for 

boardings (alightings).  𝜀𝑞𝑡 (𝜉𝑞𝑡) is an idiosyncratic random error term assumed independently 

logistic distributed across choice stops and choice occasions for boardings (alightings) with 

variance 𝜆𝐵
2  (𝜆𝐴

2).  

𝜂𝑞 present in all three equations represents the vector of coefficients that accommodates 

for the impact of stop level common unobserved factors that jointly influence boardings, alightings 

and headway. The ′ ± ′ sign indicates the potential impact could be either positive or negative. A 

positive sign implies that unobserved factors that increase the headway for a given reason will also 

increase the propensity for boarding/alighting, while a negative sign suggests that unobserved 

individual factors that increase the propensity for headway will decrease the propensity for 

boarding/alighting. In our empirical context, we expect the relationship to be positive.  

Further, to accommodate for ridership category specific effects 𝑧𝑞𝑗𝑡 is a vector of attributes 

specific to stop 𝑞 and ridership category alternative 𝑗 and 𝜌𝑗 is the vector of corresponding 

ridership category-specific coefficients.  

To complete the model structure of the Equations (19), (20) and (21), it is necessary to 

define the structure for the unobserved vectors 𝛾𝑞 , 𝛿𝑞, 𝜎𝑞, 𝜇𝑞 (combined vector of𝜇′𝑞 and 𝜇′′𝑞 and 
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𝜂𝑞. In this paper, we assume that the three vectors are independent realizations from normal 

distributions as follows: 𝛾𝑞𝑛 ~𝑁(0, 𝜅𝑛
2) 𝛿𝑞𝑛~𝑁(0, 𝜈𝑛

2), 𝜎𝑞𝑛~𝑁(0, 𝜍𝑛
2) 𝜇𝑞𝑛~𝑁(0, 𝜊𝑛

2) and 

𝜂𝑞𝑛 ~𝑁(0, 𝜚𝑛
2). 

With these assumptions, the probability expressions for the ridership category may be 

derived. Conditional on 𝛾𝑞𝑛, 𝛿𝑞𝑛, 𝜎𝑞𝑛, 𝜇𝑞𝑛 and 𝜂𝑞𝑛, the probability for stop q to have boarding, 

alighting and headway in the tth time period is given by: 

𝑃(𝐻𝑚𝑡)|𝜎, 𝜂 =  Λ [𝜛𝑚 − ((𝜈′ + 𝜎𝑞
′ )𝑥′𝑞𝑡 + (𝜂′𝑞)𝑦𝑞𝑡)] −  Λ [𝜛𝑚−1 − ((𝜈′ +

𝜎𝑞
′ )𝑥′𝑞𝑡 + (𝜂′𝑞)𝑦𝑞𝑡)]  

(22) 

𝑃(𝐵𝑗𝑡)|𝛾, 𝜂 =  Λ [
𝜓𝑗−((𝛼′+𝛾𝑞

′ )𝑥′′𝑞𝑡+(𝜌𝑗
′)𝑧𝑞𝑗𝑡+(𝜃′+𝜇′𝑞)ℎ𝑞𝑡±(𝜂′

𝑞)𝑦𝑞𝑡)

𝜆𝐵
] −

 Λ [
𝜓𝑗−1−((𝛼′+𝛾𝑞

′ )𝑥′′𝑞𝑡+(𝜌𝑗
′)𝑧𝑞𝑗𝑡+(𝜃′+𝜇′𝑞)ℎ𝑞𝑡±(𝜂′

𝑞)𝑦𝑞𝑡)

𝜆𝐵
]  

(23) 

𝑃(𝐴𝑗𝑡)|𝛿, 𝜂 =  Λ [
𝜓𝑗−((𝛽′+𝛿𝑞

′ )𝑥′′𝑞𝑡+(𝜏𝑗
′)𝑧𝑞𝑗𝑡+(𝜃′′+𝜇′′𝑞)ℎ𝑞𝑡±(𝜂′𝑞)𝑦𝑞𝑡)

𝜆𝐴
] −

 Λ [
𝜓𝑗−1−((𝛽′+𝛿𝑞

′ )𝑥′′𝑞𝑡+(𝜏𝑗
′)𝑧𝑞𝑗𝑡+(𝜃′′+𝜇′′𝑞)ℎ𝑞𝑡±(𝜂′𝑞)𝑦𝑞𝑡)

𝜆𝐴
]  

(24) 

where Λ (.) is the cumulative standard logistic distribution. 𝑧𝑞𝑗𝑡 is a vector of attributes 

specific to stop 𝑞 and ridership category alternative 𝑗 , while 𝜌𝑗 and 𝜏𝑗 is the vector of 

corresponding Ridership category-specific coefficients for boarding and alighting components, 

respectively. 

Let Ω  represent a vector that includes all the standard error parameters to be estimated. 

Given these assumptions the joint likelihood for stop level boarding and alighting is provided as 

follows: 
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𝐿𝑞|Ω =  ∏ [∏ [𝑃(𝐻𝑚𝑡)|𝜎, 𝜂]𝑑ℎ𝑚𝑡

𝑀

𝑚=1

𝑇

𝑡=1

∗  {∏ [(𝑃(𝐵𝑗𝑡)|𝛾, 𝜂)]
𝑑𝑏𝑗𝑡

𝐽

𝑗=1
[(𝑃(𝐴𝑗𝑡)|𝛿, 𝜂)]

𝑑𝑎𝑗𝑡
}] 

(25) 

where 𝑑ℎ𝑚𝑡 is a dummy variable taking a value of 1 if stop q has headway within the mth 

category for the tth time period and 0 otherwise; 𝑑𝑏𝑗𝑡, and 𝑑𝑎𝑗𝑡 are dummy variables taking a value 

of 1 if stop q has ridership within the jth   category for the tth time period and 0 otherwise. Finally, 

the unconditional likelihood function may be computed for stop q as: 

𝐿𝑞 =  ∫ (𝐿𝑞|Ω)𝑓(Ω)𝑑Ω
Ω

 (26) 

The log-likelihood function is given by 

Ln(L) =  ∑ ln 𝐿𝑞

𝑄

𝑞=1
 (27) 

The likelihood function in Equation (27) involves the evaluation of a multi-dimensional 

integral of size equal to the number of rows in Ω. We apply Quasi-Monte Carlo simulation 

techniques based on the scrambled Halton sequence to approximate this integral in the likelihood 

function and maximize the logarithm of the resulting simulated likelihood function (See Bhat, 

2001; Yasmin and Eluru, 2013 for more details). The likelihood functions are programmed in 

Gauss (Aptech 2016).  

7.4 Model Specification and Overall Measures of Fit 

The empirical analysis involves estimation of different models: 1) Independent ridership-

headway (IRH) model that does not accommodate for headway endogeneity and 2) Joint ridership-

headway (JRH) model that explicitly accommodates for headway endogeneity. Prior to discussing 

the estimation results, we compare the performance of these models in this section. We employ 
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the Bayesian Information Criterion (BIC) to determine the best model between independent and 

joint model. The BIC for a given empirical model is equal to: 

𝐵𝐼𝐶 =  − 2𝐿𝐿 +  𝐾 𝑙𝑛(𝑄) (28) 

where 𝐿𝐿 is the log likelihood value at convergence, 𝐾 is the number of parameters, and 𝑄 

is the number of observations. The model with the lower BIC is the preferred model. The log-

likelihood values at convergence for the models estimated are as follows: (1) Independent 

ridership-headway (IRH) model (with 55 parameters) is -110,705.364 (2) Joint ridership-headway 

(JRH) model (with 49 parameters) is -105,059.724. The BIC values for the final specifications of 

IRH and JRH are 221,979.168 and 210,625.876 respectively. The comparison exercise clearly 

highlights the superiority of the Joint ridership headway (JRH) in terms of data fit compared to 

independent ridership-headway (IRH) model.   

7.5 Variable Effects 

The final specification of the model was based on by removing the statistically insignificant 

variables at 95% confidence level, which was determined by prior research and knowledge. In this 

research, various buffer sizes (800m, 600m, and 400m buffer size) were considered during analysis 

and best fitted buffer size was taken into consideration for the final model. In presenting the effects 

of the exogenous variables, we will restrict ourselves to the discussion of the joint model. Table 

13 presents the estimation results of the joint model. Specifically, columns 2 and 3 provide the 

variable impacts of the headway component while columns 4 through 7 present the results of 

boarding and alighting components. The model results are discussed by model component.  

Table 13. Group Ordered Logit Model Results 

Variable Name 
Headway Model Alighting Model Boarding Model 

Estimates t-stat Estimates Estimates Estimates t-stat 

Constant - - -8.439 -10.286 -20.193 -20.379 

Threshold Value 1 -3.889 -73.979 - - - - 

Threshold Value 2 0.399 7.916 - - - - 



89 

 

Variable Name 
Headway Model Alighting Model Boarding Model 

Estimates t-stat Estimates Estimates Estimates t-stat 

Stop Level Attributes 

Headway (Base: Category 1) 

Dummy for headway category 2 
- - -49.429 -107.635 -54.287 -106.974 

Dummy for headway category 3 - - -80.448 -153.226 -86.460 -147.837 

No of Bus stop in a 800m buffer - - -4.382 -28.617 -4.411 -25.989 

Presence of shelter in bus stop - - 19.677 74.191 34.034 109.754 

Bus route Length in an 800m 

buffer 
-0.820 -71.485 -2.649 -17.144 -3.932 -23.983 

Transportation Infrastructures  

Side walk length in an       

400 m buffer - - 2.698 14.783 2.642 13.108 

Bike road length in an       

800 m buffer -0.203 -26.537 - - - - 

Secondary road length in an       

800 m buffer -0.517 -39.033 7.900 36.461 5.941 25.169 

Local road length in an       

800 m buffer 0.298 20.398 5.082 24.659 5.150 21.397 

Rail road length in an       

800 m buffer -0.627 -52.824 - - - - 

Built environment and land use attributes 

Land use area type in an 800m 

buffer 
      

Institutional area -1.810 -17.247 24.727 13.257 6.155 2.768 

Residential area 1.821 32.010 - - 17.128 20.615 

Office area -1.952 -24.983 39.989 42.699 42.241 31.761 

Recreational area -0.517 -2.380 -75.610 -25.432 -64.925 -19.209 

Industrial Area 5.260 42.726 - - - - 

Central business district (CBD) 

distance 
0.502 45.345 -2.884 -15.057 -2.993 -14.496 

Sociodemographic and socioeconomic variables  

Zero vehicle in HH -2.174 -14.200 75.952 28.658 72.740 24.276 

High income population -0.304 -4.244 - - - - 

Household rent - - 31.596 48.830 35.839 49.835 

SunRail effects 

Distance Decay Function for 

SunRail*SunRail operation period 
- - -5.367 -19.593 -5.188 -17.740 

Variance 

Constant – Alternative 1 (0-5 

ridership) 
- - 37.550 124.964 42.178 123.004 

Constant – Alternative 2 (5-10 

ridership) 
- - 17.905 82.714 20.074 82.247 

Scale parameter 

Scale variables - - 3.270 752.608 3.343 707.846 

Random Effect 

Constant 1.726 154.121 

Route Length in 800m buffer 0.777 102.920 
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7.5.1 Headway Components: 

The positive (negative) coefficient corresponds to increased (decreased) proportion for 

headway categories.  

 

7.5.1.1 Transportation Infrastructure Characteristics 

The bus route length of 800m buffer has a negative impact on headway. The variable 

impact is expected. Bus stops with larger bus route length are likely to have higher frequency of 

bus arrivals i.e. lower headway. A negative impact of the presence of bike length in 800m vicinity 

of the bus stop on headway is also along expected lines. The presence of bicycle infrastructure 

serves as a proxy for denser neighborhoods encouraging non-automobile alternatives. The 

presence of increased secondary highway length in the 800m buffer decreases the headway while 

a corresponding increase in local road length increases headway. The roadway length variable is 

possibly serving as an indicator of type of urban locations. The results also indicate that in the 

presence of a rail road headway is likely to be lower. The result warrants further investigation. 

7.5.1.2 Built Environment Attributes 

The built environment around a bus stop has a significant impact on bus frequency. The 

presence of industrial and residential areas within a 800m buffer of a bus stop is likely to increase 

the headway. On the other hand, in the presence of institutional, recreational and office area (800m 

buffer) the headway is likely to be lower. The results are intuitive. An increase in the stop distance 

from the central business district (CBD) is likely to increase the headway (as expected). 

7.5.1.3 Demographic and Socioeconomic Characteristics 

In terms of demographic and socioeconomic variables vehicle ownership variable has a 

significant impact. Specifically, locations with higher proportion of households with no vehicle 

are likely to have a lower headway value. The result is symptomatic of households with no vehicles 

being captive to transit mode. 
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7.5.2 Boarding and Alighting components:  

7.5.2.1 Stop Level Attributes 

Headway (here headway category headway) at the stop level has a significant impact on 

ridership (as expected). By increasing the headway, the boarding and alighting ridership are likely 

to decrease. This result indicates that if the frequency of the bus increases in stop level than the 

ridership of that stop leads to higher ridership. If there is higher demand of bus in a stop, it is likely 

to increases the bus frequency as well to accommodate the demand. The results for the number of 

the bus stop in the 800m buffer presented that if the number of bus stops increasing in the 800m 

buffer of a stop than the ridership will reduce at that stop which supports author earlier work (see 

Rahman et. Al., 2017). The main reason may be the bus spend more time for boarding/alighting 

and red lights and there might be some competition among the stop. A study (El-Geneidy, et. Al., 

2005) found that by merging nearby stops is nearly increased 6 percent bus speeds and also 

increased the ridership. By prioritizing which bus stop should stay (considering high ridership, 

locations), Transit center can improve the ridership at that location. The presence of shelter at the 

bus stop also increases the ridership in Orlando. Waiting for the bus can be brutal as it tricks 

passenger about the actual time they are waiting for the bus. By having shelters in bus stop can do 

the opposites and thus people feel more satisfied when they have shelters at the bus stop (Jaffe, 

2014).   

7.5.2.2 Transportation Infrastructure Characteristics 

The bus route length of 800m buffer has a negative effect on both boarding and alighting 

ridership which is expected but in auther earlier works this impact came positive because in the 

earlier works, we did not considered the endogeiety of the headway on bus ridership. The presence 

of headway variables directly at exogenous variables impact the effect of the bus route length of 
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800m variable effect. Bus stops with larger route length are likely to be lower headway value as 

well as Lynx does not have any stop along the interstate and also for increasing the unlinked trips. 

A positive impact on sidewalk length of the 400m buffer of the stop found for both boarding and 

alighting ridership in Orlando. By improving the pedestrian facility, walkability and safety, people 

are willing to ride on the bus and thus increasing the ridership. Along with the sidewalk, local road 

and secondary highway in 800m buffer are also increasing the ridership as a Lynx bus authority 

does not provide any stop along the major highway (Interstate and Expressway). 

7.5.2.3 Built Environment Attributes 

The built environment around a bus stop has a significant influence on bus ridership at the 

stop level. The presence of office area and the institutional area in 800m buffer within a stop 

significantly increase the bus ridership in Orlando. The presence of school/college and office helps 

people to take a bus rather than taking automobile as huge traffic congestion during School/college 

time and morning and an evening pick hour in Orlando. The proportion of residential area has 

positive effects on boarding ridership of 800m buffer, but no impact on alighting ridership. On the 

other hand, the presence of recreation area within a 800m buffer of a stop is decreasing the bus 

ridership as people usually take their bike/automobiles/family car to go to recreation center rather 

than taking a bus. The distance from the central business district (CBD) from bus stop negatively 

impacts the bus ridership as the distance from CBD increases, the bus ridership will reduce 

(expected outcome). The sum of squares distance inverse from Sunrail station to bus stop also 

negatively impacts the bus ridership as the distance increased then the multimodal facility and 

scope are decreasing thus that reduce the bus ridership as well. If the connecting between the Lynx 

bus and Sunrail improve then the bus ridership is more likely improve in this region. 
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7.5.2.4 Demographic and Socioeconomic Characteristics 

The demographic and socioeconomic variables based on census tract of the bus stop 

significantly affect the bus ridership in Orlando. The increased share of the household renters in 

Orlando is likely to increase the bus ridership. The automobile ownership also positively impacts 

the bus ridership. People having no vehicle in their household merely increase the bus ridership as 

expected as the bus or public transit is the only feasible solutions for them to commute. 

7.6 Summary 

In urban regions, public transportation systems ought to provide an equitable, safe and 

accessible transportation mode for residents. Thus, there is a need to examine public transportation 

system design and operations to enhance transit adoption and equity for urban residents. Policy 

makers and urban agencies across different parts of North America, are considering investments 

in various public transportation alternatives including bus, light rail, commuter rail, and metro. A 

critical component to evaluating the success of these investments is the development of appropriate 

statistical tools to examine the impact. Our proposed research contributes to public transit literature 

by developing econometric models that consider the potential endogeneity of stop level headway 

in modeling ridership. Most (if not all) studies in public transit literature ignore that the stop level 

headway was determined (by choice) in response to expected ridership i.e. stops with lower 

headway were expected to have higher ridership numbers. In traditional ridership studies, this 

potential endogeneity is often neglected and headway is considered as an independent variable. 

The approach violates the requirement that the unobserved factors that affect the dependent 

variable do not affect the independent variable. If this is the case, the estimated impact of headway 

on ridership would be biased (potentially over-estimated). More importantly, the estimated impact 
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of all other variables (such as land use factors, bus infrastructure) will also be biased (possible 

under-estimated).  

In this study, we address these challenges by proposing a simultaneous equation system 

that considers headway and ridership in a joint framework that accounts for the influence of 

common unobserved factors that affect headway and ridership. The proposed model is developed 

employing ridership data from Orlando region from the Lynx bus transit system. The ridership 

data includes stop level average weekday boarding and alighting information for 11 four-month 

time periods from May 2013 to December 2016. The presence of multiple data points for each stop 

allows us to develop panel models for headway, boarding and alighting. The headway variable is 

modeled using a panel ordered logit model while the ridership variables are modeled using panel 

group ordered logit models. In addition to unobserved effects in the form panel random effects, 

several exogenous variables including stop level attributes (such as number of bus stop), 

transportation infrastructure variables (such as secondary highway length, rail road length and 

local road length, sidewalk length), transit infrastructure variables (bus route length, presence of 

shelter and distance of bus stop from central business district (CBD)), land use and built 

environment attributes (such as land use mix, residential area, recreational area, institutional area, 

office area, etc.) and sociodemographic and socioeconomic variables in the vicinity of the bus stop 

(income, vehicle ownership, age and gender distribution) were considered in the model estimation.  

The model estimation results identify that headway, number of the bus stops in the 800m 

buffer, presence of shelter at the bus stop, sidewalk length in a 400m buffer, bus stop distance from 

the central business district (CBD), distance between Sunrail station and bus stop, and automobile 

ownership are likely to impact bus ridership in Orlando. The bus route length in an 800m buffer is 

negatively affected the bus ridership in Orlando which is opposite of author’s earlier work because, 
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in the earlier paper, endogeneity of headway in bus ridership was not considered but in this study, 

we have considered the endogeneity. This is a clear indication of the impact of the endogenous 

variable on the dependent variable. In our research, in order to highlight the effect of various 

attributes over time on boarding and alighting ridership, an elasticity analysis was also presented. 

We investigated the change in ridership due to the change in selected independent variables. The 

elasticity analysis highlights a worrisome trend of reducing transit ridership with time. Significant 

investments in transit infrastructure can arrest this trend. 

To be sure, the research is not without the limitations. We examined the effect of headway 

variables and endogeneity of headway on bus ridership. However, we just compute the 

endogeneity of headway on bus ridership, it will be interesting to consider another variable that 

might be endogenous with bus ridership.  
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CHAPTER EIGHT: COST BENEFIT ANALYSIS OF SUNRAIL 

8.1 Introduction 

The objective of this chapter is to document and present the cost-benefit analysis (CBA) of 

the recently added SunRail transit system in Orlando. Transit systems are an integral part of the 

development of a community. But comprehensive benefits of these systems often are not estimated 

or remain unmeasured. Though the capital cost of developing a transit system is significantly 

higher, total benefits accrued from a transit system operation in the long run is likely to surpass 

the higher investment cost. CBA is considered to be one of the most appropriate tools in evaluating 

net benefits of a transportation system (Litman, 2001). With the focus of encouraging more people 

to use sustainable transportation alternatives, FDOT is constructing a new, 17.2-mile extension to 

the existing 31-mile SunRail commuter rail. A comprehensive CBA of the existing operational 

SunRail system would assist planners and policy makers to evaluate the “real” benefit of these 

investments and provide evidence to justify allocation of more funding for improving/building 

transit infrastructures. To that extent, in this research effort, we present and discuss CBA result for 

the existing 31-mile SunRail system.  

8.2 Cost-Benefit Analysis for Sunrail 

SunRail is in operation since May 2014 in greater Orlando. The existing operational 

SunRail system comprises of 31-mile rail length along with 12 active stations - Sand Lake Station, 

Amtrak Station, Church Street Station, Lynx Central Station, Florida Hospital Station, Winter Park 

Station, Maitland Station, Altamonte Springs station, Longwood Station, Lake Mary Station, 

Sanford Station and Debary Station. In this research effort, we focus on this existing SunRail 

system for the CBA. We projected cost and benefit for 30 years (from 2014 to 2044) considering 

2014 as base year. 



97 

 

8.2.1 Factors Considered 

The potential cost-benefit components of SunRail is identified based on literature review 

and the components identified in Task 1. With regards to cost component, the factors we consider 

included: (1) capital costs and (2) operation and maintenance costs. In terms of the benefit 

component, the factors we consider included: (1) personal automobile cost savings, (2) crash cost 

savings, (3) parking cost savings, (4) energy conservation savings, and (5) assessed property value 

increase. In the current study context, we assume that SunRail trips has an impact on personal 

automobile mode only. However, SunRail could have potential impact on individuals using other 

modes including bus, walk or bike. However, in computing benefits, we assume that SunRail trip 

would have negligible effect on other modes since we did not have information on actual modal 

shifts that may have induced by SunRail.  

8.2.2 Demand Attributes 

Transit demand attributes (such as ridership, passenger miles travelled, frequencies, 

headway etc.) determine the magnitude of benefits from any transit investments as these attributes 

represents the demand and efficiency of the system. Therefore, the first step of CBA is to identify 

these demand attributes. In this research effort, we compute the benefit factors as function of daily 

ridership, passenger miles travelled and train frequency. In this section, we describe the procedure 

for computing these attributes. 

Daily Ridership 

For the purpose of identifying average daily ridership of SunRail at a system-level, we have 

compiled stop level daily boarding and alighting ridership data for ten months from January 2015 

to October 2015. The daily ridership data includes weekdays only as SunRail did not operate 

during weekends over the data collection period. The 10-month, 12 station data provided us 2,496 
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observations. A summary of the system level ridership (boarding and alighting) is provided in 

Table 14. From Table 14, we can see that the average daily system-level ridership is 3,693.163. 

Therefore, for the current study, we consider an average daily ridership of 3,700 at a system-level 

for computation of benefit factors.  

Table 14. Summary Statistics for SunRail Average Daily Ridership (January 2015 to October 

2015) 

Station Name 
Mean 

Boarding Alighting 

Sand Lake Station  451.168 82.127 

Amtrak Station  124.260 20.507 

Church Street Station  393.135 79.184 

Lynx Central Station  403.769 35.282 

Florida Hospital  201.976 26.562 

Winter Park Station  411.707 205.107 

Maitland Station  180.962 27.084 

Altamonte Springs station  244.163 40.788 

Longwood Station  240.909 36.959 

Lake Mary Station  337.005 55.139 

Sanford Station  258.952 45.735 

Debary Station  445.178 90.608 

Total 3,693.183 3,693.183 

 

Passenger Miles Travelled 

For the purpose of identifying passenger miles travelers, we selected station level ridership 

for a random day. From the stop-level daily ridership information including boarding and alighting, 

we computed the train occupancy between stations. The occupancy and station to station distance 

was employed to generate person level mileage on the system. Table 15 represents the passenger 

miles travelled computation details. From Table 15, we can see that on an average a passenger 

travelled about 16.57 miles by using SunRail on a typical weekday. Therefore, we have considered 

17 miles as average passenger miles travelled for computation of benefit factors.
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Table 15. Passenger Miles Travelled Calculations for SunRail 

SOUTHBOUND 

No. Stations 
Distance from station to 

station (miles) 

Number of passenger Total passenger 

miles (Remained 

boarded*Distance 

from station to 

station) 

Boarded Alighted Remained boarded 

1 DeBary Station 1-2 5 451 0 451 2255.00 

2 Sanford Station 2-3 4.5 253 15 689 3100.50 

3 Lake Mary Station 3-4 5.5 331 18 1002 5511.00 

4 Longwood Station 4-5 3 207 39 1170 3510.00 

5 Altamonte Springs Station 5-6 3 167 72 1265 3795.00 

6 Maitland Station 6-7 3.5 129 42 1352 4732.00 

7 Winter Park Station 7-8 2.5 152 266 1238 3095.00 

8 Florida Hospital Station 8-9 2.3 70 157 1151 2647.30 

9 Lynx Central Station 9-10 0.7 64 322 893 625.10 

10 Church Street Station 10-11 1.2 46 299 640 768.00 

11 AMTRAK Station 11-12 5.7 13 118 535 3049.50 

12 Sand Lake Road Station -- --- 0 535 --- --- 

Total Southbound   1883 1883  33088.40 

NORTHBOUND 

No. Stations 
Distance from station to 

station (miles) 

Number of passenger Total passenger 

miles (Remained 

boarded*Distance 

from station to 

station) 

Boarded Alighted Remained boarded 

1 Sand Lake Station 1-2 5.7 395 0 395 2251.50 

2 Amtrak Station 2-3 1.2 109 13 491 589.20 

3 Church Street Station 3-4 0.7 326 41 776 543.20 

4 Lynx Central Station 4-5 2.3 343 62 1057 2431.10 

5 Florida Hospital 5-6 2.5 139 86 1110 2775.00 
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Table 15 (Continued): Passenger Miles Travelled Calculations for SunRail 

NORTHBOUND 

No. Stations 
Distance from 

station to station (miles) 

Number of passenger Total passenger 

miles (Remained 

boarded*Distance 

from station to 

station) 

Boarded Alighted Remained boarded 

6 Winter Park Station 6-7 3.5 243 175 1178 4123.00 

7 Maitland Station 7-8 3 48 153 1073 3219.00 

8 Altamonte Springs station 8-9 3 92 177 988 2964.00 

9 Longwood Station 9-10 5.5 41 203 826 4543.00 

10 Lake Mary Station 10-11 4.5 17 314 529 2380.50 

11 Sanford Station 11-12 5 10 235 304 1520.00 

12 Debary Station --- --- 0 304 --- --- 

Total Northbound   1763 1763  27339.50 

Total Passenger miles travelled 33088.40 + 27339.50 = 60427.90 

Average passenger miles travelled 60427.90/(1883+1763) = 16.57 
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Train frequency 

We identify train frequency based on SunRail train frequency operation. The frequency of 

SunRail is 18 in each direction, therefore, we consider train frequency as 36 per day (representing 

both direction run) for computation of benefit factors. 

8.3 Cost Factors 

In our current study, we consider two cost factors: (1) capital costs, and (2) operation and 

maintenance costs. Capital costs include costs for planning, design and constructing the 

infrastructure for SunRail operation along with costs for buying the trains. Operation and 

maintenance costs include compensation cost of train operators, operation and maintenance 

personnel, electricity bills, buying replacement parts, supplies from vendors and other regular 

operation cost. For the current research purposes, we consider SunRail capital costs as $615 

million. In terms of operation and maintenance costs, we consider it as $34.4 million for the base 

year (sourced from FDOT, 2016; FDOT, 2017). For 30 year cost projection, we assume an increase 

rate of 2.8% per year in computing operation and maintenance cost. 

8.4 Benefit Factors 

8.4.1 Personal Automobile Cost Savings 

Personal automobile cost (PAC) savings refers to the cost saving to riders due to the shift 

from personal automobile to transit mode. There are marginal costs associated with driving a 

personal vehicle in terms of fuel usage, depreciation, insurance, maintenance, parking cost and 

vehicle ownership cost. By shifting from driving to transit, travelers are likely to reduce their 

annual transportation costs related to owning and operating a personal vehicle. In fact, Litman 

(2004) computed the savings to be $1,300 per household in cities with established rail transit 

system. Thus, there is likely to be cost savings for train riders from reduced personal automobile 
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usage. For our current research purpose, we assume PAC savings to be $0.65 per vehicle-mile 

(AAA, 2013). The value is identified by assuming that a vehicle is driven approximately 15,000 

miles per year and the cost includes operating (gas, maintenance, and tires) and ownership 

(insurance, depreciation, license, registration, taxes, and finance charge) components of driving 

personal automobile. Further, in identifying PAC savings per person, we assume that the average 

occupancy of a vehicle is 1.67 (NHTSA, 2011). Thus, the PAC cost savings is computed for a 

person as 
$0.65

1.67 𝑝𝑒𝑟𝑠𝑜𝑛−𝑚𝑖𝑙𝑒
. Table 16 provides our estimates of per year PAC savings of SunRail. 

Table 16. Personal Automobile Cost Savings 

Cost category 
Unit cost 

($/rider-miles) 

Average train-miles travelled 

(miles/rider-day) 

Personal automobile cost 

savings ($/rider-day) 

Personal 

automobile cost 

savings 

0.65

1.67
 17 

0.65

1.67
∗ 17 

𝐓𝐨𝐭𝐚𝐥 𝐩𝐞𝐫𝐬𝐨𝐧𝐚𝐥 𝐚𝐮𝐭𝐨𝐦𝐨𝐛𝐢𝐥𝐞 𝐬𝐚𝐯𝐢𝐧𝐠𝐬 (
$

𝐲𝐞𝐚𝐫
) =

𝟎. 𝟔𝟓

𝟏. 𝟔𝟕
∗ 𝟏𝟕 ∗ 𝟑𝟕𝟎𝟎 ∗ (𝟓 ∗ 𝟓𝟐) = $𝟔, 𝟑𝟔𝟓, 𝟑𝟐𝟗. 𝟑𝟒 

Note: (5 ∗ 52) represents 5 days of the week and 52 weeks operation period of SunRail per year 

 

8.4.2 Crash Cost Savings 

In general, public transportation has better safety record per unit of travel relative to 

passenger vehicle. As documented by Litman (2014), death rate of commuter rail from road traffic 

crashes is 0.43 per billion passenger mile, while the crash rate for passenger vehicle is 7.28. The 

value clearly signify the benefit of transit mode in terms of road safety. In our current research 

effort, we compute the crash cost savings of SunRail by subtracting SunRail crash cost from the 

automobile crash cost for trips to reflect the net benefit of replacing automobile trips with transit 

mode. For computing crash cost savings, we assume crash cost of automobile as $0.10 per vehicle 

mile and crash cost of SunRail as ($0.258 (external risk)+0.05*occupant(internal risk)) per vehicle 
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mile. Table 17 provides our estimates of per year crash cost savings of SunRail (following Litman, 

2012). 

Table 17. Crash Cost Savings 

Cost category 
Unit cost 

($/rider-miles) 

Average train-miles travelled 

(miles/rider-day) 

Automobile crash cost 

($/rider-day) 

Automobile crash 

cost 

0.10

1.67
 17 

0.10

1.67
∗ 17 

𝐓𝐨𝐭𝐚𝐥 𝐚𝐮𝐭𝐨𝐦𝐨𝐛𝐢𝐥𝐞 𝐜𝐫𝐚𝐬𝐡 𝐜𝐨𝐬𝐭 (
$

𝐲𝐞𝐚𝐫
) =

𝟎. 𝟏𝟎

𝟏. 𝟔𝟕
∗ 𝟏𝟕 ∗ 𝟑𝟕𝟎𝟎 ∗ 𝟓 ∗ 𝟓𝟐 = $𝟗𝟓𝟒, 𝟗𝟏𝟎. 𝟏𝟖 

Cost category Train-miles (per day) 
External cost  

($/day) 

Internal cost  

($/day) 

SunRail crash cost 31 ∗ 36 0.258 ∗ 31 ∗ 36 0.05 ∗ 17 ∗ 3700 

𝐓𝐨𝐭𝐚𝐥 𝐒𝐮𝐧𝐑𝐚𝐢𝐥 𝐜𝐫𝐚𝐬𝐡 𝐜𝐨𝐬𝐭 (
$

𝐲𝐞𝐚𝐫
) = (𝟎. 𝟐𝟓𝟖 ∗ 𝟑𝟏 ∗ 𝟑𝟔 ∗ 𝟐𝟎 + 𝟎. 𝟎𝟓 ∗ 𝟏𝟕 ∗ 𝟑𝟕𝟎𝟎) ∗ 𝟓 ∗ 𝟓𝟐   = $𝟖𝟔𝟔, 𝟒𝟓𝟐. 𝟕𝟐 

𝐓𝐨𝐭𝐚𝐥 𝐜𝐫𝐚𝐬𝐡 𝐜𝐨𝐬𝐭 𝐬𝐚𝐯𝐢𝐧𝐠𝐬 (
$

𝐲𝐞𝐚𝐫
) = $𝟗𝟓𝟒, 𝟗𝟏𝟎. 𝟏𝟖 − $𝟖𝟔𝟔, 𝟒𝟓𝟐. 𝟕𝟐 = 𝟖𝟖𝟒𝟓𝟕. 𝟒𝟔$ 

 

8.4.3 Emission Cost Savings 

One of the major benefits of transit over automobile is emission reduction benefits 

(Gallivan et al., 2015). Automobile and bus are likely to emit carbon monoxide, nitrogen dioxide, 

car dioxide and hydrocarbon in air. On the other hand, light rail is likely to produce 99% less 

hydrocarbons and carbon monoxide emissions per mile relative to that of automobile (Garrett, 

2004). In our current study, we use air pollution cost as $0.08 per vehicle mile (Blonn et al., 2006), 

reflecting the fact that SunRail is located in urban area and the rail system also generates some air 

emissions. Thus, we compute emission cost savings as “change in automobile miles 

travelled*emission cost per automobile mile travelled”. Table 18 provides our estimates of per 

year emission cost saving of SunRail. 
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Table 18. Emission Cost Savings 

Cost category 
Unit cost 

($/rider-miles) 

Average train-miles travelled 

(miles/rider-day) 

Emission cost savings 

($/rider-day) 

Emission cost 

savings 

0.08

1.67¥
 17 

0.08

1.67
∗ 17 

𝐓𝐨𝐭𝐚𝐥  𝐞𝐦𝐢𝐬𝐬𝐢𝐨𝐧 𝐜𝐨𝐬𝐭 𝐬𝐚𝐯𝐢𝐧𝐠𝐬 (
$

𝐲𝐞𝐚𝐫
) =

𝟎. 𝟎𝟖

𝟏. 𝟔𝟕
∗ 𝟏𝟕 ∗ 𝟑𝟕𝟎𝟎 ∗ 𝟓 ∗ 𝟓𝟐 = $𝟕𝟔𝟑𝟗𝟐𝟖. 𝟏𝟒 

¥ average vehicle occupancy is considered as 1.67 

 

8.4.4 Parking Cost Savings 

Parking personal automobiles are often associated with cost of parking spaces and time 

spent to find the space. Unlike automobile mode, transit mode does not have parking cost 

associated with it (except park and ride option). In our current study, we compute parking cost 

savings for trip to reflect the net benefit of replacing automobile trips with transit mode. For 

computing cost savings, we assume parking cost of automobile as $0.36 per vehicle mile 

(following Litman, 2018). Table 19 provides estimates of per year parking cost savings of SunRail. 

Table 19.Parking Cost Savings 

Cost category 
Unit cost 

($/rider-miles) 

Average train-miles travelled 

(miles/rider-day) 

Parking cost savings 

($/rider-day) 

Parking cost 

savings 

0.36

1.67¥
 17 

0.36

1.67
∗ 17 

𝐓𝐨𝐭𝐚𝐥  𝐩𝐚𝐫𝐤𝐢𝐧𝐠 𝐜𝐨𝐬𝐭 𝐬𝐚𝐯𝐢𝐧𝐠𝐬 (
$

𝐲𝐞𝐚𝐫
) =

𝟎. 𝟑𝟔

𝟏. 𝟔𝟕
∗ 𝟏𝟕 ∗ 𝟑𝟕𝟎𝟎 ∗ 𝟓 ∗ 𝟓𝟐 = $𝟑, 𝟒𝟔𝟕, 𝟑𝟕𝟔. 𝟔𝟓 

¥ average vehicle occupancy is considered as 1.67 

 

8.4.5 Energy Conservation Savings 

Transit mode can provide significant energy efficiency. Shapiro et al. (2002) found that an 

average automobile consumes about double the energy per passenger-mile travel relative to transit 
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mode. In our current research effort, we use energy conservation savings as $0.03 per vehicle miles 

(following Litman, 2018). Table 20 provides estimates of per year energy conservation cost 

savings of SunRail. 

Table 20. Energy Conservation Savings 

Cost category 
Unit cost  

($/rider-miles) 

Average train-miles travelled 

(miles/rider-month) 

Energy conservation 

savings ($/rider-month) 

Energy 

conservation 

savings 

0.03

1.67¥
 17 

0.03

1.67
∗ 17 

𝐓𝐨𝐭𝐚𝐥  𝐞𝐧𝐞𝐫𝐠𝐞𝐲 𝐜𝐨𝐧𝐬𝐞𝐫𝐯𝐚𝐭𝐢𝐨 𝐬𝐚𝐯𝐢𝐧𝐠𝐬 (
$

𝐲𝐞𝐚𝐫
) =

𝟎. 𝟎𝟑

𝟏. 𝟔𝟕
∗ 𝟏𝟕 ∗ 𝟑𝟕𝟎𝟎 ∗ 𝟓 ∗ 𝟓𝟐 = 𝟐𝟖𝟔, 𝟒𝟕𝟑. 𝟎𝟓$ 

¥ average vehicle occupancy is considered as 1.67 

 

8.4.6 Assessed Property Value Increase 

Development of transit infrastructure increases overall accessibility which in turn is likely 

to increase land values around transit stops/stations. Moreover, higher accessibility attributable to 

transit development is likely to attract more economic development, higher active transportation 

friendly environment, more activities, higher density and mixed-use community development. 

Clearly, there are positive impacts of transit development on land use value. In our current study, 

we also consider the change in land use values surrounding the SunRail stations as one of the 

elements in benefit computation. In calculating the land use values, we consider assessed property 

value or just value as a surrogate measure of direct land use value. Just value (land just value, 

building value and special feature value) of a property includes: present cash value; use; location; 

quantity or size; cost; replacement value of improvements; condition; income from property; and 

net proceeds if the property is sold. The net proceeds equal the value of the property minus 15% 

of the true market value. This accounts for the cost of selling the property. In the following 

sections, we refer assessed property value as property value for simplicity. 
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To capture the change in property value, we collected and compiled parcel level data from 

Department of Revenue (DOR) for 2011 to 2016. The data has tax information of each parcel along 

with parcel boundaries from the Florida Department of Revenue's tax database. Each parcel 

polygon (Parcel ID) has information on property/feature value, land value, land area in square feet, 

owner name, owner address, physical address, physical zip code, building details and land use 

type. From the land use categories of parcel data, we have considered six major land use categories 

for identifying the impact of SunRail on property value change. The considered land use categories 

are: (1) Single family residential, (2) Multiple family residential, (3) Institutional, (4) Industrial, 

(5) Recreational and (6) Retail/Office area. For our current research, we assume that one mile 

buffer area around each SunRail station is the influence area of SunRail for property value impact 

computation. We labeled the parcels within the SunRail influence area as “Case Parcels”. For these 

case parcels, we computed property value by six land use types identified. To be sure, we have 

computed property value for case parcels from six years from 2011 to 2016. 2011 to 2013 period 

is considered to understand the change in property value before SunRail operation period, while 

2014 to 2016 period shows the change in property value reflecting after SunRail operation period. 

Figure 5 and Figure 6 represent the spatial distribution of land use categories and property values 

for 2011 (before) and 2016 (after) within the SunRail influence area. From spatial representations, 

we can see that even though there are not much visible changes in land use categories from 2011 

to 2016, the property values, on the contrary, have changed significantly after SunRail has become 

operational.  
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Year 2011 Year 2016 

  

  
Figure 5. Land Use Types within SunRail Influence area for 2011 and 2016 
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Year 2011 Year 2016 

  

  
Figure 5 (Continued): Land Use Types within SunRail Influence area for 2011 and 2016 
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Year 2011 Year 2016 

  

  
Figure 6. Property Values within SunRail Influence area for 2011 and 2016 
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Year 2011 Year 2016 

  

  
Figure 6.  (Continued): Property Values within SunRail Influence area for 2011 and 2016 
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For CBA, we are interested in the overall system-level impact of SunRail on property 

value. However, for future investment and improvement proposals, it is also important for us to 

understand the station-level impacts. Therefore, in this study effort, we also compute the property 

values of the influence area across different stations. However, as is evident from Figure 5 and 6, 

certain portion of the influence areas for some stations are not exclusive. For some stations, buffer 

areas within 1-mile radius overlap with each other. We allocate the parcels within the overlapping 

area to a particular station by using nearest distance or proximity to or from station (Hess and 

Almeida, 2007).  For example, Lynx Central station and Church Street station are the closest 

stations in the downtown area. For taking care of the overlapping problem, we draw a straight line 

from the parcel to each station by using ArcGIS tool and then we assign the parcel to the nearest 

station in computing station-level property values. Figure 6 represents the property value per acre 

of different land use categories across twelve stations.  

From Figure 6, we can observe that, compared to other stations, the property value is very 

high around Church Street station for multi-family residential, retail/office and institutional area 

categories while in case of single family residential and industrial area, Winter park station is found 

to be the expensive one. As expected, property value per unit area by land use category had 

increased over the years for almost every station. One interesting trend that can be observed from 

Figure 7 is that across all the land use categories, property price declined a little bit from 2011 to 

2012 for all land use types except for multifamily residential. On the other hand, there is a huge 

increase in property price from 2014 to 2015 (after SunRail period) for industrial, single family 

residential, multi-family residential and office area around the Winter Park, Lynx Central, Florida 

Hospital and Church Street station.  On the other hand, for recreational areas, property price did 

not change much over the years for almost all stations except for Maitland station which shows a 
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25% increase in this category. For multifamily residential area, the property price has almost 

doubled from 2014 to 2016 for the Lynx Central, Florida Hospital and Winter Park stations. 

In the current research effort, our main objective is to identify the effect of SunRail on 

property value. However, based on the property value change within the vicinity of station areas, 

it is not accurate to attribute all of these changes to the introduction of SunRail. It is possible that 

the Greater Orlando region experienced a boom in property price. To address this, we identify 

parcels outside the influence area to estimate changes in property values. In other words, we need 

to identify some controls in order to compute the SunRail specific effect of property value. In our 

study, we identify “Control Parcels” from the area which are outside 2-mile buffer boundary of 

SunRail stations but from within 8-mile buffer area. We randomly selected control parcels based 

on their land use category and the property value. If the parcel values of control parcels are within 

25% range of case parcels, we selected those as control parcels and we repeated this procedure for 

all land use categories. 
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Figure 7. Station-level Property Value per Acre for Different Land use Types 
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Figure 7.  (Continued): Station-level Property Value per Acre for Different Land use Types 
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Figure 7. (Continued): Station-level Property Value per Acre for Different Land use Types 

0

20000

40000

60000

80000

100000

120000

140000

160000

P
r
o

p
e
r
ty

 V
a

lu
e
 (

U
S

D
/a

c
r
e
)

SUNRAIL Stations

RECREATIONAL AREA

2011

2012

2013

2014

2015

2016

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

P
r
o

p
e
r
ty

 V
a

lu
e
 (

U
S

D
/a

c
r
e
)

SUNRAIL Stations

RETAIL/OFFICE AREA

2011

2012

2013

2014

2015

2016



116 

 

It is also important for us to recognize that the parcels within downtown area have different 

impact than those outside the downtown area since downtown area was already mostly developed 

before SunRail introduction. To reflect this, we have identified control parcels for downtown and 

outside downtown area separately. We have considered three stations as downtown stations (Lynx 

Central, Church Street, and AMTRAK station) and the rest 9 stations as outside downtown stations 

(DeBary station, Sanford Station, Lake Mary, Longwood Station, Altamonte Station, Maitland 

station, Winter Park station, Florida Hospital and Sand Lake road). By following this procedure, 

we finally consider as many control parcels as we have as case parcels. Finally, we compute the 

assessed base year property value increase of areas within the vicinity of SunRail stations as: 

 

𝐵𝑌𝑃𝑉𝐼 = 0.85 ∗ 𝐵𝑃 ∗ [𝑃𝐴
𝑐𝑎𝑠𝑒𝑠 − 𝑃𝐵

𝑐𝑎𝑠𝑒𝑠 − 𝑃𝑐𝑜𝑛𝑡𝑟𝑜𝑙] 
(29) 

Where,  

𝐵𝑌𝑃𝑉𝐼 = Base year Property value increase for SunRail influence area 

𝐵𝑃 = Base year Property value for case parcels 

𝑃𝐴
𝑐𝑎𝑠𝑒𝑠= Annual percentage change in property value for case parcels from 2014-2016 

𝑃𝐵
𝑐𝑎𝑠𝑒𝑠 = Annual percentage change in property value for case parcels from 2011-2013 

𝑃𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = Annual percentage change in property value of control parcels  

The factor 0.85 is employed to allow for a safety margin on the impact of SunRail. In 

addition to accounting for growth in the control parcels we attribute only 85% of the increase in 

property values to SunRail. This can be viewed as a conservative estimate of SunRail associated 

property increase. For the base year, the computed property value increase across different land 

use types are presented in Table 21.  

 



117 

 

Table 21. Computed Property Value Increase for Base Year 

Land use types 
Property value increase 

Downtown Outside downtown 

Single family residential 800,244,624.92 4,250,778,859.61 

Multiple family residential 464,788,552.54 424,960,294.01 

Industrial 136,904,784.32 392,667,602.42 

Institutional 307,379,096.55 441,908,986.35 

Recreational 29,485.69 9,515,762.34 

Retail/Office 2,123,586,528.71 1,686,474,314.84 

 

8.5 Result of Cost-Benefit Analysis  

In performing the CBA, we assume that the useful life of the existing SunRail project will 

be 30 years with the beginning year as 2014. Therefore, we projected the costs and benefit values 

for 30 years, from 2014 to 2044, and computed the net benefit and benefit-cost ratio. In the current 

study context, we perform CBA for different scenarios as presented in Table 22. In evaluating net 

benefits of SunRail, we perform scenario analysis by assuming change in annual ridership and 

change in annual property value increase. Specifically, with respect to ridership change, we 

consider three scenarios: 

Scenario 1: No change in SunRail ridership over 30 years (Monthly ridership is 3700). 

Scenario 2: SunRail ridership increases by 2% each year over 30 years (Monthly ridership 

is 3700 for the base year 2014). 

Scenario 3: SunRail ridership increases by 10% each year over 30 years (Monthly ridership 

is 3700 for the base year 2014). 

In terms of property value, we have considered seven different property value increase 

conditions for each ridership scenario. The scenarios consider projected growth rate as a function 

of previous year growth rate. We evaluate the impact of property price increase under various 
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reducing growth rate scenarios with and without a threshold level. The rationale for these scenarios 

is to evaluate how the property value impacts change under various growth rate scenarios. 

Overall, the total numbers of scenarios considered are twenty-one (3*7). We consider 

change in ridership to reflect the possible ridership addition from Phase II and Phase III operations 

of SunRail in the future. To be sure, in computing the benefit components for scenario 2 and 3, we 

have updated the values of all the benefit components considered for cost-benefit analysis, since 

those factors are assumed to be a function of ridership. The computed net benefits and benefit-cost 

ratio for all the considered scenarios described are presented in Table 22. Positive net benefit and 

benefit-cost ration greater than 1 reflect the overall surplus over investment and operation costs of 

SunRail operation.
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Table 22. Scenarios of Cost-Benefit Analysis 

Scenarios Description 

Scenario 1: No change in SunRail ridership over 30 years (Monthly ridership is 3700) 

Scenario 1.1 ➢ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 (𝑃𝑉𝐺𝑅) = (
𝑃𝑉𝐺𝑅𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑖𝑛 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 4.3

3
)

𝑓𝑜𝑟 𝑓𝑖𝑟𝑠𝑡 15 𝑦𝑒𝑎𝑟𝑠

  ~ (
𝑃𝑉𝐺𝑅𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑖𝑛 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 4.3

6
)

𝑓𝑜𝑟 𝑙𝑎𝑠𝑡 15 𝑦𝑒𝑎𝑟𝑠

   

➢ Everything else remain same 

Scenario 1.2 
➢ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 (𝑃𝑉𝐺𝑅) 𝑓𝑜𝑟 𝑦𝑒𝑎𝑟 𝜏 = (

𝑃𝑉𝐺𝑅 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟 𝜏−1

2
)     

➢ Everything else remain same  

Scenario 1.3 
➢ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 (𝑃𝑉𝐺𝑅) 𝑓𝑜𝑟 𝑦𝑒𝑎𝑟 𝜏 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 (

𝑃𝑉𝐺𝑅 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟 𝜏−1

2
, 3.00%)     

➢ Everything else remain same 

Scenario 1.4 
➢ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 (𝑃𝑉𝐺𝑅) 𝑓𝑜𝑟 𝑦𝑒𝑎𝑟 𝜏 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 (

𝑃𝑉𝐺𝑅 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟 𝜏−1

2
, 2.00%)     

➢ Everything else remain same  

Scenario 1.5 
➢ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 (𝑃𝑉𝐺𝑅) 𝑓𝑜𝑟 𝑦𝑒𝑎𝑟 𝜏 = (

𝑃𝑉𝐺𝑅 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟 𝜏−1

5
)     

➢ Everything else remain same 

Scenario 1.6 
➢ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 (𝑃𝑉𝐺𝑅) 𝑓𝑜𝑟 𝑦𝑒𝑎𝑟 𝜏 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 (

𝑃𝑉𝐺𝑅 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟 𝜏−1

5
, 3.00%)     

➢ Everything else remain same  

Scenario 1.7 
➢ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 (𝑃𝑉𝐺𝑅) 𝑓𝑜𝑟 𝑦𝑒𝑎𝑟 𝜏 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 (

𝑃𝑉𝐺𝑅 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟 𝜏−1

5
, 2.00%)     

➢ Everything else remain same 

Scenario 2: SunRail ridership increases by 2% each year over 30 years (Monthly ridership is 3700 for the base year 2014) 

Scenario 2.1 ➢ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 (𝑃𝑉𝐺𝑅) = (
𝑃𝑉𝐺𝑅𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑖𝑛 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 4.3

3
)

𝑓𝑜𝑟 𝑓𝑖𝑟𝑠𝑡 15 𝑦𝑒𝑎𝑟𝑠

  ~ (
𝑃𝑉𝐺𝑅𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑖𝑛 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 4.3

6
)

𝑓𝑜𝑟 𝑙𝑎𝑠𝑡 15 𝑦𝑒𝑎𝑟𝑠

   

➢ Adjusted benefit components due to the change in ridership 

Scenario 2.2 
➢ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 (𝑃𝑉𝐺𝑅) 𝑓𝑜𝑟 𝑦𝑒𝑎𝑟 𝜏 = (

𝑃𝑉𝐺𝑅 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟 𝜏−1

2
)     

➢ Adjusted benefit components due to the change in ridership 

Scenario 2.3 
➢ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 (𝑃𝑉𝐺𝑅) 𝑓𝑜𝑟 𝑦𝑒𝑎𝑟 𝜏 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 (

𝑃𝑉𝐺𝑅 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟 𝜏−1

2
, 3.00%)     

➢ Adjusted benefit components due to the change in ridership 

Scenario 2.4 
➢ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 (𝑃𝑉𝐺𝑅) 𝑓𝑜𝑟 𝑦𝑒𝑎𝑟 𝜏 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 (

𝑃𝑉𝐺𝑅 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟 𝜏−1

2
, 2.00%)     

➢ Adjusted benefit components due to the change in ridership 

Scenario 2.5 
➢ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 (𝑃𝑉𝐺𝑅) 𝑓𝑜𝑟 𝑦𝑒𝑎𝑟 𝜏 = (

𝑃𝑉𝐺𝑅 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟 𝜏−1

5
)     

➢ Adjusted benefit components due to the change in ridership 
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Table 22. (Continued): Scenarios of Cost-Benefit Analysis 

Scenarios Description 

Scenario 2.6 
➢ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 (𝑃𝑉𝐺𝑅) 𝑓𝑜𝑟 𝑦𝑒𝑎𝑟 𝜏 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 (

𝑃𝑉𝐺𝑅 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟 𝜏−1

5
, 3.00%)     

➢ Adjusted benefit components due to the change in ridership 

Scenario 2.7 
➢ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 (𝑃𝑉𝐺𝑅) 𝑓𝑜𝑟 𝑦𝑒𝑎𝑟 𝜏 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 (

𝑃𝑉𝐺𝑅 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟 𝜏−1

5
, 2.00%)     

➢ Adjusted benefit components due to the change in ridership 

Scenario 3: SunRail ridership increases by 10% each year over 30 years (Monthly ridership is 3700 for the base year 2014) 

Scenario 3.1 
➢ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 (𝑃𝑉𝐺𝑅) = (

𝑃𝑉𝐺𝑅𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑖𝑛 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 4.3

3
)

𝑓𝑜𝑟 𝑓𝑖𝑟𝑠𝑡 15 𝑦𝑒𝑎𝑟𝑠

  ~ (
𝑃𝑉𝐺𝑅𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑖𝑛 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 4.3

6
)

𝑓𝑜𝑟 𝑙𝑎𝑠𝑡 15 𝑦𝑒𝑎𝑟𝑠

   

➢ Adjusted benefit components due to the change in ridership 

Scenario 3.2 
➢ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 (𝑃𝑉𝐺𝑅) 𝑓𝑜𝑟 𝑦𝑒𝑎𝑟 𝜏 = (

𝑃𝑉𝐺𝑅 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟 𝜏−1

2
)     

➢ Adjusted benefit components due to the change in ridership 

Scenario 3.3 
➢ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 (𝑃𝑉𝐺𝑅) 𝑓𝑜𝑟 𝑦𝑒𝑎𝑟 𝜏 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 (

𝑃𝑉𝐺𝑅 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟 𝜏−1

2
, 3.00%)     

➢ Adjusted benefit components due to the change in ridership 

Scenario 3.4 
➢ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 (𝑃𝑉𝐺𝑅) 𝑓𝑜𝑟 𝑦𝑒𝑎𝑟 𝜏 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 (

𝑃𝑉𝐺𝑅 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟 𝜏−1

2
, 2.00%)     

➢ Adjusted benefit components due to the change in ridership 

Scenario 3.5 
➢ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 (𝑃𝑉𝐺𝑅) 𝑓𝑜𝑟 𝑦𝑒𝑎𝑟 𝜏 = (

𝑃𝑉𝐺𝑅 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟 𝜏−1

5
)     

➢ Adjusted benefit components due to the change in ridership 

Scenario 3.6 
➢ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 (𝑃𝑉𝐺𝑅) 𝑓𝑜𝑟 𝑦𝑒𝑎𝑟 𝜏 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 (

𝑃𝑉𝐺𝑅 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟 𝜏−1

5
, 3.00%)     

➢ Adjusted benefit components due to the change in ridership 

Scenario 3.7 
➢ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 (𝑃𝑉𝐺𝑅) 𝑓𝑜𝑟 𝑦𝑒𝑎𝑟 𝜏 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 (

𝑃𝑉𝐺𝑅 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟 𝜏−1

5
, 2.00%)     

➢ Adjusted benefit components due to the change in ridership 
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Table 23. Cost-benefits analysis of SunRail over 30 Years 

Scenarios 
Property Value 

increase 
Other benefits 

Total benefits (Property 

value increase + Other 

benefits) 

Total Costs 

Net benefit (Total 

benefits - Total 

costs) 

Benefit-Cost ratio 

(Total benefits/Total 

Costs) 

Scenario 1: No change in SunRail ridership over 30 years (Monthly ridership is 3700) 

Scenario 1.1 4,868,083,957.13 323,503,544.15 5,191,587,501.28 1,674,985,000.00 3,516,602,501.28 3.10 

Scenario 1.2 569,084,731.14 323,503,544.15 892,588,275.29 1,674,985,000.00 -782,396,724.71 0.53 

Scenario 1.3 9,791,139,652.85 323,503,544.15 10,114,643,197.00 1,674,985,000.00 8,439,658,197.00 6.04 

Scenario 1.4 5,802,933,688.77 323,503,544.15 6,126,437,232.92 1,674,985,000.00 4,451,452,232.92 3.66 

Scenario 1.5 238,746,982.13 323,503,544.15 562,250,526.28 1,674,985,000.00 -1,112,734,473.72 0.34 

Scenario 1.6 9,733,889,988.41 323,503,544.15 10,057,393,532.56 1,674,985,000.00 8,382,408,532.56 6.00 

Scenario 1.7 5,656,322,022.42 323,503,544.15 5,979,825,566.57 1,674,985,000.00 4,304,840,566.57 3.57 

Scenario 2: SunRail ridership increases by 2% each year over 30 years (Monthly ridership is 3700 for the base year 2015) 

Scenario 2.1 4,868,083,957.13 438,194,196.42 5,306,278,153.56 1,674,985,000.00 3,631,293,153.56 3.17 

Scenario 2.2 569,084,731.14 438,194,196.42 1,007,278,927.57 1,674,985,000.00 -667,706,072.43 0.60 

Scenario 2.3 9,791,139,652.85 438,194,196.42 10,229,333,849.27 1,674,985,000.00 8,554,348,849.27 6.11 

Scenario 2.4 5,802,933,688.77 438,194,196.42 6,241,127,885.20 1,674,985,000.00 4,566,142,885.20 3.73 

Scenario 2.5 238,746,982.13 438,194,196.42 676,941,178.56 1,674,985,000.00 -998,043,821.44 0.40 

Scenario 2.6 9,733,889,988.41 438,194,196.42 10,172,084,184.83 1,674,985,000.00 8,497,099,184.83 6.07 

Scenario 2.7 5,656,322,022.42 438,194,196.42 6,094,516,218.84 1,674,985,000.00 4,419,531,218.84 3.64 

Scenario 3: SunRail ridership increases by 10% each year over 30 years (Monthly ridership is 3700 for the base year 2015) 

Scenario 3.1 4,868,083,957.13 1,783,400,526.10 6,651,484,483.24 1,674,985,000.00 4,976,499,483.24 3.97 

Scenario 3.2 569,084,731.14 1,783,400,526.10 2,352,485,257.25 1,674,985,000.00 677,500,257.25 1.40 

Scenario 3.3 9,791,139,652.85 1,783,400,526.10 11,574,540,178.95 1,674,985,000.00 9,899,555,178.95 6.91 

Scenario 3.4 5,802,933,688.77 1,783,400,526.10 7,586,334,214.88 1,674,985,000.00 5,911,349,214.88 4.53 

Scenario 3.5 238,746,982.13 1,783,400,526.10 2,022,147,508.24 1,674,985,000.00 347,162,508.24 1.21 

Scenario 3.6 9,733,889,988.41 1,783,400,526.10 11,517,290,514.51 1,674,985,000.00 9,842,305,514.51 6.88 

Scenario 3.7 5,656,322,022.42 1,783,400,526.10 7,439,722,548.52 1,674,985,000.00 5,764,737,548.52 4.44 
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From Table 23, we can observe that increased ridership is the most important factor in 

achieving an overall net benefit over long term for SunRail. The result has significant implication 

in terms of SunRail extension. With Phase II addition, it has the potential to increase ridership. It 

is also interesting to observe that property value increase plays an important role in accruing 

overall positive net benefit with a benefit-cost ratio over 1. The result is perhaps indicating benefits 

of transit oriented development for a personal automobile governed city like Orlando. Based on 

this result, we can argue that the SunRail commuter system has potential in promoting overall 

transit oriented development community concept in encouraging sustainable transportation 

alternatives. 

8.6 Summary 

The chapter summarized cost-benefit analysis for the existing operation SunRail system 

(Phase I). With regards to cost component, the factors we considered included: (1) capital costs 

and (2) operation and maintenance costs. In terms of the benefit component, the factors we 

considered included: (1) personal automobile cost savings, (2) crash cost savings, (3) parking cost 

savings, (4) energy conservation savings, and (5) assessed property value increase. For cost-benefit 

analysis, we considered total 21 hypothetical scenarios reflecting the change in ridership and 

property value increase rate over thirty years. Based on this result, we can conclude that the 

SunRail commuter system has potential in promoting overall transit oriented development 

community concept in encouraging sustainable transportation alternatives. 

In promoting sustainable urban transportation, policy makers are more focused on 

encouraging travelers to walk, bike or take transit among Floridians like many other auto oriented 

states and cities in the US. In Orlando, other than SunRail, another such initiative is Juice Bike 

share system of Downtown Orlando. It might also be interesting and worth investigating the cost-
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benefit analysis for Juice bike share system. The cost-benefit analysis for Juice bike share system 

would allow the policy makers to take such other initiative in consideration. The research team did 

not have any detailed data and information available on the bike share investment project and 

hence the cost-benefit analysis was not evaluated. However, the same framework, as presented in 

this technical report for SunRail, is applicable for performing cost-benefit analysis of Juice bike 

share system, which might be considered as a future research avenue.   
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CHAPTER NINE: CONCLUSION 

9.1 Summary of this study 

The economic development and the associated growth in household incomes in the United 

States during the post-Second World War resulted in an increased household and vehicle 

ownership, population and employment decentralization and urban sprawl. Population and 

employment changes resulted in a drastic reduction in public transit ridership. The consequences 

of the drastic transformation of the transportation system include negative externalities such as 

traffic congestion and crashes, air pollution associated environmental and health concerns, and 

dependence on foreign fuel. Furthermore, the increased private vehicular travel contributes to 

increasing air pollution and greenhouse gas (GHG) emissions - a matter receiving substantial 

attention given the significant impact on health and safety of future generations. In an endeavor to 

counter the negative externalities of this personal vehicle dependence, many urban regions, across 

different parts of North America, are considering investments in public transportation alternatives 

such as bus, light rail, express bus service, metro and bicycle sharing systems.  

The public transit investments are particularly critical in growing urban regions such as 

Orlando, Florida. The greater Orlando region, serves as an ideal test bed to contribute research 

approaches to evaluate the impact of transit investments on public transit system usage. Transit 

system managers and planners mostly rely on statistical models to identify the factors that affect 

ridership as well as quantifying the magnitude of the impact on the society. These models provide 

vital feedback to agencies on the benefits of public transit investments which in turn act as lessons 

to improve the investment process.  

In our study, we examine the impact of new transit investments (such as an addition of 

commuter rail to an urban region) on existing transit infrastructure (such as the traditional bus 
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service already present in the urban region). The process of evaluating the impact of new 

investments on existing public transit requires a comprehensive analysis of the before and after 

measures of public transit usage in the region. The current research effort contributes to transit 

literature by evaluating the influence of a recently inaugurated commuter rail system on traditional 

bus service. We examine the before and after impact of “SunRail” commuter rail system in the 

Orlando metropolitan region on the “Lynx” bus system. Given the relatively long-time span 

required for the influence of large scale public transportation system changes, any analysis of the 

value of new investments should consider adequate data before the system installation and after 

the system installation. A panel joint grouped response ordered modeling framework that 

accommodates for common unobserved factors affecting boarding and alighting as well as 

repeated measures for each stop. Additionally, the influence of SunRail on ridership has a positive 

temporal trend indicating the strengthening of the impact with the time of operation, a healthy 

metric for potential future expansion.  

We also accommodate for the presence of common unobserved factors associated with 

spatial factors by developing a spatial panel model by using stop level public transit boarding and 

alighting data, Specifically, two spatial models: 1) Spatial Error Model (SEM) and 2) Spatial Lag 

Model (SAR) are estimated for boarding and alighting separately by employing several exogenous 

variables including stop level attributes, transportation and transit infrastructure variables, built 

environment and land use attributes, sociodemographic and socioeconomic variables in the 

vicinity of the stop and spatial and spatio-temporal lagged variables. The repeated observation data 

at a stop-level offers multiple dimensions of unobserved factors including stop-level, spatial and 

temporal factors. In our analysis, we apply a framework proposed to accommodate for the 

aforementioned observed and unobserved factors. The results from the spatial error and lag models 
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are compared with the results from traditional linear regression models to identify the improvement 

in model fit with accommodation of spatial unobserved effects and panel repeated measures.  

Another objective of this study is to identify the factors that affect the SunRail ridership in 

Orlando region. The current study contributes to literature on transit ridership by considering daily 

boarding and alighting data from a recently launched commuter rail system. With the rich panel of 

repeated observations for every station, the potential impact of observed and unobserved factors 

affecting ridership variables are considered. Specifically, an estimation framework that accounts 

for these unobserved effects at multiple levels – station, station-week and station day - is proposed 

and estimated. In addition, the study examines the impact of various observed exogenous factors 

such as station level attributes, transportation infrastructure variables, transit infrastructure 

variables, land use and built environment attributes, sociodemographic and weather variables on 

ridership. The model system developed will allow us to predict ridership for existing stations in 

the future as well as potential ridership for future expansion sites. 

Our proposed research contributes to public transit literature by developing econometric 

models that consider the potential endogeneity of stop level headway in modeling ridership. Most 

(if not all) studies in public transit literature ignore that the stop level headway was determined (by 

choice) in response to expected ridership i.e. stops with lower headway were expected to have 

higher ridership numbers. In traditional ridership studies, this potential endogeneity is often 

neglected and headway is considered as an independent variable. The approach violates the 

requirement that the unobserved factors that affect the dependent variable do not affect the 

independent variable. If this is the case, the estimated impact of headway on ridership would be 

biased (potentially over-estimated). More importantly, the estimated impact of all other variables 

(such as land use factors, bus infrastructure) will also be biased (possible under-estimated). In this 
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study, we address these challenges by proposing a simultaneous equation system that considers 

headway and ridership in a joint framework that accounts for the influence of common unobserved 

factors that affect headway and ridership. The proposed model is developed employing ridership 

data from Orlando region from the Lynx bus transit system. The empirical analysis involves 

estimation of different models: 1) Independent ridership-headway (IRH) model and 2) Trivarite 

ridership-headway (TRH) model. Prior to discussing the estimation results, we compare the 

performance of these models in this section. The ridership data includes stop level average 

weekday boarding and alighting information for 11 four-month time periods from May 2013 to 

December 2016. The presence of multiple data points for each stop allows us to develop panel 

models for headway, boarding and alighting. The model estimation results identified that headway, 

number of the bus stops in the 800m buffer, presence of shelter at the bus stop, bus route length in 

a 800m buffer, sidewalk length in a 400m buffer, bus stop distance from the central business 

district (CBD), distance between Sunrail station and bus stop, and automobile ownership are likely 

to impact the bus ridership in Orlando.  

Another study of the dissertation is the cost-benefit analysis for the existing operation 

SunRail system (Phase I). With regards to cost component, the factors we considered included: (1) 

capital costs and (2) operation and maintenance costs. In terms of the benefit component, the 

factors we considered included: (1) personal automobile cost savings, (2) crash cost savings, (3) 

parking cost savings, (4) energy conservation savings, and (5) assessed property value increase. 

For cost-benefit analysis, we considered total 21 hypothetical scenarios reflecting the change in 

ridership and property value increase rate over thirty years. Based on this result, we can conclude 

that the SunRail commuter system has potential in promoting overall transit oriented development 

community concept in encouraging sustainable transportation alternatives. 
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9.2 Research Impact to the society 

The dissertation developed several econometric models for enhancing our understanding 

of factors affecting public transit. While the models make significant methodological 

contributions, the research also offers significant utility to transit planners and agencies. The 

models developed for Lynx and SunRail ridership can be utilized for predicting ridership for 

project expansions and/or modification. For instance, using the SunRail ridership models, transit 

agencies can generate estimates of ridership at proposed Phase 2 and 3 stations. Further, Lynx 

agency can employ the transit ridership models to evaluate ridership changes with addition or 

modification of transit routes in Orlando region. Major recommendations from our research for 

transit agencies include: (1) increasing bus frequency for high ridership stops, (2) addition of bus 

shelters, (3) redesign routes to match with land use patterns, and (4) enhance the spatial and 

temporal connectivity between SunRail and Lynx systems.  

With the emergence and deployment of advanced technology including automated 

vehicles, mobility as a service, real-time transit feeds, there is immense opportunity for increasing 

ridership across the country. The current study was unable to consider these innovative 

technologies and their impact on ridership due to lack of data. In the presence of such data, the 

models developed in the dissertation can be substantially enhanced to offer insights for the future. 
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