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ABSTRACT 

 

The adaption of needle-type electrochemical microsensor (or microelectrode) techniques 

to environmental science and engineering systems has transformed how we understand mass 

transport in biotic and abiotic processes. Their small tip diameter (5-20µm) makes them a unique 

experimental tool for direct measurements of analytes with high spatial and temporal resolutions, 

providing a quantitative analysis of flux, diffusion, and reaction rate at a microscale that cannot 

be obtained using conventional analytical tools. However, their applications have been primarily 

limited to understanding mass transport dynamics and kinetics in biofilms. With the 

advancement of sensor fabrication and utilization techniques, their potential applications can 

surpass conventional biofilm processes. In this dissertation, microsensors were utilized to 

elucidate mass transport and chemical reactions in multidisciplinary research areas including 

biological nutrient uptake, oily wastewater treatment, photocatalytic disinfection, and plant 

disease management, which have not yet explored using this emerging technology.  

The main objective of this work was to develop novel microsensors and use them for 

better understanding various natural and engineered aquatic systems. These include; 1) 

investigating localized photo-aeration and algal-bacterial symbiotic interaction in an advanced 

algal-bacterial biofilm process for nutrient removal from wastewater, 2) characterizing oil-in-

water emulsions for better understanding bilge water emulsion stability, 3) evaluating sun-light 

driven photocatalytic reactions using a novel MoS2 nanofilm for water disinfection and 

microcystins-LR removal, 4) developing a zinc ion-selective microsensor and applying them for 

monitoring the transport of zinc in citrus trees, and 5) integrating heavy metal detection using 

anodic stripping voltammetry (ASV) in a microelectrode platform for plant applications.  
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Overall, microsensors capable of measuring pH, oxidation-potential reduction (ORP), 

dissolved oxygen (DO), ammonia (NH3), hydrogen peroxide (H2O2), and zinc (Zn2+) were 

developed and applied to the systems described above to significantly contribute to a better 

understanding of interfacial transport mechanisms in various natural and engineered systems. 
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CHAPTER ONE: INTRODUCTION 

The adaption of needle-type electrochemical microsensors to environmental systems has 

transformed how we study biofilms, mats, and sediments. With such small tip diameters (6-

20µm), they can be used to perform measurements at the microscale which can provide 

mechanistic information that cannot be obtained from bulk-scale measurements. Microsensors 

have the advantage of providing in situ measurements of analyte across an interface or within a 

biofilm without destroying the sample. They also provide a faster response time compared to 

macrosensors and have low sensitivity to stirring which minimizes artifacts due to turbulence.  

Microsensors are used to develop microprofiles by measuring an analyte vertically through 

an interface and logging the data at defined points in space.  From the measured concentration 

profiles, important kinetic parameters at a given location can be determined.  These include net 

specific consumption and production rates (k), constituent flux (J), diffusion coefficient (D), 

analyte biofilm penetration and concentration variability (Figure 1-1).  

Electrochemical needle-type microsensors, microelectrodes, use well-known 

electrochemical concepts to measure an electrochemical signal in the form of either a potential 

difference (mV vs. Ag/AgCl) or current (pA). Those that measure potential difference are called 

potentiometric microelectrodes and those that measure current under controlled potential are 

amperometric microelectrodes. Potentiometric microelectrodes typically use an ion-selective 

membrane to create a potential difference between the working and reference electrodes that 

corresponds to analytic concentrations. Examples of ion-selective microelectrodes include, pH, 

ammonia, chloride, sodium, fluoride and nitrate. Ion selective microelectrodes that rely on liquid 

ion exchange membranes have short lifetimes and are not typically commercially available. For 

ion-selective microelectrodes the chemical potential of the ion activity within the sensor is 
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constant and the Nernst equation can be used to describe the response of the sensor. Another 

potentiometric microelectrode is the phosphate sensor which does not rely on an ion-selective 

membrane but instead uses a corrosion mechanism where cobalt oxides is converted to cobalt 

phosphate in the presence of phosphate.  Amperometric microelectrodes measure analyte by 

measuring current. A current is produced by polarizing the tip of the sensor to a specific potential 

which corresponds to an oxidation/reduction reaction of the analyte. Examples of amperometric 

microelectrodes include oxygen, hydrogen, and hydrogen peroxide.  

 
Figure 1- 1. Typical experimental setup for microprofiling and examples of microprofiling  

and surface mapping data 

Traditionally, microsensor applications have been limited to understanding mass 

transport dynamics and kinetics in biofilms; however, their potential applications surpass 

conventional biofilm processes. Mass transport chemistry is also fundamental to biological 

nutrient uptake, oily wastewater treatment, photocatalytic disinfection, and plant disease 

management; yet, microsensor studies in these areas of research have not been explored.  
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Goals and objectives 

The main objective of this research was to develop novel microsensors for quantifying 

mass transport kinetics in engineered and natural water systems. Chemical microprofiles 

measured in this research include, pH, dissolved oxygen (DO), oxidation-reduction potential 

(ORP), free chlorine, monochloramine, hydrogen peroxide (H2O2), and zinc. This dissertation 

focuses on four applications of microsensors to understand environmental engineering 

probelems. 1) investigating the feasibility of algal biofilms for localized photo-aeration in 

advance wastewater treatment, 2) evaluating the performance of microelectrodes across and oil-

water interface for characterizing emulsion stability in bilge water, 3) evaluating photocatalytic 

reactions using microelectrodes for water disinfection and emerging contaminants removal (i.e. 

microcystins-LR) and 4) developing zinc microsensors for monitoring the transport of zinc in 

citrus trees. 

Dissertation Organization 

This dissertation is organized in eight chapters. Chapter 1 presents introductory 

information and overview of this research. Chapter 2 provides a literature review and discussion 

of the principles of mass transport processes and determination of mass transport kinetics using 

microsensors.  

Chapter 3 describes results from the application of microsensor to a novel microalgal-

bacterial wastewater treatment process. This chapter specifically discusses the kinetics and mass 

transport of oxygen and ammonia within microalgae biofilms; however, the role of chl. a to 

biomass ratio and algal growth rate on photooxygenation by microalgae are also discussed. Other 

results from this paper include nutrient removal efficiencies and bacterial community structure. 

The results of this study was submitted to Bioresource technology (Impact Factor: 6.65). 
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Chapter 4 focuses on the use of microsensor for the characterization of bilge water 

emulsions. This study utilized needle-type microsensors and confocal laser scanning microscopy 

(CLSM) for characterizing simulated bilgewater emulsions with different type of surfactants 

(Triton X-100 and sodium dodecyl sulfate [SDS]) under various NaCl concentrations at micro-

scale. A diffusion process was clearly visualized across the oil/water interface which appears to 

be related to emulsion formation kinetics and mass transfer. The results of this study was 

published in Langmuir (Impact Factor: 3.883). 

Chapter 5 investigates photocatalytic reaction kinetics of a newly developed vertically-

aligned MoS2 photocatalyst by in situ characterization of ROS generation using microsensors. 

Moreover, it was demonstrated that the coating of thin noble metal layers on top of pristine 

MoS2 films significantly improves the photocatalytic efficiency of ROS production. The 

underlying mechanisms for the observed photocatalytic reactions as well as their governing 

parameters are also discussed. This work was published in Scientific Reports ( Impact Factor: 

4.259).  

Chapter 6 and 7 discusses the use of microsensors in monitoring and quantifying the 

movement of Zn2+ in citrus plants for optimized HLB management. Chapter 6 looks at 

developing and characterizing a solid contact micro-ion-selective electrode (SC-µ-ISE) for the 

determination of zinc transport in sour orange seedlings using a non-invasive microelectrode ion 

flux estimation (MIFE) technique. This work was published in Electroanalysis (Impact Factor: 

2.851). Chapter 7 presents in situ detection of Zn2+ using a novel two-step square wave anodic 

stripping voltammetry (SWASV)-based needle-type microsensor for citrus plant applications. 

This work was published in MRS communications (Impact Factor: 3.01).  
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Chapter 8 contains conclusions and recommendations developed from this research and 

the appendices provide detailed methodology and supplemental information.   
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CHAPTER TWO: MASS TRANSPORT IN ENVIRONMENTAL 

ENGINEERING: A LITERATURE REVIEW 

Introduction 

Over the last several decades, development and production of environmental pollutants in 

the United States has grown exponentially (Robinson 2009). Therefore, responsible disposal 

practices are needed to ensure public health and environmental protection.  Environmental 

engineers (EnvE) are needed to design systems to treat water and remove toxic chemicals 

(Cooper 2015). This requires an understanding of equilibrium thermodynamics, chemical 

reaction kinetics and mass transfer in engineered and natural systems to predict the fate of these 

contaminants (Logan 2012). Among these, the idea of mass flux is one of the most useful tools 

of chemical process modeling because of the interest in mass transport into or out of certain 

regions. Thus, many publications have been dedicated to the development of mass transport 

model equations (He et al. 2000, Yang et al. 2007, You and Liu 2002). Therefore, it is important 

to understand and apply these models to water treatment design. 

 Despite a working knowledge of mass transport models, environmental engineers are 

often left with little control over system conditions for transport calculations. The natural 

variability of environmental processes often leads to poor reliability between modeled and actual 

mass transport processes. Therefore, in situ determination of mass transport kinetics is extremely 

valuable to environmental engineers (Logan 2012). Within the last decade, the adaption of 

needle-type electrochemical microsensors to environmental systems has transformed how we 

study mass transport processes (Bishop et al. 1995, de Beer and Schramm 1999, Lewandowski et 

al. 1995). With such small tip diameters (3-20µm), they can be used to perform measurements at 

the microscale which can give important kinetic parameters at a given location.  These include 

production rates (k), constituent flux (J), and diffusion coefficient (D). With this information, 
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environmental engineers can better design and optimize water treatment processes (Lee et al. 

2009). 

This brief review on the fundamentals of mass transport mechanisms in environmental 

engineering processes discusses diffusive mass transport examples in environmental engineering, 

including mass transport processes in abiotic and biofilm processes, and looks at methods for 

determining mass transport kinetics using microsensors.  

Diffusive Mass Transport 

Diffusion can be an important mass transport mechanism for gases, molecules, ions and 

small particles. Transport by molecular diffusion is relatively slow compared to other bulk 

transport processes (Clark 2011). For example, if a small amount of chemical is placed in a 

beaker of water, the chemical would slowly diffuse from the areas of high concentration to the 

areas of low concentration. After enough time, the chemical in the beaker would reach an equal 

final concentration. While this process is much slower than stirring the beaker, diffusion 

transporting can play a significant role in many areas of environmental engineering.  

 In order to understand diffusion transport equations, it is important to understand the 

mechanism of how chemicals are transported by molecular diffusion. Brownian motion can be 

defined as the motion of a single molecule driven by thermal energy (Logan 2012). Although the 

exact path of any one molecule cannot be predicted, we can quantify the net effect of Brownian 

motion of the transport of all the molecules in the system. For example, if all molecules 

movement is random, there is no net change in molecules that are homogenous; however, if a 

new chemical is introduced, the random motion of the molecules will carry them away from their 

initial location. This random motion of molecules away from their initial location can be 
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described by Fick’s First Law where a change in concentration in a fluid changes with distance 

from the point of injection. Figure 2-1 demonstrates diffusive mass transport.  

 

Figure 2- 1. Illustration of diffusive mass transport as a function of time where (a) is the 

time the chemical was injected and (b) is the chemical gradient formed by diffusion 

(adopted from Logan (2000)). 

Looking at Figure 2-1, it is clear that the flux of a chemical at any point is proportional to 

the concentration gradient at that point. This can be described mathematically using Fick’s First 

Law, or 

𝑗𝐶𝑤,𝑧 =  −𝐷𝐶𝑤
𝑑𝑐𝐶𝑤

𝑑𝑧
                                                        (2-1) 

 Where 𝑗𝐶𝑤,𝑧 is the mass flux of C through phase w in the z direction. 
𝑑𝑐𝐶𝑤

𝑑𝑧
 is the gradient 

of C at any point Z and 𝐷𝐶𝑤 is a known diffusion coefficient (Logan 2012). The molecular 

diffusion coefficient is a basic property of a chemical. It is different for every chemical and every 

phase and is a function of temperature. Typically, diffusion coefficient can be found in 

references; however, they can also be determined experimentally (Revsbech et al. 1998) or using 

correlations. For example, diffusion coefficients are closely related to the molecular weight of 

the molecule. The Wilke-Chang correlation is commonly used for predicting the diffusivity of 

small compounds in aqueous solution. 

𝐷𝑐𝑙 =  
7.4×10−8𝑇(𝛷𝑙𝑀𝑡)1/2

𝜇𝑙𝑉𝐶,𝑏
0.6                                                  (2-2) 
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Where, 𝐷𝑐𝑙 is the diffusivity of the chemical in cm2 s-1, 𝜇𝑙 is the viscosity of the solvent, 

T is the absolute temperature in K, M is the molecular weight of the liquid, VC, is the molal 

volume of the chemical at the normal boiling point in cm3 g mol-1, and 𝛷𝑙 is the association 

parameter for the liquid phase (Wilke and Chang 1955).  

 Fick’s law and other special diffusive transport equations are used to describe the 

transport of molecules due to its thermal energy (Clark 2011). Dispersion is when a chemical is 

transported due to bulk or turbulent motion and should not be confused with diffusive transport. 

While both transport mechanisms play an important role in reactor design, diffusive transport is 

the dominant transport mechanism for the processes discussed in this dissertation (e.g., biofilm, 

emulsion, and photocatalytic kinetics). 

Diffusive Transport Processes in Environmental Engineering 

Mass transport modeling is an essential tool for environmental engineers. Applications 

include determining adsorption kinetics, concentration polarization in membrane processes, 

advance oxidation kinetics, and biological processes like determining substrate utilization 

kinetics of biofilms. In abiotic processes, transport can usually be simplified into three theories 

of mass transport; 1) stagnate film theory where mass transport is through a layer assumed to be 

stagnant, 2) penetration theory where chemical is gas phase penetrate into a falling liquid film 

and boundary layer theory where transport to a flat surface is assumed to be a uniform flow field 

(Clark 2011, Logan 2012). Biological mass transport can be more complex. Biofilms can 

increase and decrease in thickness. They can be heterogenous by nature and can die off at the 

bottom of the biofilm due to lack of nutrients (Lewandowski and Beyenal 2013). Below, mass 

transport in abiotic and biotic systems are briefly discussed.  
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Abiotic mass transport processes 

Diffusive transport is typically used to describe mass transport from a bulk liquid to a 

solid uniform surface. This is because mass transport for dispersive mechanisms decrease as 

liquid velocity decrease. Approaching the surface of a liquid solid interface, liquid velocity 

decreases to a point where it is almost stagnant and diffusive transport mechanisms are 

dominant. This layer is called the diffusion boundary layer. Below this layer, Fick’s first law can 

be used to describe mass transport. 

 While Fick’s first law is commonly used for mass transport kinetics, the model is often 

over simplified which has given rise to many mass transport models that are specific to certain 

applications (Clark 2011). For example, in membrane processes it can be assumed that there is 

no net mass transfer of the diffusing species at steady state. In this case there is a flow toward the 

membrane, therefore there is a convective flux toward the membrane surface. Since the 

concentration of analyte is going to be higher at the membrane surface, there is also a diffusive 

transport away from the membrane. Therefore, the following equation can be used. 

𝑙𝑛 (
𝐶𝑔

𝐶𝑏
) =  (𝑢 − 𝑧)

𝛿

𝐷𝐴𝐵
                                                    (2-3) 

 where 𝛿 is the thickness of the particle layer above the membrane, Cg is the particle 

concentration at the surface of the membrane and Cb is the concentration in the bulk. The term  

(𝑢 − 𝑧) is the mass-average velocity or membrane-permeate flow velocity (Clark 2011). The 

equation above demonstrates how mass transport model can be developed; however, this model 

may be over simplified and others have developed more accurate models that include the 

increasing concentration of particles as the fluid is passing through the membrane and diffusivity 

though the support layer of the membrane.   
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Biotic mass transport processes 

A significant portion of mass transport modeling in environmental engineering is focused 

on the kinetics of biofilms (Lazarova and Manem 1995, Rittman and McCarty 1981, Wuertz et 

al. 2003). Depending on the bulk substrate concentration and the biofilm thickness, it can be 

possible to determine system order kinetics which is very useful for biological reactor design. In 

a simplified biofilm model, there are two boundary layers above the biofilm surface: the mass 

transport boundary layer and the hydrodynamic boundary layer. Within the respective boundary 

layers gradients are formed with flow velocity and nutrient concentration decreasing towards the 

biofilm surface (Lewandowski and Beyenal 2013). This is illustrated in Figure 2-2.  

 

Figure 2- 2. Substrate concentration profile and flow velocity distribution near and within 

a biofilm. (From Lewandowski and Beyenal (2013)).  

As flow velocity decreases approaching the biofilm surface, the mechanism of chemical 

transport changes from dispersive or convection to diffusion transport. Since microorganism 

metabolize nutrients faster than it is delivered by diffusion, a concentration profile within the 

hydrodynamic boundary is formed. The layer above the biofilm where the nutrient concentration 

decreases as a result of diffusion is called the mass transport boundary layer.  Below the biofilm 
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surface different factors affect mass transport, for example, the density and porosity of the 

biofilm; therefore, the chemical profile above and below the surface of the biofilm need to be 

combined to get a representative picture of the overall mass transport. Therefore, chemical 

component distribution above and within a biofilm need to be measured to determine overall 

mass transport.  

The substrate concentration profile external to the biofilm surface is the flux (J) of the 

substrate to the biofilm which is described in the following equation 

𝐽𝑤 =
𝐷𝑤(𝐶𝑏−𝐶𝑠)

𝛿
                                                        (2-4) 

Where 𝐶𝑏 − 𝐶𝑠 the difference between the substrate concentration in the bulk solution 

and at biofilm surface, (Dw) is the diffusion coefficient in water and (δ) is the thickness of the 

mass transfer boundary layer(Lewandowski and Beyenal 2013).  Once inside the biofilm the 

substrate is transported by diffusion and consumption by the biofilms according the Monod-type 

kinetics (Lazarova and Manem 1995). At steady state the rate of substrate delivery by diffusion 

equals the rate of microbial substrate utilization therefore the following equation can be used. 

𝐷𝑓
𝑑2𝐶

𝑑𝑧2 = 𝜇𝑚𝑎𝑥
𝐶

𝐾𝑠𝑀+𝐶

𝑋𝑓

𝑌𝑠/𝑠
                                              (2-5) 

Where Df  is the average effective diffusivity of the growth-limiting nutrient in the 

biofilm (m2/s), z is the distance from the bottom (m), Lf  is the thickness of the biofilm (m), Xf is 

the average biofilm density (kg/m3), Yx/s is the yield coefficient (kg microorganisms/kg nutrient), 

μmax is the maximum specific growth rate (s–1), KsM is the Monod half-rate constant (kg/m3), C 

is the growth-limiting substrate concentration (kg/m3), and Cs is the growth limiting substrate 

concentration at the biofilm surface (kg/m3)(Lewandowski and Beyenal 2013). 
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 Determination of Mass Transport Kinetics 

Traditional mass flux measurement is done sampling bulk water; however, this is not 

preferred because slow mass transport processes may not be detected. Therefore, direct 

measurement of the concentration between the bulk water and the surface is needed for accurate 

determination of mass transport kinetics. The development of needle type microsensors has 

enabled researchers to measure mass transport directly due to its small tip size of only a few 

microns. This allows for measurements approaching a mass transport interface and though the 

interface without disturbing the sample.   

To measure a chemical profile, a microsensor is attached to a computer-controlled 

micromanipulator to move the tip of the sensor though the mass transport interface. The 

computer software moves and records position according to user set parameters. Measurements 

typically begin 1000-3000 µm above the substrate and readings are taken every 10 to 100µm.  

Depending on the microelectrode type, a multimeter is used to monitor potential or current from 

the microsensor. The multimeter must be sensitive enough to detect picoammeter changes due to 

small tip size of the sensor. Microsensor are very fragile therefore, they need to be calibrated 

before and after each experiment to ensure they were not damaged. A guide sensor can be used 

to help the user avoid damaging the sensor on a hard substrate.  

The sample is placed in a flow cell with a constant flow of liquid over the sample (e.g. 2 

ml/min) to develop conditions constant with boundary layer theory. A microscope can be used to 

track the position of the microsensor and a lab stand can position the sample within view of the 

microscope. The experiment should be performed in a faraday cage to avoid electrostatic 

interferences. Figure 2-3(a) shows an experimental set up for a typical micro profiling 

experiment.   
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Figure 2- 3. a) Diagram of a typical microprofiling experimental set up and b) typical 

microprofile 

Figure 2-3(b) displays a typical microprofile where dissolved oxygen is measured from 

1500µm to 0µm above a reactive surface. Bulk concentration (Cb) is calculated form the average 

reading above the diffusion boundary layer and surface concentration (Cs) is found at the surface 

of the substrate. The slope is calculated by subtracting the concentration from the bulk to the 

surface and dividing by the distance between the diffusion boundary layer. This can be 

multiplied by a known diffusion coefficient to calculate flux.  

The effective diffusion coefficient biofilms and sediments can also be determined using 

microprofiles (Revsbech 1989). Apparent diffusion coefficient is an essential parameter for 

calculating diffusive mass transport. Under non-steady state concentrations chemical profiles are 

described by Fisk’s second law of diffusion 

𝑑𝐶

𝑑𝑡
= 𝐷𝑠

𝑑2𝐶

𝑑𝑥2 + (𝑃 − 𝑅)                                                    (2-6) 
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Where P and R are the rates of production or consumption at depth x to time t. 

Microchemical profiles taken over time can be used to determine Ds if there is no biological 

production or consumption of the substrate (Revsbech 1989). Therefore, the sediment needs to 

be disinfected before micro profiling. It is also important to conduct diffusion coefficient 

experiments at a well-defined temperature because even a small temperature can result in a 

significant difference in Ds. A study by Revsbech (1988) discusses the methods for 

determination diffusion coefficients using microsensors in more detail.  

  



16 

 

References 

Bishop, P.L., Zhang, T.C. and Fu, Y.-C. (1995) Effects of biofilm structure, microbial 

distributions and mass transport on biodegradation processes. Water Science and Technology 

31(1), 143-152. 

 

Clark, M.M. (2011) Transport modeling for environmental engineers and scientists, John Wiley 

& Sons. 

 

Cooper, C.D. (2015) Introduction to environmental engineering, Long Grove, IL : Waveland 

Press, [2014]. 

 

de Beer, D. and Schramm, A. (1999) Micro-environments and mass transfer phenomena in 

biofilms studied with microsensors. Water Science and Technology 39(7), 173-178. 

 

De Beer, D., Stoodley, P., Roe, F. and Lewandowski, Z. (1994) Effects of biofilm structures on 

oxygen distribution and mass transport. Biotechnology and bioengineering 43(11), 1131-1138. 

 

He, W., Yi, J.S. and Van Nguyen, T. (2000) Two‐phase flow model of the cathode of PEM fuel 

cells using interdigitated flow fields. AIChE Journal 46(10), 2053-2064. 

 

Lazarova, V. and Manem, J. (1995) Biofilm characterization and activity analysis in water and 

wastewater treatment. Water research 29(10), 2227-2245. 

 

Lee, W.H., Seo, Y. and Bishop, P.L. (2009) Characteristics of a cobalt-based phosphate 

microelectrode for in situ monitoring of phosphate and its biological application. Sensors and 

Actuators B: Chemical 137(1), 121-128. 

 

Lewandowski, Z. and Beyenal, H. (2013) Fundamentals of biofilm research, CRC press. 

 

Lewandowski, Z., Stoodley, P. and Altobelli, S. (1995) Experimental and conceptual studies on 

mass transport in biofilms. Water Science and Technology 31(1), 153-162. 

 

Logan, B.E. (2012) Environmental transport processes, John Wiley & Sons. 

 

Revsbech, N.P. (1989) Diffusion characteristics of microbial communities determined by use of 

oxygen microsensors. Journal of Microbiological Methods 9(2), 111-122. 

 

Revsbech, N.P., Nielsen, L.P. and Ramsing, N.B. (1998) A novel microsensor for determination 

of apparent diffusivity in sediments. Limnology and Oceanography 43(5), 986-992. 

 

Rittman, B. and McCarty, P.L. (1981) Substrate flux into biofilms of any thickness. Journal of 

the Environmental Engineering Division 107(4), 831-849. 

 

Robinson, B.H. (2009) E-waste: an assessment of global production and environmental impacts. 

Science of the total environment 408(2), 183-191. 



17 

 

 

Wilke, C. and Chang, P. (1955) Correlation of diffusion coefficients in dilute solutions. AIChE 

Journal 1(2), 264-270. 

 

Wuertz, S., Bishop, P.L. and Wilderer, P.A. (2003) Biofilms in wastewater treatment, IWA 

Publishing. 

 

Yang, W., Zhao, T. and Xu, C. (2007) Three-dimensional two-phase mass transport model for 

direct methanol fuel cells. Electrochimica Acta 53(2), 853-862. 

 

You, L. and Liu, H. (2002) A two-phase flow and transport model for the cathode of PEM fuel 

cells. International Journal of Heat and Mass Transfer 45(11), 2277-2287. 

  



18 

 

CHAPTER THREE: APPLICATION OF MICROSENSORS TO ALGAL-

BACTERIAL BIOFILMS FOR ADVANCED WASTEWATER 

TREATMENT 

 

Abstract 

The removal of nitrogen (N) and phosphorus (P) from synthetic wastewater was 

investigated in a novel microalgae integrated fixed film activated sludge (MAIFAS) sequencing 

batch reactor (SBR) to better understand microalgal/bacterial biofilms in wastewater treatment. 

The MAIFAS system removed >99% ammonia and 51%  P without the need for mechanical 

aeration, a marked improvement over the suspended microalgae sludge control, which only 

removed 57%  ammonia and 49%  P from synthetic wastewater. A microscopic investigation 

using microelectrodes showed well-defined photo-oxygenation by the MAIFAS biofilms with 

surface DO concentrations reaching 6.7 mg O2/L compared to 1.2 mg O2/L in the bulk solution. 

This localized oxygenation appears to contribute to increased ammonia removal within the 

biofilm. Ammonia microprofiles revealed no significant ammonia removal in the algal portion of 

the biofilm indicating the role of algae biofilm in the MAIFAS reactor is mostly aiding photo-

oxygenation. Genetic sequencing revealed that the addition of microalgae to the IFAS system 

promoted significant changes in the bacterial community structure and altered metabolic activity 

of several bacterial groups. In particular, the MAIFAS biofilms showed a large population of 

Candidatus Accumulibacter compared to the IFAS control (55% vs. <1%). Overall, this research 

represents a novel strategy for reducing energy consumption while meeting stringent effluent 

standards using a hybrid symbiotic microalgae-based IFAS technology. 
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Introduction 

As the human population increases and environmental requirements become more stringent, 

the need for sustainable water treatment that meet regulatory standards and reduce energy 

consumption has become a top priority in the water industry (EPA, 2006). To address these 

issues, microalgal treatment systems have been studied as a low-cost, environmentally friendly, 

wastewater treatment alternative to conventional wastewater treatment processes. Algae’s 

nutritional and chemical requirements offer opportunities for advanced bioremediation and 

biofuel production by integrating industrial and municipal utilities with algal systems for a 

holistic approach to managing urban resources. For example, microalgae (such as Chlorella 

vulgaris) have been used to treat wastewater because of their nutrient (nitrogen [N] and 

phosphorous [P]) uptake potential without having to rely on an organic carbon source (González 

et al. 2008, Boelee et al. 2011). In addition, microalgae have drawn attention as a renewable 

energy source because of their potential for high biomass and lipid productivity (15–300 times 

more than conventional crops-to-biodiesel production) (Church et al. 2017, Hwang et al. 2016, 

Pate et al. 2011). 

In recent years, several studies have coupled algal photosynthesis with conventional 

biological nutrient removal processes. In these systems, algal photosynthesis is used to 

dramatically decrease energy consumption by reducing energy costs associated with mechanical 

aeration (i.e., 45–75% of plant energy costs (Rosso et al., 2008)) (González et al., 2008; Karya et 

al., 2013). For example, Karya et al. (2013) achieved full ammonia removal from wastewater (50 

mg NH4
+-N L-1) without mechanical aeration and found that 85% of the removal was due to 

nitrification.  Likewise, Wang et al. (2015) used a microalgal-bacterial consortium to remove 

more that 90% total nitrogen (TN) from digested swine manure (300 mg NH4
+-N L-1) and 
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contributed to 80% of removal to nitritation/denitritation. However, these systems rely on fast 

growing microalgae to supply oxygen and slow growing nitrifying bacteria for 

nitrification/denitrification; thereby limiting solid retention times (SRTs) that can be used to 

support both organisms. Ideally, the SRT for algae and nitrifying bacteria should be uncoupled to 

improve nutrient removal efficiencies.  

Over the past two decades, many wastewater treatment plants in the United States (U.S.) 

have found that fixed film technologies (i.e., moving bed bioreactors [MBBR] and integrated 

fixed film activated sludge [IFAS]) provide an effective alternative for expanding or improving 

existing wastewater treatment facilities, with respect to nitrification, due to its relatively small 

footprint (Onnis-Hayden et al., 2011). This is because the nitrifying bacteria tend to establish 

themselves on biofilm carriers and thus can be retained even when suspended nitrifiers would be 

washed out of the system (e.g., at low temperatures or short solids retention time [SRT]). While 

both MBBR and IFAS systems are suitable for biological N removal through nitrification, IFAS 

systems can be optimized for both biological N and P removal because the SRT for nitrifiers and 

polyphosphate-accumulating organisms (PAOs) are uncoupled. Previous research has 

demonstrated that nitrifiers colonized IFAS media while PAOs existed mainly in suspension 

(Kim et al., 2010; Sriwiriyarat and Randall, 2005 Onnis-Hayden et al., 2011). By applying this 

concept to an algal-bacterial wastewater process, it is hypothesized that algal biofilm can be 

formed on the IFAS media and provide oxygen sufficinetly to nitrifying biofilm, while 

maintaining a SRT suitable for P removal by suspended algal-bacterial consortium.   

This study presents a novel symbiotic microalgae-based IFAS (MAIFAS) technology as a 

strategy for reducing energy consumption while meeting stringent effluent standards. The overall 

goal of this research was to determine whether the developed MAIFAS process can improve on 
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existing IFAS process by uncoupling photo-aeration between suspended solids for P removal and 

biofilms for nitrification. To do this, three lab-scale sequencing batch reactors (SBRs) (i.e., 

MAIFAS, IFAS [control], suspended microalgae [negative control]) were operated and evaluated 

for 150 days for nutrient removal and photo-aeration.  Interactions between microalgae and 

bacteria as well as mechanisms of N and P removal in the MAIFAS system were elucidated 

using multiscale investigations which include microelectrodes, next-generation molecular 

methods, and a series of batch studies. 

Materials and Methods 

Microalgae cultivation, bacteria inoculation, and synthetic wastewater preparation  

Chlorella vulgaris (UTEX 2714, UTEX Algae Culture Collection, Austin, TX) is commonly 

used to study microalgal wastewater treatment (De-Bashan et al., 2002; Wang et al., 2010) and 

thus was selected as a model microalga in this study. The C. vulgaris strain was grown in 1L 

glass bottles (13951L, Corning Inc., Corning, NY) containing 500 mL of Bold’s basal medium 

(BBM). The bottles were incubated at room temperature (23°C) under continuous cool-white 

fluorescent light illumination of 20 µmol m-2 S-1 photosynthetically active radiation (PAR) 

(Apollo Horticulture T5, 6400K Fluorescent bulbs) and stirred at 50 rpm. Initially, the culture 

was aerated using an aquarium air pump to supply CO2 to the algae. After reaching stationary 

phase, the culture was used to inoculate SBR experiments. The activated sludge was collected 

from the return activated sludge of a local wastewater treatment plant (Iron Bridge, Orlando, FL) 

for seeding the SBRs. Synthetic wastewater with the following composition was used as a 

growth media: 240 mg L-1 sodium acetate, 57.5 mg L-1 NH4Cl, 51 mg L-1 K2HPO4, 83 mg L-1 

MgSO4, 13 mg L-1 CaCl2, 65 mg L-1 yeast extract and 65 mg L-1 beef extract equivalent in total 
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to 300 mg L-1 chemical oxygen demand (COD), 30 mg TN L-1 and 10 mg P L-1 (Jabari et al., 

2014). 500 mg L-1 NaHCO3 was also added to provide sufficient alkalinity for nitrification.  

 

Photo-SBR 

Three lab-scale SBRs (4L) were constructed with plexiglass and operated in the sequence of 

fill, mix, aerate, idle, settle, and decant phases using a programmable logic controller (PLC) 

(Chrontrol, San Diego, CA) (Fig. 3-1 and Fig. B1). The reactors were operated at room 

temperature (22-24 °C) and in 12 h cycles consisting of feeding (10 min), anaerobic step (80 

min), aerobic step (300 min), anoxic step (150 min), aerobic step (60 min), settling (90 min) and 

decanting (30 min). 40% of the bulk working volume was filled with AnoxKaldnes (K1) biofilm 

carriers (Veolia, Lund, Sweden) (specific surface area of 500 m2/m3) in two IFAS SBRs 

(MAIFAS and IFAS control). The third reactor with no media was used as a negative control. 

The reactors were operated with 12 h hydraulic residence time (HRT) and 30 d SRTsuspended 

(wasting during the aerobic phase). The pH was not controlled and ranged from 7.4 to 8.1 during 

the 12 h SBR cycle. All three SBRs were mixed during the anaerobic, aerobic and anoxic phases 

using an overhead stirrer.  

 

Figure 3- 1. Schematic diagram of microalgae-based IFAS (MAIFAS) SBR and two 

controls (IFAS SBR and algae SBR without IFAS media).  
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Before experiments, the two IFAS reactors were first inoculated with activated sludge for 60 

days using the synthetic wastewater to develop a nitrifying biofilm on the K1 media. During this 

time, all three reactors showed 71 to >99% ammonia removal, 66 to 97% COD removal and  

>99% TP removal. After biofilm formation on the K1 media was observed, Phase I began with 

the addition of 500 mg L-1 C. vulgaris to the MAIFAS and suspended control SBRs. The SBRs 

seeded with algae were exposed to fluorescent light (76.2 µmol m-2 S-1 PAR) during aerobic 

phases. Air was supplied to all reactors during Phase I to develop the nitrifiers. A Chlorophyll a 

(Chl. a) to biomass ratio above 10.25 mg g-1  was designed to provide enough oxygen by green 

algae to the system for nitrification to occur (Karya et al., 2013); however, even after 75 days 

(Phase I), the Chl. a to biomass ratio was still under 6 mg g-1  and thus the wastewater 

composition was adjusted to promote microalgal growth (Phase II). Ammonia and P 

concentrations were increased to 70 mg N L-1 and 20 mg P L-1, respectively, while COD was 

decreased to 150 mg L-1. During Phase II, air supply to the algae reactors was turned off to 

evaluate the capability of microalgal photo-oxygenation. The SBRs were operated under Phase II 

conditions for 75 days.  

Analytical methods 

Samples (50 mL) were taken from the effluent during the withdrawal stage twice a week 

for water quality analysis. The samples were filtered using 45 µm glass fiber filters (934-AH, 

Whatman) and analyzed for pH, ammonia, total phosphorus (TP), and chemical oxygen demand 

(COD). pH and ammonia were measured using pH and ammonia probes (Intellical™ pH 

Electrode PHC20; IntelliCALTM ammonia probe, ISENH318101, Hach, Loveland, Colorado). TP 

was measured using Hach Method 8180 (ascorbic acid method test) and COD was measured 

using Hach Method 8000. Duplicate samples were processed during each sampling point. 
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Additionally, hourly samples were taken through a 12hr SBR cycle and analyzed for nitrate, 

nitrite, and dissolved oxygen (DO).  Nitrate and nitrite were measured using the cadmium 

reduction method (Hach Methods 8039 and 8192, respectively). DO was measured using a DO 

probe (407510, Extech, Nashua, New Hampshire).  

Suspended biomass was determined using the Standard Methods (APHA, AWWA, and 

WEF, 1999) for Solids (SM 2540). Chlorophyll a, which was used to monitor algal growth, was 

measured using a modified version of the SM10200 H.2.b. method (APHA, AWWA, and WEF, 

1999). Briefly, a 5 mL sample was centrifuged at 13,000 rpm for 10 minutes. The supernatant 

was discarded and 5 mL of 96% methanol was added to the remaining pellet. This mixture was 

vortexed for 10 minutes and incubated at 60 °C for 15 minutes. The sample was then cooled at 

4°C for 30 minutes and centrifuged at 13,000 rpm for 10 minutes. The supernatant’s absorbance 

at 666 and 653 nm was measured using a spectrophotometer (DR900, Hach, Loveland, 

Colorado) to determine Chl. a based on equation (3-1). 

Chlorophyll a (mg/L) = 15.65A666 – 7.34A653           (3-1) 

Where A666 is the absorbance of light at 666nm and A653 is the absorbance of light at 

653 nm.   

Microprofiling 

DO concentration and pH microprofiles were measured using a DO microsensor (tip 

diameter: 50µm) and pH microsensor (tip diameter: 10µm) (UNISENSE A/S, Denmark). 

Ammonia concentration microprofiles were measured using a fabricated ammonia ion selective 

microelectrode (tip diameter: 30µm) following methods described in Lewandowski (2014). The 

DO microsensor was calibrated in respective oxygen saturated (aeration: 8.6 mg O2/L at 23°C) 

and oxygen depleted (nitrogen bubbling: 0% DO) artificial wastewater. The pH microelectrode 
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was calibrated in standard buffer solutions (pH 4, 7, and 10, Fisher Scientific, Hampton, NH). 

The ammonia microsensor was calibrated in artificial wastewater with varying ammonia chloride 

concentrations. Microsensors were calibrated before and after each profile.   

For microprofile measurements, a K1 biofilm carrier was removed from the reactor, 

gently cut in half using a scalpel (Disposable Scalpel No. 10, Thermo Scientific, Waltham, MA), 

and placed in a customized flow cell that allowed a flow of wastewater over the biofilm at a rate 

of 2 mL/min (Lee et al.  2009). The sample was held in place using a clamp (VTHH, Veleman 

Inc., Forth Worth, TX). The positioning and movement of the microsensor tip in the sample was 

accomplished using a three-dimension (3D) micromanipulator (UNISENSE A/S, Denmark) and 

observed using a stereomicroscope with a CCD camera (World Precision Instruments, Sarasota, 

FL). A Ag/AgCl reference electrode (MI-401, Microelectrodes Inc.) was positioned in the flow 

cell using a helping hand (VTHH, Veleman Inc., Forth Worth, TX) and a lab jack (Model 110, 

Swiss Boy lab jack, Fisher Scientific) was used to center the biofilm within the view of the 

stereomicroscope. The microprofile measurements were conducted in a Faraday cage (81-334-

04, Technical Manufacturing Co. Peabody, MA) to minimize electrical interference. A florescent 

light was used to provide 76.2 µmol m-2 S-1 of light (the same as the MAIFAS SBR operation) to 

the microalgae integrated fixed biofilm carrier during profiling measurements. A photo of the 

experimental set up is shown in Figure B2. Microprofile measurements were performed from 

3,000µm above to the surface of the K1 media to the surface.at every 100 µm with 5 seconds 

intervals between each measurement. Two replicate profiles were taken for each parameter. 
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Illumina sequencing 

DNA and RNA extraction, PCR and high-throughput amplicon sequencing 

Total RNA and DNA were extracted from 5 MAIFAS (micro-algae seeded reactor) and 3 

IFAS (control reactor) biofilm samples as previously described (Pitkänen et al. 2013) with some 

minor modifications. Briefly, the AllPrep DNA/RNA Mini Kit (Qiagen GmbH, Hilden, 

Germany) was used to extract total nucleic acid. RNA was further purified using Ambion 

TURBO DNA-free DNase Kit (Life Technologies, Grand Island, NY). The concentration and 

purity of RNA and DNA were determined using the Qubit 2.0 Fluorometer with Qubit RNA and 

dsDNA HS assay kits, respectively (Life Technologies, Grand Island, NY). cDNA was generated 

using random hexamer primed Superscript III system for RT-PCR (Life Technologies, Grand 

Island, NY). Samples (cDNA and DNA) were stored at -20°C until used for next generation 

sequencing. cDNA and DNA were used as templates to generate independent libraries targeting 

bacterial 16S ribosomal RNA genes (rDNA) and transcripts (rRNA). We used barcoded 16S 

rRNA gene targeting primers (i.e., 515F and 806R) as described in Caporaso et al. (2011) and 

sequenced the targeted product (i.e., 291 bp) in both directions using an Illumina MiSeq PE250 

sequencing kit (Caporaso et al. 2011). Sequencing was performed at the Cincinnati Children’s 

Hospital Medical DNA Sequencing and Genotyping Core facility.  

Next generation sequencing data preprocessing and analysis  

Sequence reads (16S rDNA- and 16S rRNA-based) were processed and analyzed using 

mothur software (Schloss et al. 2009). Sequence reads that did not fit the following criteria were 

discarded from further analyses. This includes reads that did not form contigs, deviated 

considerably from the expected PCR size product, had ambiguous bases, or had homopolymers 

greater than 8 bases long. Sequence reads were grouped at a 97 % similarity and the consensus 
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sequences were then identified using mothur and the Silva (Quast et al. 2012) database as a 

reference. Prior to the classification analysis, a prescreening step was performed with a randomly 

selected subset of all the sequences generated per sample (n=10,000) to further filter out 

chimeras and difficult to align sequences. Excel was used to determine the overall relative 

abundance of representative sequences at different taxonomic levels (e.g., class, order, family, 

genus). Sequences were analyzed using Blast (http://www.ncbi.nlm.nih.gov/BLAST/) and RDP 

classifier (Wang et al. 2007) to further confirm their phylogenetic affiliation and to classify 

sequences at a low taxonomic level (genus and species) whenever possible. 

Results 

Nutrient removal and biomass growth 

 Phase I. Mechanical aeration 

During Phase I, all reactors were mechanically aerated during aerobic phases. Figure 3-2 

shows influent and effluent pH, ammonia, COD and TP changes during the experiment. After the 

inoculation of microalgae, it took 37 days for the system to show consistent nutrient removal. 

Before this, the IFAS control exhibited excellent COD, ammonia, and TP removal (95%, 80%, 

and 89%, respectively) but reactors containing microalgae (MAIFAS and suspended) displayed 

poor nutrient removal (<60% for COD, ammonia, and TP). However, once the algae was 

acclimated, no detectable ammonia and no more than 26 mg L-1 COD were found in the effluent 

of all three reactors. Likewise, TP removal was above 70% for all reactors for the end of Phase I 

with the exception of  a one-week period where TP exceeded 5 mg P L-1 in the effluent of the 

suspended reactor. The effluent pHs of the SBRs containing microalgae were found to be higher 

than the IFAS control, particularly in towards the end of Phase I. For example, the effluent pH of 

the MAIFAS and suspended reactors were approximately 8.2 for days 50-75; however, the IFAS 
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control and influent was about 7.6. This could be due to the algae consuming CO2, which would 

increase the pH.   

 

Figure 3- 2. (a) pH, (b) ammonia, (c) COD and (d) total phosphorus (TP) effluent changes 

in IFAS control, MAIFAS and suspended algae control SBRs over 150 days. Mechanical 

aeration was applied to all reactors during the aerobic sequence of Phase I. Only light was 

applied to MAIFAS and suspended reactors during the aerobic sequence of Phase II.  

Figure 3-3 shows the characteristics of the suspended biomass in each reactor over the 150-

day experiment. During Phase I, all SBRs exhibited decreasing mixed liquor suspended solids ( 

MLSS) and mixed liquor volatile suspended solids (MLVSS) for the first 30 days after 

inoculation of C. vulgaris. The suspended SBR had a starting MLVSS of 5,250 mg L-1 and 

decreased to 3,500 mg L-1, the MAIFAS SBR had a starting MLVSS of 2,000 mg L-1 and 

decreased to 1,000 mg L-1, and the IFAS control reactor has a starting MLVSS of 2000 mg L-1 
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and decreased to 1,800 mg L-1 after the first 30 days. After this initial decrease, the MLVSS 

concentration was consistent for the remainder of Phase I. While all reactors displayed excellent 

nutrient removal throughout Phase I, the reactors were all supplied with oxygen during the 

aeration phases of the SBR sequence. This may have impeded the growth of microalgae. During 

Phase I, the growth of microalgae was limited to 5.76 mg g-1 in the MAIFAS reactor and 1.76 

mg g-1 in the suspended reactor (Fig. 3-3(d)). 

Phase II. Photo-aeration 

In Phase I, it was found that microalgal growth may be hindered by competition for nutrients 

with the activated sludge. Therefore, in Phase II, nutrient concentrations were increased to 70 mg 

NH3-N L-1 ammonia and 20 mg P L-1 total phosphorus (TP) in an attempt to further support 

microalgal growth. Furthermore, preliminary batch experiments (Fig. B3) demonstrated that 

growth rates slow down significantly when C. vulgaris opts for heterotrophic growth and results 

in poor photo-aeration. Therefore, influent COD was reduced to 150 mg L-1 and the MAIFAS 

and suspended reactors were no longer mechanically aerated during Phase II.  

The change in experimental conditions (i.e., increase in influent N and P concentrations, 

reduction of COD input, and cessation of mechanical aeration) clearly increased microalgal 

growth. Chl. a concentration increased from 3.28 to 44.95 mg L-1 and 4.15 to 9.53 mg L-1 in the 

suspended and MAIFAS SBRs, respectively. This growth in algae also increased the Chl. a to 

suspended biomass ratio to 20.3 and 13.01 mg g-1 in the MAIFAS and suspended reactors, 

respectively. MLVSS decreased by 43% in the IFAS control and 26% in the MAIFAS. This 

decrease was likely attributed to the decreased influent COD concentration in Phase II. While 

there was an initial decline in nutrient removal during Phase II in the MAIFAS and suspended 

SBRs, nutrient removal was relatively improved after 40 days in Phase II. The control IFAS 
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reactor was still able to remove all 70 mg N-NH3 L
-1 ammonia of influent (100% ammonia 

removal). The adjusted experimental conditions impeded P removal in the control IFAS reactor 

which may be due to the decreased suspended biomass (MLVSS) (< 1,000 mg L-1) (Fig. 3-3(a)); 

however, the reactors with algae, MAIFAS and suspended, demonstrated 51 and 98% P removal, 

respectively. Furthermore, the algae bacteria consortia showed excellent settling with a sludge 

volume index (SVI) ranging from 74 to 160 with less than 1 mg L-1 Chl. a in the effluent (Fig. 

B4). 

 

Figure 3- 3. (a) MLSS, (b) MLVSS, (c) Chl. a and (d) Chl. a/biomass ratio in IFAS control, 

MAIFAS and suspended algae control SBRs over 150 days. Biomass samples were taken 

during the aerobic phase. Mechanical aeration was applied to all reactors during the 

aerobic sequence of Phase I. Only light was applied to MAIFAS and suspended reactors 

during the aerobic sequence of Phase II.  
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There was a slight increase in effluent pH in the suspended reactors from Phase I (pH 8.2) to 

Phase II (pH 8.5) (Fig. 3-2(a)), indicating algal growth and increased photosynthetic activity in 

the reactors. While pH increases may have stripped some ammonia from the system, the highest 

pH observed during the aerated phase was 8.5, indicating that the majority of the ammonia 

removal was biological N removal, not ammonia stripping. 

Photo-aeration using microalgae 

DO was carefully monitored throughout the experiments (Phase I and II) to evaluate 

microalgae photo-aeration as an alternative to energy-intensive mechanical aeration. Bulk DO 

concentration was monitored without mechanical aeration in the algae reactors during the entire 

SBR cycle for each reactor at 30 d, 60 d and 90 d after inoculation (Fig. 3-4). It appears that the 

microalgae do not provide enough DO for nitrification at 30 and 60 d (Phase I), requiring the 

change of influent water quality and more time for stable algal growth in the system. At 90 d 

(Phase II), DO concentration increased to 1.3 mg O2 L
-1 and 0.6 mg O2 L

-1 in the MAIFAS and 

suspended SBRs, respectively, indicating photo-aeration. The IFAS control reactor was 

mechanically aerated during the aerobic phases of the SBR cycle; hence, the DO reached 

saturation during this phase. This finding demonstrates that microalgae can provide sufficient 

oxygen required for nitrification and COD removal particularly when the Chl. a to biomass ratio 

exceeds 7.9 mg g-1 (MAIFAS Chl. a to biomass ratio after 90 days). A study by Wang et al. 

(2015) found similar results for a photo-SBR that was used to process the liquid fraction of 

anaerobically digested swine manure. They found that a Chl. a to biomass ratio of approximately 

24 mg g-1 was able to supply 74% of the required DO for nitrification.  
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Figure 3- 4. DO concentrations during an SBR cycle after (a) 30, (b) 60 and (c) 90 days of 

growth. Mechanical aeration was applied to IFAS control during aerobic phase. 76.2 µmol 

m-2 S-1 of fluorescent light (no mechanical aeration) was applied to the MAIFAS and 

Suspended reactors during aerobic phase. 

 

While DO concentrations in the bulk provided some indication of photo-aeration, direct 

oxygen transfer measurements within a microalgal-bacteria biofilm provides valuable kinetic 

information. Therefore, DO microsensors were used to measure DO concentration microprofiles 

from the bulk into the biofilms of the MAIFAS and IFAS SBRs which were taken after 40, 80, 

130, and 150 d of operation (Fig. 3-5). The microprofile measurements were conducted between 

dark and light conditions to confirm the photo-aeration by algal biofilm. Biofilm thickness was 

600, 1,300, 1,800, and 2,100 µm at 40, 80, 130, and 150 days of operations, respectively. DO 

concentration microprofiles after 40 days of biofilm growth (Fig. 3-5(a)) showed a decrease in 
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DO from 3.0 mg O2 L
-1 in the bulk phase to 0.2 mg O2 L

-1 at the substrate with a 100 µm 

diffusion boundary layer (DBL) which indicates the activity of aerobic bacteria (nitrifiers and 

heterotrophs) within the biofilm. When the light was turned off, there was an initial decrease by 

0.5 O2 mg L-1 from 1,500 to 600 µm, after which the O2 concentration decreased to 0.32 mg O2 

L-1. After 80 d, biofilm thickness was increased to 1,300 µm. The DO profile exhibited a 1 mg 

O2 L
-1 increase in DO at the biofilm surface (Fig. 3-5(b)) by microalgal photosynthetic oxygen 

production. After 130 d of operation (55 days of Phase II), DO concentrations increased to 6.8 

mg O2 L
-1 at the surface of the biofilm with the lights on. ΔDO between light on and off was 3.3 

mg O2 L
-1 (Fig. 3-5(c)). This large amount of oxygen production at the biofilm surface made it 

possible for DO to penetrate into the whole biofilm where DO was present at the substratum (0.3 

mg O2 L
-1) which means the underlying nitrifying biofilm had ample supply of oxygen for 

nitrification. Without light, the bulk DO penetrated only 69% of the total biofilm thickness. This 

outcome shows that there was an algal biofilm present on top of the bacterial biofilm which can 

assist in photo-aeration and this localized algal photo-aeration improved the utilization of aerobic 

bacteria throughout the biofilm depth, which was not possible through mechanical aeration. 

Altogether, these findings provide evidence of the feasibility of a microalgae-based IFAS 

wastewater treatment process to achieve low energy consumption while meeting stringent 

effluent standards using symbiotic microalgae fluidized media. A microscopic cross-sectional 

image of the biofilm shows the bottom layer is comprised mostly of a dense mixed culture 

nitrifying biofilm where the top layer is a mixture of algae and heterotrophic bacteria (Fig. 3-6). 

In addition, DO consumption within the biofilm was faster at the base of the biofilm (0-600µm) 

compared to the top layer of biofilm (>600µm) (Fig. 3-5). This clearly shows well-defined 

stratification of microbiological communities between the top and bottom layer. This 
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configuration of bacterial communities seems possible considering nitrifying bacteria are known 

to be photosensitive (Kaplan et al., 2000). 

 
Figure 3- 5. DO microprofiles of MAIFAS biofilms under 76.2 µmol m-2 S-1 of white 

fluorescent light and darkness after (a) 40 days, (b) 80 days, (c) 130 days and (d) 150 days 

of growth. Reference lines represent biofilm thickness over time. 

After 150 d, the DO concentration microprofiles of MAIFAS biofilms displayed the loss of 

a photo-oxygenating layer on the surface of the biofilm, showing no difference between light and 

dark conditions with a similar DO decreases from 3 mg O2 L
-1 in the bulk to 0 mg O2 L

-1 at 800 

µm above the substrate surface (Fig. 3-5(d)). Therefore, the lower nitrifying biofilm appears to 

be unable to get oxygen for nitrification. This is consistent with the fact that ammonia removal 

decreased from 99% on day 130 to 11% on day 150 (Fig. 3-2(b)). It is still unclear why there was 

a significant loss of the phototrophic biofilm at this time of operation. A possible explanation for 
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the loss of the photo-oxygenating microalgla biofilm would be algal biofilm sloughing due to the 

precedent nutrient starvation (100% ammonia removal) (Schnurr et al. 2013), decreasing algal 

growth from days 129 to 141 (Fig. 3-3(c)).  

 

 
Figure 3- 6. Cross-sectional image (×40 magnification and 50µm thickness) of MAIFAS 

biofilm at 130 and 160 days. The biofilm was mounted in tissue freezing media.  

 

Interactions between algal and bacteria biofilms 

To further understand the interactions between algal and bacteria biofilms, pH and ammonia 

concentration microprofiles were measured in Phase II of MAIFAS operation. pH deceased from 

7.3 to 6.7 in the lower 1,000 µm of the biofilm when the light was on (Fig. 3-7(a)), indicating 

consumption of alkalinity and nitrification. In addition, there was a slight pH increase (600 µm 

above the biofilm surface), from 7.3 to 7.4, which indicates photosynthesis. Likewise, ammonia 

concentration decreased from 72 mg N L-1 to 67 mg N L-1 in the lower 250 µm of the biofilm 

(Fig. 3-7(b)). This finding was interesting because there was no consumption of ammonia in the 

upper portion of the biofilm meaning the algal portion of the biofilm was not consuming 
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ammonia. Hence, the role of algae biofilm in the MAIFAS reactor is mostly aiding photo-

oxygenation.   

 
Figure 3- 7. (a) pH and (b) ammonia microprofiles of MAIFAS biofilms under 76.2 µmol m-

2 S-1 of white fluorescent light and darkness after 140 days of growth. Reference lines 

represent biofilm thickness over time. 

Genetic diversity of algae-bacteria consortia for wastewater treatment 

A total of 70,525 and 69,592 sequences were analyzed from the rDNA and rRNA 

libraries and used to describe the bacterial composition and identity of metabolically active 

bacteria between the MAIFAS and the IFAS reactors. The sequencing data suggested that there 

were some similarities in bacterial composition between the reactors. Each reactor included 

members of bacterial phyla such as Proteobacteria (e.g., alpha-, beta- and gamma-

Proteobacteria), Bacteroidetes (Cytophagia, Flavobacteriia, Saprospirae), Nitrospirae 

(Nitrospira), and Acidobacteria (Chloracidobacterium) (Table 3-1). However, there were some 

striking differences in relative abundance between reactor types. For example, while members of 

the beta-proteobacteria were among the most abundant groups in both reactors, some of the 

species were more prevalent in one reactor type. Specifically, Candidatus Accumulibacter was 

predominant in the MAIFAS reactor but barely detected in the IFAS reactor. In contrast, 

Dechloromonas represented >5% of the sequences in the IFAS reactor versus < 0.4% in the 
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MAIFAS reactor. A similar result was observed for Acinetobacter (gamma-Proteobacteria) as far 

as its relative abundance in the IFAS reactor was concerned. 

Differences in relative abundance of several bacterial groups were also noted when 

sequencing library type results were compared. In the MAIFAS reactor, Candidatus 

Accumulibacter were more abundant in the rRNA (55%) than in the rDNA sequencing library (< 

1%). In both reactors Comamonadaceae- and Nitrosomonadaceae-like sequences were more 

abundant in the rRNA sequencing libraries. In the IFAS reactor, Acinetobacter was more than 

twice as abundant in the rRNA library than in the rDNA library. In other cases, the abundance of 

a bacterial group decreased in the rRNA libraries. This was the case for Aeromonas, Lysobacter, 

Nitrospira, Flavobacteriia, and Saprospirae. Sequences related to members of the phylum 

Caldithrix were greater in the MAIFAS rRNA while totally absent in the IFAS reactor. The 

presence of this bacterial group is intriguing as it has primarily been associated with 

hydrothermal sediments and considered to be nitrate reducing bacteria and obligately anaerobic 

(Miroshnichenko et al. 2003). Although the role of C. abyssi in the MAIFAS reactor is unknown 

at this point, genome sequencing analysis of has revealed that carbohydrates such as starch, 

cellobiose, glucomannan and xyloglucan several can support its growth (Kublanov et al. 2017).  

As rRNA transcripts are associated with protein synthesis, rRNA-based data have been used as a 

proxy for assessing the relative activity levels in several aquatic matrices (Pitkänen et al. 2013, 

Revetta et al. 2011). Moreover, shifts in rRNA:rDNA ratios may signal overall changes in 

relative metabolic activity in a given bacterial group (Kapoor et al. 2015a, Kapoor et al. 2015b). 

Using this rationale, our data suggest that some groups are not only present in the reactor but 

more metabolically active than other groups. For example, rRNA:rDNA ratios suggest that 

Nitrosomonadaceae may be more actively involved in nitrogen removal than Nitrospira, 
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particularly in the MAIFAS reactor. However, the fact that both nitrifying bacterial groups are 

present suggests that they might be occupying different ecological niches within these reactors. 

Moreover, several Nitrosomonas species were identified (e.g., N. communis, N. europaea, N. 

oligotropha, N. ureae), suggesting that ammonia removal is conducted by multiple populations. 

Additionally, the lower rRNA:rDNA ratios of several members of Bacteroidetes suggest that 

they are not removing organic carbon at a high rate as implied by their abundances in the rDNA 

libraries. Low metabolic activity of Bacteroidetes have also been observed in wastewater 

nitrifying enrichments (Kapoor et al. 2016).  

Table 3- 1. Distribution of bacterial 16S rRNA and 16S rDNA 

 

Class Genus 

MAIFAS-Mean IFAS-Mean 

RNA 

(n=8584) 

DNA 

(n=8570) 

RNA 

(n=8714) 

DNA 

(n=9234) 

Alpha-

Proteobacteria 

Rhodobacteraceae* 

Woodsholea 

- 

14 

18 

127 (1.5%) 

33 

93 (1.1%) 

145 (1.6%) 

97 (1.1%) 

Beta-

Proteobacteria 

Candidatus 

Accumulibacter 

Comamonadaceae* 

Nitrosomonadaceae* 

Nitrosomonas 

Dechloromonas 

Zoogloea 

Unclassified 

4719 (55%) 

 

603 (7.0%) 

126 (1.5%) 

62 

34 

39 

701 (8.2%) 

754 (8.8%) 

 

192 (2.2%) 

29 

16 

36 

113 (1.3%) 

620 (7.2%) 

64 

 

904 (10%) 

208 (2.4%) 

70 

477 (5.5%) 

220 (2.5%) 

3576 (41%) 

44 

 

377 (4.1%) 

30 

14 

565 (6.1%) 

399 (4.3%) 

2368 

(26%) 

Gamma-

Proteobacteria 

Acinetobacter 

Aeromonas 

Lysobacter 

Rheinheimera 

20 

- 

- 

- 

26 

90 (1.1%) 

45 

- 

806 (9.3%) 

17 

62 

42 

379 (4.1%) 

308 (3.3%) 

110 (1.2%) 

51 

Nitrospira Nitrospira 21 89 (1.0%) 131 (1.5%) 322 (3.5%) 

Acidobacteria Chloracidobacterium 21 124 (1.5%) 411 (4.7%) 304 (3.3%) 

Cyanobacteria** Unclassified 21 50 29 15 

Cytophagia Cytophagaceae* 

Unclassified 

- 

- 

58 

146 (1.7%) 

- 

80 

64 

428 (4.6%) 

Flavobacteriia Flavobacterium 

Cloacibacterium 

- 

- 

- 

- 

- 

17 

107 (1.2%) 

191 (2.1%) 

Phycisphaerae Unclassified 23 103 (1.2%) 46 55 

Saprospirae Chitinophagaceae* 

Saprospiraceae* 

- 

72 

683 (8.0%) 

1558 (18%) 

21 

- 

902 (9.8%) 

59 

Unclassified Caldithrix 183 (2.1%) 17 - - 

* Family, ** Phylum, - less than 10 sequences 
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Also notable is the fact that Candidatus Accumulibacter-like sequences were relatively 

rare in the IFAS reactor while over six times more abundant in the rRNA libraries than in the 

rDNA libraries in the MAIFAS reactor, suggesting that this bacterial group may be playing an 

active role in P removal in the algae-seeded reactors (MAIFAS). Previous studies have reported 

Candidatus Accumulibacter phosphatis as a dominant member of enhanced biological 

phosphorus removal (EBPR) sludge microbial communities (Flowers et al. 2013). In fact, 

Candidatus Accumulibacter is capable of P removal in wastewater enrichments employing 

different oxygenic conditions (Camejo et al. 2016). Also related to P removal were the dynamics 

of Dechloromonas spp. whose relative abundance significantly decreased in the MAIFAS 

samples. Members of this genus have been shown to accumulate polyphosphate. As other 

potential PAO were not detected or were present in very low numbers, the results of this study 

implicate Candidatus Accumulibacter and Dechloromonas as the primary P removing bacteria in 

the MAIFAS and IFAS, respectively. The role of difficult to classify beta-proteobacteria cannot 

be discarded. Our data strongly suggest that there may be biochemical interactions between the 

microalgae and different bacterial groups that promote the enrichment, and furthermore, 

stimulate the metabolic activity of Candidatus Accumulibacter, resulting in an increase of P 

removal. 

Discussion 

MAIFAS vs. suspended micro-algae bacteria consortium for nutrient removal in wastewater   

The MAIFAS system removed >99% ammonia and 51% P without the need for mechanical 

aeration, a marked improvement over the suspended microalgae sludge control, which only 

removed 57% ammonia and 49% P from synthetic wastewater. Ammonia removal in suspended 

microalgae-bacteria reactors were comparable to other microalgae wastewater treatment studies. 
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He et al. (2013) observed 97% ammonia removal in municipal wastewater (29–174 mg NH4
+-N 

L-1) and Zhao et al. (2014) reported 90% TN removal in landfill leachate (261 mg NH4
+-N L-1) 

using a microalgae-bacteria consortium.  

N removal in these systems were reported to be achieved through N assimilation by biomass 

and nitrification/denitrification pathways. For example, Su et al. (2012) found that 61–93% of N 

removal was due to N assimilation. Wang et al. (2015) proposed a shortcut N removal 

mechanism in suspended algal bacteria systems where low DO and carbon concentrations 

favored ammonia oxidizing bacteria (AOB) over nitrite oxidizing bacteria (NOB) activity in the 

presence of algae. This removal process required less DO and organic carbon compared to 

conventional biological nutrient removal (BNR) processes. In the current study, 16G rRNA gene 

sequencing analysis of the MAIFAS biofilms suggests that this shortcut N removal may 

significant in our system with relatively high abundance of AOB (1.5% Nitrosomonadaceae) 

compared to NOB (0.2% Nitrospira).  

Biological P removal using algae-based biological processes is less common than N 

removal, but can be achieved. For example, Gonzales et al. (2008) found 80% P removal from 

swine manure wastewater using Chlorella sorokiniana suspension and Posadas et al. (2013) 

reported 85% removal from domestic wastewater using a suspended mixed algae culture. A 

biofilm study showed only a 34% removal from dairy manure using an algal turf scrubber.  

In the current study, it was found that P removal was similar between the MAIFAS and 

suspend algae reactors in Phase II with an average of 51% removal from both reactors. Based on 

this observation it is likely the suspended portion of the biomass that is responsible for P 

removal. In fact, we found that P removal is not necessarily dependent on Chl. a to biomass ratio 

in the MAIFAS reactor system, suggesting that P removal may not be attributed to algal 
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assimilation. 16s rRNA sequencing revealed high concentrations of Candidatus Accumulibacter 

in MAIFAS biofilms compared to the IFAS control (55% vs. <1%) likely due to EBPR’s 

contribution in P removal in microalgae systems.  

Effect of Chl. a to biomass ratio on nutrient removal 

Several studies have noted the importance of algae to biomass ratio for nitrification in algal-

bacterial consortia (Su et al., 2012). A study by Medina and Neis (2007) demonstrated that 

increasing Chl. a to biomass ratios (1 to 34 mg chl. a/ g SS) increased TN removal. In this study, 

ammonia removal was compared to Chl. a to biomass ratio in Phase I and II between the 

MAIFAS and suspended reactors (Fig. 3-8) to elucidate N and P removal mechanisms by algal-

bacterial symbiosis. Chl. a to biomass ratio appeared to have no effect on ammonia removal in 

Phase I when the reactor was being mechanically aerated. This means that the activated sludge 

was responsible for majority of the ammonia removal under mechanically aerated conditions. 

During Phase II, the Chl. a to biomass ratio had impacts on ammonia removal in the MAIFAS 

and suspended reactors (Fig. 3-8(c)). Both reactors show increasing ammonia removal with 

increasing Chl. a to biomass ratio; however, the MAIFAS reactor had better ammonia removal 

compared to the suspended reactor (Fig. 3-8(c)). This could be due to the fact that ammonia 

oxidizing bacteria (AOB) are photosensitive (Kaplan et al., 2000) and light intensity was 

increased for Phase II. For Chl. a to biomass ratio, both reactors followed a similar trend where 

for every 1 mg Chl. a g-1 VSS increase there was a 3.1% increase in ammonia removal. 

Therefore, microalgae are presumably responsible for removing ammonia either though 

assimilation or by providing oxygen for nitrification. A similar study using Scenedesumus sp. 

algae and bacterial flocs for wastewater treatment estimated 13% of N was removed via algal 

assimilation and 85% of N was removed via photo-aeration for nitrification (Karya et al., 2013).  
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Figure 3- 8 Effect of Chl. a to biomass ratio on a) ammonia removal and b) phosphorus 

removal during mechanical aeration (Phase I) and c) ammonia removal and d) phosphorus 

removal during photoaeration (Phase II). 

While N removal by algal-bacterial consortia has been well studied, P removal using algal 

bacteria consortia is still in early stages of investigation and the mechanism for P removal is not 

well understood. Our data shows that when the algal-bacterial consortium was mechanically 

aerated (Phase I), P removal was not related to Chl. a to biomass ratio (Fig. 3-8(b)). This finding 

suggests that with mechanical aeration (Phase I), algae was not responsible for significant 

amounts of P removal. During Phase II, the role of algae in P removal appears to be different 

between the MAIFAS and suspended reactors. In the MAIFAS reactor, P removal was 

comparable between 35% and 51% despite Chl. a to biomass ratio. However, the suspended 

reactor showed decreased P removal with increased Chl. a to biomass ratio, indicating that unlike 

ammonia removal, P removal depends primarily on wasting of suspended bacteria. From the 

bacterial community analysis, a large amount of Candidatus Accumulibacter was found in the 

biofilms of the MAIFAS reactor (55% of 16S rDNA sequences). Given that P removal only 

occurs through wasting, it is likely that a significant Candidatus Accumulibacter population in 

the suspended biomass of the MAIFAS reactor was contributing to P removal. 
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Interactions between algal and bacteria biofilms 

There is limited information on the interactions between algal and nitrifying biofilms; 

however, there are many studies that evaluate algal biofilms for nutrient removal. For example, 

algal turf scrubbers have been shown to remove an average of 1,110 mg N m-2 d-1(Craggs, 1996) 

and RABR have achieved nitrogen removal rates of 14,100 mg N m-2 d-1 (Christenson and Sims, 

2012).  Therefore, it was expected that the algal biofilms in the MAIFAS reactor would 

contribute significantly to ammonia removal; however, microprofiles revealed no ammonia 

consumption in the algal portion of the biofilm. While the reason for this is unclear, the role of 

microalgae in the MAIFAS system was to provide oxygen to the nitrifying biofilm and protect 

the nitrifying biofilm form sloughing (Babu, 2011).  

Challenges and future prospects 

Integrating microalgae with IFAS configuration can provide many benefits including reduced 

the costs of mechanical aeration, uncoupling SRTs of suspended and biofilms for reduced 

footprint, and potential application as feedstock for biofuel production. This study has 

demonstrated >99% ammonia removal and 51% P removal without the need for mechanical 

aeration or carbon addition. However, any microalgae-based wastewater treatment technologies 

come with inherent challenges (e.g., the need for sustained sunlight for photo-aeration must be 

satisfied). While the developed MAIFAS system demonstrated promising results, controlling the 

growth of algal biofilm can be challenging and the effect of co-growth of bacteria and algae in 

IFAS media on nutrient removal can be compounded in the operation of algal-biofilm processes. 

For example, when algal growth rate decreases, there is a loss of nutrient removal due to the 

reduced photo-aeration as well as the formation of new biofilms on top of the algal biofilms, 

reducing available light for photosynthesis. It was also found that it takes time to stabilize the 
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MAIFAS system and there is significant variability in nutrient removal in the MAIFAS operation 

(Fig. 3-3). Therefore, it is important to fully understand the ecology of algal-bacterial 

interactions in algae-based technologies. Future work in this direction would aim to reduce the 

SRT to avoid the growth of heterotrophic bacteria over the fast-growing microalgae in suspended 

portions or select local algal strains that are better suited for maintaining healthy microbial 

communities. In addition, although C. vulgaris was used as the seed algae, it may not be the 

dominate algae in a mature system. Thus, time-course analysis of the algal community is 

required to evaluate the stability of the MAIFAS system.   

Conclusions 

The removal of N and P from synthetic wastewater was investigated in a novel MAIFAS 

SBR over 150 days. Microalgae photosynthesis was able to provide sufficient oxygen for 

advanced wastewater treatment (>99% ammonia and 51% P removal in the MAIFAS reactor). A 

microelectrode investigation revealed localized aeration in the MAIFAS biofilms. It was found 

that both growth rate of algae and the Chl. a to biomass ratio both were important parameters 

pertaining to nutrient removal, predominantly in suspended microalgal-bacteria wastewater 

systems. The addition of microalgae to the IFAS system promoted significant changes in the 

bacterial community structure and the metabolic activity of several bacterial groups. In 

particular, Candidatus Accumulibacter contributed to 55% of the rRNA in the MAIFAS biofilm 

but less than 1% of the IFAS biofilms. Overall, this research represents a novel strategy for 

reducing energy costs while meeting stringent effluent standards using a hybrid symbiotic 

microalgae-based IFAS technology.   
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CHAPTER FOUR: APPLICATION OF MICROSENSORS TO BILGE 

WATER EMULSIONS FOR IN SITU CHARACTERIZATION 

This paper has been previously published as: Church, J., Paynter, D.M., and Lee, W.H. (2016) In 

Situ Characterization of Oil-in-Water Emulsions Stabilized by Surfactant and Salt Using 

Microsensor, Langmuir, 7, 338-348. 

 

Abstract 

Chemically stabilized emulsions are difficult to break because of micelle stability. Many 

physical and chemical processes have been used for emulsion breaking/separation; however, 

most operational parameters are based on empirical data and bulk analysis. A multi-scale 

understanding of emulsions is required before these processes can advance further. This study 

utilized needle-type microsensors and confocal laser scanning microscopy (CLSM) for 

characterizing simulated bilgewater emulsions with different type of surfactants (Triton X-100 

and sodium dodecyl sulfate [SDS]) under various NaCl concentrations at micro-scale. Using 

microsensors, a diffusion process was clearly visualized across the oil/water interface which 

appears to be related to emulsion formation kinetics and mass transfer. While emulsion stability 

decreased with NaCl concentrations, SDS (anionic surfactant) is more likely to form emulsion as 

salinity increases, requiring more salinity to coalesce SDS emulsions than Triton X-100 

(nonionic surfactant) emulsions. Triton X-100 emulsions showed the potential to exhibit particle 

stabilized emulsions with NaCl concentration below 10-2.5 M. The research demonstrated that the 

use of nonionic surfactant allows better oil-in-water separation than anionic surfactant. 

Significant pH changes of emulsions from unknown additives have implications when operating 

pH sensitive emulsion breaking/separation processes (e.g. electrocoagulation).   
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Introduction 

Bilgewater is a regulated mixture of seawater and any water contaminated with oils, 

solvents, surfactants, and particulate matter that accumulates in the lowest part of a ship 

(Copeland 2007, Kajitvichyanukul et al. 2006). Free or suspended oils (i.e. mechanical 

emulsions) can be readily separated from the water phase by simple physical processes (e.g. 

skimming); however, chemically stabilized oil-in-water emulsions formed in bilgewater (i.e. 

chemical emulsions) are notoriously difficult to break which may result in non-compliance with 

existing ocean discharge regulations (< 15 ppm of oil concentration)(IMO 1973, Smookler et al. 

1977). Therefore, it is critical to develop innovative methods for breaking emulsions and thus 

separating oil from water to ensure proper on-board bilgewater treatment. Unlike mechanical 

emulsions, chemical emulsions are capable of remaining in a stable homogeneous state for an 

indefinite period of time (Ibanez et al. 1995, Wilde 2000). Many oil/water separators and pre- or 

post-unit processes have been developed and used for shipboard treatment of bilgewater 

emulsions. Among them, gravity based oil-water separators (OWS) have been used for decades 

to treat unstable mechanical emulsions, while newer post-treatment technologies like membrane 

filtration have been implemented for emulsion removal (Karakulski et al. 1995, Koss 1996). 

Pretreatment processes like electrocoagulation (EC) have also attracted attention as a method for 

emulsion breaking through in situ coagulant production as opposed to the addition of chemical 

agents used in traditional coagulation, which requires a large volume of chemical storage 

(Bensadok et al. 2008, Canizares et al. 2008, Mollah et al. 2004, Mollah et al. 2001, Mouedhen 

et al. 2008). These technologies are effective, but still rely on empirically determined design 

parameters. A better understanding of oil/water emulsion formation, stability, and breaking in 

shipboard environment will assist the development of technologies that can mitigate the 
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formation and undesired consequences of shipboard emulsions. However, our understanding of 

oil-in-water emulsion stability and chemical properties is still incomplete and in situ 

characterization of interface of oil/water emulsion has been challenging due to lack of 

experimental tools.  

The objective of this study was to evaluate effects of surfactant and salinity on the 

chemically formed oil-water-emulsion stability of simulated bilgewater using microprofiling 

characterization, confocal laser scanning microscopy (CLSM) analysis, and traditional 

characterization methods such as contact angle and interfacial surface tension. In particular, a 

needle-type microsensor as a novel and unique tool for in situ emulsion characterization was 

applied to investigate the relationship between the transports of chemical compounds across 

oil/water interfaces and the stability of emulsions, which has not been applied in traditional 

methods. The adaption of needle-type electrochemical microsensors to environmental systems 

has transformed how we study biofilms, mats, and sediments (Lee et al. 2011a, Lee et al. 2011b). 

With such small tip diameters (3–20 μm), they can be used to perform measurements at the 

microscale which can provide mechanistic information that cannot be obtained from bulk-scale 

measurements.  

Here, we present a systemic evaluation of simulated bilgewater to find relationships 

between microprofiling characterization, CLSM analysis and traditional characterization 

methods (contact angle and interfacial surface tension) for better understanding of emulsions 

stability. Two different types of surfactant (Triton X-100 as non-ionic surfactant and sodium 

dodecyl sulfate [SDS] as anionic surfactant) were tested for emulsion stability with various NaCl 

concentrations. The pH, oxidation-reduction potentials (ORP), and dissolved oxygen (DO) 

microprofiling characterization using microsensors provided information on the transport of 
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chemical compounds across the oil water interface while contact angle, interfacial tension, and 

CLSM evaluation gave information on physical properties and morphology. Overall, this 

multiscale (macro- and micro-) study provided meaningful information on bilgewater micelle 

formation and associated emulsion stability which may lead to developing improved solutions 

for effective emulsion treatment.   

Materials and Methods 

Preparation of Emulsions.   

  Emulsion samples were prepared using Navy Standard Bilge Mix (NSBM) #4 which was 

provided by the Naval Surface Warfare Center Carderock Division (NSWCCD) (West Bethesda, 

MD, USA). Two different surfactants were selected as representative anionic and ionic 

surfactants with well-studied properties (Triton X-100 as a nonionic surfactant and SDS as an 

anionic surfactant). While Triton X-100 is not typically used in consumer cleaning products, 

SDS and Triton X-100 have similar molecular and chemical properties to surfactants found 

shipboard. Emulsion samples with various salinities (10-4–1M NaCl at 100.5 intervals) were also 

tested to represent a range of bilgewater conditions. Two different types of emulsions were 

prepared: microemulsion and macroemulsion. Microemulsions were prepared by mixing 1,000 

ppm (0.1%) NSBM #4 and 100 ppm Triton X-100 or SDS in 40 mL of Mili-Q water for 2 

minutes at 35,000 rpm using a homogenizer (Omni Tissue Master, Model 125, 10 mm generator 

probe) followed by 10 minutes of sonication (40 kHz, Branson Bransonic Cleaner, Model B200) 

and a filtration step using a 0.22 µm membrane (Millex GP PES, SLGP033RS). Macroemulsion 

samples were prepared using the same procedures, but with 10,000 ppm (1%) NSBM #4 and 

without filtration. Microemulsion samples were homogenous, not containing an oil layer as 

shown in Supporting Information (SI) Figure S1. As microemulsion does not represent 
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bilgewater emulsion, macroemulsion samples were mainly prepared and evaluated in this study.    

Characterization of Bulk Properties.   

Contact Angle and Interfacial Surface Tension. 

   Contact angles of various surfactant solutions in NSBM #4 were measured using a 

goniometer (Model 100-00, Rame-hart Instrument Co. Succasunna, NJ, USA). The liquid phase 

varied in surfactant type (100 ppm SDS and 100 ppm Triton X-100) and salinity (10-4, 10-3.5,10-3, 

10-2.5, 10-2, 10-1.5, 10-1, 10-0.5, and 1M NaCl). The solid surface was a flat quartz substrate which 

was cleaned using soapy water, soaked with 2M NaOH for 30 minutes and rinsed with deionized 

(DI) water between each measurement. A 5 µL drop of prepared surfactant solution sample was 

immersed in NSBM #4, placed on the quart solid substrate and illuminated from one side, while 

a camera recorded the image on the opposite side. The image was then analyzed by software 

(DROPimage Advanced, Rame-hart instrument Co., Succasunna, NJ, USA) to determine contact 

angle. The interfacial tension was measured the pendant drop method (Pichot 2010). For this 

method, a 5 µL liquid drop (i.e. a mixture of surfactant and NaCl solution) was suspended in 

NSBM #4 at hydromechanical equilibrium (a balance between gravity, buoyant, and surface 

forces) and interfacial tension was calculated by a drop shape analysis program (DROPimage 

Advanced, Rame-hart instrument Co., Succasunna, NJ, USA). The interfacial tensions of oil-in-

water samples (i.e. an oil drop [NSBM #4] in a surfactant solution) were also measured for 

reference purpose. Since NSBM #4 is less dense than the surfactant solutions tested, in this case, 

a “U” shaped needle (Cat. No. 100-10-13, Rame-Hart instrument co., Succasunna, NJ, USA) was 

used for oil-in-water tests.  
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CLSM Analysis of Simulated Bilgewater Emulsions. 

CLSM analysis was performed using Leica TCS SP8 (Leica Microsystems, Buffalo 

Grove, IL, USA) with an argon laser operating at 488 nm excitation wavelength and emission 

was detected between 507 and 574 nm. The samples were prepared using 1% NSBM #4 dyed 

with 1 mg/L Nile red (Cat. No.72485, Sigma Aldrich, Milwaukee, WI, USA) and 100 ppm SDS 

or Triton X-100 surfactants. Fluoresce of oil (NSBM #4) without the use of Nile Red was also 

observed under UV light (Figure S2, SI) and with an excitation wavelength of 488 nm using 

CLSM; however, the Nile red was still used to improve the intensity of the emission spectrum 

which helped develop high quality images of the fast-moving emulsions (Schuster 1987). 

Furthermore, we found that the Triton X-100 fluoresces with an excitation wavelength of 512 nm 

and an emission filter from 494 to 591 nm. This was used to visualize the aqueous layer. To 

ensure that CLSM microscopic images represent the morphology of emulsion samples in a 

selected different location along the column depth, the outer rim of the pipette tip at every 

collection was cleaned with a Kimwipes® and 50 µL of the sample was expelled through the 

pipette tip before applying the sample to a microscope slide for analysis. The changes in 

emulsion size were also quantitatively analyzed using the CLSM processing software (LAS AF 

lite, Leica). 

In Situ Emulsion Characterization Using Microsensors.   

   pH, ORP, and DO microprofiles were measured using microsensors (10 µm tip size, 

UNISENSE A/S, Denmark). For the calibration of ORP microsensors, the phosphate buffer 

solution (5 mM) saturated with quinhydrone at pH 7 and pH 4 was used which equates to redox 

potentials of 462 mV and 285 mV, respectively (Lee et al. 2011a). pH microsensors were 

calibrated using pH 4, 7, and 10 standard buffer solutions (Fisher Scientific). DO microsensors 
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were calibrated in respective oxygen saturated (21% DO, 8.6 mg O2/L at 23°C) surfactant 

solution (100 ppm Triton X-100 or SDS) and the same solution under nitrogen bubbling (0% 

DO). The microsensors were calibrated before and after each profile for validating the measured 

microprofiles (Figure S3, SI). The performance evaluation of pH, ORP, and DO microsensors is 

well described elsewhere (Lewandowski and Beyenal 2013).  

For microprofiling, emulsion samples were placed in a microprofile chamber (50 ml self-

standing tube, EW-06344-25, Cole Parmer) which was held in place using a clamp (Figure S4, 

SI). Positioning and movement of the microsensor tip in the sample was accomplished using a 

three-dimension (3D) micromanipulator (UNISENSE A/S, Denmark) and observed using a 

stereomicroscope with a CCD camera (World Precision Instruments, Sarasota, FL, USA). The 

Ag/AgCl reference electrode (MI-401, Microelectrodes Inc., Bedford, NH, USA) was positioned 

in the emulsion layer. Microsensor electrode signal was measured with a multimeter 

(UNISENSE A/S, Denmark) and the experiments were performed in a Faraday cage (81-334-04, 

Technical Manufacturing Co. Peabody, MA) to minimize electrical interference. Microprofile 

measurements were taken every 100 µm with 5, 60, and 90 seconds of wait time between each 

measurement for DO, pH, and ORP respectively, for signal stabilization depending on emulsion 

samples. Four replicate profiles were taken for each parameter; two in the direction of top to 

bottom and two from bottom to top. The microprofiles shown in this paper are the averaged 

values of these replicates. Microprofiles were taken from the point at which the sensor picks up a 

stable electrical signal (mV or pA) by contact with the oil to the bottom direction 

perpendicularly. 
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Results and Discussion 

Visual Observations  

  Visual observation under different surfactant and salinity levels showed that both NaCl 

and surfactant type had a significant effect on oil-in-water emulsion stability. After preparation 

of various emulsion samples with different surfactants and NaCl concentrations, the stability of 

emulsion samples was observed over 10 days (Figure 4-1). Emulsion samples appeared 

homogeneous immediately after preparation; however, the sample with Triton X-100 and 0.1 M 

NaCl showed evidence of coalescence after only a few minutes (Day 1). After 24 hrs (Day 2), 

samples with 0.1 M NaCl exhibited a clear oil layer for both emulsion samples while the samples 

without NaCl showed only limited coalescence of oil. Similar trends were observed on Days 5 

and 10 when emulsion samples with NaCl displaying more coalescence compared to samples 

without NaCl. The results clearly showed that emulsion stability decreases with NaCl 

concentrations over time. In addition, SDS (i.e. charged surfactant) stabilized emulsions seemed 

more susceptible to changes in salinity. In general, increased NaCl concentrations led to more 

rapid coalescence and these visual observations were in agreement with previous studies 

(AHMED et al. 1999, Bourrel et al. 1980). 
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Figure 4- 1. Visual observation of various oil-in-water emulsion samples over time. The 

surfactant concentration of 100 ppm was used to prepare the macroemulsion samples. 

Contact Angle  

  Contact angles of other samples (100 ppm SDS and DI water only) were relatively 

constant with time. The contact angle of the control (DI water without surfactant) was in the 

range between 162 ° and 172 ° with different NaCl concentrations (10-4–1 M) (Fig. 4-2(a)). 

Details on contact angle measurement of surfactant water are provided in the Supporting 

Information (Fig. B5 and B6). Contact angles of the SDS samples were in the range between 166 

° and 155 ° which are similar with DI + NaCl solution only (no surfactant) and were not affected 

by salinity. However, the Triton X-100 solution had the lowest contact angles, particularly at low 

NaCl concentrations. The contact angle for Triton X-100 samples increases from 95.9 ° to 120 ° 

with increased NaCl concentrations from 10-4 to 10-1.5 M probably due to increased ion strength. 

Further increases of the NaCl concentration do not modify the contact angle, remaining constant 

Triton X-100SDS
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around 120° from 10-1.5–1 M NaCl.  The changes of contact angle depending on salinity may be 

due to modification of the wettability of the glass by the increase of NaCl concentrations.   

The balance of forces of a wet droplet (DI + surfactant + NaCl) can be described by the 

Young equation.(Kwok and Neumann 1999) For water-oil-glass systems, the equation can be 

written as follows: 

𝛾𝑤𝑠 + 𝛾𝑜𝑤𝑐𝑜𝑠𝜃 − 𝛾𝑜𝑠 = 0                                                (4-1) 

where 𝛾𝑤𝑠 is the water-solid (W/S) interfacial tension, 𝛾𝑜𝑤 is the oil-water (O/W) interfacial 

tension and 𝛾𝑜𝑠 is the oil-solid (O/S) interfacial tension. Since the contact angles of Triton X-100 

samples were approximately 90° at NaCl concentrations below 10-2.5 M, 𝛾𝑜𝑤𝑐𝑜𝑠𝜃 is negligible (≈ 

0), indicating that W/S and O/S interfacial tensions are similar. As NaCl concentration increases, 

W/S interfacial tension also increases which can be shown by rearranging Young’s equation: 

𝜃 = 𝑐𝑜𝑠−1 (
𝛾𝑜𝑠−𝛾𝑤𝑠

𝛾𝑜𝑤
) =  𝑎𝑟𝑐𝑐𝑜𝑠 (

𝛾𝑜𝑠−𝛾𝑤𝑠

𝛾𝑜𝑤
)      (4-2) 

where −1 ≤ (
𝛾𝑜𝑠−𝛾𝑤𝑠

𝛾𝑜𝑤
) ≤ 0. The numerator should be negative (𝛾𝑜𝑠< 𝛾𝑤𝑠) given that contact 

angle is higher than 90° for all tested samples (Fig. 4-2(a)) and differences in O/W interfacial 

tension (𝛾𝑜𝑤) were relatively small with changes in NaCl concentration (Fig. 4-2(b)). Because 

measured contact angles are not close to 90° where oil-particle interfacial tension (𝛾𝑜𝑠) and 

water-particle interfacial tension (𝛾𝑤𝑠) are equal, these sample are unlikely form particle 

stabilized emulsions.(Pichot 2010) However, the contact angles for Triton X-100 samples, 

ranged 95.9 to 120° and has the potential to exhibit particle stabilized emulsions with NaCl 

concentration below 10-2.5 M. The wetting of particles by water and oil is a key parameter for 

determining the potential of particle stabilized emulsions.(Levine et al. 1989, Pichot 2010, Velev 

and Lenhoff 2000) The particle stabilized emulsions, also called Pickering emulsions, tends to 

more stable than emulsions stabilized with surfactants or silica (quartz in this test) stabilized 
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emulsions.(Levine et al. 1989, Velev and Lenhoff 2000) Therefore, the addition of NaCl is 

expected to decrease the emulsion stability in bilge water containing nonionic surfactants (i.e. 

Triton X-100).  

Interfacial Surface Tension   

  The primary role of a surfactant is to reduce interfacial surface tension to facilitate the 

droplet break-up and prevent re-coalescence (Walstra 1993). Interfacial surface tension is 

directly related to the energy needed for emulsion formation (Gopal 1968, McClements 2015, 

Walstra 1993). Thus, lower surface tension means less energy is required for emulsion formation 

and results in smaller droplets and more stable emulsions (Lucassen-Reynders and Kuijpers 

1992). The results for water-in-oil interfacial tension measurements are shown in Fig. 4-2(b). 

The interfacial surface tension of the control (no surfactant) was 27.4 mN·m-1 at 10-4 M NaCl 

and the values were relatively constant in the range from 23.3 to 32.3 mN·m-1 regardless of NaCl 

concentrations, confirming that without surfactants considerable energy in needed to produce an 

emulsion.  

In the presence of surfactant, interfacial tensions at 10-4 M NaCl reduced to 6.5 and 2.1 

mN·m-1 for SDS and Triton X-100, respectively (Fig. 4-2(b)). The interfacial tension of aqueous 

SDS micelles showed a decrease with NaCl concentration from initial 6.8 to below 1.6 mN·m-1 

after NaCl concentration exceeded 10-1.5 M, showing that water containing SDS is more likely to 

form emulsion as salinity increases. For Triton X-100, the surface tension also decreased but not 

significantly with NaCl concentration from 3.3 to 2.1 mN·m-1. The results showed more potential 

for emulsion formation in high salinity bilgewater. However, the visual observation also 

demonstrated that emulsion with high concentrations of NaCl tend to be less stable (Fig. 4-1). 

This could be the result of “salting-out” where increased salinity causes the interactions of the 
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emulsion stabilizing surfactants with water to decrease and reduce emulsion stability (Martínez-

Palou et al. 2013, Zolfaghari et al. 2016). 

 

Figure 4- 2. The effects of NaCl concentrations on (a) the static contact angle of water (DI 

water only, 100 ppm SDS, or Triton X-100) in oil (NSBM #4) and (b) the surface tension of 

water-in-oil pendant drops. Temp. was constant at 24°C. Quartz was used as a substrate 

for contact angle measurements. Waiting time was 60 s for each reading. Interfacial tension 

of either water-in-oil or oil-in-water showed similar trends.   

 

CLSM Analysis   

  CLSM micrographs for various emulsion samples are shown in Fig. 4-3. The emulsion 

sizes increased with NaCl concentration in SDS emulsions (8.6 µm at 10-4 M to 18.1 µm at 1 M), 

indicating emulsions tend to coalescence with increasing NaCl, while Triton X-100 emulsions 

decreased in size with increased NaCl concentrations (13.0 µm at 10-4 M to 7.5 µm at 1 M) (Fig. 

B7). However, fewer emulsion droplets were observed compared to SDS even at the same depth, 

indicating that Triton X-100 emulsions are less stable and coalesce faster than SDS emulsions 

with NaCl concentrations. It appears that more NaCl amounts were required to coalesce SDS 

emulsions than Triton X-100 emulsions when compared with similar emulsion sizes (e.g. 12.2 

µm at 10-1 M NaCl for SDS and 13.2 µm at 10-3 M NaCl for Triton X-100) (Fig. 4-3). After 24 

hours, changes in emulsion size decreased significantly and the emulsion size was in the similar 

range between 1.6–3.9 µm for both SDS and Triton X-100 regardless of NaCl concentrations 
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(Fig. B7). However, CLSM images clearly showed that Triton X-100 emulsion droplets were 

almost removed in the presence of high NaCl concentrations (e.g. 0.1–1 M NaCl) and only small 

number of droplets were found after 24 hours of hydraulic retention time (HRT) (Fig 4-3). In 

general, less individual droplets, due to coalescence, are expected with time, (KATSUKI et al. 

2015, Leal-Calderon et al. 2007, MITA et al. 1973) however, due to differences in density 

between oil and water, oil droplets tend to float to the top of the samples and form a layer of 

emulsion droplets in a process known as creaming (Fig. B8).(2013)  

The CLSM investigation implies that 1) NaCl facilitates emulsion coalescence with time, 

2) the use of non-ionic surfactant allows better oil-in-water emulsion separation than anionic 

surfactant in the presence of NaCl (>0.1 M NaCl), and 3) emulsion size only does not provide 

information on the oil stability and it should be correlated with the density of emulsion droplets. 

For example, the small droplet sizes for Triton X-100 emulsions in 0.1 M NaCl would typically 

be expected to result in stable emulsions; however, the sample ended up being the most unstable 

at initial time 0 hr (Day 1) (Fig 4-1). 
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Figure 4- 3. CLSM images of emulsions prepared with 100 ppm SDS or 100 ppm Triton X-

100 at various salinities at the initial and 24-hour interval. All samples were taken at the 

middle of the emulsion layer. 

 

Chemical Microprofiles of Oil Water Interfaces  

Microsensor performance validation in oil-water mixture  

  With the exception of microemulsions, emulsions are thermodynamically unstable and 

will only remain as a dispersion for a finite period (Wilde 2000). Understanding the role of 

oil/water (or water/oil) interfaces on the formation and stability of emulsions have been well 

studied in recent years (Beattie and Djerdjev 2004, Binks et al. 2000, Friberg et al. 1976, Walstra 

1993); however, component interactions across the interface has yet to be explored. In this study, 

a needle-type microsensor was used to characterize in situ interfacial reactions between oil and 

water under various simulated bilgewater emulsions. As this is the first to apply electrochemical 

sensor to oil-water mixtures, a well-known DO microsensor (Lee et al. 2011a, Lewandowski and 
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Beyenal 2013) was tested to validate the electrochemical microsensor performance in oil-water 

mixtures under various DO conditions and DO profiles clearly showed a diffusion of DO from 

the oil phase (21%) to the water phase (0%) with the oxygen scavenger. Details on microsensor 

performance validation are provided in Appendix B (Fig. B9). 

The effect of unknown oil additives on the pH of the surfactant solutions  

  During the microsensor profiling, unexpected pH changes across the interface between 

oil and water were observed. Fig. 4-4 shows the pH gradient across the interface separating the 

dispersed and continuous phases. pH was measured at 1 minute after adding NSBM #4 or 

mineral oil. There was a clear increase of pH from 7.3 (bulk) to 8.3 (interface) when 100 ppm 

SDS solution is the continuous phase (Fig 4-4(a)). For Triton X-100 as a continuous phase, a pH 

increase from 7.7 (bulk) to 8.3 (interface) was observed (Fig. 4-4(a)). The increase in pH for both 

surfactant solution at the interface is hypothesized to be the result of an unknown oil additive that 

may be partially miscible in water and be diffusing into the continuous phase. To prove this 

hypothesis, pH microprofiles were measured across an interface where mineral oil was used as a 

control of the dispersed phase. Because mineral oil is a pure oil which has no additive, there 

should be no pH changes throughout the surfactant solutions including the interfacial surface 

(Fig. 4-4(b)). The initial pH in Triton X-100 and SDS (100 ppm) was 6.7 and 6.5, respectively. 

With the addition of NSBM #4, the bulk pH was increased 7.7 and 7.3, respectively, indicating 

that the unknown additive is a high pH alkaline chemical. Fig 4-4(a) shows that the oil additive 

would have trouble diffusing though the negatively charged SDS surfactant layer with a larger 

pH gradient, while it could easily pass through the nonionic surfactant layer (i.e. Triton X-100). 

The finding here implies that oil additives and surfactant type can affect the oil-in-water 

emulsion pH which would consequently affect the micelle stability and the performance of 
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emulsion breaking/separation processes such as electrocoagulation.    

 

Figure 4- 4. Spatial pH changes in (a) a NSBM #4 and surfactant sample (100 ppm Triton 

X-100 vs. SDS) and (b) a mineral oil and surfactant sample. 0 µm represents the oil-water 

interface. DI water only was used to prepare surfactant solution.   

Microsensor oil-in-water emulsion characterization 

  The chemical microprofiles including DO, pH, and ORP profiles were successfully 

measured using microsensors for in situ characterization of emulsion stability and chemical 

properties at the micro-scale. All measured microprofiles were reproducible with several 

consecutive measurements in oil-water emulsion mixtures. Microprofiling emulsion samples 

exhibited changes with salinity and surfactant type. Fig. 4-5(a) and (b) and Fig. 4-6(a) and (b) 

show the spatio-temporal pH changes of the emulsion samples with Triton X-100 and SDS 

surfactants in the absence (DI water only) and presence of NaCl (0.1 M), respectively. For all 

conditions without NaCl, pH increased over time probably due to the diffusion of an unknown 

oil additive over time; however, this pH increase was more apparent in SDS emulsions. It seems 

that the presence of salinity increased the mass transfer of the oil additive; however, the rate of 

pH increase in the bulk slowed with increasing salinity. This is due to the increased diameter and 

decreased surface area of SDS emulsions with increasing salinity (Fig. 4-3). pHs in the bulk of 
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SDS samples were 8.0 with no salinity and 7.3 with 0.1 M NaCl at time 0 hr, respectively, while 

pHs in the bulk of Triton X-100 samples were 8.5 with no salinity and 9.0 with 0.1 M NaCl at 

time 0 hr. Emulsions which were stabilized with a nonionic surfactant (i.e. Triton X-100) showed 

higher pH compared to the emulsions with an anionic surfactant (i.e. SDS). Given that the 

original pH of Triton X-100 solution (100 ppm) is 6.7, this indicates that Triton X-100 would be 

susceptible to the less stable emulsion formation with evenly well-distributed pHs with time and 

according to the depth (Fig. 4-6(a) and (b)) compared to SDS (Fig. 4-5(a) and (b)). The pH 

difference in the bulk depending on surfactant and salinity implies that the performance of pH 

sensitive emulsion breaking processes like electrocoagulation may be affected by surfactant, 

salinity, and unknown oil additives in the bilgewater to be treated. pH microprofiles with SDS 

(Fig. 4-5(a) and (b)) showed that pH gradient at oil-emulsion interface of SDS + DI only 

emulsions was smaller than SDS + DI + 0.1M NaCl solution where larger pH gradients were 

observed. It appears that the addition of NaCl developed larger pH gradients at the interface, 

indicating less stable emulsion.   

DO concentration microprofiles also implies decreased stability with the addition of NaCl 

(Fig. 4-5(c) and (d) and Fig. 4-6(c) and (d)). While there was little change in DO concentration 

along with depth (~ 1 cm), there was variability in DO concentration with time. The initial DO 

concentration of SDS emulsions with 10-1 M NaCl was 13.5 mg O2/L, while the DO 

concentration without NaCl was 12.3 mg O2/L at time 0 hr. This is because emulsions prepared 

using NaCl had more tendencies to foam in SDS samples which would result in higher DO 

concentrations, leading to cloudier layer and more unstable emulsions. After 24 hrs, DO 

concentration decreased by only 0.6 mg O2/L in the emulsion sample without NaCl, while the 

DO decreased by 2.7 mg O2/L in the presence of NaCl. The rate of DO decrease is faster with 
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NaCl (approx. 3 mg L-1 day-1 with NaCl vs. 1 mg L-1 day-1 with no salinity), showing that NaCl 

decreases the emulsion stability. Triton X-100 emulsions also showed a similar trend with SDS 

emulsions and the NaCl addition decreased the emulsions stability which was shown by DO 

concentration decreases over time. Variability in DO concentration with depth was less in 

emulsions with NaCl. The visual stability of SDS emulsions (Fig. 4-1) agreed with the DO 

concentration profiles. More stable emulsions (e.g. SDS + DI) appeared to retain high DO 

concentrations longer than less stable emulsions (e.g. SDS + 0.1 M NaCl).  

Another interesting observation from DO concentration microprofiles was the effect of 

NaCl on the DO concentration gradient changes at the oil-emulsion interface over time. 

Regardless of surfactant type, preparation of emulsion (mixing in open air) resulted in 

supersaturated oxygen concentration in emulsion layer (12–13.5 mg O2/L regardless of NaCl 

addition). However, it seems that NaCl plays an important role in trapping and transferring 

oxygen between emulsion and oil layer. Without NaCl, the oxygen was trapped in emulsion with 

slow diffusion to oil layer (Fig 4-5(c) and 4-6(c)). This generated diffusion boundary layer 

(DBL) of 2,000 µm thickness and the DBL thickness was decreased along with decrease of DO 

concentration in emulsion layer with time, indicating that oxygen in emulsion is slowly moving 

out from the system. However, the presence of NaCl increased oxygen transfer from emulsion to 

oil layer, resulting in no DBL even at initial time (Fig 4-5(d) and 4-6(d)). The DO profiles 

provide better scientific fundamentals behind the visual observation in Fig. 4-1. 



66 

 

 

Figure 4- 5.  The effects of anionic surfactant and salinity on the spatial and temporal pH, 

DO, and ORP changes in oil-in-water emulsion (1% NSBM #4 + SDS). (a) pH profiles 

without NaCl, (b) pH profiles with 0.1M NaCl, (c) DO profiles without NaCl, (d) DO 

profiles with 0.1M NaCl, (e) ORP profiles without NaCl, and (f) pH profiles with 0.1M 

NaCl. 0 µm represents the point at which the sensor signal was obtained by contact with 

the oil. The interface between oil and emulsion was changed over time within the grey area 

in each profile. 
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Figure 4- 6. The effects of non-ionic surfactant and salinity on the spatial and temporal pH, 

DO, and ORP changes in oil-in-water emulsion (1% NSBM #4 + Triton X-100). (a) pH 

profiles without NaCl, (b) pH profiles with 0.1M NaCl, (c) DO profiles without NaCl, (d) 

DO profiles with 0.1M NaCl, (e) ORP profiles without NaCl, and (f) pH profiles with 0.1M 

NaCl. 0 µm represents the point at which the sensor signal was obtained by contact with 

the oil. The interface between oil and emulsion was changed over time within the grey area 

in each profile. 
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ORP microprofiles of the emulsions samples are shown in Fig. 4-5(e) and (f) for SDS 

emulsions and Fig. 4-6(e) and (f) for Triton X-100. ORP showed less variability regardless of 

surfactants with depth in emulsions prepared with NaCl. This is likely the result of increased 

conductivity from NaCl addition. ORP microprofiles of emulsions stabilized with SDS showed 

no increase in ORP over time or depth with the addition of NaCl (Fig. 4-5(f)). The ORP 

microprofiles of SDS emulsion samples without NaCl (Fig. 4-5(e)) were continuously changed 

with longer sensor detection time, while ORP microprofiles with the addition of NaCl showed 

rapid electric response and thus a more stable signal. In Triton X-100 emulsions without NaCl, a 

much greater variability with depth and time was observed (Fig. 4-6(e)) than the emulsions with 

NaCl. An unknown sharp decrease in ORP within the oil layer was observed in emulsions 

stabilized with both types of surfactants (SDS and Triton X-100) with NaCl.  

Effect of Mass Transport on the Stability of Simulated Bilge water Emulsions 

The effect of solute transport across oil/water interface has been shown to affect emulsion 

stability. A theoretical study by Sternling and Scriven (1959) recognized Marangoni-Gibbs 

instabilities, where the mass transfer occurs along an interface between two different liquid 

phases, as one of the major causes of spontaneous emulsification and that the direction of solute 

transfer can stabilize or destabilize an emulsion. Further works by Ivanov (1987) and Dimitrova 

(1988) concluded that the presence of a solute (acetic acid) in the drop phase (oil) decreased the 

life time of emulsion films while solute dissolved in the continuous phase (bulk water) produced 

more stable films.  While these studies laid the theoretical groundwork on effect of mass 

transport on emulsion stability; more elaborate analyses are needed for a decisive test of the 

theory. The use of microsensors in this study allows for a direct quantitative analysis on the 

effect of mass transport on emulsion stability.  
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     The pH gradient across the oil/water interface in Figures 4-4, 4-5, and 4-6 represents the 

transport of an additive (unknown) from the oil phase to the continuous phase. Here, it is 

observed that increased mass transport across the oil/water interface leads to decreased 

emulsions stability. For example, pH microprofiles of SDS stabilized emulsions with and without 

0.1M NaCl show that higher salinity increases the flux of the additive, from 0.06 pH units/mm to 

0.23 pH units/mm (Fig. 4-5), which in turn decreases stability due to Marangoni instabilities 

(Fig. 4-1). Evidence of Marangoni instability in SDS emulsions is also found in the surface 

tension experiments where decreased surface tension (Fig. 4-2) was expected to increased mass 

transfer (Fig. 4-5) and decrease emulsion stability. Nonionic surfactant (Triton X-100) stabilized 

emulsions did not display a flux of solute across the oil water interface and therefore does not 

appear to be affected by Marangoni instabilities. This is because mass transfer of the additive 

occurred during the mechanical emulsifying process. Fig. 4-6 shows there is no additive flux 

across the interface of Triton X-100 emulsions.  

Overall, microsensor characterization of emulsions proved to be a useful tool for 

monitoring mass transfer across and oil water interface and thus act as an excellent predictor of 

Marangoni stabilities when combined with surface tension and particle size analyses.  

Conclusions 

This study thoroughly investigated the effects of surfactant and salinity on the emulsion 

stability of simulated bilgewater using microprofiling characterization, CLSM analysis, and 

traditional characterization methods (contact angle and interfacial surface tension). The study 

showed that emulsions stabilized with nonionic surfactants were, in general, more unstable that 

SDS stabilized emulsions. However, SDS emulsions were more susceptible to salinity than 

Triton X-100 emulsions. Furthermore, mass transfer in SDS emulsions were more affected by 
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salinity than Triton X-100 emulsions. This lead us to believe that Marangoni instabilities had a 

more pronounced effect on SDS emulsions in bilgewater compared the Triton X-100 emulsions. 

This study was the first to investigate in situ chemical interactions across an emulsion-oil 

interface using microsensors at a microscale, which provided in situ chemical concentration 

gradients with high spatial and temporal resolution not observed through conventional means. 

From the measured chemical microprofiles, the effect of mass transport on emulsion stability 

was investigated and it was found that emulsions stabilized with anionic surfactants (SDS) have 

faster mass transfer kinetics with increased salinity which correlated to decreased emulsion 

stability, indicating that mass transfer has an important role in emulsion stability across the oil 

emulsion interface. Although the contact angle and interfacial tension provide intrinsic properties 

before emulsion formation, characterization parameters need to be cross-evaluated to accurately 

determine the stability of an emulsion and multi-scale approach of emulsion characterization 

would be beneficial for better understanding the emulsion stability. By combining with the 

innovative emulsion characterizing methods (e.g. CLSM and microsensors), the results here 

provided better understanding of the effect of surfactant types and salinity in emulsion formation 

and stability for better management of bilgewater in shipboard applications. 
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CHAPTER FIVE: APPLICATION OF MICROSENSORS FOR 

CHARATERIZATION OF A NOVEL NOBLE METAL-COATED MoS2 

NANOFILM PHOTOCATALYST FOR DEGRADATION OF EMERGING 

WATER CONTAMINATS 

This paper has been previously published as: Islam, A*., Church, J.*, Han, C., Chung, 

H.S., Ji, E., Kim, J.H., Lee, G.H., Lee, W.H. and Jung, Y. (2017) Noble metal-coated MoS2 

nanofilms with vertically-aligned 2D layers for visible light-driven photocatalytic degradation of 

emerging water contaminants, Scientific Reports, 7, 14944. *Equally contributing authors. Islam, 

A., Chung, H.S., Ji, E., Kim, J.H, and Jung, Y were responsible for developing the noble metal-

coated MoS2 and Han, C. was responsible for microcystin-LR quantification.  

Abstract 

Two-dimensional molybdenum disulfide (2D MoS2) presents extraordinary optical, 

electrical, and chemical properties which are highly tunable by engineering the orientation of 

constituent 2D layers. 2D MoS2 films with vertically-aligned layers exhibit numerous 2D edge 

sites which are predicted to offer superior chemical reactivity owing to their enriched dangling 

bonds. This enhanced chemical reactivity coupled with their tunable band gap energy can render 

the vertical 2D MoS2 unique opportunities for environmental applications that go beyond the 

conventional applications of horizontal 2D MoS2 in electronics/opto-electronics. Herein, we 

report that MoS2 films with vertically-aligned 2D layers exhibit excellent visible light responsive 

photocatalytic activities for efficiently degrading organic compounds in contaminated water such 

as harmful algal blooms. We demonstrate the visible light-driven rapid degradation of 

microcystin-LR, one of the most toxic compounds produced by the algal blooms, and reveal that 

the degradation efficiency can be significantly improved by incorporating noble metals. This 

study suggests a high promise of these emerging 2D materials for water treatment, significantly 

broadening their versatility for a wide range of energy and environmental applications. 
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Introduction 

Viable solutions for efficiently degrading emerging organic contaminants in drinking 

water supplies have urgently been demanded with their increasing threats to environment and 

human health. For instance, harmful algal blooms (HABs), a rapid increase and/or accumulation 

in the population of algae which can severely damage aquatic ecosystems, have recently gained 

substantial public attention (Heisler et al. 2008, Paerl et al. 2016, Paerl et al. 2011). The primary 

concern over HABs is that they release harmful cyanotoxins (Kaushik and Balasubramanian 

2013, Moreira et al. 2014), which can be fatal if ingested and/or inhaled (Carmichael et al. 2001, 

Codd 2000). However, traditional water purification methods are designed to primarily remove 

suspended solids and/or individual elements of carbon, nitrogen, and phosphorus in 

contaminated water, which are not well suited to directly degrade algal toxins. Photocatalysis, an 

alternative approach based on a solar energy-driven oxidation process, has drawn substantial 

interest for its intrinsic simplicity and efficient operation (Antoniou et al. 2009, Feitz et al. 1999, 

Liu et al. 2005, Robertson et al. 2011). In this approach, photoactive catalytic materials in 

contact with contaminated water generate electron-hole (e−h+) pairs upon absorbing the solar 

energy. The photo-generated charge carriers dissociate dissolved oxygen (DO) in water, 

generating reactive oxygen species (ROS) such as hydroxyl groups and superoxide anions, which 

in turn disinfect pathogens (Liu et al. 2016). Photocatalytic materials (usually, oxide 

semiconductors) accelerate the rate of the associated chemical reactions (oxidation/reduction) in 

the microorganisms. However, conventional photocatalytic methods have relied on the use of 

ultraviolet (UV) light for e−h+ generation, which is limited to harness a very small portion of the 

available solar energy (McGuigan et al. 2012). This is because photocatalytic semiconductors 

possess large band gap (Eg) energies which match the UV spectrum corresponding to only ~4–
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5% of the entire solar spectrum, thus, inevitably resulting in prolonged exposure and slow 

reaction rates. For instance, titanium dioxide (TiO2), one of the most sought-after photocatalytic 

semiconductors presents Eg > 3.0 eV (Antoniou et al. 2009, Feitz et al. 1999, Liu et al. 2005, 

Robertson et al. 2011) and only harvests UV light while neglecting the broad range of the visible 

light which corresponds to >40% of the entire solar spectrum (Chen and Mao 2007). 

Molybdenum disulphide (MoS2), a recently rediscovered semiconductor classified as 

two-dimensional (2D) transition metal dichalcogenides (TMDs), presents a rich set of optical and 

structural properties uniquely suitable for photocatalytic reactions. In terms of optical properties; 

(1) It presents a band gap energy (~1.2–1.8 eV) matching the spectral range of the visible light. 

Moreover, the band gap energy is highly tunable by varying the number of 2D atomic layers 

(Wang et al. 2012). (2) It exhibits exceptionally large sunlight absorption; for example, over an 

order of magnitude higher than conventional semiconductors such as silicon (Si) or gallium 

arsenide (GaAs) for similar thicknesses (Bernardi et al. 2013). In terms of structural advantages; 

(1) It can be grown vertically standing on growth substrates (e.g. silicon dioxide (SiO2)) exposing 

the edges of individual 2D layers (Heydari-Bafrooei and Shamszadeh 2016, Jung et al. 2014, 

Kong et al. 2013). In this vertical orientation, atomically unsaturated 2D edge sites full of 

molybdenum (Mo) and sulfur (S) dangling bonds are maximally exposed on the surface. 

Consequently, the surface is highly reactive, offering large chemical/physical adsorption capacity 

for capturing molecules (Caslake et al. 2004, Chen et al. 2015, Heydari-Bafrooei and 

Shamszadeh 2016). (2) It presents suitable energy band structure with respect to the redox 

potentials for hydrogen- or oxygen evolution reactions (HER or OER) as its conduction 

(valence) band edge lies above (below) the electrostatic potential of H2 (O2) evolution, 

respectively (Caslake et al. 2004, Rasmussen and Thygesen 2015, Sakthivel et al. 2004, Singh et 
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al. 2015, Tong et al. 2012). A proof-of-concept demonstration of its application to microbial 

inactivation in contaminated water has recently been reported (Liu et al. 2005), which studies the 

disinfection of Escherichia (E.) coli for drinking water purification via ex-situ photocatalytic 

measurements. 

In this work, we demonstrate rapid and efficient photocatalytic degradation of algal 

toxins using MoS2 films with vertically-aligned 2D layers under visible light illumination. 

Particularly, we study the degradation of one of the most toxic organic compounds generated 

from harmful algal blooms, microcystin-LR (MC-LR), which is recognized as an emerging threat 

to a wide range of water sources, including seawater, river, and lakes. We investigate its 

photocatalytic reaction kinetics by in situ characterization of ROS generation using 

microsensors. Moreover, we identify that the coating of thin noble metal layers on top of pristine 

MoS2 films significantly improves the photocatalytic efficiency, enabling the rapid and complete 

removal of MC-LR. The underlying mechanisms for the observed photocatalytic reactions as 

well as their governing parameters are also discussed. The study suggests the promise and 

versatility of MoS2 films with vertically-aligned 2D layers for a broad range of water purification 

and environmental applications. 

Materials and Methods 

Synthesis and validation of MoS2 films with vertically aligned layers 

MoS2 films with vertically aligned layers were grown via the sulfurization of Mo-

deposited SiO2/Si substrates in a chemical vapor deposition (CVD) furnace. High-quality Mo 

films were deposited on Si/SiO2 wafers using an e-beam evaporation system (Thermionics VE-

100) with the deposition rate of 0.15 Å/s. The Mo/Si/SiO2 substrates were placed at the center of 

a CVD furnace (Lindberg/Blue M Mini-Mite) while an alumina boat containing S powder is 
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located at the upstream side. Following the evacuation down to the base pressure of ~1 mTorr 

and Ar purging, the CVD furnace was heated to the reaction temperature 650 °C in 15 min and 

was held for 10 minute under the continuous supply of Ar gas (100 SCCM). After the reaction, 

the furnace was naturally cooled down to room temperature. The deposition of various metals on 

MoS2 films with vertically-aligned layers was achieved via e-beam evaporation with the 

deposition rate of 0.15 Å/s. 

The crystalline structure and the chemical composition of 2D MoS2films with vertically-

aligned layers were characterized using a JEOL ARM200F FEG-TEM/STEM with a Cs-

corrector. TEM samples were prepared by transferring the 2D MoS2 films from SiO2/Si 

substrates to holey carbon TEM grids by using diluted hydrogen fluoride which etches away the 

SiO2. All TEM/ADF-STEM operations were performed at an accelerating voltage of 200 kV. 

Raman and PL characterizations were performed with a Raman spectroscopy (Renishaw) 

with a diode-pumped solid state laser of 532 nm wavelength and a spot size of 1 µm. Raman 

shifts and PL peaks were obtained under illumination for 10 seconds with power of 156 µW and 

2 mW, respectively. 

XPS measurements were performed using PHI-5700 spectrometer with monochromatic 

Al Kα x-ray (1486.6 eV) below 4 × 10−9 Torr. The Shirley-type background was removed from 

the measured XPS spectra. For UPS and absorbance measurements, as-prepared MoS2 films on 

SiO2/Si growth substrates were first spin-coated with polymethyl methacrylate (PMMA). The 

samples were subsequently transferred onto transparent sapphire substrates followed by the 

etching of SiO2 and removal of PMMA. 

The UV-Vis absorption spectra were obtained using a UV-Vis 

spectrophotometer (Cary5000, Agilent). The absorption coefficient and the optical 
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energy gap have been determined by characterizing the transmission T(λ) and 

reflection R(λ) spectra of the samples in the spectral wavelength range of 

170~3300 nm. For electrical characterizations, the metal contacts of 

aluminum/chrome/gold (Al/Cr/Au) (20/5/20 nm) electrodes are fabricated on top of as-

prepared MoS2 films on SiO2/Si substrates using e-beam lithography. Electrical 

transport properties were measured by a Keithley 4200 semiconductor parameter 

analyzer. 

Photocatalytic degradation of MC-LR using microsensors 

Dissolved oxygen (DO) and hydrogen peroxide (H2O2) concentration microprofiles were 

measured using a commercial DO microsensor (10 µm tip size, UNISENSE A/S, Denmark) and 

a platinum (Pt)-based H2O2microsensor fabricated with a 50 µm tip diameter. A 3% hydrogen 

peroxide solution (H324-500, Fisher) was used to calibrate the H2O2microsensor. The DO 

microsensor was calibrated in oxygen saturated (21% DO, 8.6 mg O2 L−1 at 23 °C) and deionized 

(DI) water under nitrogen bubbling (0% DO). The microsensors were calibrated before and after 

each measurement. For microprofiling, MoS2 samples were placed in a microprofile chamber 

with a 2 mL min−1 continuous flow of DI water. Positioning and movement of the microsensor tip 

towards the sample was accomplished using a three-dimension (3D) micromanipulator 

(UNISENSE A/S, Denmark) and observed using a stereomicroscope with a CCD camera (World 

Precision Instruments, Sarasota, FL, USA). A silver/silver chloride (Ag/AgCl) reference 

electrode (MI-401, Microelectrodes Inc., Bedford, NH, USA) was positioned using a helping 

hand (VTHH, Veleman Inc., Forth Worth, TX, USA) and a lab jack (Swiss Boy Model 110, 

Fisher Scientific) was used to position the MoS2 samples in view of the microscope. Microsensor 

electrical signal (mV or pA) was measured using a multimeter (UNISENSE A/S, Denmark) and 
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the experiments were performed in a Faraday cage (81-334-04, Technical Manufacturing Co. 

Peabody, MA) to minimize electrical interference. Microprofile measurements were conducted at 

50–100 µm intervals with 5 seconds of wait time between each measurement. Three replicate 

profiles were obtained for each parameter and the microprofiles shown in Fig. 4 are the averaged 

values of these replicates. Microprofiles were taken from 2,000 µm above the MoS2 film surface 

to the solution surface. 

XTT reduction assay for monitoring ROS production 

2-methoxy-4-nitro-5-sulfophenyl-2H-tetrazolium-5-carboxanilide inner salt (XTT) 

assay (X4626, Sigma Aldrich, St. Louis, MO) was used to investigate ROS production. XTT 

reduced by superoxide radical anions (O2
•−) generates water-soluble XTT-formazan with a 

maximum absorption at 470 nm, and the formazan produced by the reaction can be used to 

determine the relative amount of produced ROS (Yang et al. 2014). Metal-coated MoS2 films of 

identical size (3 cm2) were tested. 40 mL of XTT (0.4 mM) dissolved in phosphate buffered 

saline was used to submerge the samples while being exposed to 16,000 Lux (4.47 × 10−3 W 

cm−2) continuous cool-white fluorescent light illumination. A shaker table was used at 90 RPM to 

keep the samples well mixed. Absorbance at 470 nm was taken using a spectrophotometer (DR 

900, HACH Co., Loveland, CO) for two days to determine the rate of ROS generation. 

Degradation of MC-LR 

The photocatalytic removal of MC-LR in pristine MoS2 and metal-coated MoS2 films was 

investigated under an illumination with a fluorescent lamp. As reactors, PYREX™ reusable 

borosilicate petri-dishes (diameter: 60 mm and depth: 15 mm, Fisher Scientific) were used to 

contain MC-LR solutions (total volume of 10 mL in each reactor). A stack solution of MC-LR 

(475815, Calbiochem) of 500 mg L−1 was first prepared using SQ water (18 mega ohm of a 
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resistivity) and then diluted to 250 μg L−1 or 500 μg L−1 with pH = 5.8. Subsequently, 

MoS2 samples were loaded in the reactors covered with aluminum foils and were kept for 3 hours 

to reach the adsorption equilibrium before illumination (light intensity of 4.75 × 10−4 W 

cm−2 measured with Newport broadband radiant power meter (Newport Corporation)). After 

illumination, the concentration of the MC-LR taken out of the reactors was determined by 

Agilent series 1100 high-performance liquid chromate graph (HPLC) with a C18 reversed-phase 

column (Supelco C18 Discover HS column, 150 mm × 2 mm, 5 μm particle size, Supelco, USA). 

Liquid with a unit volume of 20 μL was constantly injected under the flow rate of 0.2 mL min−2, 

following the previously reported method (Antoniou et al. 2008, Han et al. 2011, Pelaez et al. 

2009). 

Results and Discussion 

Figure 5-1(a) is the schematic illustration demonstrating the concept of photocatalytic 

degradation of emerging water contaminants using semiconducting 2D MoS2 photocatalysts. 

MoS2 films with vertically aligned 2D layers grown on SiO2/Si substrates are immersed in a 

water bath containing algal toxins (MC-LR in this case) absorbing photons from the visible light, 

which readily generates e−h+. These charge carriers migrate to the semiconducting surface where 

they react with hydroxyl ions and oxygen compounds to generate highly reactive species (i.e. 

O2
•−,.OH, and H2O2) that can degrade  the algal toxins. Figure 5-1(b) is an image of a MoS2 film 

with vertically aligned 2D layers grown on a SiO2/Si wafer of >2 cm2 in size. The growth of the 

MoS2 film with vertically aligned 2D layers was achieved by the sulfurization of Mo-deposited 

wafers following the previously reported method (Kong et al. 2013). Figure 5-1(c) is a 

representative high-resolution transmission electron microscopy (HRTEM) image of a MoS2 film 

with vertically-aligned 2D layers. It is apparent that the MoS2 film predominantly exposes the 
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edge sites of vertically-aligned 2D layers perpendicular to the substrate surface. The film 

presents continuously connected vertically-aligned 2D MoS2 layers, uniformly covering the 

entire surface.  

The annular dark field (ADF) scanning TEM (STEM) image in Fig. 5-1(d) allows for a 

near atomic-scale investigation of a single MoS2 grain with vertically-aligned 2D layers. The 

image clearly identifies the individual atomic planes of molybdenum (Mo) and sulfur (S) 

organized in an S-Mo-S sequence with heavier Mo atoms appearing brighter than S atoms. The 

projected atomic structure of MoS2 is superimposed on the image, indicating an interlayer 

spacing of ~0.62 nm. The presented structural model matches the image of the projected 

MoS2 atomic structure, indicating that the MoS2 film predominantly expose the semiconducting 

2H hexagonal phases (Deokar et al. 2017, Li et al. 2016). For the purpose of photocatalytic 

performance tests, some MoS2 films with vertically-aligned 2D layers were coated with thin 

layers of noble metals. Figure 5-1(e) shows a HRTEM image of a platinum (Pt; ~3 nm thick)-

deposited MoS2 film with vertically-aligned 2D layers. The image reveals that individual Pt 

nanoparticles are uniformly and discontinuously distributed, while the vertical 2D layer edges 

are well maintained even with the Pt coating (Fig. 5-1(f)). 
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Figure 5- 1. Concept for photocatalytic degradation of MC-LR and TEM characterizations 

of MoS2 films with vertically-aligned layers. (a) Schematic illustration for photocatalytic 

degradation using MoS2 films. (b) Image of an as-grown MoS2 film. (c) HRTEM image to 

show vertically-aligned 2D MoS2 layers. (d) ADF-STEM image and atomic structure 

comparison of vertically-aligned 2D layers. (e) HRTEM image to show the uniform 

distribution of Pt nanoparticles on the vertically-aligned 2D layer edges. (f) Close-up image 

to show that vertical 2D layer edges are well maintained even after Pt incorporation. 

Detailed structural and chemical characterizations were further performed. In Fig. 5-2(a), 

Raman spectra obtained from the MoS2 films grown with Mo seeds of various thicknesses are 

presented. For all film thicknesses, the Raman spectra show strong signatures of both the in-

plane (E2g) and out-of-plane (A1g) phonon modes of MoS2. The intensity ratio of A1g mode to 

E1
2g mode (A1g/E2g) increases with increasing Mo thickness, which indicates the pronounced 

exposure of 2D edge sites and is consistent with previous studies (Kong et al. 2013). Figure 5-

2(b) shows the change in the A1g/E2g intensity ratio as a function of Mo thickness (red), while 

there is no significant thickness-dependent change in the frequency difference of A1g-E1
2g (blue). 

The thickness of the MoS2 film with vertically-aligned 2D layers was identified by cross-section 

TEM characterizations. The thickness of initial Mo seeds increases by ~3 times after the 
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sulfurization, which was consistently observed for Mo thickness from 5 nm to 20 nm. Figure 5-

2(c) is the photoluminescence (PL) spectra obtained from the same MoS2films with vertically-

aligned 2D layers in Fig. 5-2 (a) and (b). We observe that MoS2 films with a thickness of <10 nm 

exhibit two emission peaks centered around 1.81 eV and 1.96 eV, corresponding to the A and B 

excitons of MoS2 (Deokar et al. 2017). The observation of such strong PL peaks is interesting as 

they are typically observed in mono-to-few layer horizontal 2D MoS2 flakes of much smaller 

thickness (<a few nm) (Deokar et al. 2017). Similar observations of PL peaks in vertically-

aligned 2D MoS2 layers have previously been reported (Wang et al. 2013), while the exact 

mechanism for the PL emission remains unclear at present.  

X-ray photoelectron spectroscopy (XPS) characterizations were performed to investigate 

the chemical composition and the atomic bonding characteristics of the MoS2 film with 

vertically-aligned 2D layers. Figure 5-2(d) and (e) show the XPS spectra for the Mo3d and 

S2p core levels of the studied sample. The absence of a noticeable peak at 235.2 eV 

corresponding to Mo-O bonds indicates a negligible formation of molybdenum oxides. No 

noticeable peaks corresponding to the S-O formation in the S2p states are observed, which 

indicates the negligible oxidation of sulfur in the sample. The chemical compositions of the 

MoS2 film was determined by analyzing the Mo3d and S2p peak areas with relative sensitivity 

factors of 9.5 and 1.67, respectively. The atomic ratio of Mo and S is identified to be ~1:1.85, 

indicating a small density of S vacancies, which is commonly observed chemically synthesized 

MoS2 and is known to introduce n-type intrinsic doping (McDonnell et al. 2014). 
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Figure 5- 2. Structural and chemical characterizations by Raman, PL, and XPS. (a) Raman 

spectra obtained from the MoS2 films grown with Mo seed layers of various thicknesses. (b) 

A1g/E1 2g intensity ratio and frequency difference of A1g−E1 2g as a function of Mo 

thickness. (c) PL spectra obtained from the corresponding MoS2 films. XPS spectra of a 

MoS2 film for (d) Mo3d and (e) S2p core levels. 

Electronic band structures of the MoS2 films with vertically-aligned 2D layers were 

identified to assess their feasibility for visible light-driven photocatalytic reactions. Figure 5-

3(a) shows the UV-vis spectra obtained from a MoS2 film (thickness: ~20 nm) transferred on a 

transparent sapphire substrate. Two prominent exciton absorption peaks corresponding to A and 

B excitons at ~1.8 eV and ~2.0 eV were observed, which originates from the strong spin-orbit 

splitting of the valence band. The absorbance tail observed in the regime I at a 
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wavelength < 1.8 eV indicates the indirect band transition (Fig. 5-3(a) inset). The band gap (Eg) 

of the sample was estimated by using the Tauc’s equation,  

(α(ν)*hν)1/n = A(hν − E g )  (1) 

where α(ν), A, n are the absorption coefficient, proportionality constant, and gap-type 

depending exponent, respectively(Choi et al. 2012, Saha et al. 2015). In this case, n = 2 is 

assigned such that multi-layered MoS2 presents indirect band gap originating from the maximum 

of valence band at Γ and the minimum of conduction band halfway between Γ and K (Mak et al. 

2010). The inset of Fig. 3-5(a) presents the variations of (αhν)1/2vs. hν for the MoS2 film with 

vertically-aligned 2D layers. The red straight dashed line indicates the indirectly allowed 

transition region in the sample, from which Eg of ~1.59 eV is extracted. This value of Eg belongs 

to the visible light regime of the solar spectrum, indicating that the MoS2 film with vertically-

aligned 2D layers can absorb sun light up to ~780 nm. This enhanced absorption corresponds to 

~50% increase in energy compared to other oxide semiconductor photocatalysts which are 

sensitive to UV light only (i.e. 4–5% of the whole solar spectrum). The positions of the valence 

band (VB) and the work function of the MoS2 film were determined by ultraviolet photoemission 

spectroscopy (UPS) and scanning kelvin probe microscopy (SKPM). The characterizations were 

performed on the MoS2 films transferred onto conductive (e.g. gold (Au)-deposited) 

Si/SiO2 substrates. The VB position is identified to be ~−6.07 eV, which is ~1.5 eV lower than 

the Fermi level of Au as shown in Fig. 5-3(c). The work function of the MoS2 film is extracted to 

be ~−4.57 eV based on the surface potential difference of ~0.3 V in Fig.5-3(c). Figure 5-3(d) 

presents the band structure of the MoS2 film with respect to ROS reaction potentials. It is noted 

that the Fermi level of the MoS2 film is close to the conduction band (CB) edge implying its n-

type carrier transport, as also predicted from XPS analysis which indicates intrinsic n-doping 
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owing to S vacancies. The results indicate that MoS2 films with vertically-aligned 2D layers 

possess electronic structures suitable for ROS generation and photocatalytic reactions (Liu et al. 

2016). The carrier transport properties of the MoS2 film with vertically-aligned 2D layers were 

also evaluated by measuring its sheet resistance (Rs). Two metal contacts were deposited on the 

either sides of the as-grown MoS2 film channel defined by e-beam lithography (Fig. 5-3(e) 

insert). The current-voltage characteristic in Fig. 5-3(e) shows Ohmic transport with Rs of 

~2.63 × 109Ω/□. The sheet resistance of the MoS2 film is observed to be three orders of 

magnitude larger than that of monolayer horizontal MoS2 flakes where the carrier transport 

occurs on the basal planes of 2D layers. This large in-plane Rs of the vertically-aligned 2D 

MoS2 layers indicates the hopping-dominated carrier transports accompanied by significant 

carrier scattering across the van der Waals gaps in between vertical 2D layers (Li et al. 2014). 
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Figure 5- 3. Band structure determination by optical and electrical characterizations. (a) 

UV-vis spectrum from a MoS2 film with thickness of 20 nm. The inset shows the extraction 

of band gap (Eg). (b) UPS measurement for the determination of VB position in the MoS2 

film. (c) Surface potentials of MoS2 and reference Au measured by scanning kelvin probe 

microscopy. (d) Band structure of the MoS2 film with respect to the redox potentials for 

hydrogen- or oxygen evolution reactions. (e) Current-voltage characteristics of a MoS2 film 

on a SiO2/Si substrate. Inset shows the optical image of the corresponding device. 

Photocatalytic performances of various MoS2 films were evaluated for the visible light-

driven production of ROS and degradation of MC-LR. The tested samples include pristine 

MoS2 and MoS2 films coated with thin (5 nm) noble metals (platinum (Pt), copper (Cu), 

gold/palladium (Au/Pd)). The production of ROS was monitored using H2O2 detection 

microsensors and 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide 

inner salt (XTT) essay. In photocatalysis, chemical reactions occur at the photo-reactive surfaces 

in aqueous solutions, thus in situ measurements of the mass transfer of reactants and products are 
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essential to understand the overall photocatalytic reactions. The concentration gradient 

microprofiles of O2 and H2O2, an indication of ROS production, were directly measured using a 

commercial DO microsensor and a home-built Pt-based H2O2 microsensor (Fig. 5-4(a)). For in 

situ microprofiling, MoS2 samples were placed inside a microprofile chamber (Woo Hyoung et 

al. 2011) with a 2 mLmin−1 continuous flow of deionized (DI) water and a silver/silver chloride 

(Ag/AgCl) was used as a reference electrode (Fig. 5-4(b)). The ROS production from various 

MoS2 films immersed in MC-LR baths was quantified by the optical absorption of XTT at 

470 nm wavelength. An increase in the optical density (OD) indicates an increase of ROS 

concentration (i.e. O2
•−) under illumination (Okyay et al. 2015). Figure 5-4(c) shows the ROS 

production (denoted as OD470) from MoS2 films of various types as a function of illumination 

time. It is clear that all the tested films present noticeable ROS production, exhibiting a linear 

relationship in OD470vs. time. Amongst them, the Pt-coated MoS2 film exhibits the highest ROS 

production rate (determined from the slopes of the plots). DO concentration microprofiles of the 

corresponding samples are shown in Fig. 5-4(d), which indicates O2 concentrations in solutions 

as a function of the distance from the photo-reactive surface. The Pt-coated MoS2exhibits the 

largest consumption of oxygen with a surface concentration of 5.8 mg O2 L−1, which corresponds 

to 2.2 mg O2 L−1consumption in comparison to the bulk concentration (8.02 ± 0.2 mg O2L−1). The 

result suggests that Pt-coated MoS2 films are highly photocatalytic under visible light 

illumination, and are consistent with the XTT characterizations (Fig. 5-4(c)). The detailed 

kinetics of ROS production in Pt-coated MoS2 films were further revealed by quantifying the 

conversion ratio of O2 to H2O2 using the H2O2 and DO microsensors (Fig. 5-4(e)). Details for the 

microsensor characterizations are in the methods. The microprofiles reveal that 60% of the 

O2 consumed at the film surface is being stoichiometrically converted to H2O2, following 
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2H2O2 ↔ O2 + 2H2O. The overall results obtained from XTT analysis and in situ microsensor 

characterizations confirm that Pt-coated MoS2 films efficiently produce ROS under visible light. 

 

Figure 5- 4. In situ monitoring of ROS production. (a) H2O2 and dissolved oxygen (DO) 

microsensors for in situ characterizations of H2O2 production and 

O2 consumption (b) Image of H2O2 and DO microsensors immersed in a water bath (c) ROS 

production from MoS2 films of various types measured by absorbance of XTT-formazan at 

470 nm (optical density [OD] 470). (d) DO concentration microprofiles of various 

MoS2 films (e) H2O2 and DO concentration microprofiles at the surface of Pt-coated 

MoS2 film. 0 µm represents the top surface of the film. All the microprofiles were obtained 

after ~30 min exposure to water. 

The direct photocatalytic removal of MC-LR with various MoS2-based films using a 

visible light illuminating fluorescent lamp (Spectrum data is in Appendix D) was further 

investigated in Fig. 5-5. Figure 5-5(a) presents the relative concentration (normalized to initial 

concentration) of removed MC-LR as a function of time. Pt-coated MoS2films present the fastest 

removal of MC-LR under identical conditions (pH = 5.8 and initial MC-LR 

concentration = 250 µg L−1), achieving a complete removal within 2 hours after the onset of 
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illumination. It is worth mentioning that pristine MoS2 films also remove MC-LR slightly faster 

than Cu-only film, indicating the intrinsic photocatalytic activity of vertical MoS2 with 

Eg tailored to visible light. Cu-coated MoS2 films exhibit higher removal rate than both pristine 

MoS2 and Cu-only, indicating that metal coatings noticeably improve the overall degradation 

efficiency. Moreover, it is interesting to note that the removal of MC-LR occurs even before 

illumination (in the dark), which is attributed to the adsorption of MC-LR to the samples. 

Figure 5-5(b) compares the contribution of adsorption and photocatalytic activity that account for 

the total degradation of MC-LR. The plots reveal that pristine MoS2 films do not exhibit a 

noticeable removal of MC-LR by adsorption-only, further indicating their intrinsic photocatalytic 

activity. Thus, the significantly improved removal efficiency achieved in Pt-coated MoS2 films is 

likely the result of the synergetic effects of adsorption (mainly contributed by Pt) and 

photocatalytic reaction (contributed by both Pt and MoS2). 
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Figure 5- 5. Photocatalytic degradation of MC-LR at pH 5.8. (a) Removal of MC-LR as a 

function of illumination time (initial MC-LR concentration of 250 μg L−1). (b) Comparison 

of adsorption with various samples after two hour illumination. (c) Comparison of MC-LR 

removal for Pt + MoS2 and Au/Pd + MoS2 at concentrations of 250 μg L−1 and 

500 μg L−1. (d) Determination of rate constants for the photocatalytic degradation of MC-

LR with Pt + MoS2 and Au/Pd + MoS2 based on the pseudo first-order kinetics. (e) XPS 

characterizations to show the appearance of N1s peaks in MC-LR tested samples (sample 1 

and 2) in comparison to pristine samples (sample 3 and 4). Sample 1,3 and 2,4 were 

prepared from Mo films of 10 nm and 15 nm thickness, respectively. 

Additional experiments were performed using Pt- and Au/Pd-coated MoS2 samples using 

MC-LR with initial concentration of 500 µg L−1 and were compared to the results obtained with 

250 µg L−1 (Fig. 5-5(a)). Figure 5-5(c) shows that both samples efficiently degrade MC-LR under 

illumination while the degradation rate decreases with increasing MC-LR concentrations. The 

detailed kinetics for the degradation of MC-LR were analyzed. Figure 5-5(d) presents the 

degradation kinetics for both Pt- and Au/Pd-coated MoS2 in the logarithmic plots of MC-LR 

concentration as a function of illumination time. The plots indicate that MC-LR degradation 

follows pseudo first-order kinetics, yielding rate constants of 0.2451 and 0.4884 h−1 for Au/Pd 

and 0.4084 and 0.6769 h−1for Pt, respectively, obtained from 500 µg L−1 and 250 µg L−1 of MC-

LR. These results indicate that the incorporation of noble metals into photocatalytic MoS2 films 
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significantly improve the efficiency of e−h+ separation resulting in enhanced photocatalytic 

activity. Similar results have previously been reported with other photocatalytic semiconductors 

which possess much larger Eg, thus, are sensitive to UV light-only (Han et al. 2014, Lee et al. 

2008, Pulido Melián et al. 2012, Wang and Lim 2013). In order to clarify the adsorption-driven 

removal of MC-LR in the dark, we performed additional XPS characterizations (Fig. 5-5(e)). We 

focused on comparing the characteristics of N1s signals for MoS2 samples exposed to MC-LR in 

the dark and pristine MoS2. Figure 5-5(e) shows the XPS spectra from the MC-LR tested (sample 

1 and 2) and pristine (sample 3 and 4) samples for the binding energies between 390 eV–420 eV. 

The results reveal that the MC-LR tested samples present pronounced N1s peaks which are 

absent in pristine MoS2 films, indicating the significant adsorption of MC-LR in the dark. We 

further investigated the exclusive contribution of MC-LR adsorption in the dark on its overall 

degradation (Fig. 5-5(b)) by fitting a type II pseudo second order adsorption model to the MC-

LR degradation kinetics obtained under dark/illumination conditions (Appendix D). The analysis 

successfully decouples the adsorption and photocatalytic effects, and further verifies that the 

observed MC-LR degradation under illumination is a combine result of both the effects. 

The effect of noble metals on enhancing photocatalytic activity can be understood 

considering the following factors; (a) Noble metals of high work functions in contact with n-type 

MoS2 form low-barrier Schottky junctions which facilitate the separation of e−h+, promoting their 

migration and participation in ROS generation (Ismail 2012, Subramanian et al. 2004, Tanabe 

and Ozaki 2014, Yoon et al. 2015). We identify that our n-type MoS2 with vertically-aligned 

layers (Fig. 5-3(d)) in contact with Pt form low-barrier Schottky junctions with the Fermi level 

pinning of MoS2 close to its conduction band (Appendix D). Significantly enhanced 

photocatalytic activities have also been reported in oxide semiconductor photocatalysts of large 
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Egafter incorporating metals (Han et al. 2014), consistent with our studies. (b) Nanoscale noble 

metals introduce localized surface plasmon resonances (SPR) which significantly increases 

optical absorption in the visible light spectrum (Zhou et al. 2014), leading to further 

enhancement in photocatalytic activity. (c) 2D MoS2 with vertically-aligned layers present ~five 

orders of magnitude greater chemical/physical absorbance compared to horizontal 2D 

MoS2 layers owing to their highly reactive 2D edge sites (Cho et al. 2015). It is anticipated that 

an optimal mass loading of noble metals exists for optimized photocatalytic reactions(Han et al. 

2014, Pulido Melián et al. 2012), which is to be determined by a balance between enhanced 

optical absorption and increased electrical conductivity (e−h+ separation efficiency). 

Conclusion 

In summary, we report the visible-light driven photocatalytic degradation of MC-LR 

using 2D MoS2 films with vertically-aligned layers. We reveal that coating thin noble metal 

layers on top of pristine MoS2 films significantly improves the degradation efficiency, resulting 

in a rapid ROS production and consequent MC-LR removal. The efficient degradation of MC-

LR in metal-coated MoS2 is attributed to the combined result of the intrinsic photocatalytic 

activity of MoS2 with band gap energy tailored to visible light and enhanced adsorption enabled 

by noble metals. This study suggests the high potential of 2D MoS2 films with vertically-aligned 

layers for photocatalysts, thus have great implications for a wide range of environmental 

applications for sustainable emerging contaminants degradation and water purification. 
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CHAPTER SIX: APPLICATION OF MICROSENSORS TO CITRUS 

PLANTS FOR DETERMING THE FOLIAR UPTAKE OF Zn2+ IN HLB 

TREATMENTS 

This paper has been previously published as: Church, J., Armas, S.M., Patel P.K., Chumbimuni-

Torres, K., and Lee, W.H., Development and characterization of needle-type ion-selective 

microsensors for in situ determination of foliar uptake of Zn2+ in citrus plants, Electroanalysis. 

DOI:10.1002/elan.201700697. Armas, S.M. was an equally contributing author and was 

responsible for providing and charactering the Zn2+ ionophore.  

Abstract 

For over a decade, the incidence of Huanglongbing (HLB) has grown at an alarming rate, 

affecting citrus crops worldwide. Current methods of nutrient therapy have little to no effect in 

alleviating symptoms of HLB, and scarce research has been put forth towards non-destructive 

tools for monitoring zinc transport in citrus plants. Here, we have developed and characterized a 

solid contact micro-ion-selective electrode (SC-µ-ISE) for the determination of zinc transport in 

sour orange seedlings using a non-invasive microelectrode ion flux estimation (MIFE) technique. 

The SC-µ-ISE  displayed a 26.05 ± 0.13 mV decade-1 Nernstian response and a LOD of (3.96 ± 

2.09) ×10-7 M. Results showed a significant Zn2+ uptake in the leaves and roots of sour orange 

seedlings when bulk concentrations were higher than 5.99 mM. Above this concentration, a 

linear relationship between flux and bulk Zn2+ concentration was observed. This relationship 

suggests passive diffusion may be a key mechanism for Zn transport into plants. Overall, this 

study is the first to use a Zn2+ SC-µ-ISE for the determination of ion transport processes in 

plants. This novel tool can be used to further knowledge the effect of nutrient therapy and 

disease progression on HLB infected citrus plants.  
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Introduction 

In the span of 10 years, Huanglongbing (HLB) has devastated Florida’s 10.7-billion-

dollar citrus industry. HLB has now spread into commercial groves and growers are struggling to 

maintain profits. Citrus HLB, or citrus greening, is caused by three species of 

Alphaproteobacteria: 1) Candidatus Liberibacter asiaticus (Ca. L. asiaticus (Las)), 2) Ca. L. 

africanus (Laf), and 3) Ca. L. americanus (Lam), which are limited to growth in the phloem 

(Bové 2006, Gottwald 2010). The disease plugs the sieve pores of the phloem which ultimately 

inhibits the flow of nutrients throughout the tree (Etxeberria et al. 2009, Kim et al. 2009). 

Therefore, HLB symptoms hallmarks nutrient deficiency; blotchy mottle leaves, yellow shoots 

and fruits that are underdeveloped and lopsided (Graca 1991). 

Citrus trees infected with HLB have been shown to exhibit depleted levels of zinc when 

compared to healthy citrus trees (Nwugo et al. 2013). A study have shown that zinc 

concentrations could be ten times greater in healthy trees (Tian et al. 2014). Therefore, it has 

been common practice to supplement HLB infected trees with nutrients like zinc to alleviate the 

nutrient imbalance (Xia et al. 2011). Nevertheless, it is still unclear on whether nutritional 

therapy can alleviate the symptoms of HLB. Additionally, there is limited research connecting 

nutritional management to improved productivity of HLB infected citrus trees and recent reports 

have shown that nutritional therapy is not effective at suppressing Las or alleviating HLB 

symptoms (Gottwald et al. 2012). The lack of information is likely due to current methodology 

employed to monitor zinc content in citrus plants. Currently, zinc is detected primarily using 

inductively coupled plasma atomic emission spectroscopy (ICP-AES) or atomic absorption 

spectroscopy (AAS) for which samples need to be dried, grounded, and digested before analysis 

(1998). This process is time consuming, expensive, destructive, non-portable and does not give 
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the temporal or spatial resolution needed to truly understand the movement of zinc through the 

phloem of citrus plants. Therefore, there is an urgent need to develop a reliable, non-invasive, 

non-destructive tool capable of tracking zinc’s systemic activity directly in plants.  

Polymer-based micro ion-selective electrodes (µ-ISE) can meet the desired qualities of a 

non-invasive tool for in situ analysis of citrus plants. These µ-ISEs provide the needed selectivity 

via the use of an ionophore, which forms a stable complex with the analyte of interest; an ion-

exchanger, which provides electroneutrality and ensures permselectivity; and a polymer matrix 

which yields high support and mechanical functionality to the membrane. Non-invasive 

microelectrode ion flux estimation (MIFE) has been used to study the transport of ions in plant 

physiology due to the non-destructiveness and high spatial and temporal resolution of the method 

in almost natural conditions. Works by Miller et.al (Miller et al. 2001, Miller and Smith 1996) 

and Newman (Newman 2001, Newman et al. 1987) have pioneered the practical and versatile 

use of microelectrodes and MIFE for plant studies. Ions including H+, Ca2+, NO3
- , NH4

+, Na+, 

Cl- , Cd2+ and K+ have been investigated using MIFE techniques (Henriksen et al. 1992, Kochian 

et al. 1992, Pineros et al. 1998, Shabala et al. 1997). Nonetheless, these studies did not perform 

foliar uptake of zinc via ion flux estimation due to the lack of appropriate analytical tools. 

Further, these previous studies have employed a liquid-contact (LC) based platform for µ-ISEs 

(Henriksen et al. 1992, Kochian et al. 1992, Miller et al. 2001, Newman et al. 1987, Pineros et al. 

1998, Shabala et al. 1997). However, the optimization and insertion of the backfilling solution 

can be laborious and challenging to yield lower limits of detection (LOD) and good electrode 

reproducibility.  As a result, this work employs a solid-contact (SC) based platform to overcome 

the challenges from LC based platform. SC-µ-ISEs allow for less cumbersome LOD 

optimization due to its simplistic design. In a SC based platform, the ionophore-doped polymeric 
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membrane is in direct contact with the metallic conductor (e.g., gold) coated with a hydrophobic 

conducting polymer (poly (3-octylthiophene- 2,5 diyl)), leading to an improved membrane/metal 

interface and a stable phase boundary potential, allowing trace level analysis (Chumbimuni-

Torres et al. 2006, Guth et al. 2009). 

The objective of the present work was to develop, characterize, and apply a zinc SC-µ-

ISE for determining in situ foliar uptake of Zn2+ in citrus plants using MIFE techniques. Two 

microelectrodes configurations were constructed to evaluate the selectivity, LOD, reproducibility 

and lifetime. Overall, the zinc SC-µ-ISE exhibited good stability and durability to monitor Zn2+ 

concentrations in the vascular bundle of citrus leaves in-situ.   

Materials and Methods 

Zinc Ion-Selective Membrane Cocktail 

The Zn2+ cocktail was prepared by following a previously investigated composition with 

some modifications (Kojima and Kamata 1994). Zinc cocktail was prepared on a 100 mg scale 

that consists of 80 mmol/kg of Zn (I), 10 mmol/kg of KTFPB, (66.6 w%) o-NPOE and (33.3 

w%) PVC, was dissolved in 1mL of THF and vortexed for 1 h.  

Preparation of Zn2+ SC-µ-ISEs 

Two configurations of zinc SC-µ-ISE were prepared using the zinc ion selective 

membrane cocktail described above. The configurations of the Zn2+ SC-µ-ISE are shown in 

Figure 6-1. The first configuration will be denoted as SC-µ-ISE 1 and the second configuration 

will be denoted as SC-µ-ISE 2.  

The SC-µ-ISE 1 was prepared by employing a commercially available micropipette tip 

(0.540 mm diameter), where a gold wire (0.20 mm diameter) coated with POT was introduced 
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and sealed from the top with a hot melt adhesive. The zinc cocktail was inserted through 

capillary action and a round-like membrane formed at the end of the tip.  

 

Figure 6- 1. Diagram and photograph of SC-µ-ISE 1 (left) and SC-µ-ISE 2 (right). 

SC-µ-ISE 2 was prepared using borosilicate glass micropipettes (Sutter Instrument 

Company, BF120-69-15) (ID: 0.69 mm, OD: 1.2 mm, length: 15 cm), which were pulled 

horizontally using a Flame/Brown type micropipette puller (Sutter Instrument Company, Model 

P-100). The tip of the glass micropipette was broken with a fine tweezer to create a tip diameter 

between 30–100 μm and bevelled at a 45° angle using a beveller (BV-10, Sutter Instruments). 

The hydrophobic ion exchange membrane must adhere to the glass of the electrode to prevent the 

aqueous electrolyte solution from finding a pathway along the glass and short-circuiting the 

sensor (Beyenal 2013). Therefore, the glass inner surface was silanized to promote good 

adhesion with the hydrophobic membrane. Thus, the glass tip was dipped into TMSDMA for 15–

30 sec. The micropipettes were then placed in a stainless steel mini-rack which was tightly 

closed by a glass container and placed in an oven at 180 ˚C for at least 24 hours. Then, the 

custom designed holder with the micropipette tips facing up was removed from the oven and a 

Tip size: 40µmTip size: 540µm
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small amount (0.25 ml) of dry TMSDMA was injected quickly into the small container using a 

syringe. The silanization reagent evaporated immediately and the vapor reached the inner surface 

of the micropipette tips. The glass container was then kept in the dark in a desiccator for 1.5–2 

hours before applying the ion exchange membrane. The microelectrode tip was then dipped in 

the Zn2+ ion selective membrane cocktail for 10 sec and a 100 µm POT coated gold 

microelectrode was position within the membrane and held in place using hot melt adhesive 

before the membrane was allowed to dry. The POT coated gold microelectrode was prepared 

ahead of time by attaching a 100 µm gold wire to a copper wire using silver paste and encasing 

the gold wire in borosilicate glass using the micropipette puller.  

The tip of the glass was broken to expose approx. 500 µm-length of gold wire which was 

coated with POT solution and allowed to dry for 2 hrs. After the SC-µ-ISE 2 was assembled and 

allowed to dry, the tip was observed under a microscope to insure the membrane had good 

contact with the POT coated gold electrode.  

Characterization of Zn2+ SC-µ-ISEs 

SC-µ-ISE 1 were conditioned in a 1×10-3 M Zn(NO3)2 solution for 5 hr. During 

measurement, the microelectrodes required a 20 min hydration time in DI water, followed by 8 

min equilibration time upon analyte spiking. SC-µ-ISE  2 was conditioned in a more 

concentrated solution of 0.1M Zn(NO3)2 solution for 30 min to accelerate the condition time. SC-

µ-ISE 2 was allowed to hydrate in DI water for 5 minutes, followed by 2 min equilibration time 

between analyte spiking. 

Potentials for SC-µ-ISE 1 were monitored with a high-input impedance (1015 Ω) EMF-

16 multichannel data acquisition system (Precision Electrochemistry EMF Interface, Lawson 

Laboratories, Malvern, PA) at room temperature (22° C), while stirring the solution.  
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All measurements were conducted in a Faraday cage to minimize electrical interference and 

measured against a double junction Ag/AgCl/3M KCl/1MLiOAc reference electrode (Metrohm 

AG). The SC-µ-ISE 1 was employed to determine pH stability and selectivity studies. 

Determination of ion fluxes 

Potentials for SC-µ-ISE 2 were monitored using a microsensor multimeter (Unisense 

A/S, Denmark) at room temperature under constant stirring. A Ag/AgCl reference electrode was 

used for all foliar uptake measurements. Net ion flux experiments were done after the leave/root 

had been exposed to Zn2+ solutions for 30 minutes. A custom flow cell (5 mL) was attached to 

the leaves of sour orange seedlings (Approx. 100 cm tall) as demonstrated in Figure 6-2. A 0.5 

ml/min flow of Zn2+ solutions ranging from 0 to 15.3 mM was used to keep the system at 

equilibrium. The developed Zn2+ SC-µ-ISE 2 was positioned using a three- dimensional 

micromanipulator (UNISENSE A/S, Denmark) and observed using a stereomicroscope with a 

CCD camera (World Precision Instruments, Sarasota, FL). The Ag/AgCl reference electrode was 

fixed in the flow cell using a helping hand. Data acquisition software was used to control and 

record the microprofiles (Sensor Trace Pro, Unisense A/S, Denmark). The experiment took place 

in a Faraday cage to minimize electrical interference. The microelectrode tip was moved in a 

direction perpendicular to the leaf surface and microprofile measurements were taken at 50 µm 

intervals from 1,000 to 50 µm above the surface (to avoid breaking the sensor tip). A single 

profile was completed in 3 minutes (<10 s response time).  
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Figure 6- 2. Schematic diagram of microprofiling set-up for flux determination of zinc 

foliar/root uptake.  

When ions are taken up by living cells, the concentration in the proximity of the cell’s 

surface will be lower than that further away (Newman 2001). The conversion of concentration 

gradient data into flux estimate requires assumptions about the mechanisms of ion transport to 

the plant surface and the nature of the diffusion boundary layer (DBL) (Newman 2001). 

However, several studies have shown planar diffusion is mostly responsible for EMF gradients 

as a microelectrode approaches the surface of plant tissues (Henriksen et al. 1992, Shabala et al. 

2000). Therefore, only planar diffusion will be considered in this study.  If ordinary diffusion is 

the only driving force for ion movement toward a plant surface; Fick’s First Law can be used to 

express the proportionality between flux and concentration gradient as shown in equation 6-1: 

 

𝐽𝑍𝑛2+ =
𝐷(𝐶1−𝐶2)

(𝑋1−𝑋2)
                                                  (6-1) 
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Where, J is the net Zn2+ flux (in picomoles per square centimeter per second), D is the 

diffusion constant for Zn2+ (7.05 x 10-6 cm-2 s-1) (Price et al. 1990), C1 and C2 are the measured 

Zn2+ concentrations at X1 and X2, and X is the distance from the surface of the plant tissue. The 

minus sign is normally omitted for uptake measurements so that influx is defined as positive.  

Results and Discussion 

Sensor Characterization 

The SC-µ-ISE 1 conditioning protocol was optimized to a minimum conditioning time of 

5 hr in 1×10-3 M Zn(NO3)2 yielding a Nernstian slope of 32.28 ± 1.29 mV decade-1 with a (2.83 ± 

0.47) ×10-7 M LOD (Figure 6-3(a)), which resembles that of the macro-ion selective electrode 

platform previously investigated (Kojima and Kamata 1994). Thus size reduction did not hinder 

the electrodes ideal response. In a similar fashion, SC-µ-ISE 2 yielded a Nernstian response of 

26.05 ± 0.13 mV decade-1 with an LOD of (3.96 ± 2.09) ×10-7 M (Figure 6-3(b)).  

Given that the pH in phloem bundles in citrus plants is around 6.0 (Hijaz and Killiny 

2014), the response of the sensor with fixed concentration of Zn(NO3)2  (1×10-3M) at varied pH  

was investigated. The desired pH was achieved by adjusting with either HNO3 or NaOH (pH 

ranged from 2 to 9). The electrode exhibited a stable response between pH 4.00 to 7.00 as shown 

in Figure 6-4. Therefore, the proposed sensor is able to be used for MIFE analysis. 
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Figure 6- 3. Zn2+ calibration curves obtained with (A) SC-µ-ISE 1 and (B) SC-µ-ISE 2. 

(Inset: recorded potential time traces of respective SC-µ-ISEs). All measurements were 

done in triplicates 

 

Figure 6- 4. pH stability study of Zn2+ SC-µ-ISE 1. Measurements were conducted in 

triplicates. 

Selectivity measurements for Zn2+ ISEs were obtained using the unbiased separate 

solutions method as described by Bakker (Bakker 1997). Briefly, electrodes were conditioned in 

the least interfering ion to obtain Nernstian response, a requirement to use Nicolskii-Eisenman 

equation. The slopes and selectivity coefficients are displayed in Table 6-1. The selectivity 

coefficients reported in this work varies from previously reported literature [13], since unbiased 
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method was used. Nonetheless, the analysis of zinc foliar uptake is conducted through a surface 

profile and the inference caused by copper will be highly reduced. See Table 6-1. 

Table 6- 1. Observed experimental selectivity coefficients for Zn2+ cocktail with 

corresponding slopes for interfering ions based on the unbiased separate solutions methods 

Ion J(Z+) [a] 𝒍𝒐𝒈 𝑲𝒁𝒏,𝑱
𝒑𝒐𝒕

 Slope (mV decade-1) 

Ca2+ -3.15±0.07 27.10 ±0.53 

K+ 2.13±0.17 52.58 ± 2.05 

H+ -0.52±0.13 51.39 ± 0.79 

Cu2+ 10.82±0.61 38.95 ± 5.11 

Zn2+ 0 27.78 ±1.23 

 

Surface profiling 

Foliar and Root Zn2+ uptake 

The surface profiles of various Zn2+ concentrations on sour orange seedling leaves are 

shown in Figure 6-5(a). There was no detectable change in concentration from the bulk solution 

to the leaf surface when the bulk concentration was 0, 0.2, or 1.3 mM. This likely means that the 

concentration gradient between the internal leaf concentration and bulk concentration was not 

large enough to induce Zn2+ flux. When the concentration of the bulk solution was 6.0 mM, there 

was a decrease in concentration from the bulk to the surface of the leaf by 1.6 mM. This 

indicates the uptake of zinc by the leaves. This trend continues with higher bulk concentrations 

of Zn2+. When the measured bulk concentration was 15.2 mM, the surface concentration was 

reduced to 9.1 mM.  

The surface profiles of Zn2+ uptake by the roots of a sour orange seedling are shown in 

Figure 6-5(b). It is clear that there is a significant difference between Zn2+ uptake by roots 

compared to leaves. Zn2+ concentrations averaging 6.3 mM and 12.6 mM in the bulk were both 

reduced to 0.2 mM at the surface of the leaves. The DBL was also significantly different between 

the surface profiles of the leave and the roots. For example, with a bulk concentration of 15.2 
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mM, the DBL of the leaf profile was 210µm, yet with a similar bulk concentration (12.6 mM), 

the DBL of the root profile was increased to 274 µm. This may be due to the geometry of the 

roots. Unlike the leaves, the roots are round; therefore, a slight change in profiling location can 

lead to large changes hydrodynamics and mass transfer. 

 

Figure 6- 5. Microprofiles of various Zn2+ bulk concentrations using SC-µ-ISE 2 on A) 

leaves and B) roots of sour orange seedlings. (On Figure 3A, black squares indicate 0 mM, 

red circles 0.20 mM, blue triangles 1.3 mM, pink triangles 6.0 mM, and green rhombus 

15.2 mM Zn2+. On Figure 3B, black squares indicate 6.3 mM and red circles 13.0 mM Zn2+ 

Estimation of Zn2+ flux via MIFE 

There is contradicting research on the uptake of Zn2+ in the leaves of plants. Some studies 

show that foliar uptake is possible in wheat plants (Haslett et al. 2001); while others report foliar 

uptake does not occur and can leave the roots starved of Zn2+ if not supplied in the root 

environment (Webb and Loneragan 1990). In this study, the flux of Zn2+ into the leaves and roots 

of a sour orange seedling was calculated from the surface profiles, as shown in Figure 6-6 and 

Table 6-2. There was no significant flux into the leaves when bulk concentrations were 0, 0.2, or 

1.3 mM. This differs from a study by Haslett et al., where the foliar uptake of zinc (as ZnO and 

ZnEDTA) in wheat was observed at 1µM concentrations of zinc.  However, results in this study 
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demonstrate that when bulk concentrations increased to 6.0 and 15.2 mM, Zn2+ transport into the 

leaves was observed. The Zn2+ flux into the leaves ranged from 5.9x102 nmol cm-2 s-1 to 1.7x103 

nmol cm-2 for zinc concentrations of 6.0 and 15.2 mM, respectively. This shows that foliar zinc 

uptake is possible in sour orange leaves. Zn2+ flux of similar bulk concentrations was observed to 

be higher in the roots than compared to the leaves, indicating higher zinc uptake by the roots. 

The observed results were expected considering most nutrients are absorbed by the roots of 

plants (Gupta et al. 2016). 

 

 

Figure 6- 6. Zn2+ flux as a function of bulk concentration in leaves and roots of sour orange 

citrus seedlings.  

The flux of Zn2+ into the leaves had a linear relationship with bulk Zn2+ from 1.3 mM to 

15.2 mM (Figure 6-6), suggesting passive diffusion. However, facilitated diffusion or active 

transport is also likely to be involved in Zn2+ uptake by plants (Jyung et al. 1965). In this case, 

we would expect to see a saturation point where all active sites are being consumed. Research by 

Zhang and Brown (Zhang and Brown 1999) looked at foliar Zn2+ uptake in Pistachio and Walnut 

leaves and found a saturation point at >7.5 mM and 15 mM in pistachio and walnut leaves, 
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respectively. Therefore, it is likely that there is a saturation point in citrus plants that is higher 

than 15.2 mM or that the initial uptake mechanism of Zn2+ is passive diffusion.  

Table 6- 2. Estimated flux of Zn2+ into leaves of roots of sour orange seedlings using the 

developed SC-µ-ISE 2 

Location 
Zn2+ bulk concentration 

(mM) 
Diffusion Boundary Layer (µm) Flux (nmol cm-2 s-1) 

Leaf 0 N.D. N.D. 
Leaf 0.2 N.D. N.D. 
Leaf 1.3 N.D. N.D. 

Leaf 6.0 121 5.9 × 102 

Leaf 15.2 210 1.7 × 103 

Root 6.3 239 1.4 × 103 

Root  12.6 274 2.2 × 103 

 

Conclusion  

A Zn2+ SC-µ-ISE was developed and characterized for the investigation of ion-transport 

processes in the foliage and roots of citrus plants. The sensor displayed a 26.05±0.13 mV decade-

1 Nernstian response and a LOD of (3.96 ± 2.09) ×10-7 M. Even though selectivity coefficients 

showed an interfering response to Cu2+ (𝑲𝒁𝒏,𝑱
𝒑𝒐𝒕

=10.82±0.61); Cu2+ concentrations were controlled 

in the flux estimation experiments. Therefore, Cu2+ interference was considered to be reduced. It 

was also found that the tip size, between 40 and 540µm did not affect the response of the sensor.  

Application of the developed Zn2+ SC-µ-ISE to the sour orange seedling revealed 

important information on zinc transport processes. It was found that Zn2+ flux is possible in 

citrus trees at bulk concentrations above 5.99 mM via MIFE. However, at low concentrations 

zero or negative flux was observed. Furthermore, the observed linear relationship between flux 

and bulk concentration, highlighting passive diffusion, may be a key mechanism for Zn2+ 

transport into plants.  
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Overall, this study is the first to develop a Zn2+ microelectrode for the determination of 

ion transport processes in plants. This novel tool can be used to further knowledge on the effect 

of nutrient therapy on HLB infected citrus plants.  
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CHAPTER SEVEN: A NOVEL APPROACH FOR IN SITU MONITORING 

OF Zn2+ IN CITRUS PLANTS USING TWO-STEP SQUARE WAVE 

ANODIC STRIPPING VOLTAMMETRY 

This paper has been previously published as: Church, J., and Lee, W.H. A Novel Approach for In 

Situ Monitoring of Zn2+ in Citrus Plants Using Two-Step Square Wave Anodic Stripping 

Voltammetry , MRS communications, 2018 

Abstract 

This study presents in situ detection of Zn2+ using a novel two-step square wave anodic 

stripping voltammetry (SWASV)-based needle-type microsensor for citrus plant applications. A 

double barrel bismuth/ platinum (Bi/Pt) microelectrode was fabricated with a solid metal tip 

(~110 µm) which was durable enough to penetrate the thick skin of the citrus leaves and 

sensitive enough to detect ppb changes in Zn2+ concentration using SWASV. The microelectrode 

tip size was also determined to reduce mass transport limitation and improve limit of detection 

(LOD). Overall, the developed Bi/Pt microelectrode successfully measured Zn2+ concentrations 

within the vascular bundle of citrus plants.   

Introduction 

In the span of 10 years, Huanglongbing (HLB) has devastated Florida’s over 10-billion-

dollar citrus industry (Hodges and Spreen 2006). Recent works on greenhouse canker infiltration 

assays showed local systemic activity of Zn-chelate (Commerford et al. 2016); however, there is 

no clear understanding of how the Zn-chelate moves in citrus trees. Although there are many 

analytical methods available for detecting Zn in aqueous solutions (e.g., inductively coupled 

plasma mass spectrometry [ICP-MS] and atomic absorption spectroscopy [AAS]), in situ 

monitoring of the movement of Zn-chelate in citrus trees has not been fully explored due to lack 

of experimental tools (Church et al.). There is an urgent need to develop a reliable Zn2+ 
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monitoring tool, capable of tracking its systemic activity directly in plants. Successful in situ 

Zn2+ detection will lead to a better understanding of its potential fate in plants by estimating 

spatial and temporal phloem concentrations of Zn2+ between successive spray applications which 

will benefit the assessment of spray rate and timings for effective HLB management. 

Microelectrodes are needle-type electrochemical microsensors that have been used for in 

situ monitoring of chemical compounds of interest in biofilm and corrosion processes in drinking 

water distribution systems (Lee et al. 2018, Lee et al. 2011b, Ma et al. 2018) and can be used to 

measure intracellular free ion activities by inserting their tip into plant tissues. Previous studies 

have shown the usefulness of applying ion selective microelectrodes to track the movement of 

H+, K+, NO3
- and Na+ in plants (Miller et al. 2001, Miller and Smith 1996, Newman 2001, 

Newman et al. 1987); however, it was found that Zn2+ ion selective electrodes show interference 

to Cu2+(Church et al.), a common micronutrient found in plants. Furthermore, ion-selective 

microelectrodes are difficult to manufacture and can be easily broken when the glass tip comes 

in contact with hard surfaces. The microelectrode tip must be micro-scale to impale the phloem, 

but durable enough to penetrate the plant without breaking. Miller et al. (2001) reported only 9% 

of the originally prepared triple barreled electrodes working after plant impalement.  

  On the other hand, square wave anodic stripping voltammetry (SWASV) has been 

recognized as a powerful tool for measuring trace metals for decades (Wang et al. 2000) and can 

eliminate the need for fragile ion selective membranes used in ion selective electrodes. Metallic 

bismuth (Bi) electrodes have been used as a working electrode for the anodic stripping 

performance by forming amalgams with trace metals (Rehacek et al. 2014, Wang et al. 2000, 

Wang et al. 2001, Yi et al. 2012).  SWASV using bismuth films have shown a limit of detection 

(LOD) of zinc reaching 12 ppb (Hwang et al. 2008). The enhanced sensitivity of SWASV, 
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associated with its pre-concentration step, makes it an ideal tool for measuring trace metals in 

biological matrices. However, conventional SWASV technique using a three-electrode system 

requires for stirring during the deposition step which is unsuitable for measurement of Zn2+ 

within the vascular bundle of citrus plants. In addition, the conventional three-electrode system 

needs to be miniaturized for plant applications.  Here, we propose the use of a novel two-step 

SWASV technique where the pre-concentration step is conducted separately, in situ, using a 

combined Bi/Pt microelectrode electrode system before being transferred to a stripping solution 

and connected to a more sensitive three-electrode system. The use of microelectrodes in 

electroanalysis offers a number of advantages for in situ detection of Zn2+ in biological samples 

including low background current, low IR drop and enhanced mass transport rates (Bartlett et al. 

2000). The last property is particularly important since it could alleviate the need for stirring 

during the pre-concentration step and allows in situ measurements in plants where the stirring 

condition is not possible. Even with the many advantages described previously, SWASV-based 

Zn2+ detection using microelectrodes has not yet been explored.  

This study is the first to develop a novel technique for in situ detection of zinc in citrus 

plants by exploring a solid type of microelectrode for Zn2+ measurement using SWASV. Two 

innovative concepts were introduced to overcome challenges of in situ measurement of Zn2+ in 

plant. First, a low melting point bismuth alloy (Belmont Alloy 2451: 44.7% bismuth, 22.6% lead, 

19.1% indium, 8.3% tin, and 5.3% cadmium, melting point 47°C) was tested as a way to 

eliminate the need for electrochemical co-deposition of bismuth traditionally used in SWASV 

detection of Zn2+. Second, an in vivo pre-concentration step, before anodic stripping analysis was 

evaluated to minimize the invasiveness of the method by only using a two-electrode system for 
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pre-concentration before transferring to more sensitive three-electrode system for anodic 

stripping analysis.  

Methods  

Metallic bismuth microelectrode design and fabrication  

Two different types of bismuth (Bi) microelectrodes were developed for Zn2+ detection 

using SWASV in this study. A single barrel bismuth microelectrode for testing the concept of 

two-step SWASV for detection of Zn2+ and a double barrel microelectrode consisting of bismuth 

(Bi) electrode as a working electrode and platinum (Pt) electrode as a reference electrode for real 

application to plant samples (Appendix E). The fabrication steps for a single barrel 

microelectrode can be found elsewhere (Lee et al. 2011a). Briefly, a micropipette (1B120-6, 

O.D. 1.2, I.D. 0.69, 150mm, WPI Inc. Sarasota, FL) was pulled using a Flaming/Brown type 

micropipette puller (Model P-1000, Sutter Instrument Co., Novato, CA). The tip of the 

micropipette was then broken using tweezers and tip diameter (6–85µm) was verified under a 

microscope. A piece (3 cm) of bismuth alloy wire (Belmont Alloy 2451: 44.7% bismuth, 22.6% 

lead, 19.1% indium, 8.3% tin, and 5.3% cadmium, melting point 47°C) was then inserted into the 

pulled micropipette and pushed toward the tip using a metal plunger. The alloy was heated using 

a nichrome heating filament (Cat. No. 66258-066, VWR, Radnor, PA). Pressure was applied 

using the plunger once the alloy began to melt to allow the alloy to pass through the tip of the 

micropipette. Any remnant of bismuth alloy at the tip of the microelectrode was removed by a 

gentle shake. A copper wire (12 cm, S4828C, 26GA, Fisher Scientific, Hampton, NH) was then 

fixed to the opposite end of the microelectrode by melting the alloy and inserting the wire. Next 

the tip of the micropipette was beveled at a 45° angle to expose the alloy wire using a 

micropipette beveller (BV-10, Sutter Instrument Co., Novato, CA). The tip was then rinsed with 
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deionized (DI) water and the finished microelectrode was preserved in a pipette storage box 

(BX20, Sutter Instrument Co., Novato, CA) until its use.  

A double barrel microelectrode consisting of a Bi working electrode and a Pt reference 

microelectrode was fabricated using the same procedures described above but with a double 

barrel micropipette (2BF150-86-10, Sutter Instruments, Novato, CA). A Pt wire (99.99%) with a 

diameter of 100 µm (#100-896, California Fine Wire Co., Grover Beach, CA) was attached to a 

copper wire (12 cm, S4828C, 26GA, Fisher Scientific, Hampton, NH) using a silver conductive 

epoxy (8331-14G, MG chemicals, Ontario, Canada) and etched in 0.1M KCN with 1.2 V for 25–

30 seconds to taper the tip. The Pt wire was then inserted into one barrel of the double barrel 

micropipette and the micropipette was pulled using the micropipette puller to seal the wire within 

the glass. The tip of the second barrel was broken and the bismuth alloy was formed at the tip of 

the microelectrode using the steps described for a single barrel microelectrode fabrication.  

Microelectrode performance evaluation using SWASV 

To apply the developed double barrel microelectrode to the plant system, the traditional 

SWASV was modified with two-step approach of in situ deposition and ex situ anodic stripping 

(Fig. 7-1). First, Zn2+ was deposited on the bismuth microelectrode in a solution of Tris buffer 

(pH ranged from 5.0 to 7.5) with varying concentrations of ZnCl2 (0–300 ppm Zn 2+) to represent 

the plant environment. Using a two-electrode system, a deposition potential of -1.4V vs. 

platinum reference electrode was applied to the bismuth microelectrode for 180 seconds both 

under stirred and unstirred conditions. The microelectrodes were then removed, rinsed with DI 

water, and transferred to a stripping solution (unstirred) where a SWASV scan (Scan: -1.4V to -

0.4V; Step: 10mV; Amplitude: 40mV; Frequency; 5 Hz) was applied using a potentiometer 

(Palmsens3, Palmsens BV, Netherlands) to determine Zn2+ concentration. During the square 
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wave scan, a platinum mesh was used as a counter electrode and an Ag/AgCl electrode (MI-401, 

Microelectrode Inc., Bedford, NH) was used as a reference electrode. After the scan, the 

microelectrode was cleaned in the same solution by applying -0.4V for 30 seconds. 

 

Figure 7- 1. A concept diagram of the two-step SWASV determination of Zn2+ in the 

vascular bundle of citrus plants. 

 

In situ application to citrus leaves 

Before applying the developed Bi/Pt microelectrode to citrus leaves, sample leaves were 

collected from a sour orange seedling and introduced to a 1 mM solution of ZnCl2 by submerging 

the stem of the leaf into the solution for 6 hours. Control samples were exposed to DI water for 6 

hours. The surfaces of all leaves were then rinsed with DI water and wiped dry with a Kimwipe. 

An automatic three-dimensional (3D) micromanipulator (UNISENSE A/S, Denmark) was used 

to position the tip of the combined Bi/Pt microelectrode 400 µm below the surface of the midrib 

for the in situ deposition of Zn2+. Preliminary results of pH microprofiles and cross-sectional 

images (Appendix E) suggested that approximate 300–400µm would be a typical depth for the 

phloem in citrus seedlings. Local in situ pH measurement were conducted using a pH 

microsensor (10 μm tip diameter, UNISENSE A/S, Denmark) and the 3D micromanipulator 



123 

 

(UNISENSE A/S, Denmark). After Zn2+ deposition on Bi side of the Bi/Pt microelectrode, the 

microelectrode was removed, rinsed with DI water, and transferred using the automatic 3D 

manipulator to the anodic stripping solution (0.1M acetate buffer at pH 4.5). A stereomicroscope 

with a CCD camera (World Precision Instruments, Sarasota, FL) was used to monitor the 

location of the microelectrode tip during the movement steps. SWASV scans were produced 

using a potentiometer (Palmsens3, Palmsens BV, Netherlands) with the same parameters used in 

the calibration. All experiments were performed in a Faraday cage (81-334-04, Technical 

Manufacturing Co., Peabody, MA) to avoid electrical interference. Pre- and post-calibration was 

conducted for ensuring the sensor performance.  

 

Results and discussion 

Zn2+ detection using two-step SWASV 

The remarkable sensitivity of anodic stripping analysis is attributed to the coupling of an 

efficient pre-concentration step with a sensitive voltammetric stripping measurement of 

accumulated metals. For conventional SWASV measurements, the pre-concentration and 

stripping steps occur in the same solution; however, this is not suitable for in situ detection in 

citrus trees. To minimize the impact of continuous SWASV measurements within the vascular 

bundle of citrus plants, the pre-concentration step needs to be conducted separately, in situ, using 

a combined two-electrode system before being transferred to a stripping solution and connected 

to a more sensitive three-electrode system. This two-step process was evaluated using a Bi 

microelectrode and compared with traditional SWASV measurements. For the conventional 

measurements, both the deposition step and stripping steps took place in a pH 4.5 acetate buffer 

solution (0.1 M) using a Pt mesh counter electrode and an Ag/AgCl reference electrode. For the 
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modified two-step measurement used in this study, deposition was performed in a separate Zn2+ 

solution (Tris buffer+ZnCl2), simulating the plant system, before being transferred to a pH 4.5 

acetate buffer where stripping occurred.  

Figure 7-2 shows the difference in response between the two methods. For the 

conventional SWASV measurement, a Zn2+ peak height of 0.022 µA was observed for 200 ppm 

Zn2+. This is significantly larger than the 0.009 µA peak height for the two-step SWASV method 

using the same Bi microelectrode. However, it was found that both methods were able to 

demonstrate a linear response between 1 and 200 ppm Zn2+. While the conventional SWASV 

measurement showed higher sensitivity to Zn2+ (101 pA/ppm vs. 38 pA/ppm), the two-step 

method was also able to measure Zn2+ concentrations of interest with an excellent linear response 

(R2=0.990). This result is the first to show that the two-step SWASV method can work in plants 

systems. 

 

Figure 7- 2. SWASV responses of the developed Bi microelectrode (tip size: 6 µm in 

diameter) to various Zn2+ concentrations (1–200 ppm) between (a) a conventional method: 

deposition (stirred) and striping (unstirred) in pH 4.5 acetate buffer and (b) a two-step 

SWASV method: deposition (unstirred) in ZnCl2 solution and stripping (unstirred) in pH 

4.5 acetate buffer at 23°C. Insets: Calibration curves from 1-100 ppm Zn2+. 
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Effect of plant pH on microelectrode response  

The effect of plant pH was investigated over the pH range of 5.0 to 7.5, under a fixed 

concentration of 200 ppm Zn2+ in DI water, using the two-step SWASV method (Fig. 7-3). pH 

was adjusted using HCl and NaOH. This pH range is typical for the vascular bundle of citrus 

plants (Hijaz and Killiny 2014) and was also determined using a pH microsensor in this study 

(Appendix E). The largest response was obtained at the lowest pH (5.0) with 1.78 µA; however, 

the responses between pH 5 and 6.5 were comparable and ranged from 1.40 to 1.78 µA. At pH 

7.0 the response to Zn2+ decreased significantly by 63% with a 0.66 µA peak and the response at 

pH 7.5 was < 1% of the electrode signal for pH 5.0. This decrease in response with increasing 

pH is accordance with the change of Zn2+ species depending on pH in aqueous solution. Using a 

water chemistry modelling software (MINEQL), it was confirmed that the solubility of Zn2+ 

decreases as pH increase above 7.2. Therefore, it is likely that the developed SWASV 

microelectrode is responding to the soluble concentration of Zn2+ across the tested pH range and 

that when pH was increased to 7.5 there was only a small amount of soluble Zn2+ to detect. 

Considering that the pH of the vascular bundle is expected to be below pH 7, it is likely that 

majority of the zinc would be detected by the developed two-step SWASV method using a Bi/Pt 

microelectrode.   
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Figure 7- 3. pH effect on SWASV responses to Zn2+ concentrations during pre-

concentration (inset: SWASV voltammogram of the Bi microelectrode with various pre-

concentration pH values).   

Effect of tip size and mass transfer on SWASV response 

The response of SWASV to Zn2+ concentrations is partly related to the surface area of the 

working electrode. Therefore, the effect of microelectrode tip size was investigated to optimize 

the developed Bi microelectrode for application to citrus plants. The ideal tip size would be small 

enough to penetrate the phloem, but large enough to produce distinguishable SWASV responses 

to different Zn2+ concentrations. Figure 7-4(a) shows the calibration curves of the developed Bi 

microelectrode with different tip sizes ranging from 10 to 85 µm (Appendix E). As expected, 

larger tip sizes increase the sensitivity of the SWASV response. For example, the 85 µm tip size 

had an increased slope, 0.154 µA/ppm Zn2+, compared to the 10 µm tip size which only had a 

slope of 0.0012 µA/ppm Zn2+.  The sensors displayed similar sensitivities per unit surface area 
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with an average normalized sensitivity of 1,246 ± 285 µA/ppm Zn2+ per cm2. Under stirred 

conditions, the 85 µm tip displayed a LOD below 0.65 ppm Zn2+, while the smaller tip size (e.g., 

10 µm) had a higher LOD (e.g., ~11 ppm Zn2+). The recess of the microelectrode shows no 

significant effect on the electrode response under stirred conditions (Table 7-1).  

 

Figure 7- 4. Mass transfer effect on Zn2+ detection: Zn2+ SWASV calibration curves of 

various tip sizes of Bi microelectrodes under (a) stirred and (b) unstirred conditions during 

a deposition step. Insets: Expanded view of sensor response from 0 to 50 ppm Zn2+. 

The effect of mass transfer on SWASV response was also investigated (stirred vs. 

unstirred). Conventional SWASV measurements use stirring during the deposition step to 

increase mass transport of target heavy metal ions to the electrode; however, under unstirred 

conditions, which simulate inside the vascular bundle of citrus plants, the reduced mass transport 

may be a limiting factor during in situ deposition of Zn2+. Figure 7-5(b) shows the calibration 

curves of various microelectrode tip sizes under unstirred conditions. The slope and LOD is 

severely affected under unstirred conditions for the 85, 48 and 12 µm tip sizes. There was a 

3,440%, 1,710%, 500% and 80% increase in the LOD for the 85, 48, 12 and 10 µm tip sizes, 

respectively. Similarly, the linear range also decreased for the 85 and 48 µm tip sizes probably 
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due to mass transport limitations, but stayed the same for 12 and 10 µm tip sizes between stirred 

and unstirred conditions. Table 7-1 compares the slope, linear range, and LOD between stirred 

and unstirred conditions. These results show that there is lesser effect of mass transport 

limitations on smaller sizes, compared to larger tip sizes. It is also clear that the recess enhances 

the effect of stirring on the sensor response. For example, the LOD of the 12 µm sensor with a 

recess was decreased by 500% when there was no stirring during the deposition, but a similarly 

sized sensor (10µm) without a recess did not show a significant decrease in LOD. These findings 

agree with other literature (Bartlett et al. 2000) and is particularly important since 

microelectrodes with a smaller tip sizes could alleviate the need for stirring during the pre-

concentration step and allow in situ measurements. Overall, a bismuth tip size in the range of 45–

90 µm (as a working electrode) was used for the biological application to minimize mass 

transport interference and maximize LOD and slope.  

Table 7- 1. The effect of tip size on the mass transport interference of SWASV response to 

Zn2+ using the developed Bi microelectrode 

Parameter and condition 

85 µm 

(without 

recess) 

48 µm 

(without 

recess) 

12 µm 

(with 

recess) 

10 µm 

(without 

recess) 

Slope  

(µA/ppm Zn2+) 

Stirred 0.1537 0.1073 0.0147 0.0012 

Unstirred 0.0945 0.0527 0.0041 0.0011 

% change 38% 50% 72% 8.3% 

LOD*  

(ppm Zn2+) 

Stirred <0.65 1.27 7.71 11 

Unstirred 13.5 23 46.2 19.9 

% change -3440% -1710% -500% -80% 

Linear range 

(ppm Zn2+) 

Stirred 
>350 to 

<0.65 

>350 to 

1.27 

>350 to 

7.71 

>350 to 

19.9 

Unstirred 
145.4 to 

13.5 

268.3 to 

23.0 

>350 to 

46.2 

>350 to 

19.9 

change Decrease Decrease Decrease Same 
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In situ detection of Zn2+ using SWASV in the vascular bundle of citrus plants 

The combined Bi/Pt microelectrode was applied for Zn2+ detection in the vascular bundle 

of citrus plants. The configuration of the double barrel microelectrode allowed for simultaneous 

penetration of the working and reference electrode into the vascular bundle of citrus leaves for 

SWASV determination of Zn2+. The combined Bi/Pt microelectrode showed improved durability 

over the single barrel Bi microelectrode and was not damaged by the leaf surface. The double 

barrel Bi/Pt microelectrode had an overall tip diameter of 110 µm and a working bismuth 

diameter of 70 µm. A calibration curve showed an excellent sensitivity toward Zn2+ with 0.172 

µA/ppm Zn2+ slope and an R2 value of 0.996 (Fig 7-5(a)). The calibration curve after application 

to the plant showed a response of 0.187 µA/ ppm Zn2+ and demonstrated that the microelectrode 

was not damaged during the penetration. By microscopic observation, it was also found that the 

direct contact with plant tissue had no impact on the microelectrode tip. The pre- and post-

calibration curves (Fig. 7-5(a)) also showed a LOD of 0.92 ppm and a life time study showed the 

sensor’s response does not change over 18 uses (Appendix E) which is acceptable for the 

purpose of detection of Zn2+ in plants.  

Figure 7-5(b) shows the microelectrode’s response to Zn2+ concentrations in the midrib of 

treated (1 mM ZnCl2 for 6 hrs) and untreated (DI for 6 hrs) citrus leaves. The two separate 

treated leaves (1 and 2) produced a SWASV response of 1.2 µA (treated 1) and 1.4 µA (treated 

2) and the two separate untreated leaves showed a negligible response (0.06 µA and 0.003 µA) to 

Zn2+ compared to the treated leaves. Using the pre-and post-calibration curves (Fig. 7-5(a)), it 

was determined that the treated leaf contained 5.73±0.88 ppm Zn2+ while the untreated leaf 

contained undetectable amounts of  Zn2+. While the increase in Zn2+ concentration was expected 

in the treated leaf, the measured values were difficult to validate with existing literature due to 
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the use of different analytical methods. Most studies primarily detect Zn2+ using inductively 

coupled plasma atomic emission spectroscopy (ICP-AES) or atomic absorption spectroscopy 

(AAS) for which samples need to be dried, grounded, and digested before analysis (1998). This 

causes zinc concentrations being reported in mg per kg dry weight. A study using a more direct 

Zn measurement, micro X-Ray Fluoresce (µ-XRF), reported Zn2+ concentrations in mg kg-1 dry 

weight (34.6 to 42.4 mg kg-1 in sour orange plants) (Tian et al. 2014). Considering µ-XRF 

determines total zinc concentration and there will be a difference between dried (mg Zn kg-1 

biomass) and in situ measurements (mg Zn2+ L-1), the measurement using in situ SWASV seems 

reasonable.  

 

Figure 7- 5. In situ application of the developed microelectrodes for plants. (a) Pre- and 

post-calibration curves of combined bismuth/Pt reference microelectrode using a two-step 

SWASV method. (b) In situ detection of Zn2+ in untreated (DI water) and treated (1 mM 

ZnCl2) citrus leaves using the double barrel Bi/Pt microelectrode.  

While the benefits of using a SWASV-based microelectrode for monitoring Zn2+ 

concentrations in citrus plants are clear, there are still limitations that need to be addressed. In 

particular, Cu-Zn intermetallic species are known to develop during the deposition step and 

interfere with the sensor response (Sanna et al. 2000). However, the quantification of the 

interference from intermetallic Cu-Zn compounds is beyond the scope of this paper, as it is 
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assumed that Cu2+ concentrations in citrus leaves will be significantly lower than Zn2+(Sanna et 

al. 2000). For other applications where both Zn2+ and Cu2+ exists in high concentrations, we 

suggest that one possible solution for determining the amount of copper in a sample would be to 

use a different deposition potential (e.g., -0.6 V) that is more anodic than that required for the 

reduction of Zn2+ to determine if the formation of Cu-Zn compounds may be a problem for 

sensor responses. With more validation regarding reproducibility and representativeness, it is 

expected that this novel approach of using two-step SWASV would provide a simple, fast and 

reproducible detection of Zn2+ in plants, capable of distinguishing between treated and untreated 

samples. Overall, this study demonstrates the feasibility of using a SWASV-based 

microelectrode technique as a direct and rapid method for monitoring of Zn2+ concentration in 

phloem tissue in a minimally invasive way.   

Conclusions 

A metallic bismuth (Bi)-based microelectrode was constructed and tested for concept 

proof of two-step SWASV for detecting Zn2+. We were able to demonstrate to feasibility of a 

two-step SWASV measure using in situ deposition of Zn2+ and ex situ stripping. It was also 

found that the tip size can be optimized to reduce mass transport limitation and improve LOD. 

The Bi microelectrode was then combined with a platinum microelectrode in a double barrel 

microelectrode configuration for direct measurement of Zn2+ in plants. Our results showed that 

the solid metal tip (110 µm in diameter) of the Bi/Pt microelectrode is durable enough to 

penetrate the thick skin of the citrus leaves. Overall, the developed Bi/Pt microelectrode was able 

to respond to Zn2+ in the midrib of a citrus leaves and distinguish the Zn2+ concentrations 

between Zn2+ treated and untreated samples with high resolution. This novel in situ detection 

method, capable of tracking its systemic Zn2+ activity directly in plants will lead to better 
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understanding of its potential fate in plants for effective HLB management in agriculture 

industry.   
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CHAPTER EIGHT: CONCLUSIONS, IMPACTS, AND OUTLOOK 

Conclusions 

Microsensors are powerful and nondestructive tools for quantifying interfacial reactions 

at the microscale in aquatic systems. They provide information that cannot be obtained by bulk 

solution measurements. Their small tip size and the capability of measuring compounds in high 

spatial and temporal resolution are vital for determining (time-course) mass transport of 

chemicals of interest which is needed for understanding many engineering systems. The work 

presented in this dissertation has demonstrated the unique contribution of microelectrodes in 

several environmental engineering research areas.   

First, we demonstrated that microsensors can be used to characterize mixed biofilms 

grown in a novel microalgal-based treatment system where DO microsensors were used to 

quantify the photo-aeration by an algal biofilm present on top of a nitrifying biofilm. Ammonia 

microprofiles also demonstrated that there was no consumption of ammonia in the upper portion 

of the biofilm, indicating that the algal portion of the upper biofilm was not consuming 

ammonia. Hence, the role of algal biofilm in the MAIFAS reactor is mostly aiding photo-

oxygenation. Overall, this study demonstrated microalgae photosynthesis as a way to provide 

sufficient oxygen for advanced wastewater treatment (>99% ammonia and 51% P removal in the 

MAIFAS reactor) and represents a novel strategy for reducing energy costs while meeting 

stringent effluent standards.   

Second, we applied the pH, DO, and ORP microsensors to bilge water emulsions to 

demonstrate the relationship between mass transfer and emulsion stability over time. 

Microsensor characterization of emulsions proved to be a useful tool for in situ monitoring mass 

transfer across and oil-water interface and thus act as an excellent predictor of Marangoni 
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stabilities when combined with surface tension and particle size analyses. The study showed that 

emulsions stabilized with nonionic surfactants were, in general, more unstable than SDS 

stabilized emulsions. However, SDS emulsions were more susceptible to salinity than Triton X-

100 emulsions. Furthermore, mass transfer in SDS emulsions were more affected by salinity than 

Triton X-100 emulsions. This lead us to believe that Marangoni instabilities had a more 

pronounced effect on SDS emulsions in bilgewater compared the Triton X-100 emulsions. The 

multi-scale approach of emulsion characterization proved to be beneficial for better 

understanding the emulsion stability. By combining with the innovative emulsion characterizing 

methods (e.g. CLSM and microsensors), the results provided better understanding of the effect of 

surfactant types and salinity in emulsion formation and stability for better management of 

bilgewater in shipboard applications. 

Third, we discussed the characterization of a new photocatalyst using microsensors.  

Results showed that the rate of oxygen consumption by the MoS2 had a linear relationship with 

ROS production (measured using XTT method). Therefore, microsensors represented a useful 

tool for characterizing photo-catalyst where photocatalyst performance can be evaluated in 

minutes rather than days. Using microsensor techniques we found that ROS production by the 

MoS2 samples were not homogeneous and that active surface area may differ between samples. 

We also found that MoS2 doped with Au/Pd and Pt showed significant improvement in ROS 

production over MoS2 doped with Au or Cu or MoS2 alone. Overall, we were able to prove that 

MoS2 films with vertically-aligned 2D layers exhibit excellent visible light responsive 

photocatalytic activities for efficiently degrading organic compounds in contaminated water such 

as harmful algal blooms. We also demonstrated the visible light-driven rapid degradation of 

microcystin-LR, one of the most toxic compounds produced by the algal blooms, and revealed 
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that the degradation efficiency can be significantly improved by incorporating noble metals. This 

study exhibits a high promise of these emerging 2D materials for water treatment, significantly 

broadening their versatility for a wide range of energy and environmental applications. 

In Chapter 6 and 7, we looked at developing microsensors for in situ monitoring of Zn2+ 

in plants. we have developed and characterized a solid contact micro-ion-selective electrode (SC-

µ-ISE) for the determination of zinc transport in sour orange seedlings using a non-invasive 

microelectrode ion flux estimation (MIFE) technique. The SC-µ-ISE displayed a 26.05 ± 0.13 

mV decade-1 Nernstian response and a LOD of (3.96 ± 2.09) ×10-7 M. Results showed a 

significant Zn2+ uptake in the leaves and roots of sour orange seedlings when bulk concentrations 

were higher than 5.99 mM. Above this concentration, a linear relationship between flux and bulk 

Zn2+ concentration was observed. This relationship suggests passive diffusion may be a key 

mechanism for Zn2+ transport into plants. Then we miniaturized square wave anodic stripping 

voltammetry into a microelectrode platform for measuring Zn2+ within the vascular bundle on 

citrus plants. Our results showed that the solid metal tip (110 µm in diameter) of the Bi/Pt 

microelectrode was durable enough to penetrate the thick skin of the citrus leaves and the 

developed Bi/Pt microelectrode was able to respond to Zn2+ in the midrib of a citrus leaves and 

distinguish the Zn2+ concentrations between Zn2+ treated and untreated samples with high 

resolution. It was found that the tip size can be optimized to reduce mass transport limitation and 

improve LOD.  These novel tools can be used to further knowledge the effect of nutrient therapy 

and disease progression on HLB infected citrus plants. 

Overall, the research presented in this dissertation demonstrates the importance of 

understanding of mass transport in environmental engineering and the usefulness of 
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microsensors for extending our current understanding of mechanisms and critical factors in 

natural and engineered systems.   

Broader Impacts and Outlook 

Impacts of this research transcends several disciplines of study. In the field of wastewater 

treatment engineering, the application of microsensors helped improve our understanding of 

algal-bacterial biofilm interactions that may one day lead to more sustainable wastewater 

treatment options. In the field of emulsion chemistry, information gained on how mass transport 

effects emulsion stability not only contributed to an improved scientific understanding of 

emulsion stability but may also lead to enhanced oily wastewater treatment. In the field of 

material science, microsensor characterization of photocatalysts allowed for rapid determination 

of ROS production and could change the way photocatalysts are studied. Lastly, in the field of 

agriculture, the developed Zn2+ microsensor demonstrated, for the first time, the rate of foliar 

uptake of zinc in citrus plants and the SWASV sensors showed the transport of zinc in the 

vascular bundle of plants. This work could one day lead to improved treatment options for HLB 

infected citrus. 

Future research could further develop algal biofilm models for scale-up in terms of 

photo-aeration and advanced nutrient removal. Further development of mass transport of oxygen 

in photocatalytic systems could also improve advanced oxidation processes along with material 

developments. Lastly, additional research of the use of microsensors in citrus plants could be 

expanded to a plant and agriculture research were microsensors have not yet gained traction.   
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APPENDIX B: SUPPLEMENTAL INFORMATION: APPLICATION OF 

MICROSENSORS TO ALGAL-BACTERIAL BIOFILMS FOR 

ADVANCED WASTEWATER TREATMENT 
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Figure B1. Experimental set-up of IFAS control, MAIFAS, and suspended algae-bacteria 

reactors.  

 

Figure B2. DO concentration microprofile measurements of IFAS biofilm.  
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Figure B3. Concentration of C. vulgaris under autotrophic (BBM + light), mixotrophic 

(BBM + light + glucose) and heterotrophic conditions (BBM + glucose + dark). 

 

 

Figure B4. Settling test of IFAS and MAIFAS sludge and biofilm formations between IFAS 

and MAIFAS media.  
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APPENDIX C: SUPPLEMENTAL INFORMATION: APPLICATION OF 

MICROSENSORS TO BILGE WATER EMULSIONS FOR IN SITU 

CHARACTERIZATION 
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Figure C1. Synthetic oil-in-water macro and microemulsion samples prepared using 0.1% 

NSBM#4 and 100 ppm Triton X100. 
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Figure C2. Fluorescence of emulsions. (a) photographs of SDS microemulsion and Triton 

X-100 microemulsion, (b) photographs of microemulsion samples under UV light, and (c) 

photographs of various oil and water samples under UV light.  
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Figure C3. Calibration curves before and after emulsion sample profiling for (a) ORP, (b) 

DO and (c) pH microsensors.  
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Figure C4. Microsensor emulsion characterization experimental set up. (a) a microscopic 

image of microsensor approaching to emulsion layer. (b) a schematic diagram of 

experimental set up. 
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Contact angle measurements. Contact angle measurements of surfactant water on glass (quartz) 

substrate was not possible because the glass substrate used in the test is hydrophilic and 

surfactants are inherently water soluble (hydrophilic) based on their hydrophilic-lipophilic 

balances (HLB). Therefore, the contact angle of surfactant water was measured in NSBM #4 

solution (surrounding media) (Fig. S5). Samples prepared using Triton X-100 showed dynamic 

changes over time and contact angles of Triton X-100 solution decreased over time from 160 to 

92° (Fig. S6). This decrease is much slower in higher salinities probably due to increased ion 

strength. The static contact angles for Triton X-100 solutions were measured after 60 seconds.  

 

 

 

Figure C5. Photographs of (a) water-in-oil pendant drops and (b) contact angle for no 

surfactant, SDS (100 ppm) and Triton X-100 (100 ppm) at 10-4 M NaCl in NSBM#4. 

Surrounding media in all tests was NSBM#4. 
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Figure C6. Contact angles of no surfactant (DI water only), SDS, and Triton X-100 

solutions over time in (a) 10-4 M and (b) 1 M NaCl in NSBM#4.  
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Figure. C7. Average emulsion size (n=20) a function of NaCl concentration at the initial 

and 24 hrs time intervals. Two different emulsion samples were prepared with SDS and 

Triton X-100. All samples were taken at the middle of the emulsion layer. At least 20 

emulsion droplets were measured and averaged for each condition. 
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Figure C8. CLSM images of spatial emulsion distribution at different locations. The sample 

was prepared with 100 ppm Triton X-100 solution and 1% NSBM #4 (no NaCl). The top 

CLSM image was taken from the cream layer, showing a high density of emulsion droplets, 

while the emulsion droplets at the bottom layer are scattered. 
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Microsensor performance validation in oil-water mixture. To validate the electrochemical 

microsensor performance in oil-water mixtures, a well-known microsensor, a DO microsensor, 

was used under various oil-water conditions. The DO microsensor is the Clark type sensor 

combined with a reference electrode in the same casing and was expected to provide stable 

signals (pA) for oxygen contents regardless of the phase being measured (e.g. gas, oil, or 

aqueous phase). A simple experiment was designed to measure oxygen concentrations through 

an air, oil, and water phase. Measurements for all oxygen microprofiles were conducted at 100 

µm interval with 30 seconds of wait time between each measurement for signal stabilization. 

Duplicate profiles were averaged together to obtain the DO profile and three signals were taken 

for each distance during each profile. First, an oxygen microprofile was measured in a sample 

that contained a top layer of mineral oil and a bottom layer of DI water saturated with oxygen 

(21% DO). Oxygen has a known solubility of 3,345 µL/L in mineral oil (1); thus, it was expected 

that oxygen can be measured in the mineral oil layer. In a saturated condition, oxygen 

concentrations in all three phases were around 21% DO (Figure C9). A similar oxygen 

microprofile was also measured using NSBM #4 instead of mineral oil and the result was similar. 

Then, oxygen microprofiles were measured in a different sample that contained a top layer of 

mineral oil and a bottom layer of DI water with the addition of oxygen scavenger (0.1 M 

ascorbic acid). It was clear that there are two diffusion processes occurring, one within the water 

phase and one within the oil phase. A similar profile was taken using NSBM #4 and DI water 

with an oxygen scavenger and the similar trend was observed throughout the oil and water 

phases. These profiles clearly showed a diffusion of DO from the oil phase (21%) to the water 

phase (0%) with the oxygen scavenger. The test proved that the electrochemical sensor technique 

is appropriate for characterizing emulsion stability and chemical species transport from oil to 
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water or water to oil phases.  

 

 

 

Figure C9. DO microprofiles through an air, oil and water phase. The water phase was 

fully saturated with oxygen (21% DO) or containing no oxygen (0% DO). 

 

A. Müller, M. Jovalekic, and S. Tenbohlen, "Solubility Study of Different Gases in Mineral and 

Ester-based Transformer Oils," in Condition Monitoring and Diagnosis (CMD), 2012 

International Conference on, 2012, pp. 937-940. 
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APPENDIX D: SUPPLEMENTAL INFORMATION: APPLICATION OF 

MICROSENSORS FOR CHARATERIZATION OF A NOVEL NOBLE 

METAL-COATED MoS2 NANOFILM PHOTOCATALYST FOR 

DEGRADATION OF EMERGING WATER CONTAMINATS 
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MoS2 adsorption model 

Several well-known adsorption models (pseudo first order, pseudo second order, Elovich, 

Avrami and fractional power models) were fit to the experimental data and validated using Chi 

square and normalized standard deviation.  The Type II pseudo second order adsorption model 

best represented our data (X2=2.45*10-6, R2=1). This model is the most commonly used 

mathematical expression for the kinetic data monitored in solid/solution sorption systems 1-3. The 

nonlinear form of pseudo second order adsorption is shown in the following equation: 

𝑞(𝑡) =
𝑘2𝑞𝑒

2𝑡

1 + 𝑘2𝑞𝑒𝑡
 

Where 𝑞(𝑡) and 𝑞
𝑒
 are the total adsorbed amounts of MC-LR per surface area of sorbant at time t 

and equilibrium, respectively. K2 and qw were determined by plotting 1/q(t) vs. 1/t.  Pt-MoS2 

catalysts displayed faster kinetics compared to Au/Pd-MoS2 catalysts (K2=0.47 vs. K2=0.57 µg 

cm-1 hr-1) and had higher absorption capacity (qe=0.871 µg cm-1  vs. qe=1.40 µg cm-1). The figure 

below shows that once the samples are illuminated the MC-LR kinetics are increased and exceed 

the adsorption equilibrium predicted by the dark adsorption model. This finding shows that MC-

LR degradation is a function of both adsorption and photocatalytic reactions.   

As we clarified that there is no noticeable production of ROS which is to come from the 

photo-excited e-h pair generation in the catalysts, this observation evidences the insignificant 

“dark” removal of MC-LR driven by photocatalytic reactions, which, in turn, strongly supports 

the adsorption-driven degradation in dark.   
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Figure D1. Type II pseudo second order adsorption model and experimental data of MC-

LR adsorption to MoS2 films 

ROS monitoring using XTT 

To monitor ROS production by MoS2, the possibility of superoxide radical anion (O2•−) 

production from MoS2 was monitored using XTT (2, 3-bis (2-methoxy-4-nitro-5-sulfophenyl)-

2H-tetrazolium-5-carboxanilide, Fluka). XTT can be reduced by superoxide radical anions (O2•−) 

to generate water-soluble XTT-formazan with the maximum absorption at 470 nm 4. Thus, an 

increase in absorption at 470 nm indicates an increase of ROS concentration. Figure 1 shows a 

preliminary data of ROS production. Au/Pd coated-MoS2 with vertically aligned layers shows 

higher production of ROS compared to control and MoS2 only within a time frame of 4 hours. 

Before photoreaction tests, it was confirmed that there is no ROS production under dark 

condition using XTT. The sample was colorless throughout the control check in dark which is the 

same as MoS2 only and Si only as shown in Figure D2. 
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Figure 1. Absorbance of XTT-formazan at 470 nm as a method to monitor the production 

of ROS from MoS2, Au/Pd modified MoS2 nanofilms and a substrate only (silicon wafer 

without MoS2 as a control). The surface area of each nanofilms was identical with 3 cm2.  

40 mL of XTT (0.4 mM) dissolved in phosphate buffered saline was used to submerge the 

samples while being exposed to 16,000 lx continuous cool-white fluorescent light 

illumination. Before tests, it was confirmed that there is no ROS production under dark 

condition using XTT.  
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APPENDIX E: SUPPLEMENTAL INFORMATION: CHAPTER 7: A 

NOVEL APPROACH FOR IN SITU MONITORING OF Zn2+ IN CITRUS 

PLANTS USING TWO-STEP SQUARE WAVE ANODIC STRIPPING 

VOLTAMMETRY 
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Figure E1. A schematic diagram and microscopic images of (a) the developed single barrel 

Bi microelectrode and (b) the double barrel Bi/Pt microelectrode for the detection of Zn2+ 

in citrus plants 

 

 

Figure E2. A representative pH microprofile of the midrib of a sour orange leaf using a pH 

microsensor.   
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Figure E3. A cross-sectional photograph of a sour orange seedling leaf stem at 100× 

magnification. 
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Figure E4. In situ pH measurements of a sour orange vascular bundle using a pH 

microsensor after 6 hours of exposure to various zinc treatments. Zn(NO3)2 was used for 

the zinc treatments.  

 

 

 

 

 

Figure E5. Microscopic images of bismuth microelectrodes for determination of tip size 

effect and recess on mass transport effects of SWASV response to zinc.  
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Figure E6. Response of bismuth sensor to 100 ppm Zn2+ over 18 uses 
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