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ABSTRACT 

This dissertation includes a series of experimental realizations which focus on studying the 

coupling between photons and single-molecule magnets (SMMs) in both the weak and strong coupling 

regimes.  In the weak coupling regime, the aim is to achieve coherent control over the time evolution of 

the spin of SMMs while applying rapid microwave pulses at sub-Kelvin temperatures, where polarization 

of the spin bath may be achieved without large magnetic fields, allowing the suppression of dipolar 

dephasing.  The continuing results of this experiment will be to provide a window into fundamental 

sources of decoherence in single-crystal SMMs in an energy range not thoroughly investigated.  We expect 

that these conditions would allow us to study the quantum dynamics of the spins as governed by the 

intrinsic molecular magnetic anisotropy, which should give rise to non-well-defined Rabi oscillations of 

the spin state, including metastable precessional spin states.  In the strong coupling regime, high quality 

factor superconducting CPW resonators have been designed and fabricated to investigate the vacuum 

Rabi splitting between a photon and the SMM spin.  The proposed setup will permit measurements of 

coherent collective coupling between molecular spins and a low number of photons, ideally down to a 

single photon. This experiment may ultimately provide the opportunity for reaching the strong coupling 

regime with a single spin.  Finally, this thesis also documents a research study into the impact of service-

learning methodology on students’ depth of learning and critical thinking skills during a novel nanoscale 

science and technology course offered in the UCF Physics Dept.  The overall learning of students was 

assessed and results clearly showed improvement in both multiple choice pre/post-tests and critical 

reflection papers. We associate this improvement at least partially to the service-learning experience. 
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CHAPTER 1: AN INTRODUCTION 

The theory of electromagnetism has been a driving force in innovation since it was explored by 

such early pioneers as Maxwell, Ampere, and Faraday [1,2]. Much of technology developed in the last 

century is based upon the creation and manipulation of electronic charges; in particular the use of 

transistors (which can act as an electronic switch, particularly in computers where they allow complex 

calculations to be performed); diodes (used to preferentially allow electric current to flow in one direction, 

for example in computers to perform certain logic operations utilizing large numbers of transistor 

components); and other hallmarks of modern electronic circuits.  Today, technology is moving towards 

the manipulation of the magnetic properties of systems for a variety of purposes; here, that basic 

component is the intrinsic angular momentum of quantum particles, which is referred to as spin.  In fact, 

the field of spintronics has emerged as a viable alternative to electronics where rather than movement of 

an electron’s charge driving operations, the change of electronic spins can be used.  Advantages of 

spintronics include the relative ease of switching spins when compared to maintaining an electric current, 

as well as the decreased power consumption required when compared to electronics. Some of the more 

widely researched applications include spin valves, giant magneto resistance, magnetic tunnel junctions, 

single spin logic, and spin-based transistors [3]; spin pumping and spin torque transfer, especially recent 

research done concerning antiferromagnets, where the electronic spins align antiparallel to their 

neighbors; and perhaps the most current “hot topic”, quantum computing and the search for ideal qubits 

(quantum bits).    

Molecular nanomagnets revealed their potential to act as magnetic bits at the quantum level with 

the discovery of magnetic hysteresis in molecular clusters of Mn12 acetate.  The 1996 discovery of the 

resonant quantum tunneling of the magnetization (QTM) [4-6] is considered to be a landmark in the 
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physics of spin [7].  In addition to QTM, the overall magnetic properties of single molecule magnets 

(SMMs) [8-23] make them extremely attractive for use in ultra-high-density integration and quantum 

information processing [24-26].  In fact, Grover’s algorithm, a quantum algorithm designed to identify the 

correct input to a “black box” function which produces a given output, has recently been demonstrated 

in an individual SMM [27]. Of particular relevance is reducing and influencing sources of decoherence 

(such as interactions between electronic spins and nearby nuclear spins, magnons, or phonons, discussed 

further in section 1.4) in these systems, which will enable the substantial number of logic gate operations 

required by quantum algorithms and error correction protocols [28-31] (especially in samples which allow 

isotopic purification).   In addition, the capability of a magnetic qubit, the quantum computing analog of 

the standard computing bit, such as a SMM [32] to coherently transform from a distinct excitation to a 

solitary photon is crucial for essential quantum information processes including the conveyance of 

information (read/write processes); this ability is characteristic of strong coupling between the qubit and 

its resonant modes [33].  Eventually, the ability to couple single spins to single photons in this regime 

would allow for unparalleled advances in quantum technologies – imagine individual spins being 

entangled across huge distances, allowing for virtually instantaneous communication; or perhaps 

calculations being performed by individual photons moving through a series of isolated spins, pushing 

Moore’s law to the absolute limit. Another evolving area of interest in which molecular nanomagnets are 

becoming a significant contribution is the developing field of molecular spintronics [34-44]; that is, the 

integration of elements of quantum magnetism and molecular electronics to create electronic devices 

with exciting new functionalities [45-47].  There are specific instances in which SMMs will provide a 

significant advantage over other systems (for example, N-V centers in diamond) with respect to spin 

manipulation and control, such as coupling to quantum circuits using superconducting resonators [48-50]. 
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This dissertation primarily concerns itself with the exploration of quantum dynamics of spin in 

SMMs, most notably in an energy regime that has not been well-studied and is dominated by the intrinsic 

properties of the molecules.  Specific interest is paid to experiments devoted to ultra-low temperature 

pulsed electron paramagnetic resonance (EPR) studies in the weak coupling regime, the goal being to 

facilitate understanding of fundamental sources of decoherence in these spin systems to further their 

potential use in quantum information science.  I then discuss methods of reaching the strong coupling 

regime with an ensemble of spins and a low number of photons and enhancing the coupling between the 

two systems, along with some preliminary results that relate to this path.  Additionally, I will describe 

some physics education research work that has been done regarding service learning in a nanoscience 

course as a way to bring the experimental side of nanomagnetism to light in a broader context.    

The remainder of this first chapter consists of a general introduction to the most basic spin system, 

a free electron, followed by a discussion of molecular nanomagnets in particular; an overview of one of 

the main experimental techniques used in this thesis; and a brief summary of light-matter interaction as 

it relates to spins.  Chapter 2 discusses the main technical work I have performed pertaining to 

decoherence studies in SMMs.  Chapter 3 puts forth our ideas for reaching the strong coupling regime 

with low numbers of photons.  Chapter 4 describes my work in nanomagnetism education research.  

Finally, Chapter 5 will conclude this dissertation and present a general discussion of what has been 

accomplished.  

1.1 Spin ½ 

Portions of this section have been written using references [51,52]. 

When physicists talk about the spin of an electron, they are referring to an intrinsic property of 

the particle that is analogous to angular momentum due to the rotation of the electron around its own 
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axis, similar to how the Earth is spinning around its own axis while also orbiting the sun.  This is somewhat 

of a simplification, as it is not strictly possible to physically observe an electron spinning in this manner, 

but spin in general obeys the same mathematical principles and laws as classical angular momentum 

(Figure 1.1).  That is, spin gives an electron a magnetic moment, and is constrained by a conservation law 

similar to that of angular momentum.  Referring to an electron as spin “up” or spin “down” simply denotes 

the direction of the axis of rotation; thought about in a different way, it specifies whether the electron 

can be viewed as being analogous to a ball of charge rotating clockwise or counterclockwise.  Contrary to 

classical angular momentum, however, spin is a completely quantum mechanical property and can take 

only quantized, discrete values.  It cannot be described by classical physics. 

Figure 1.1: Classical Angular Momentum 

A classical representation of the orbital angular momentum for an electron in a circular orbit (Left) and the spin 

angular momentum for a rotating electron (Right).  The classical magnetic moment due to a rotating ball of charge 

is shown on the far right. 

In determining the state of a quantum mechanical system, one can turn to linear algebra.  The 

state is said to be an eigenstate of the system if it has a measurable value, the eigenvalue, that can be 

observed.  For example, an eigenstate of the spin angular momentum operator for an electron would be 

spin up; the electron’s spin can be measured to be +1/2.  Typically, such a system will have multiple 

𝑟റ 

𝑣റ 

𝐿ሬറ𝑂 = 𝑀𝑣റ × 𝑟റ 

𝜔ሬሬറ 

𝐿ሬറ𝑆 = 𝐼𝜔ሬሬറ 

𝜇റ =
𝑔𝑄

2𝑀
𝐿ሬറ𝑆  
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possible eigenstates; for a free electron there are two, spin up and spin down.  The system in general, at 

any time, can be described by summing over all possible eigenstates, with appropriate coefficients to 

describe the probability of the system to be observed in each state at any given time.  This summation is 

called the wavefunction of the system.  Thus, to fully describe any quantum mechanical system one should 

identify the eigenstate coefficients from the equations of motion and construct the wavefunction.  The 

observable properties are extracted from the eigenvalues and eigenstates of a specific operator (such as 

the spin angular momentum operator 𝑆).  As another example, the eigenvalues derived from applying the 

Hamiltonian operator to a system’s wavefunction will return the measurable energies of that system.  To 

better understand this in the context of spin, we will look at the most basic spin system: the free spin ½ 

particle. 

1.1.1 The Stern-Gerlach Experiment and the Electron’s Magnetic Moment 

The first real indication of the electron having some spin was found in 1922 in Germany, by Otto 

Stern and Walther Gerlach.  They sent beams of silver atoms (with one unpaired electron in the valence 

shell) through an inhomogeneous magnetic field to observe any deflection.  The results showed 

unequivocally that silver atoms had quantized magnetic moments that could take one of two possible 

values.  However, it took several years (and Wolfgang Pauli) before this information became a framework 

for quantum mechanical spin.   

  If we start from a classical treatment and picture the electron as a tiny spinning ball of charge, 

then we know from classical mechanics that it should have both an angular momentum Lሬറ and a magnetic 

moment µሬറ which are related by the charge Q and mass M as 

µሬറ =
𝑄

2𝑀
𝐿ሬറ 

(1.1) 
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[51]. Although an electron is most definitely not a physical spinning ball, it does have an intrinsic angular 

momentum usually denoted as Sሬറ, and the charge and mass are well known.  Accounting for the 

dimensionless g-factor, which is an effective proportionality constant specific to a system and ≈ 2 for a 

free electron, this would give a semi-quantum expression for the spin magnetic moment µሬറS of 

µሬറ𝑆 =
−𝑔µ𝐵𝑆റ

ℏ
 

(1.2) 

where µ𝐵 is the Bohr magneton, ℏ is the reduced Planck’s constant, and the negative sign comes from the 

fact that the electron has a negative charge and thus, the magnetic moment will point opposite the 

angular momentum. 

1.1.2 Free Electron in an External Magnetic Field 

In the presence of an external magnetic field Bሬሬറ, the classical potential energy of a magnetic 

moment µሬറ is 

𝑈𝐵 = −µሬറ ∙ 𝐵ሬറ. 
(1.3) 

 However, we know that spin is quantized and thus requires a quantum mechanical treatment.  We 

introduce the operator that represents the observable projection of the spin onto the quantization axis 

ŜZ as 

𝑆̂𝑍 =
ℏ

2
[
1 0
0 −1

]  

(1.4) 

where the quantization axis is given by the applied magnetic field Bሬሬറ in this case (|Bሬሬറ| is assumed to be 

large, on the order of 1T).  The eigenvectors of this matrix are easily found to be [1, 0] and [0, 1] with 

respective eigenvalues of +1 and -1, telling us that measuring the spin of an electron along the defined 
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quantization axis will return a value of either + ℏ
2⁄  or − ℏ

2⁄  belonging to a spin that is either parallel or 

antiparallel to the axis (spin “up” or spin “down”).  We can use this operator to construct the Zeeman 

Hamiltonian operator, the quantum mechanical analog to the classical potential UB, defined as 

𝐻 = −𝑔µ𝐵𝑆𝑍𝐵𝑍 . 
(1.5) 

It is important now to distinguish the z-component of the magnetic field, BZ, from the total applied 

field Bሬሬറ as the component that lies along the whatever direction the spin vector points; this comes from 

the dot product between 𝑆റ and Bሬሬറ. In this simple free electron system, of course, the spin vector will be 

aligned with the external field; however, in more complicated systems there may be additional internal 

fields that will affect the spin vector.  One of the main goals of this thesis is to investigate these exact 

types of systems, where intrinsic magneto-anisotropy plays a large role in the spin dynamics (see Chapter 

2).  From this Hamiltonian operator it can immediately be seen that the energy will be a minimum when 

the spin vector and the magnetic field are aligned (SZ and BZ have the same sign), and the eigenvalues can 

be plotted as a function of BZ to give an energy level diagram for the system.  Figure 1.2 on the next page 

displays a plot of the classical potential UB as a function of magnetic field next to the energy level diagram 

for the simple spin ½ system discussed. 
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Figure 1.2: Spin ½ Energy Diagrams 

Left: Graph of the semiclassical energies for the parallel (black) and antiparallel (red) orientations of a free electron’s 

magnetic moment in an external magnetic field.  Inset are classical representations of the electron’s spin, illustrating 

an effective “right-hand rule” as explanation for the magnetic moment. Note that the directions have been reversed 

due to the negative charge of the electrons. Right: Energy level diagram of the two states (spin-up, black, and spin-

down, red) for an isolated electron in a magnetic field.  The arrow points to an energy difference of approximately 

10GHz between the ground and excited states.  

1.1.3 Transitions Between Spin Levels 

It is in many cases easiest to analyze a quantum mechanics problem through the use of matrices.  

We can define the basis states of our spin ½ system as |+⟩ and |−⟩ such that  

𝑆̂𝑍|+⟩ =  +
ℏ

2
|+⟩ ,    𝑆̂𝑍|−⟩ =  −

ℏ

2
|−⟩    

(1.6) 

meaning |+⟩ corresponds to the spin up state [1, 0] and |– ⟩ corresponds to the spin down state [0, 1]. 

What would happen if we wanted to look at the probability to change orientations from state |+⟩ to state 

|−⟩?  Let us look at a two state Hamiltonian matrix in its most general form: 

𝐻 = [
𝐸11 𝐸12

𝐸21 𝐸22
] . 

(1.7) 
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The diagonal matrix elements (E11 and E22) of the Hamiltonian gives the eigenvalues, or observable 

energies, of each individual state |+⟩ and |−⟩.  But the off-diagonal elements (E21 and E12) are in fact the 

amplitudes for possible transitions between the states and describe the coupling between them.  For 

example, if the off-diagonal terms in the Hamiltonian matrix are all zero, there will be no transitions 

allowed at all between the states.  With our current definition of the Zeeman Hamiltonian, including only 

SZ as a spin operator, the Hamiltonian matrix is diagonal, and no transitions will occur.  We must therefore 

include a dependence of the spin projection into the plane transverse to the z-axis of the form 

𝑆̂𝑋 =  
ℏ

2
[
0 1
1 0

] ,    𝑆̂𝑌 =  
ℏ

2𝑖
[
0 −1
1 0

] . 

(1.8) 

These, taken with 𝑆̂𝑍, are none other than the well-known Pauli spin operators 𝜎̂𝑥, 𝜎̂𝑦, 𝜎̂𝑦 multiplied by 

ℏ/2.   

Now the so-called matrix transition element for the two states, 𝑀 = ⟨+|𝐻|−⟩, will be nonzero, 

allowing for some transition probability.  This is the driving force behind EPR measurements, where a 

cavity excitation (photon) is coupled to a spin through a nonzero transition matrix element; when the 

photon’s energy matches the energy difference between the two levels |+⟩ and |−⟩ a transition can occur.   

The rate of this transition occurring can be found from Fermi’s golden rule [53] to be 

𝛤+→− =
2𝜋

ℏ
|𝑀 = ⟨+|𝐻|−⟩ |2𝛿(𝐸𝑝ℎ − 𝛥) 

(1.9) 

where 𝐸𝑝ℎ is the photon energy and 𝛥 is the energy difference between the two states.  The delta function 

effectively prevents a transition unless the photon energy exactly matches the energy gap; in practice, of 

course, there is not a discrete set of infinitely sharp lines marking the transitions.  There are a host of 

other contributions, including dynamic effects (such as spontaneous relaxation) and static effects (such 
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as unresolved hyperfine splittings and small variations of magnetic properties across the sample) that lead 

to line-broadening [54-58].  Finally, it is not explicitly stated in (1.9), but due to spin conservation the 

photon spin must be equal to that of change in spin of the system (𝛥𝑆 = ±1).  The next section will discuss 

the significantly more complicated situation with SMMs, a larger spin system, and introduce intrinsic 

anisotropy within a molecular nanomagnet. 

1.2 Single Molecule Magnets 

Portions of this section have been written using references [52,59-61]. 

SMMs are magnetic particles which function as a single domain and can be thought of as a 

bottom-up approach to magnetic materials at the nanoscale.  They consist of a magnetic core, typically 

rare-earth ions or transition metals, that is surrounded by non-magnetic ligands (molecules that bind to a 

central metal atom to form a coordination complex) which help minimize intermolecular interactions.  In 

contrast to a free electron, they exhibit many spin eigenstates with a potential energy barrier separating 

opposite spin projections, marking them as a spin system that is significantly more interesting to study.  

Their net spin is typically many times that of an electron alone, and they are characterized by a strong 

intrinsic magneto-anisotropy due to the couplings within the molecule itself.  This anisotropy manifests 

as the energy barrier to reversing the spin orientation (“up” to “down”).  A hallmark of the SMM is the 

quantum tunneling of the magnetization (QTM) [6], a way of allowing classically forbidden transitions to 

occur through this barrier, which will be discussed in more detail in section 1.2.3.  They are of particular 

interest in the fields of spintronics and quantum information science, as they are definitively quantum 

objects with the capability of their spin to be used as a quantum bit, and their long magnetic relaxation 

times particularly at low temperatures [13,62-64] provide excellent candidates for improving magnetic 

storage techniques.  Although there has been a wealth of concentrated study performed on such 
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molecular nanomagnets, they are still far not completely understood.  The scientific community has only 

recently begun to increase our understanding of the effects of the light-matter interaction on SMMs and 

the intrinsic sources of decoherence in their solid-state form, limited primarily by dephasing due to dipolar 

fluctuations [29,63,65].  Major efforts have thus been aimed towards the investigation of the quantum 

dynamics of molecular magnets as it pertains to their potential use in quantum information technologies 

[17,26,31,32,66-70] as well as a way to expand our knowledge of decoherence at the nanoscale 

[28,62,63,71,72]. 

As an example, in recent years solid evidence has been obtained regarding the importance of 

internal molecular degrees of freedom to the behavior of basic QTM properties.  In particular, molecular 

site symmetry is a central factor in the quantum Berry-phase interference (BPI) patterns observed in 

SMMs [73], and the relative orientations of the single-ion anisotropy tensors have a significant effect on 

the QTM spin selection rules [74].  BPI patterns are essentially oscillations in the spin tunneling probability 

as a function of the applied magnetic field (perpendicular to the easy axis/along the hard axis of 

anisotropy) which are due to quantum phase interference of different tunneling paths along the 

topological anisotropy energy landscape of the molecule [75].  The spin selection rules for QTM will be 

discussed further in section 1.2.3; they are what govern which forbidden transitions are permitted to 

occur. From a purely physical perspective, SMMs offer an intriguing playground in which to observe 

quantum behaviors in a relatively well-defined system. 

1.2.1 Types of SMMs 

In large part due to the recent increase in understanding of the intrinsic properties of molecular 

nanomagnets, the SMM community has shifted interest towards lanthanide-based mononuclear systems, 

where the magnetism arises from a single magnetic ion. The discovery that inorganic mononuclear 
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lanthanide polyoxometalates (POMs; a polyatomic ion consisting of at least three transition metal 

oxyanions, which are negatively charged molecules containing at least one oxygen atom, linked by shared 

oxygen atoms) also show quantum tunneling effects and can behave as SMMs [76-78] uncovered a new 

paradigm in molecular magnetism. The versatility and structural potential of this new class of purely 

inorganic SMMs has allowed for unprecedented control over key parameters such as the net spin, local 

symmetry, and hyperfine and dipolar interactions. As an interesting note, the SMM-like behavior in these 

compounds results from a significant orbital contribution to the ground state angular momentum J and 

the resultant anisotropy imposed by the surrounding ligands. These types of lanthanide-based 

nanomagnets present new possibilities to explore; several have recently been found to exhibit magnetic 

hysteresis at 60 K [79,80], and just this past fall a dysprosium-based SMM showed hysteresis even above 

liquid nitrogen temperature [81].  The family of mononuclear SMMs has also been recently expanded to 

include single-ion magnets (SIMs), where a solid-state lattice has embedded within it a single magnetic 

ion which supplied all the magnetic properties of the system. 

In contrast, polynuclear SMMs, which may contain multiple magnetic constituents per molecule, 

are molecules made up of multiple transition metal or lanthanide ions which are bridged by organic 

ligands. The central magnetic ions are strongly coupled to each other by the exchange interaction (which 

determines the magnetic ordering of the spins, i.e. ferromagnetic or antiferromagnetic) [82], yielding 

large magnetic moments per molecule. This allows for a large spin, 𝑆റ, which when combined with a 

splitting of spin degeneracies even at zero applied magnetic field (this is the so-called zero-field splitting, 

or ZFS) provides an anisotropy barrier to magnetization reversal and separates spin projections, 𝑆𝑍, with 

opposite sign by some nonzero energy barrier.  These properties make the systems even more attractive 
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as a form of memory storage; the high temperature and low-field requirements lower costs and allow for 

simpler engineering. 

In general, solid crystals of SMMs have several advantages over other magnetic structures. 

Chiefly, all molecules in a single crystal have identical spin amplitude and orientation, magnetic 

anisotropy, and atomic constituents, and are weakly interacting with respect to each other – that is to 

say, the molecular nanomagnet crystals are monodisperse. This facilitates the study of behavior intrinsic 

to the magnetic nanostructure but experimentally inaccessible in other classes of magnetic materials due 

to a lack of summation of individual spin responses. In point of fact, hundreds of different SMMs have 

been synthesized to date.  Recent discoveries place SMMs as an already viable quantum magnetic system 

for technological applications and point to a trend that leads to magnetic hysteresis of a single-molecule 

at even higher temperatures. 

1.2.2 The Spin Hamiltonian: A Double-Well Potential 

The spin Hamiltonian for a SMM in general consists of two main parts: the Zeeman term 

(discussed in section 1.1) and the so-called Zero-Field Splitting (ZFS) terms, which describe the internal 

magnetic behavior of the system in the absence of an applied magnetic field.  At low temperatures the 

SMM may be modeled as an isolated ground state with a well-defined spin value𝑆റ; this is due to the fact 

that particularly with a large exchange coupling within the magnetic core of the molecule, excited spin 

multiplets are unpopulated.  For example, Ni4 may be assumed to be a “pure” spin 4 system at low 

temperatures; this is known as the Giant Spin Approximation (GSA).  While the Zeeman term should be 

familiar to any senior physics student,  

𝐻𝑍𝑒𝑒𝑚𝑎𝑛 = −𝑔µ𝐵𝑆റ ∙ 𝐵ሬറ 
(1.10) 
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the zero-field splitting terms can be generally described, in the GSA, by the Stevens operators [83] as 

𝐻𝑍𝐹𝑆 = ∑ ∑ 𝐵𝑘
𝑞

𝑂𝑘
𝑞

𝑘

𝑞=−𝑘𝑘=2,4,6..

 

(1.11) 

where the coefficients 𝐵𝑘
𝑞

 are real and the operators 𝑂𝑘
𝑞

 are Hermitian.  In systems with total spin ≤ 2, 

terms up to second order are usually sufficient to describe the system; namely, the uniaxial anisotropy 

term 𝐷𝑆𝑍
2 and the transverse anisotropy term 𝐸(𝑆𝑋

2 − 𝑆𝑌
2).  The full spin Hamiltonian can thus be written 

as  

𝐻 = 𝐻𝑍𝑒𝑒𝑚𝑎𝑛 + 𝐻𝑧𝑓𝑠 = −𝑔µ𝐵𝑆റ ∙ 𝐵ሬറ + 𝐷𝑆𝑍
2 + 𝐸(𝑆𝑋

2 − 𝑆𝑌
2) + ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑎𝑛𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑦 𝑡𝑒𝑟𝑚𝑠 

(1.12) 

The first term on the right-hand side of (1.12) represents the Zeeman energy contribution from the 

interaction of the spin of the molecule with an externally applied magnetic field. The second term 

represents the uniaxial anisotropy resulting from the spin-orbit interaction, defines an “easy axis” for the 

magnetic moment of the molecule, and establishes an energy barrier DSZ
2

 separating opposite spin 

projections.  The remaining terms correspond to transverse anisotropies (𝑆𝑋
2, 𝑆𝑌

2) and inter- or intra-

molecular interactions such as dipolar, exchange, or hyperfine interactions.  

To illustrate what this means for the molecule’s energy landscape, let us examine a molecule with 

only a uniaxial anisotropy term (𝐷𝑆𝑍
2) and no external magnetic field.  One can plot the shape of these 

energies as a function of the projection angle θ of the spin by using the classical approximation 𝑆𝑍 =

𝑐𝑜𝑠(𝜃), giving rise to the so-called double-well potential.  A magnetic field applied along the easy axis of 

the molecule will tilt the potential energy wells, energetically favoring the spin projections along the 

direction of the applied field.  Figure 1.3 shows a plot of this potential, along with the energy levels of the 

various spin alignments, for an S=10 system.  Because SMMs have such a strong uniaxial anisotropy, even 
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in the presence of a moderate external magnetic field the shape of the potential remains.  There are 

certain values of the applied field, referred to as “QTM resonances” where 

𝐻𝑘 ≈
𝑘𝐷

𝑔µ𝐵
, 𝑘 = 0,1,2 … 

(1.13) 

for which a pair of energy levels across the anisotropy barrier coincide in energy. The right side of Figure 

1.3 shows the effect a magnetic field would have on the energy levels, shifting and equalizing different 

pairs of levels and allowing for various resonances to occur (denoted by the black horizontal arrows in the 

figure).  

Figure 1.3: The Double-Well Potential 

Left: Potential in the absence of an external magnetic field, with energy levels on resonance.  Right: Potential in the 

presence of a longitudinal (applied along the easy axis) magnetic field.  The energy levels have been shifted vertically, 

and the shape of the potential well has been altered to give preference to those states aligned with the field.  The 

dashed line denotes the effect of higher order anisotropy terms in the Hamiltonian; in this case, a 4th order axial term 

[52]. 

Now, if we were to look at this in three dimensions we might observe something similar to what 

is shown in Figure 1.4.  For a solely 2nd order uniaxially anisotropic system, a “hard plane” is formed as an 

energy barrier between opposite spin orientations that is isotropic in the transverse plane.  If the system 
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were to exhibit 2nd order transverse anisotropy, we now see the development of both a “medium” and 

“hard” axis within the transverse plane.  The anisotropy specific to each system determines what the 

energy landscape looks like, and what symmetries are observed; however, in each case the SMM will have 

some “easy” axis along which the spin will tend to align easily either parallel or antiparallel.  The anisotropy 

barriers act to prevent transitions between spins with opposite orientations along this axis. 

Figure 1.4: “Easy,” “Medium,” and “Hard” Axes 

3D anisotropy barriers shown for a uniaxially anisotropic system (left) and a system with 2nd order transverse 

anisotropy (center two), and one with 4th order anisotropy (right).  The spin tends to preferentially align along the 

easy-axis depicted as the red and blue arrows, with the hard axis representing the most difficult direction for the spin 

to travel.  The shape of the energy landscape is determined by the symmetry of the system, i.e. two-fold, four-fold, 

etc. [84]. 

1.2.3 QTM: Quantum Tunneling of the Magnetization 

Magnetic hysteresis is a consequence of the strong magnetism in some systems wherein 

application of a magnetic field along a certain direction will preferentially magnetize the system, so that 

subsequent observations will show a different behavior.  At low temperatures, the magnetization 

hysteresis curves of SMMs will show discrete steps, signifying a dramatic acceleration of the magnetic 
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relaxation at the resonant fields 𝐻𝑘 discussed in the previous section.  These steps are a direct 

consequence of the appearance of quantum tunneling between opposite projections of the molecular 

spin, known as the quantum tunneling of the magnetization (QTM).  This phenomenon was first observed 

in 1996 by Friedman et al [4] in a Mn12-acetate SMM; an example is shown in Figure 1.5, right.  In short, 

the ability of SMMs to exhibit QTM results from their significant intrinsic, transverse, anisotropy.  

Figure 1.5: Mn12 and the Quantum Tunneling of the Magnetization 

Left:  A drawing of the Mn12 molecule. Right: Magnetization curve of Mn12 at T = 0.6 K. The jumps are due to quantum 

tunneling at the resonance fields. The different colors represent different sweep rates of the longitudinal applied 

magnetic field [84,85]. 

Apart from creating an interesting graphical energy landscape, having a significant transverse 

anisotropy plays a crucial role in one of the hallmark behaviors of SMMs – it links different eigenstates to 

allow transitions between spin up and spin down states.  Transverse anisotropy terms do so by allowing 

off-diagonal terms in the spin Hamiltonian to be nonzero; graphically, they break the isotropic symmetry 

in the transverse plane (as in Figure 1.4).  It is important to note that this can be accomplished in many 

different ways, including through molecular design (a transverse anisotropy intrinsic to the molecule) or 

most straightforwardly by applying a transverse magnetic field 𝐵𝑋𝑌.   
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Let us revisit our treatment of the spin ½ system and extend it to a SMM.  We will write our spin 

Hamiltonian as 

𝐻 = −𝑔µ𝐵𝑆റ ∙ 𝐵ሬറ + 𝐷𝑆𝑍
2 + 𝐸(𝑆𝑋

2 − 𝑆𝑌
2) . 

(1.14) 

We may instead rewrite 𝑆𝑋 and 𝑆𝑌 in terms of the spin raising and lowering operators, 𝑆+ and 𝑆− 

respectively, to put them in the 𝑆𝑍 basis, as such: 

𝑆𝑋 = (𝑆+ + 𝑆−)/2 , 𝑆𝑌 = (𝑆+ − 𝑆−)/2𝑖 . 
(1.15) 

The full Hamiltonian will then include terms which include multiple operations of the spin raising and 

lowering operators, including the rhombic term 𝐸(𝑆+
2 + 𝑆−

2).  These sorts of operations will induce a 

transition in a similar manner to a photon-induced transition for a simple 2-level atom, but a different 

constraint on the total change in spin; for instance, this rhombic term will mix only levels with a total spin 

change of ±2n (where n is an integer).  This difference in spin constraints leads to the spin selection rules 

for SMM tunneling transitions, which states that the allowed transitions due to anisotropic mixing of 

eigenstates must have a spin difference equal to an integer multiple of the transverse symmetry of the 

system.  That is, for a system with a rhombic anisotropy 𝐸(𝑆+
2 + 𝑆−

2) the allowed transitions will be for 

multiples of ∆𝑆 = ±2; for a system with tetragonal anisotropy 𝐶(𝑆+
4 + 𝑆−

4) the allowed transition will be 

for multiples of ∆𝑆 = ±4; and so on. 

 Now what happens in an external longitudinal (along the easy axis) magnetic field?  We have 

already established that as the external field is swept, the energy levels of the spin states on opposite 

sides of the double-well potential will shift and occasionally become resonant with each other.  When two 

levels whose difference in spin matches that allowed by the spin selection rules are perfectly on 

resonance, rather than the two states becoming degenerate the mixing between them will hybridize the 
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states into symmetric and antisymmetric superpositions.  These hybridized levels differ by an energy equal 

to the tunnel splitting ∆𝑘, where k denotes the resonance (for example with 2nd order anisotropy terms, 

k=2n).  The locations of these resonances are given in (1.13) by Hk.  This manifests on an energy level 

diagram as the energy difference between two states in an anticrossing: where rather than continuing 

along its energy path, the spin as it passes through the resonance will suddenly flip and follow its 

counterpart’s energy path instead.  A comparison between resonance with and without transverse 

anisotropy playing a role is illustrated in Figure 1.6, which shows a resonance between the  𝑆 = ±10 

states (normal crossing) and a resonance between the 𝑆 = ±4 states (anticrossing) for a system with 

tetragonal symmetry.  The probability of a spin completing such a tunneling transition can be found from 

the Landau-Zener formula 

𝑃𝑘 = 1 − 𝑒𝑥𝑝 [−
𝜋∆𝑘

2

2𝑔µ𝐵(𝑚 − 𝑚′)𝛼
] 

(1.16) 

where α is the rate at which the external magnetic field is swept, m and m’ denote the two levels involved 

in the transition, and g is the gyromagnetic ratio.  These transitions are part of what traditional EPR aims 

to study in molecular nanomagnetism. 
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Figure 1.6: Energy Level Diagram for S=10 System 

Energy level diagram for the energy levels of an S=10 system with a significant transverse anisotropy.  This system 

has a tetragonal symmetry.  The first inset shows a normal crossing (𝑆 = ±10), while the second shows an 

anticrossing due to level-mixing of states separated by the transverse symmetry of the system (𝑆 = ±4).  The fourfold 

symmetry allows otherwise forbidden transitions where ∆𝑚 = ±4. [52] 

1.3 EPR: Electron Paramagnetic Resonance 

Electron paramagnetic resonance (EPR) is similar in principle to the arguably more widely known 

nuclear magnetic resonance (NMR), the main difference being (as the name suggests) EPR’s use of the 

electronic spin rather than the nuclear spin.  EPR is a technique based on the resonant absorption of 

electromagnetic radiation, typically microwaves, to facilitate transitions between energy levels of the 

electron(s) spin.  It has applications ranging from understanding the fundamentals of physics, to 

characterizing and designing new compounds in material and earth sciences, to uses in biology and 
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medicine, and can be performed on a host of samples including crystalline solids and liquid solutions [86]. 

There are two main classifications of EPR spectroscopy: continuous wave (CW) EPR and pulsed EPR, both 

of which will be discussed in this section. 

1.3.1 The Basic Physics 

A traditional EPR spectrum consists of the first derivative of microwave radiation absorption 

plotted as a function of the magnetic field intensity.  This is achieved by sweeping the magnetic field 

around a resonance location Bo, corresponding to the fixed microwave frequency that is irradiating the 

sample.  The fundamental equation of EPR highlights the relation between this field and frequency: hν =

gµBBo, where h is Planck’s constant and ν is the photon frequency.  This relation is simply due to energy 

conservation, as the energy of the absorbed photon must be equal to the energy difference of the two 

spin states.  The electron spin is the quantity of interest and supplies all of the interesting physics here; as 

such, a good EPR sample must have at least one unpaired electron.  In particular, the driving mechanism 

behind EPR is the behavior of an unpaired electron spin when placed in a magnetic field – the Zeeman 

effect [87].  We discussed the mathematical impact this has on the spin Hamiltonian in section 1, but we 

follow a more intuitive approach here to illustrate the underlying physics of EPR. 

 The electron is a spin ½ particle; therefore, the only states it can exist in are spin up (𝑆𝑍 = + 1
2⁄ ) 

or spin down (𝑆𝑍 = − 1
2⁄ ).  The energies of these two states are the same and the two states are 

degenerate for a free, single unpaired electron.  However, in the presence of an external magnetic field 

with intensity B0 the two energies split into 

𝐸± = ±(1
2⁄ )𝑔𝜇𝐵𝐵𝑜 . 

(1.17) 
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This splitting is what’s known as the Zeeman effect, and is illustrated in Figure 1.7.  There must be a 

difference in energies between the two states if they are no longer degenerate, and it can be clearly seen 

from (1.17) to be ∆𝐸 = 𝑔𝜇𝐵𝐵𝑜.  If we now irradiate the electron with a photon, then provided the 

photon’s energy matches that of the energy gap between the states, the electron may absorb the photon 

energy to flip from the lower energy state to the higher energy state.  This is nothing more than a 

straightforward derivation of the previously mentioned fundamental EPR equation: 

ℎ𝜈 = 𝐸+−𝐸− = 𝑔𝜇𝐵𝐵𝑜 . 
(1.18) 

It is important to note that in order for the radiation to be absorbed it should be polarized perpendicular 

to the applied field, with the oscillating magnetic field perpendicular to Bሬሬറo.   

Figure 1.7: The Zeeman Effect 

Splitting of the spin-up and spin-down states due to an external applied magnetic field.  The two states are 

degenerate in the absence of the field but split by an energy difference ∆𝐸 which is proportional to the magnetic field 

strength. 

This works well for an electron in the spin down state, as it has a lower energy and can absorb the 

photon energy to reach the spin up state.  But what about an electron already in the spin up state?  It’s 

not possible for it to absorb an additional photon.  Instead it may undergo the process of stimulated 

emission, wherein an oscillating magnetic field with frequency corresponding to that of (1.18) is present 

and allows the transition from spin up to spin down by emission of a photon with energy hν.  Thus, an 
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isolated electron may undergo transitions between the two states provided there is an external magnetic 

field Bሬሬറo and the radiation applied has both the frequency specified in (1.18) and is polarized perpendicular 

to Bሬሬറo.  In point of fact, you will never perform EPR on an isolated, free unpaired electron; at minimum, 

you will have interactions with both the nucleus and the neighboring molecules.  Likely, you will have 

dipolar interactions with neighboring unpaired electrons. 

1.3.2   Continuous Wave EPR 

 In CW EPR, either the irradiating frequency is held constant while the magnetic field is 

swept around a resonance point, or the reverse (the frequency is swept at a constant field).  It is typically 

easier experimentally to hold the frequency constant and scan through magnetic fields, so that is generally 

what is done.  The magnetic field is swept until the resonance condition (1.18) is met, and the photon 

absorption is observed as a change in microwave signal through the sample [88].   This is the most basic 

form of EPR and is usually performed before any other related experiments to identify the resonant 

conditions.   Information about the splitting between energy levels may be gleaned from the CW EPR 

spectrum of a sample, but it is difficult to extract information that directly pertains to the spin dynamics 

of the system.  Indeed, although a CW EPR spectrum can contain a huge amount of information about a 

spin system (including g factor, spin relaxation times, hyperfine interactions with nearby nuclei, dipolar 

interactions with nearby electron spins) the sheer number of contributing parameters makes it difficult to 

accurately isolate any single one of them.   This leads us to the following subsection on pulsed EPR, which 

is particularly good for controlling the generation of signal that contain only desired information by using 

various pulse sequences. 
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1.3.3   Pulsed EPR 

An important modern technique within the EPR framework is pulsed EPR.  Pulsed EPR is 

performed after the resonant conditions have been found, usually by CW EPR.  The electronic spins are 

excited by a series of high-power microwave pulses and the resulting signal is observed in the absence of 

any radiation, in contrast to CW where there is a constant low power microwave background.  Pulsed EPR 

allows the direct measurement of signals emitted by the spins after the radiation is turned off, and as such 

allows a direct link to the spin dynamics of the system [89].  There are many different pulse sequences 

which can be used, each designed to measure a specific type of signal, and many have already been 

identified and well-documented.   This is one of the factors that makes pulsed EPR such a useful modern 

experimental tool. 

In both pulsed and CW EPR, what we are observing is an ensemble of spins rather than a single, 

isolated unpaired electron.  Luckily, we can approximate an ensemble of a large number of noninteracting, 

identical spins by a sum over all of them, commonly referred to as the magnetization, which behaves more 

or less as a vector in classical mechanics and makes life much easier as a consequence.  In general, even 

for systems with a larger spin than 𝑆 = 1
2⁄ , pulsed EPR can be described in this way so long as the 

transitions under study involve only two energy levels.  Thus, we can look at a “spin packet” of identical 

spins and its net magnetization as what is being affected by each pulse [90].   

The magnetization can be described as a vector 𝑀ሬሬറ, with components along x, y, and z like any 

other vector.  Without the application of any external radiation, the behavior of this magnetization vector 

is simple:  𝑀𝑍 will relax towards its thermal equilibrium value according to the spin lattice relaxation time 

constant 𝑇1, while 𝑀𝑋 and 𝑀𝑌 will decay towards zero according to the spin-spin relaxation time constant 

𝑇2.  𝑇1 characterizes a transfer of energy between the spin system and the lattice, while 𝑇2 characterizes 
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energy exchanges within the spin system itself which have nothing to do with the lattice. 𝑀𝑍 is directly 

proportional to the energy level population difference, and 𝑀𝑋 and 𝑀𝑌 precess around the applied 

magnetic field 𝐵0 at the Larmour frequency, ω = −𝛾𝐵0 =
𝑒𝑔

2𝑚
𝐵0.  This precession of the magnetization is 

a result of the torque exerted by the applied magnetic field on the electrons’ magnetic moments.    A 

pulse of resonant microwaves can be used to effectively convert 𝑀𝑍 into 𝑀𝑋 and 𝑀𝑌 (and vice versa) by 

controlling the rotation of the magnetization vector around the applied magnetic field 𝐵0.  

Figure 1.8: Free Induction Decay 

An FID pulse sequence.  A single pulse timed to rotate the spins by π/2 is applied, with the free induction decay signal 

immediately following the cessation of the pulse.  It can be used to measure the spin-spin relaxation time 𝑇2 as well 

as the resonant frequency. 

The simplest possible pulse sequence is a single pulse as in Figure 1.8, which produces what is 

known as the free induction decay (FID) signal [91].  During the pulse, the magnetization is rotated towards 

the transverse plane.  After the pulse, the magnetization of any spin packet with a resonant frequency 

matched by that of the applied microwaves will have been rotated to lie along the either the x or y-axis.  

The transverse components of 𝑀ሬሬറ will then precess about the z-axis while shrinking according to 𝑇2.  FID is 

thus a reliable way to measure both the frequency and T2 of a spin packet; however, it follows immediately 

after the pulse and can thus be extremely difficult to detect in some experimental setups due to the time 

required for the resonator and detector to recover from the intense pulse just applied. 
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 Figure 1.9: Inversion Recovery  

An inversion recovery pulse sequence.  A pulse timed to rotate the spins by π is applied, then after a delay time t a 

pulse timed to rotate the spins by an additional π/2 is applied.  There will be FID signals following each pulse, and a 

small echo signal which should follow the second pulse by the same delay time t.  Recording of the second FID signal 

as a function of delay time can be used to measure the spin-lattice relaxation time 𝑇1.  

The next simplest would be a two-pulse sequence.  These can be more or less divided into 

inversion recovery sequence and the spin echo sequence [91].  The inversion recovery sequence consists 

of a first pulse to rotate the magnetization, a delay time to allow 𝑀𝑍 to relax according to 𝑇1, and a second 

pulse to measure the FID signal for the remaining part of 𝑀𝑍 that has not yet decayed.  If this FID amplitude 

is measured for a variety of delay times, it gives direct information about the 𝑇1 relaxation time.  The 

inversion recovery sequence is thus a reliable way of measuring 𝑇1.  Typically, in this sequence the pulses 

are denoted as a π pulse followed by a π/2 pulse where the π (or 180°) rotates the magnetization from 𝑀ሬሬറ 

to −𝑀ሬሬറ and the π/2 (or 90°) rotates the remainder into the transverse plane.  Figure 1.9 shows an example 

of an inversion recovery sequence. 
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Figure 1.10: Spin Echo 

A spin echo pulse sequence.  A pulse timed to rotate the spins by π/2 is applied, then after a delay time t a pulse timed 

to rotate the spins by an additional π is applied.  The transverse components of the spins then recombine a time t 

after the second pulse, resulting in a spin echo signal.  This gives direct information about the spin-spin relaxation 

time 𝑇2. 

The spin echo sequence consists of a first pulse to rotate the magnetization into the transverse plane 

(a π/2 pulse), a delay time where the transverse magnetization precesses around the z-axis while decaying 

according to 𝑇2, and a second pulse to rotate the transverse magnetization from 𝑀𝑋 to −𝑀𝑋 and 𝑀𝑌 to 

−𝑀𝑌 (a π pulse).  There will still be an FID signal which may be able to be observed, but what is most 

striking is what occurs if there is a relatively wide distribution of resonant frequencies/fields among the 

spin packets.  The sum of the FIDs after the first pulse from each spin packet will go to zero faster than it 

would according solely to 𝑇2 relaxation, due to interference between the spin packets.  But the 

magnetization reversal of the second pulse will reverse this destructive interference, so that at a time 

equal to the delay between pulses the spin packets will add their magnetizations to produce a spin echo 

signal (as in Figure 1.10).  At this time, the magnetization should be equal to that after the first pulse aside 

from 𝑇2 decay.  In fact, the spin echo amplitude should decay as a function of the delay time between 

pulses according to the time constant 𝑇2!  Spin echo is therefore an excellent method to extract the spin-

spin relaxation time.  
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1.4   The Spin-Photon Interaction 

 The spin-photon interaction is of particular interest to fields such as quantum 

computation.  The photon is an ideal mobile qubit, to be used as a “messenger” in quantum circuits, and 

spin qubits in a solid may provide an optimal method of long-term quantum memory storage.  Single 

crystal SMMs provide an excellent framework for the spin part of the equation, with their strong intrinsic 

anisotropy and comparatively isolated spin sites in a rigid lattice.  However, there exist issues with their 

viability for use as magnetic storage bits, most obviously the intrinsic sources of decoherence [92,93].  

Thus, there exist two primary regimes of spin-photon interactions: strong coupling, wherein the coupling 

between the spin and the photon is much larger than the decoherence rates of the system; and weak 

coupling, in which the photon lifetimes and spin decoherence dominate. In this section we will discuss 

decoherence as relevant to SMMs, as well as a model which can be used to describe the interaction of a 

spin and a photon. 

1.4.1   Decoherence in SMMs 

Overcoming decoherence in SMMs is crucial to many of their potential uses.  The time needed to 

accomplish any measurement must be less than the time it takes for external systems to significantly 

affect your system; imagine trying to read out something from computer memory, only to find it 

disappeared before you could access it.  Luckily, the main sources of decoherence in SMMs have already 

been identified to include hyperfine fluctuation (coupling to nearby nuclei), phonons (coupling to lattice 

vibrations), and magnons (coupling to locally oscillating magnetic fields; dipolar fluctuations) [92].  When 

photons are introduced, however, you must also ensure that the interacting cavity or resonator can 

ensure a high enough quality factor to support excitation lifetimes of a photon long enough to perform a 

measurement.  These factors translate directly into experimental setups – your equipment must be 
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capable of overcoming the limitations of photon/spin state lifetimes, or you will be unable to observe 

anything at all. 

 There are ways to mitigate decoherence, however.  Magnon and phonon coupling both tend to 

decrease significantly as temperature is lowered, with the bonus that at lower temperatures the spin bath 

may be polarized with respect to lower energy separations between transition states.  Hyperfine 

interactions will also decrease, but at a smaller rate (≈ that of the fine structure constant, 1
137⁄ ); 

temperatures needed to see an appreciable decrease in decoherence will be much lower than for phonon 

or dipolar coupling.  As an example, for an energy splitting of 250 GHz between the ground state and first 

excited state (which would require a magnetic field of approximately 9 T to observe the transition using 

EPR according to (1.18)) the spin bath may be nearly completely polarized at 2 K; for an energy splitting 

of 15-20 GHz (with a required field of <1 T)) near-unitary polarization may be achieved below 100 mK.  

This decrease in energy required to observe the transitions not only makes the researcher’s life easier, it 

also has the benefit of decreasing the phonon effect on decoherence rates.  

A plot of various decoherence rates and their dependence on field, temperature, and splitting 

energy is shown in Figure 1.11.  In addition to what is shown in there, magnetic dilution within a solid 

crystalline lattice is a promising technique to reduce the dipolar decoherence.  This method replaces some 

magnetic ions in a crystal lattice with chemically similar, but non-magnetic, counterparts, maintaining the 

crystalline structure but reducing the impact of dipolar fluctuations.   There also exist so-called atomic 

clock transitions where the transition is somewhat insulated from nearby dipolar interactions, due to the 

first and second order derivatives of the states’ energies being near zero with respect to the magnetic 

field.  That is, a small fluctuation in the local magnetic field does not significantly affect the system.  One 

key point, as it relates to SMMs, is that studies of decoherence done at higher magnetic fields do not 



30 
 

reflect the intrinsic properties of the molecules.  Rather, they are performed in an energy range dominated 

by the Zeeman effect of the applied magnetic field.  In order to study the intrinsic effects pertaining to 

decoherence in these molecules, lower temperatures (and thus lower fields) are required.  

Figure 1.11: Decoherence Rates for Fe8 

Calculated contributions to decoherence in Fe8 as a consequence of coupling between electron spins and nuclear 

spins, phonons, and magnons.  Lower temperatures allow a smaller EPR frequency and field while maintaining spin 

polarization, and significantly decreases both magnon and phonon contributions.  The ideal location on this graph is 

denoted by the star, where phonon and nuclear sources meet, and dipolar contributions may be ignored. [92] 

1.4.2   Spins and Photons: the Jayne-Cummings Hamiltonian 

To describe the interaction between a single spin and a single photon, at least three components 

are required: the spin energy, the photon energy, and the interaction energy.  The Jaynes-Cummings 

model [94] illustrates this exceedingly well with its Hamiltonian: 
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𝐻𝐽𝐶 =
ℏ

2
𝜔0𝜎𝑍 + ℏ𝜔𝑎+𝑎 + ℏ𝑔(𝑎+𝜎− + 𝑎𝜎+) . 

(1.19) 

The first term describes the energy of the spin transitions ℏ𝜔0 and the spin orientation along the z-axis, 

the second term describes the energy of the field (having an individual photon energy of ℏ𝜔) with the 

operator 𝑎+𝑎 which counts the number of photon excitations, and the last term describes the spin photon 

interactions with the coupling parameter 𝑔 as emission of a photon by the spin (𝑎+𝜎−) or absorption of 

the photon by the spin (𝑎𝜎+).  Here, 𝑎+and 𝑎 represent the photon creation and annihilation operators 

while 𝜎+ and 𝜎− represent the spin raising and lowering operators.  The third term utilizes the rotating 

wave approximation (RWA), wherein terms that oscillate quickly in time have been neglected [95]. 

If we look at the Hamiltonian matrix for a single excitation between the spin and cavity, we can 

determine it to have the form  

𝐻 = ℏ [
𝜔 𝛾
𝛾 𝜔0

] 

(1.20) 

[96].  It is clear that in the absence of the coupling parameter 𝛾, that is, for no off-diagonal mixing terms 

in the Hamiltonian, this gives the energies of two separate states.  We can denote them as |1, 0>, for a 

cavity excitation with energy ℏ𝜔, and |0, 1>, for a spin excitation with energy ℏ𝜔0.  The eigenvalues can 

easily be solved to be  

𝐸1,2

ℏ
=

𝜔

2
+

𝜔0

2
± √𝛾2 +

1

4
(𝜔 − 𝜔0)2 . 

(1.21) 

In a magnetic field, the energy of the spin transition is the same as the Zeeman splitting energy 𝑔𝜇𝐵𝐵𝑜.  

Thus, one can calculate the energy level diagram for a spin in a magnetic field interacting with a photon 

near resonance as shown in Figure 1.12.  As the spin and photon energies approach resonance, they 

hybridize into symmetric and antisymmetric superpositions and form an anticrossing which allows them 
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to interact and “flip” between an excited spin state and an excited photon state.  This is the basis for 

phenomena such as vacuum Rabi oscillations , where vacuum fluctuations drive oscillations between spin-

photon emission and absorption [97].  

Figure 1.12: Coupled Spin-Photon Transition 

An energy level diagram for a photon-spin interaction near resonance in the Jaynes’ Cummings model.  An 

anticrossing is shown between the mixed spin and cavity eigenstates.  The two branches are the symmetric (red) and 

antisymmetric (black) superpositions of the bare spin and photon states. [52] 

1.4.3   Strong vs Weak: The Spin-Photon Coupling 

Perhaps the final piece to the introductory chapter of this dissertation is the concept of the strong 

vs weak coupling regimes [94].  Section 1.4.1 discussed the behavior and most common sources of 

decoherence in spins, which strongly contribute to a system with weak coupling.  The Jaynes-Cummings 

Hamiltonian from the previous section, along with observable vacuum Rabi oscillations, are hallmarks of 

strong coupling [98].  In point of fact, the only way to observe coherent vacuum Rabi oscillations is to have 
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a strong enough coupling between the spin and photon that many interactions can occur before the 

lifetime of either decays.  To put this in a more mathematical sense, the coupling parameter 𝛾 between 

the photon and spin excitations must relate to the spin decay rate 𝑘𝑠 and the photon decay rate 𝑘𝑝 as 

such: 

2𝛾

𝑘𝑠+𝑘𝑝
≫ 1, 𝑠𝑡𝑟𝑜𝑛𝑔 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔,   

2𝛾

𝑘𝑠+𝑘𝑝
≪ 1, 𝑤𝑒𝑎𝑘 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 . 

(1.22) 

Here, the spin decay rate comes from a combination of all significant sources of decoherence in the 

system, while the photon decay rate comes from the photon energy and the cavity quality factor Q as 

𝑘𝑝 = 𝜔
𝑄⁄ .   

To illustrate the difference between these two regimes, Figure 1.13 shows the normal mode 

splitting of a coupled atom-cavity system as a function of coupling strength, while Figure 1.14 shows the 

oscillatory/exponential behavior of the excited state of an emitter (such as atomic spin) as a function of 

time for weak, strong, and nonexistent coupling.  Both regimes are interesting to study – in the weak 

coupling regime, we may perform spin echo experiments at ultra-low temperatures in order to study the 

sources of decoherence inherent in a SMM.  This is the subject of chapter 2, where we will attempt to 

coherently control the time evolution of the spin of SMMs upon application of fast pulsed microwave 

irradiation in the weak coupling regime at sub-Kelvin temperatures (> 50 mK), for which dipolar dephasing 

will be suppressed due to polarization of the spin bath without the need of large magnetic fields.  This will 

open a window into the fundamental sources of decoherence in single crystals of SMMs in an energy 

range (frequencies < 10 GHz, and magnetic fields < 1 T) never before explored.  Meanwhile, in the strong 

coupling regime, we may be able to couple very low numbers of photons to low numbers of spins, even 

potentially experimentally realizing the strong coupling regime for a single-spin (something not yet 
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achieved).  This is the subject of chapter 3, where to investigate these interactions in the strong coupling 

regime between a vacuum photon mode and SMM spins (such as the vacuum Rabi splitting), we plan to 

utilize nano-constricted superconducting coplanar waveguide (CPW) resonators of extremely high quality 

factors, along with an experimental setup designed to allow measurements of the coherent collective 

coupling of a number of molecular spins and a low number of photons, including eventual single photon 

measurements. In the next chapter, I will discuss our work aimed towards the weak coupling regime; in 

the following chapter, I will do so for the strong coupling regime.   



35 
 

Figure 1.13: Normal Mode Splitting 

Number of photons existing in the cavity as a function of frequency for various coupling strengths.  Weak coupling 

shows a primarily single Lorentzian shape (bottom) while strong coupling exhibits two distinct peaks.  This normal 

mode splitting is a hallmark of the strong coupling regime. [99] 
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Figure 1.14: Weak vs Strong Coupling 

Probability to find an emitter (electron spin) in its excited state as a function of time.  The emitter begins in the excited 

state, with probability to reach the same excited state decaying rapidly in the weak coupling regime but oscillating 

somewhat coherently in the strong coupling regime.  
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CHAPTER 2: SUB-KELVIN TIME-RESOLVED EPR SPECTROSCOPY 

FOR STUDIES OF QUANTUM DYNAMICS OF LOW-DIMENSIONAL 

SPIN SYSTEMS AT LOW FREQUENCIES AND MAGNETIC FIELDS 

The main objective of this dissertation is to study the nature of the light-matter interaction in 

SMMs and advance towards coherent quantum control over their molecular spins.  The current chapter 

focuses on enabling coherent control of the quantum mechanical time evolution of molecular 

nanomagnet spins, by utilization of a time resolved electron paramagnetic resonance spectrometry setup 

designed to work at frequencies below 20 GHz and temperatures down to 50 mK.  Capability to perform 

time-resolved EPR spectroscopy in this temperature range is crucial to our investigations of molecular 

nanomagnet quantum dynamics at X-band (≈ 10 GHz) frequencies, as the ensemble of spins will be 

completely thermally polarized into a single ground state without the need for large magnetic fields.  The 

results show an increase in echo signal intensity as temperature is decreased until saturation as expected 

from the 99% spin polarization at 100 mK. Our technique allows tuning of the spin system in the pure 

state regime and minimization of dipolar fluctuations, the main contribution to decoherence in condensed 

single crystals of single-molecule magnets (SMMs), which are currently being tested for applications in 

quantum computation. The achievement of full spin polarization at 100 mK will allow for coherent control 

over the time evolution of spin systems without the need for large magnetic fields (which are commonly 

used to polarize the dipolar bath at higher temperatures) and high frequencies. In addition, the utilization 

of on-chip microstrip resonators will allow the extension of such studies into 2D films and individual 

molecules placed on the surface of the resonator line, something that is not possible with standard 

resonant cavities. 

The following sections describe the experimental setup that I have designed in order to study the 

spin-photon interaction in the weak coupling regime, with the ultimate goals being to:  
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i. Increase our knowledge of quantum coherent dynamics in SMM spins; 

ii. Explore and identify the role played by the intrinsic anisotropy and symmetry degrees of freedom 

inherent in SMMs as it relates to the quantum evolution of spin states; and,  

iii. Examine the potential of low-nuclearity SMMs as hardware for quantum computing and 

information technologies.  

2.1   Background 

SMMs first revealed their potential to act as magnetic bits at the quantum level with the discovery 

of magnetic hysteresis in molecular clusters of Mn12 acetate. The 1996 discovery of the resonant quantum 

tunneling of the magnetization (QTM) [1-3] is widely considered to be a landmark in spin physics [4], and 

these molecular nanomagnets provide a range of rich quantum behaviors [5-15] which make them 

promising candidates for qubits [16-20], the quantum computing analog of the classical computing bit. 

SMMs also happen to be ideally suited for studies concerning the confluence of classical and quantum 

magnetism and are of great interest in the field of molecular spintronics [21-29], merging elements of 

quantum magnetism and molecular electronics to create electronic devices with exciting new 

functionalities [30-32]. One exciting field where these molecules will provide an advantage over other spin 

systems, such as NV centers in diamond, with respect to the manipulation of the spins is the coupling of 

SMMs with quantum circuits (for example, superconducting resonators) [33].  Pulsed EPR spectroscopy is 

a powerful tool for the study of quantum dynamics and the determination of decoherence rates in 

magnetic systems [34-39]. In particular, it has been recently used to characterize the quantum dynamical 

properties of spins in SMM systems [16,40-46], which offer great potential for applications in quantum 

computation and information technologies [17-20,47-54].  
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The molecular magnetism community has in recent years begun to increase understanding of the 

effects of light-matter interaction on SMMs and the intrinsic sources of decoherence in their solid-state 

form, limited primarily by dephasing due to dipolar fluctuations in crystalline samples where magnetic 

molecules interact by means of dipolar interactions [55-57]. Aside from dipolar dephasing, intrinsic 

sources of decoherence in SMMs are associated to hyperfine interactions (with fluctuating nuclear spins 

of the constituent molecular atoms) and to spin-phonon interactions. Previous works [58] have found that 

it is necessary to first eliminate this dephasing due to fluctuating dipolar interactions before one may 

begin to study the intrinsic decoherence mechanisms of electron spins in SMMs which are associated to 

nuclear spins and coupling to the lattice vibrational modes. There are several valid and well-established 

approaches to study this decoherence while avoiding dipolar dephasing, including sample dilution in 

solution [59,60], solid state magnetic dilution [61-63], and polarization of the spin bath by application of 

large magnetic fields [45,64]. However, these approaches have some significant drawbacks.  Dilution of 

molecular magnets in solution to separate them far enough apart that the molecular spins do not react 

to each other results in a dispersion of the spin orientations and anisotropy axes, causing individual 

molecules within the sample to react differently to an external perturbation (such as a magnetic field) and 

losing the monodispersity inherent to crystalline SMM samples. Magnetic dilution in crystals is only 

achievable with mononuclear SMMs, where the molecular magnetism arises from a single magnetic ion. 

Finally, polarization of the spin bath by the application of strong magnetic fields to generate a large energy 

splitting between the ground and excited spin states by Zeeman interactions restricts the experiments to 

large magnetic fields, where substantially high frequency (>100 GHz) microwave pulses are required. 

Aside from the technical restrictions, in the latter approach the Zeeman interaction governs the spin 

dynamics, dominating over the intrinsic magnetic anisotropy that is characteristic of SMMs and makes 
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these systems unique (gµBSሬറ ∙ Bሬሬറ >> DSZ
2); among other things this enables the possibility to work with 

states resulting from quantum superposition of spin states generated by transverse anisotropy tensors.  

Time-resolved EPR spectroscopy consists of irradiating the test device with specific patterns of 

short microwave pulses while the reflection or transmission of the signal is recorded as a function of time. 

In this work, we examine only the spin-spin or transverse relaxation time (𝑇2) as a measure of how quickly 

the transverse magnetization 𝑀𝑋𝑌 decays to equilibrium after being excited with an initial high-power 

microwave pulse.  Similar experiments that have been performed at the National High Magnetic Field Lab 

(NHMFL) in Tallahassee are limited to temperatures above 1.6 K, requiring magnetic fields in excess of 8 

T to separate the spin levels enough to avoid population of the excited state.  This requires the use of EPR 

frequencies in the sub-Terahertz range (greater than 0.2 THz).  More specifically, in studies performed at 

NHMFL on Fe8 (see Figure 1.11) microwave frequencies in excess of 125 GHz were used which allowed 

for this form of spin polarization (via a negligible population of the first excited state) to occur for 

temperatures in excess of 1 K.  While this may seem attractive, in order to separate the spin states of the 

system so that their energy difference matched the applied microwave energy, a magnetic field greater 

than 10 T was needed.  In this regime, the Zeeman coupling would dominate, and the applied field would 

become the quantization axis in contrast to the intrinsic anisotropy axis of the molecule.  The net effect 

of this is to lower the mixing between spin states, which when combined with the EPR spin transition 

selection rules would make observing spin-echo for most SMMs virtually impossible (irrespective of the 

fact that the spin bath is polarized). 

New and innovative techniques are therefore required in order to more fully comprehend the 

nature of the light-matter interaction and contributions to decoherence in molecular nanomagnets while 

both maintaining the degree of monodispersity inherent in single crystals and remaining within the energy 
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landscape produced by the intrinsic magneto-anisotropy of the molecules. A recent report in Review of 

Scientific Instruments [65] shows the accomplishment of pulsed EPR experiments in a resonant cavity at 

temperatures down to 12.3mK. In reaching such low temperatures, researchers were able to achieve near 

complete thermal polarization of the spin bath in a ½ spin system.  However, the use of a resonant cavity 

as in [65] does not allow for coupling to low-dimensional spin systems (including SMMs, 2D films or 

individual molecules) to the extent possible with other resonating devices, such as on-chip microstrip 

resonators. Strong spin-photon coupling is particularly important for studies of the quantum dynamics of 

the spin of SMMs (strong candidates for reliable qubits) in view of applications in quantum computation.  

The intrinsically small coupling of spins with the magnetic component of electromagnetic radiation, a 

factor c (the speed of light) smaller than the electric field component, prevents reaching the strong spin-

photon coupling regime in standard resonating cavities, even in high quality factor superconducting 

cavities.  Recently, it has been shown that a substantial enhancement of the microwave magnetic field in 

nano-constricted, on-chip, coplanar waveguide superconducting resonators can increase the spin-

resonator coupling by several orders of magnitude [66], which together with the strong coupling of 

photons to superposition states (only possible for low or no magnetic fields), high spin values, and long 

coherent times in SMMs open the door to unequivocally proving the potential of SMMs for quantum 

computation for the first time. Therefore, it is important to develop time resolved EPR spectroscopic 

techniques at ultra-low temperatures with the use of on-chip microstrip resonators. 

Our solution to this open research question has been to develop an in-house experimental setup 

capable of applying high-power EPR pulses to a sample mounted on a planar microstrip resonator at 

temperatures below 100 mK, polarizing the spin bath with the ground and excited states being separated 

by much lower energies while suppressing dipolar dephasing, and allowing EPR to be performed at 
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frequencies down to 10 GHz. Of course, the temperature required to polarize the spin bath in this manner 

depends directly on the energy spacing between the ground and first excited states; however, this 

polarization may be reached with magnetic fields of less than 1 T so as to preserve the inherently 

anisotropic nature of SMMs.  This will enable research studies into the much richer quantum dynamics 

associated with the intrinsic magneto-anisotropy of molecular nanomagnets.  Along these lines, planar 

microstrip resonators deliberately designed for enhanced sensitivity and homogeneity of the magnetic 

field at the sample location have been fabricated and are employed in this work.  They are complemented 

by a careful engineering of stainless steel, copper, and niobium superconducting coaxial lines which carry 

the microwave stimuli down to the sample position (in our Oxford Instruments KelvinoxMX100 dilution 

cryostat) while preserving the base temperature of below 50 mK.  The ultra-low temperature of the 

system will force the molecular spins to remain in their ground state, avoiding population of excited states 

and thus minimizing spin fluctuations.   

2.1.1 Rabi Oscillations 

As previously stated, the energy region we desire to work in will enable studies of a variety of 

molecular nanomagnets without destroying the role of the intrinsic molecular anisotropy by the use of 

large magnetic fields. These large magnetic fields become an even more significant factor when, for 

example, inducing Rabi oscillations via pulses of electromagnetic radiation.  In a Zeeman dominated 

regime, transitions between spin states which are eigenstates of the Hamiltonian (namely, the 𝑆𝑖 states 

with  𝑔µ𝐵𝑆𝑖𝐵𝑖 >>  𝐷𝑆𝑍
2, where i=x, y, or z denotes the direction of the applied magnetic field) may be 

easily induced.  They will correspond to simple, well-defined Rabi oscillations between the two states 

involved, which can be calculated analytically. However, if the Zeeman energy is comparable to the 

anisotropy barrier (𝑔µ𝐵𝑆𝑖𝐵𝑖~ 𝐷𝑆𝑍
2), the induced transitions may instead involve tates with 
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symmetric/antisymmetric superpositions of the Hamiltonian eigenstates (|𝛹𝑆⟩ or |𝛹𝐴⟩ states which are 

determined by 𝐷𝑆𝑍
2 + 𝑔µ𝐵𝑆𝑖𝐵𝑖, for i orthogonal to z).  In this situation, the Rabi oscillations are no longer 

either simple or well-defined, and the magnetic state of the molecule may develop excited precessional 

states.  The experimental setup described in this chapter will allow the study of spin quantum dynamics 

in single-crystal SMMs which are governed by the intrinsic molecular anisotropy, permitting these 

anisotropy-driven quantum dynamics to be observed. 

2.1.2 Thermal Polarization for Spin ½ 

The experimental setup realized in the following sections provides a window into the fundamental 

sources of decoherence in non-dilute single-crystal SMMs in an energy range (frequencies below 18 GHz 

and magnetic fields below 1 T) not yet achieved, while allowing for the possibility to couple to 2D films 

and eventually individual molecules that may be placed on the surface of the resonator line.  These low 

temperature, low frequency experiments will allow measurements of decoherence rates orders of 

magnitude smaller than those found at the NHMFL; this energy range also provides the opportunity to 

potentially examine all three of these main sources of decoherence (dipolar, nuclear, and phonon 

dephasing) in the same experimental setup.  The three decoherence rate curves cross at (for Fe8) 

approximately 0.1 K and 20 GHz, shown by the red star in Figure 1.11, exactly within the parameters of 

our setup. 

We will examine only the 𝑇2 (spin-spin) relaxation time as a measure of how quickly the transverse 

magnetization 𝑀𝑋𝑌 decays to equilibrium after being excited; for this, we use the classic Hahn Echo 

sequence of  
𝑇

2
→ 𝑡𝑑𝑒𝑙𝑎𝑦 → 𝑇 → 𝑡𝑑𝑒𝑙𝑎𝑦 → 𝑒𝑐ℎ𝑜 where 

𝑇

2
 denotes the “ 

𝜋

2
 ” pulse which rotates the 

electronic spins by 90° into the transverse plane, 𝑡𝑑𝑒𝑙𝑎𝑦 denotes the time during which no radiation is 

applied where the spins dephase in the transverse plane, 𝑇 denotes the “ 𝜋 ” pulse which rotates the spins 
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by 180° within the transverse plane, and 𝑒𝑐ℎ𝑜 denotes the signal produced from the sample as the 

electronic spins recombine in the transverse plane.  By plotting the magnitude of this echo signal as a 

function of the dephasing time 𝑡𝑑𝑒𝑙𝑎𝑦 one will observe an exponential decay, the time constant of which 

gives a good estimate of 𝑇2.  The results shown in this chapter were achieved according to this process.  

In the remaining sections I showcase the in-house setup I have built which is capable of applying high-

power EPR pulses to a sample mounted on a microstrip resonator down to 50 mK, with the ability to apply 

magnetic fields below 1 T in any direction.  We also demonstrate the achievement of the pure-state 

regime in a well-known spin ½ coal marker sample, whose thermal equilibrium polarization P can be 

described at a temperature T by 

𝑃 = 𝑡𝑎𝑛ℎ (
ℏ𝛾𝑒𝐵0

2𝑘𝐵𝑇
) 

(2.1) 

where ℏ is the reduced Plank’s constant, 𝛾𝑒 is the electron gyromagnetic ratio, 𝐵0 is the externally applied 

magnetic field strength, and 𝑘𝐵 is the Boltzmann constant.  This technique allows tuning of the spin system 

in the pure state regime and minimization of dipolar fluctuations, as well as coherent control over the 

time evolution of spin systems without the need for large magnetic fields and high frequencies. In 

addition, the utilization of on-chip microstrip resonators will allow the extension of such studies into 2D 

films and individual molecules placed on the surface of the resonator line, something that is not possible 

with standard resonant cavities. 

2.2   Instrumentation and Methods 

2.2.1   The Spin Echo Circuit  

Our home-built experimental setup is shown in Figure 2.1.  First, a PNA microwave source (A) 

provides a 10dBm signal in the range of 6-18 GHz to the circuit, which is then divided by a directional 
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coupler (B) between a line to the sample (~90% of signal) and a line to the mixer used as a detector (~10% 

of signal).  Next, the signal is passed through a circulator to a switch which pulses the signal to the 

described Hahn echo sequence (C, D).  The resultant pulses are filtered using a 2-18 GHz bandpass filter 

and then amplified by a high-gain (40dB) high output power (30dBm) Agilent amplifier (E), before being 

sent through a DC block to the coaxial lines in the dilution refrigerator (F).  The setup is configured for 

transmission experiments, and the spin echo pulses are directed through a series of copper, stainless steel, 

and niobium superconducting semirigid coaxial lines to the resonator (G). 

Figure 2.1: The Spin Echo Circuit 

Schematic of the pulsed EPR setup.  Key components labeled by italicized letters in parentheses are: (A) microwave 

source (Agilent E8364B), (B) directional coupler (Agilent 87301D Opt 240), (C) pulse generator (Agilent 81110A), (D) 

pulsing switch (HP SPST 33144A with HP 33190B driver), (E) pulse amplifier (Agilent 83020A), (F) dilution refrigerator 

(KelvinoxMX100) inside vector magnet (3-axis American Magnetics Inc), (G) microstrip resonator (fabricated in-

house), (H) cryogenic signal amplifier (CIT618 Cryogenic HEMT from CalTech), (I) screening switch (AMC SWM-DJV-

1DT-2ATT Opt 20F), (J) signal amplifiers (Mini-Circuits ZVE-3W-183+ and CTT APM/180-2741-22), (K) quadrature 

mixer (Stellex M38UC), (L) oscilloscope (Agilent Infiniium DS08194A).  
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Once the pulses reach the sample, the spin echo signal is directed through the resonator to 

another series of copper, superconducting, and stainless steel coaxials.  We have allowed for the option 

to include a cryogenic amplifier (H) between the copper and stainless steel coaxials, intentionally designed 

for future investigations in experiments with a low number of photons (Appendix E).  Should this amplifier 

be used, a cryogenic circulator will also be placed between it and the sample to prevent high power 

reflections.  Once out of the fridge the resulting signal is passed through another DC block and a circulator, 

which is used to prevent any spurious noise from traveling back to the resonator and sample.  Finally, a 

screening switch (I) is added and programmed to remain closed to screen out the initial echo pulse 

sequence, opening only to allow the resultant spin echo signal to pass through at full power.  It is further 

filtered via a 2-18GHz bandpass filter and fed through two amplifiers (J) for a total gain of 80dB (maximum 

output power of 40 dBm).  The signal finally arrives at a quadrature mixer (K) that is coupled to the original 

microwave signal.  The X and Y phases are captured by a high-frequency oscilloscope (L), and the final 

readout is the magnitude of these two components taken together as √𝑋2 + 𝑌2.  Appendix C has the 

circuit components listed in more detail. 

2.2.2   The Resonator 

We fabricate microstrip resonators (Figure 2.2) for frequencies within the experimental setup 

range (2-18 GHz) in house by means of double-layer photolithography and deposition of a sticking layer 

of 10 nm titanium, 120 nm copper, and a capping layer of 10 nm gold on a commercial GaAs wafer (the 

recipe for which is given in Appendix D).  For the measurements in this chapter we used a 15 GHz 

resonator, which is achieved by a 140 μm thick, 500 μm wide, and 3 mm long gold-plated copper central 

line separated from the feeding line by a 140 μm coupling gap and the transmission line by a 400 μm gap 

(see Figure 2.2, top).  The coupling gap is designed to critically couple the resonator to the incoming 
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microwave signal, while a larger transmission gap is used to avoid affecting the quality factor of the 

resonator unnecessarily while still allowing enough signal to be transferred for measurements to be done 

in transmission mode [67].  The microstrip resonator is deposited on top of a 550 μm thick undoped GaAs 

wafer whose back is gold-plated to form the ground plate. The dimensions are calculated to guarantee a 

50 Ω matching impedance with the feeding coaxial lines and prevent power losses by reflection. 

Figure 2.2: The Microstrip Resonator  

Top: A 3D representation of the transmission resonator design with the characteristic functional parameters: Line 

resonator length (L) and width (w), coupling gap (gc), transmission gap (gt), and GaAs substrate thickness (h), which 

separates the resonator line and the back plate.  Bottom: The coal sample is shown mounted to the surface of the 

resonator mounted in solid copper housing box using standard cryogenic vacuum grease. 

The microstrip resonator chip is mounted in a solid OFHC copper housing box and held in place 

with a back layer of conductive silver paint. Nonmagnetic SMA connectors are used for the connections 

to the housing box, with gold-plated beryllium copper center contacts placed in physical contact with the 

resonator feedlines. The housing box is kept in good thermal contact with the dilution refrigerator 

coldfinger by two brass screws and Apiezon thermalizing vacuum grease, and the resonator is oriented 
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𝑔𝑐 
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with the smaller coupling gap facing the input line, such that the maximum microwave power reaches the 

sample for the initial pulses.  The total losses at 15 GHz through the housing box and a 15GHz resonator 

is -7 dB, and the specific resonator used in these experiments had a quality factor of Q ≈ 50. 

2.2.3   The Dilution Refrigerator 

To properly isolate the sample from high temperatures, several thermalization stages are present 

in the dilution refrigerator as shown in Figure 2.3.  Starting from the top, the microwave stimuli are 

conducted through a 0.75 m long semirigid copper coaxial connected to the room temperature circuit. At 

the 4K plate the coaxial transitions into a 0.5 m long niobium superconducting line which reaches down 

to the 1K plate.  Then, a 0.15m long stainless steel coaxial is used to connect to the mixing chamber, from 

which a 0.3 m copper microcoaxial along the length of the cold finger is used to transport the signal down 

to the housing box. The different coaxial line stages are included to allow for the inclusion of attenuators, 

circulators or cryogenic amplifiers as needed. The same configuration applies to the returning coaxial 

lines. The total power losses at 15GHz through each side of the lines is -8dB at low temperature. 

Considering a maximum output power of 30dBm at the room temperature amplifier, we estimate that 

the microwave pulses at 15GHz reach the housing box with a power of ~ 22 dBm (160 mW). 
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 Figure 2.3: The Dilution Refrigerator 

Left: Photo of the dilution refrigerator outside of the magnet without vacuum sleeve and radiation shield.  Right: 

Diagram of dilution refrigerator principle of operation. 
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2.3   Experimental Results 

The spin echo signal intensity was used as a direct indicator of spin polarization as a function of 

temperature as per (2.1).  A Bruker coal calibration sample [68] with a very strong echo response was 

placed in the center of the microstrip resonator (see Figure 2.2).  The Hahn echo sequence discussed in 

the introduction was applied to the sample at temperatures ranging between 100 to 800 mK. The echo 

height is proportional to the difference in population between the ground and excited spin states that are 

involved in the microwave absorption. When only the ground state is populated in steady-state, the 

sample reaches full spin polarization.  Accordingly, as expected from (2.1), the spin echo signal should 

increase as the sample’s temperature decreases and saturate when the full spin polarization is achieved, 

which for the magnetic field and frequency employed in this experiment occurs around 100 mK.  However, 

undesired heating of the sample through the coaxial lines by the microwave pulses would result in an 

artificial saturation of the spin echo at temperatures significantly higher than 100 mK. Therefore, the 

observation of the theoretical expectation of spin polarization becomes an excellent indicator of a 

preservation of the sample temperature as dictated by the dilution refrigerator. 

Initially, continuous wave EPR was performed to establish the resonant magnetic field of the 

sample at 15 GHz, which is found at H = 0.505 T, as expected for a spin ½ system at this frequency.  Then, 

the field was held constant at 0.505 T and microwave radiation was supplied at 15.62 GHz to the spin echo 

circuit (slightly away from the resonance maximum to improve sensitivity).  A series of different pulse 

lengths for a dephasing time of 𝑡𝑑𝑒𝑙𝑎𝑦 = 100 ns was systematically applied to the sample at T = 2 K (where 

microwave heating would be negligible) to locate the largest observable magnitude of the echo signal. 

The optimal pulse sequence was found to be 200 𝑛𝑠 → 𝑡𝑑𝑒𝑙𝑎𝑦 → 400 𝑛𝑠 → 𝑡𝑑𝑒𝑙𝑎𝑦 → 𝑒𝑐ℎ𝑜. Spacing the 

pulse sequences by at least 5 seconds was necessary to see a steady increase in echo height down to 
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100mK. To ensure that no heating occurred due to the repetition rate of the pulses even at the lowest 

sample temperature (100 mK), a period of 10 s was used to space each pulse sequence sent to the sample 

for all subsequent studies.    

2.3.1   Polarization of the Spins; Heating the Sample   

To determine the heating effect of the pulses, the sample was cooled overnight to below 100 mK 

and the height of the echo was studied as a function of the temperature. The echo heights obtained for a 

pulse sequence of 200 𝑛𝑠 → 𝑡𝑑𝑒𝑙𝑎𝑦 = 400 𝑛𝑠 → 400 𝑛𝑠 for different experimental temperatures in the 

range of 100 to 800 mK is shown in Figure 2.4.  The echo heights have been normalized assuming a full 

spin polarization at 100 mK, as expected from theory.  The theoretical expectation of the spin polarization 

is also shown in Figure 2.4 (continuous line) and is in excellent agreement with the experimental data. The 

perfect match between experiment and theory demonstrates a proper thermalization of the spins while 

spin echo measurements are undertaken, proving that the microwave pulses used in this particular spin 

echo sequence do not perturb the temperature of the sample even down to the lowest temperatures of 

the study. In other words, our microstrip-based spin echo spectroscopic setup enables studies of spin 

dynamics in magnetic systems at temperatures sufficiently low to ensure a full spin polarization of the 

system, allowing studies of quantum dynamics of spin and decoherent mechanisms intrinsic to the system 

while avoiding dephasing from fluctuations of the dipolar interactions which are relevant in condensed 

solid-state spin samples. 
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Figure 2.4: Spin Bath Polarization at Low Temperatures 

Main panel: Thermal polarization of the spin bath as a function of temperature.  The theoretical curve (black line) 

has been plotted according to Eq. (1).  The experimental data points (red triangles) are normalized so that 100mK is 

assumed 100% polarization.  Data was taken with a 200 𝑛𝑠 → 𝑡𝑑𝑒𝑙𝑎𝑦 = 400 𝑛𝑠 → 400 𝑛𝑠 pulse sequence and a 10s 

repetition period.  Inset:  Pulse sequence and echo signal for various temperatures.  The solid blue line at the top 

represents the pulse sequence sent to the sample, while the solid black line above it represents the opening of the 

screening switch to allow the echo signal through.  These are shown to explain the observed “peak” just before the 

echo, which is the remainder of the second pulse bleeding through the screening switch. 

  

800 mK 

100 mK 

Normalized echo height 

𝑃 = 𝑡𝑎𝑛ℎ (
ℏ𝛾𝑒𝐵0
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2.3.2   Spin-Spin Relaxation Time  

As a final test, we allowed the sample to again cool to below 100 mK and performed spin echo 

with the 200 𝑛𝑠 → 𝑡𝑑𝑒𝑙𝑎𝑦 → 400 𝑛𝑠 pulse sequence to extract an estimate of 𝑇2 for the coal spin marker 

by varying the delay time between pulses and recording the height of the spin echo. The results are shown 

in Figure 2.5, where the dependence of the height of the spin echo as a function of delay time is fitted to 

an exponential decay (continuous lines) for two temperatures (T = 100 and 600 mK).  Our estimate for 𝑇2 

was calculated to be 2.7 ± 0.4 µs; It is important to note that this coal sample has a very strong 

instantaneous diffusion component that will affect the spin-spin relaxation time, and accurate 

measurements of T2 at very low temperatures is almost impossible [69].  However, the observed 

transverse relaxation time lies within the expected values for this sample (𝑇2 = 500 ns has been reported 

at room temperature [16]). We did not observe any significant change in 𝑇2 within our range of 

temperatures.  We associate this to a saturation at higher temperatures when decoherence becomes 

dominated by nuclear dephasing, rather than interactions with vibrational oscillations of the lattice 

(phonons).       
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Figure 2.5: Extracting the Spin-Spin Relaxation Time T2 

Exponential decay fit to the echo heights for a series of a 200 𝑛𝑠 → 𝑡𝑑𝑒𝑙𝑎𝑦 → 400 𝑛𝑠  pulse sequences.  The delay 

times used were 100, 300, 600, 900, 1200, 1500, and 1800ns.  Data was taken at 100mK, with a 10s period (black), 

and 600mK, with a 0.5s period (red).  T2 was extracted from both sets of data with the following equation of fit:  𝑦 =

𝐴1 × 𝑒𝑥𝑝 (
−𝑥

𝑇2
) +  𝑦0.  

2.4   Discussion and Summary 

While pulsed EPR experiments have already been achieved below 1 K, to our knowledge no 

implementation of a sub-Kelvin pulsed EPR apparatus has been made specifically to address the 

decoherence inherent to low dimensional spin systems, such as condensed crystalline samples of single-

molecule magnets, with the ability to study thin films and molecules deposited on the surface of the 

100 mK 
 

600 mK 
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microstrip resonators employed in our setup. Here we have demonstrated our ability to perform pulsed 

EPR experiments successfully and without heating of the sample at temperatures down to 100 mK on a 

planar microstrip resonator, using the echo height at different temperatures as a direct measure of the 

thermal spin polarization (2.1) to prove we can achieve ≈ 100% polarization of the spin bath at magnetic 

fields below 1 T.  

As mentioned in the introduction, superconducting planar microstrip and coplanar waveguide 

resonators with nano-constrictions may be employed to drive spin-photon interactions into the strong 

coupling regime (the topic of the next chapter), which is extremely important for studies of quantum 

dynamics of the spin of SMMs in view of potential applications in quantum computation. In addition, the 

ability to study the quantum dynamics of SMMs at ultra-low temperatures and low magnetic fields 

ensures observing spin dynamics associated with the molecules’ intrinsic magnetic anisotropy. This opens 

an avenue to operations involving highly mixed superposition spin states, as well as to exploring the 

interaction between such sophisticated quantum states and their intrinsic sources of decoherence (such 

as nuclear spins and phonon couplings), even in magnetically condensed samples as a result of a full 

polarization of the spin bath. This technique will in turn facilitate investigations of interesting quantum 

behaviors of SMMs which are driven by their intrinsic magneto-anisotropy, including Rabi oscillations that 

are not Zeeman-dominated and thus not necessarily well-defined (as when the quantization axis results 

from a competition between the uniaxial anisotropy axis and the externally applied field). Additionally, 

our setup offers the capability to amplify signals at cryogenic temperatures, opening the door to 

experiments involving low numbers of photons in the strong coupling regime. We do not see any major 

technical limitation to extend this capability to temperatures down to 20mK, which is the base 

temperature achievable in our cryostat.  
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Ultimately, in this chapter we have achieved our goal of enabling pulsed EPR experiments on well-

ordered single crystal SMMs at relatively low magnetic fields, opening the door to examining the three 

main sources of decoherence (dipolar, nuclear, and phonon dephasing) in the same experiment 

(something impossible to do with very high magnetic fields and frequencies), to be performed in-house; 

there are many intriguing pathways that may be explored in the future using this technical method. 
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CHAPTER 3: COLLECTIVE COUPLING OF MOLECULAR SPINS TO 

LOW NUMBERS OF PHOTONS IN THE STRONG COUPLING REGIME 

The physics resulting from the rules which govern the interaction of a single photon with a single 

spin are of extreme interest in the fields of quantum computing and information [1-13].  The field of 

research that probes this spin-photon coupling in a wide variety of energy ranges is still highly active, 

incorporating experiments both in the weak coupling regime and the strong coupling regime.  In the first 

chapter I gave a brief introduction of the two regimes, and in the second chapter we looked at an 

experiment tailored to a weakly coupled system; in the current chapter we will delve deeper into the 

strong coupling regime, particularly as it relates to low numbers of photons and spins. 

The structural monodispersity, the ease of magnetic dilution, and the large tunnel splittings 

provided by mononuclear SMMs in a solid crystalline form make these types of systems ideal candidates 

for an experimental investigation into the coupling between the spin of a SMM (in the simplest case, 

approximated as a two-level atom) and the harmonic excitations of a resonance cavity with a high quality 

factor (e.g. photons in a superconducting resonator).  In particular, some crystalline mononuclear SMMs 

have been shown to provide a substantially increased spin-photon coupling factor when compared to 

other spin systems [14] (such as NV centers in diamond) due the involvement of large spins and highly 

mixed states as well as the high degree of monodispersity, where all spins are identical and feel a radiation 

field of wavelength larger than the size of the crystal. 

By combining this enhanced spin-photon coupling parameter with the intensified applied 

microwave magnetic field that is expected in an extremely high-quality factor nano-constricted 

superconducting resonator, one may realize an experimental setup which could feasibly allow 

measurements of the coherent collective coupling of a set of molecular spins and a very low number of 
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photons (including, possibly, even a single photon). In fact, the techniques discussed in the following 

sections may eventually allow reaching the strong coupling regime with a single molecular spin, a 

something which has not yet been achieved (to our knowledge). Furthering experimental development in 

this area will likely be transformative to our understanding of the quantum dynamics of various spin 

systems.  The eventual result of our approach here should be to enable further increases in the coupling 

parameter g by virtue of narrowing the central line of a CPW resonator down to nanometer scales.  A 

similar procedure has been proposed to couple superconducting resonators to the spins of donor defects 

in both sapphire and diamond [15,16] as well as to flux qubits in the context of advancements in quantum 

computing [17-25]. 

3.1 Vacuum Rabi Oscillations 

A secondary goal of this dissertation (aside from studying the sources of decoherence in the weak 

coupling regime) is to explore the possibility to observe the vacuum Rabi splitting which develops in the 

strong coupling regime, separating the symmetric and antisymmetric spin-photon superposition states as 

shown previously in Figure 1.12.   The spin in a mononuclear SMM comes from the single, only, magnetic 

constituent; in the simplest case this can be approximated by a two-level system with the spin being either 

in the ground state (for example, spin down) or in the first excited state (for example, spin up).  For most 

SMMs at very low temperatures, this is an excellent approximation as any additional excited states will 

most likely be well-separated from the two lowest energy states. We thus aim to understand the 

interaction of this two-level spin system with the various photon modes (or allowed photon wave 

numbers kx, ky, kz) in a cavity with a high-quality-factor.  
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3.1.1 The Jaynes-Cummings Hamiltonian, Revisited 

In general terms, the coupling between a photon in a resonant cavity and a two-level spin system 

placed inside can be described by the Jaynes-Cummings Hamiltonian, which as you may recall from the 

introductory chapter is given by  

𝐻𝐽𝐶 =
ℏ

2
𝜔0𝜎𝑍 + ℏ𝜔𝑎+𝑎 + ℏ𝑔(𝑎+𝜎− + 𝑎𝜎+) 

(3.1) 

where the first term represents the energy between the split spin levels of the molecule (described as a 

two-level system), the second term represents the cavity with N = a+a photons, and the third term 

accounts for the coupling between the spin and the photon, with g being the rate of creation or 

annihilation (σ+a, σ−a+) of a photon.  This rate is none other than the so-called vacuum Rabi frequency; 

that is, it represents the oscillation frequency between a photon existing in some resonant mode of the 

surrounding cavity, and the spin existing in the energized state.  Now, in the absence of spontaneous 

decay or an external damping force, the coupled spin-photon system will coherently oscillate (that is, 

remaining in one or the other of two “pure” states, |1, 0> or |0, 1>) between an atomic excitation 

(molecular spin) and a filled photonic mode in the cavity. This oscillation between states is what is known 

as vacuum Rabi oscillation.  It may be interpreted as some vacuum electromagnetic fluctuations which 

will stimulate photon emission and absorption by the atom to/from the resonant cavity.  

The vacuum Rabi frequency, g, may be given by the strength of the Zeeman coupling between the 

spin, 𝑆, and the magnetic field of the cavity vacuum fluctuations, 𝐵RF, as below 

𝑔 ≡ 𝑓𝑅𝑎𝑏𝑖 =
2𝑔𝐿𝜇𝐵𝑆𝐵𝑅𝐹

ℏ
 

(3.2) 
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 where gL is the Landé g-factor.  Recall that this g-factor belongs to an electron with both spin and orbital 

angular momentum and is used to describe the energy levels of an atom in a weak magnetic field as  

𝑔𝐿 ≈ 1 +
𝑗(𝑗 + 1) + 𝑠(𝑠 + 1) − 𝑙(𝑙 + 1)

2𝑗(𝑗 + 1)
≈ 2 

(3.3) 

(with 𝐽 = √𝑗(𝑗 + 1) ,  𝑆 = √𝑠(𝑠 + 1), 𝐿 = √𝑙(𝑙 + 1) being the total, spin, and orbital angular momenta, 

respectively).  In order for coherent oscillations to be made possible, that is, for more than one exchange 

of energy to occur observably, the Rabi frequency must overcome the inherent decay rates of both the 

photon and the spin lifetimes. For a cavity of loaded quality factor QL, the decay rate kphoton of an 

excitation (i.e., a populated photon mode) at resonance (E = ℏωr) is given by 

𝑘𝑝ℎ𝑜𝑡𝑜𝑛 =
𝜔𝑟

𝑄𝐿
 

(3.4) 

[26].  In the case of a two-level SMM spin system, the lifetime decay of the excited spin state may be 

expressed by the decoherence rate 

𝛾𝜑 =
ℏ

𝑇2∆0
 

(3.5) 

 (where T2 is the spin-spin relaxation time and ∆0 is the tunnel splitting between the two spin states), 

which is governed by the dephasing sources that have been discussed in previous chapters (magnon, 

phonon, and nuclear).  Thus, for a cavity with a resonant frequency of 10 GHz and Q-factor 10,000, kphoton 

is on the order of 1 MHz; for the Fe8 SMM discussed in Figure 1.11, at 100 mK and magnetic fields of less 

than 1 T, γφ may be on the order of 10 MHz.  When a large number of coherent oscillations are completed 

before the photon exits the cavity or the atom decays, the system is considered to have reached the 

Quantum Electrodynamics (QED) strong coupling limit:  
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𝑛𝑅𝑎𝑏𝑖 =
2𝑔

𝑘𝑝ℎ𝑜𝑡𝑜𝑛 + 𝛾𝜑
 

(3.6) 

(nRabi being the number of Rabi oscillations). 

It is possible to enhance the coupling parameter g by utilizing two separate approaches.   One 

may attempt coupling of a single photon cavity mode coherently to a large number of spins all at once 

(corresponding to the situation studied by Tavis and Cummings in [27], where the Rabi splitting was 

enhanced by a factor of √𝑁).  This method has already been successfully demonstrated in a wide 

assortment of low-spin systems, including NV centers in diamond [28], standard EPR materials [29,30], N-

doped buckyballs [31], and Cr impurities in ruby [16] among other systems with larger numbers of spins 

[32,33].  However, one may instead (or in addition) attempt to approach the issue by involving smaller 

numbers of large individual spins, using materials with strongly mixed spin states (as may be found in 

some mononuclear SMMs [14]), or by technically improving the resonator (for example, increasing the 

quality-factor or the concentration of the microwave magnetic field at the sample position).  This second 

class of methods may even eventually provide a way of strongly coupling a single spin to a single photon; 

they are the focus of our approach to the strong coupling regime.  

3.2 The Strong Coupling Limit: The Story so Far 

A significant amount of energy has been devoted in recent years to improving the coupling 

between potential qubits and QED circuits.  Molecular spins in particular have elicited interest in this 

regard.  Efforts to reach the strong coupling regime with spin ensembles have begun to bear fruit, 

although as yet there seems to be no concrete evidence of doing so with a single qubit-photon system.  

Bonizzoni, et. al. have recently published their work on coherent coupling of molecular spins to planar 

superconducting resonators [34,35], illustrating the difference between weak and strong coupling in 
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various systems (see Figure 3.1).  Coherent Rabi oscillations have been observed in several systems, 

including in a gadolinium-doped CaWO4 single crystal (an example is shown in Figure 3.2).   

 Figure 3.1: Coupling Regimes in Microstrip Resonators 

Left: Simulated transmission spectra for a YBCO coplanar resonator in the weak coupling (a), high cooperativity (b), 

and strong coupling (c) regimes [34].  The peak splitting indicative of strong coupling clearly emerges at resonance.  

Right: Coupling parameter 𝑔 plotted vs spin linewidth (lifetime) 𝛾𝜑 for various spin systems.  The dashed line 

represents the boundary between weak and strong coupling, where 𝑔 = 𝛾𝜑.  Data for the same compound taken at 

different temperatures T are marked by the solid black arrows as well as the size of the symbol, with a larger symbol 

meaning a higher temperature [35]. 

Increasingly high blocking temperatures have been reported in lanthanide SMM complexes [36-38], up to 

and including liquid nitrogen temperatures [39].  Various resonators specifically designed for high quality 

factors are being designed, including microstrip [40] and loop-gap resonators [41,42], and perhaps most 
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exciting has been the recent successful implementation of a quantum algorithm using a SMM by Godfrin, 

et. al. [43]. 

Figure 3.2: Coherent Rabi Oscillations in Gd-doped CaWO4 

Rabi oscillations between the S = +1/2 and S = -1/2 states for Gd-doped CaWO4 obtained in a cylindrical cavity 

resonator at 6K and 9.75 GHz.  Inset: EPR spectrum of the m = +1/2 to -1/2 EPR transition, showing fine structure 

contributions due to additional Gd isotopes present in the crystal. [44] 

3.2.1 An Example: Fe8 

In addition to the studies of low-spin systems described above, spectroscopic observation of the vacuum 

Rabi splitting in SMMs has been reported by Jonathan Friedman and his research group [45].  Their 

experiment was performed at 4 K, with a standard EPR cylindrical cavity with a resonant frequency of 

approximately 150 GHz, a quality factor of about 1000, and a large number of photons (𝑁 ≈ 108) which 
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were coupled to a single solid crystal of undiluted Fe8.  However, the authors did note that when 

accounting for the degree of dispersion that is typically present in a crystal of Fe8 (that is, the degree to 

which the individual single molecules of Fe8 do not behave uniformly), they were unclear as to how each 

molecule could be simultaneously meeting the requirements to achieve coherent coupling.   

Figure 3.3: Strong Coupling in Fe8 

Top: Power absorption (red and yellow indicate significant absorption) as a function of magnetic field H and 

frequency f at T = 1.8 K (left) and T = 7 K (right) for Fe8 in a cylindrical cavity.  The lower dashed red line represents 

the ground state m = -10 to -9 transition, while the upper dashed red line represents the first excited state (populated 

only for higher temperatures) m = -9 to -8 transition [45]. Bottom: Transmission as a function of magnetic field and 

frequency at T= 3 K for the Fe8 m = -10 to -9 transition in a cylindrical cavity.  The right panel displays a cross section 

of the transmission at three distinct magnetic fields, clearly showing the peak splitting inherent to the strong coupling 

regime [46]. 
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Indeed, the dephasing rate γφ for Fe8 at temperatures near 4K is influenced heavily by dipolar 

fluctuations and as a consequence is quite fast, with γφ~109 Hz; due to the √𝑁 dependence, this 

necessitates coupling to greater than 1016 individual SMM spins within the crystal to even barely reach 

the strong coupling regime and requires a very fast Rabi frequency on the order of γφ, or 1 GHz.  Figure 

3.3 shows their results, along with results from Muhandis Shiddiq concerning the same compound.  

3.2.2 Magnetic Dilution 

As discussed in the first chapter, coherence in a magnetically diluted SMM crystal (as well as in 

spin-polarized systems which have not been diluted) is constrained primarily by phonon and nuclear 

dephasing, with some recent results [47] demonstrating lifetimes of up to 40 µs.  This would suggest that 

dephasing rates γφ = 0.1 MHz or lower can be expected in magnetically dilute systems.  Our nano-

constricted superconducting resonators that will be discussed in the next section have a high quality factor 

(𝑄 ≈ 105 − 106), which should guarantee photon lifetimes of 100 µs or larger (corresponding to 

𝑘𝑝ℎ𝑜𝑡𝑜𝑛 ≈ 0.01 MHz).  Thus, the dephasing in the spin system should become the limiting factor on the 

number of coherent vacuum Rabi oscillations.  In other words (or equations),  

𝑘𝑝ℎ𝑜𝑡𝑜𝑛 ≪ 𝛾𝜑;  𝑘𝑝ℎ𝑜𝑡𝑜𝑛 + 𝛾𝜑 ≈ 𝛾𝜑 . 
(3.7) 

While these lifetimes may still be two orders of magnitude smaller than those found in NV centers 

in diamond [28], we may be able to enhance the coupling parameter 𝑔 by almost two orders of magnitude 

by virtue of the high spin and large tunnel splittings which may be supplied in some SMMs.   As shown in 

[14,37,38], lanthanide-based mononuclear SMMs (e.g., TbW30 or GdW30) are the most reliable options for 

this approach of coupling enhancement, due to their easily obtainable large tunnel splittings and 

comparably high resistance to decoherence.  In case of point, the increase in the coupling parameter that 
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may be provided by the large spins and tunneling states in some lanthanide-based mononuclear SMMs, 

when combined with high quality factor superconducting resonators which utilize nano-constrictions, may 

even allow the feasibility of strongly coupling a single photon cavity mode with a single molecular spin, 

something which to our knowledge has not yet been achieved. 

3.3 Superconducting, Nano-constricted, CPW Resonators 

Portions of this section have been written using references [26,48-50]. 

Over the course of many years, a large number of different resonant/traveling wave microwave 

apparatuses have been utilized in EPR studies.  Three commonly used variants are microwave cavities, in 

which microwaves are confined within a hollow (or dielectric-filled) physical cavity to form standing waves 

at resonance between the walls; loop-gap resonators, in which microwaves are either inductively (through 

a wire loop above a circular hole) or capacitively (through a straight wire above a straight-edged gap) 

coupled to the cavity-like resonator; and planar resonators, including microstrip (a single transmission line 

of a specific length) and coplanar waveguide (a center transmission line of specific length with “infinite” 

grounding planes on both sides) configurations.  Figure 3.4 illustrates the difference between these 

resonant geometries. 

Figure 3.4: Resonant Geometries 

Left: Schematic of a cylindrical resonant cavity.  Middle left: Schematic of a loop-gap resonator.  Middle right: 

Schematic of a microstrip planar resonator.  Right: Schematic of a CPW planar resonator.  

Microwave cavities work well at high frequencies and can have impressive quality factors 

combined with simple manufacturing requirements, but at low frequencies the dimensions required 
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become prohibitively large.  Loop-gap resonators are slightly more challenging to machine but are 

comparatively easy to tune to match the sample resonance while allowing for a higher filling factor with 

small samples, and are commonly used for EPR measurements below X-band frequencies.  Above about 

7 GHz, however, the dimensions required are so small that they become impractical to machine.  As a side 

project, we actually attempted to machine an 8.5 GHz loop-gap resonator made of OFHC copper by use 

of electrical discharge machining (EDM), the only viable machining method due to the size of the smallest 

dimension being 67 ten-thousandths of an inch (see Figure 3.5).  Unfortunately, we were unable to 

achieve a quality factor greater than that of the microstrip resonators used in the second chapter, and 

didn’t end up using it in any experiments due to technical concerns.  Microstrip resonators were used in 

the previous chapter; they typically have a lower quality factor and higher losses when compared to their 

CPW counterparts (making them ideal for weak coupling experiments).  However, for strong coupling, 

CPW resonators are significantly better since radiative losses are minimized due to the grounding planes.  

Making the conductor a superconductor will reduce heating and radiative power loss even further.  Finally, 

narrowing the central resonator line to a nano-constriction will enhance the microwave magnetic field 

strength at the sample location, and thus the coupling to the sample, by huge amounts.  This is the idea 

behind the design of our nano-constricted superconducting resonators.  

Figure 3.5: Our Loop-Gap Resonator 

Our attempted 8.5 GHz loop-gap resonator.  Left: Schematic.  Right: Image of the loop-gap resonator in its housing 

box.   
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The ultimate goal of our investigations into the strong coupling regime will be to continue 

increasing the coupling parameter g by narrowing the center line of the coplanar waveguide (CPW) 

resonator down to nanometer scales.    These nano-constrictions greatly increase the AC current in the 

constricted portion of the resonator, corresponding to a significant increase of the microwave magnetic 

field at the sample position and thus an enhancement of the coupling parameter.  It has been estimated 

that the enhancement due to these nano-constrictions can reach approximately two orders of magnitude, 

effectively increasing the coupling parameter to g ≈ 0.2 MHz so as to overcome the intrinsic dephasing 

times in SMMs and work towards allowing strong coupling between a single cavity mode and a single 

molecular spin [14]. 

3.3.1 Design 

CPW resonators are at heart simple devices consisting of a regular CPW device constrained to the 

length of one half of the resonant wavelength and capacitively coupled to the feed lines by two gaps.  The 

fundamental mode frequency is calculated from 

𝑓0 =
𝑐

2𝑙√𝜖𝑒𝑓𝑓

 

(3.8) 

where 𝑙 is the resonator length and 𝜖𝑒𝑓𝑓  is the effective dielectric constant, which depends on the 

dimensions of the resonator and dielectric properties of the surroundings (𝑐 is the speed of light) [14].  

We have designed a series of different coupling gap dimensions, chosen blindly to both over-couple and 

under-couple the resonator to the feedlines, as well as two distinct gap styles: direct and interlocked, as 

shown in Figure 3.6; the optimal geometry will be identified by characterization of the resonators.  

Resonator lengths corresponding to frequencies between 7 GHz and 14 GHz have been used. 
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Figure 3.6: Interlocked and Direct Coupling Gaps 

Close up of the different types of coupling gaps present in the nano-constricted portion of the resonators, including 

interlocked (left) and direct (right). 

 The behavior of this type of resonator can be approximated as a series of parallel LRC circuits 

coupled to an input and transmission line (see Figure 3.7) [26].  They can be modelled as a combination 

of many small lumped elements with identical impedances, with each section having a resistance, 

inductance, conductance, and capacitance (per unit length) of 𝑅𝑙 , 𝐿𝑙 , 𝐺𝑙 , and 𝐶𝑙, respectively.  Therefore, 

each section will have an impedance of 

𝑍0 = √
𝑅𝑙 + 𝑗𝜔𝐿𝑙

𝐺𝑙 + 𝑗𝜔𝐶𝑙
 . 

(3.9) 

For the fundamental mode (corresponding to f0), the properties for the full length of the transmission line 

(length = 𝑙) can be found to be 𝑅 = Rl ∗ 𝑙 (resistance); 𝐶 =
𝐶l∗𝑙

2
 (capacitance); 𝐿 =

2𝐿l∗𝑙

𝜋2  (inductance); and 

Z𝑐 =
2𝑍0

𝜋
 (impedance).  If we now capacitively couple the resonator/transmission line to both an input and 

transmission line, we introduce an effective capacitance 𝐶𝑒𝑓𝑓 which shifts the resonant frequency, and 

resistance (in parallel) 𝑅𝑒𝑓𝑓 which changes the quality factor.  The loaded quality factor for this coupled 

transmission line is then 

𝑄𝐿 =
1

1
𝑄𝑒𝑥𝑡

+
1

𝑄𝑖𝑛𝑡

 

(3.10) 

with 
1

𝑄𝑒𝑥𝑡
= 𝜔2𝐶𝑒𝑓𝑓

2Z0Z𝑐 and 
1

𝑄𝑖𝑛𝑡
=

𝑍𝑐

𝑅
.   

100 μm 
100 μm 
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Figure 3.7: The Parallel LRC Circuit 

Approximation of the resonator transmission line as a series of parallel LRC circuits. 

Just like in a normal transmission line, the electromagnetic radiation mode in a CPW resonator 

can be described as a current/voltage wave, with the central line current being equal and opposite to the 

ground plate current (a conducting backing plate may also be employed to both increase thermal 

connection with the housing box and assist in isolating the resonator line).  The zero-point energy of a 

CPW resonator is stored equally as voltage in the capacitor and current in the inductor of the equivalent 

lumped element (parallel LRC oscillator). Using estimated values of our devices’ parameters L and C for 

the fundamental resonance of a 7 GHz resonator [51], we find vacuum voltage and current fluctuations 

to be 𝑉0 = 1.8 μV and 𝐼0= 58 nA, respectively. While this works well enough for coupling a cavity photon 

with a charge-based atom (for example, a Cooper-box [26]), where the coupling depends on the electric 

field between the center line and the ground plane which is typically rather large (𝐸0 on the order of 0.2 

V/m) and you may see vacuum Rabi frequencies in the range of 200 MHz [52], it does not work nearly as 

well when trying to couple the photon to a spin-based atom. This is quite simply due to the fact that the 

vacuum microwave magnetic field is weaker than the electric field by a factor of c, the speed of light. 

Using a spin of 𝑆 = 1
2⁄  in (3.2) for the same parameters gives a vacuum Rabi frequency of only g ≈ 100 

Hz. However, this coupling can be enhanced by several orders of magnitude by virtue of combining the 

𝐶𝑙 

𝑅𝑙 

𝐿𝑙 

𝐶𝑙 

𝑅𝑙 

𝐿𝑙 

𝐶𝑙 

𝑅𝑙 

𝐿𝑙 
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specific nano-engineering of the resonators described here with the high spin and large tunnel-splitting in 

SMMs, bringing the coupling up to g ≈ 0.2 MHz [14], making it larger than the spin dephasing rate γφ. 

3.3.2 Fabrication 

A series of different micro-coplanar waveguide resonators with 𝑄 > 104 for experiments 

requiring an enhanced coupling parameter by way of a large microwave magnetic field have been 

successfully fabricated for frequencies of 7 GHz (central line length of 8 mm) and 14 GHz (central line 

length of 4 mm).  The principle method of operation is designed to work by means of a high 

temperature/high field superconducting film (YBCO) grown atop a sapphire substrate.  

 Figure 3.8: CPW Resonator Design 

AutoCAD design for one of the interlock-gap 7 GHz CPW resonators.  14 GHz geometries were also fabricated.  Outset:  

Close up of the constricted portion of the resonator. 

One such resonator design is shown in Figure 3.8. In each case, the resonator dimensions have 

been calculated to maximize the unloaded quality factor while maintaining a 50 Ω impedance [26,51-53].  

Symmetric direct or interdigitated coupling gaps separate the resonator from the input and transmission 

lines, with gap and central line dimensions set at discrete intervals to allow the opportunity to study both 

over-and under-coupled resonators at multiple frequencies [51]. They have been designed for a 330 nm 

500 μm 
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YBCO film deposited on both sides (one as a backing plate, one for patterning) of a 430 µm thick sapphire 

substrate.  7 GHz and 14 GHz resonators designed for 𝑄 > 104 have already been fabricated by STAR 

Cryo-electronics, and were recently received by our lab. 

The outset in Figure 3.8 shows a micro-constriction embedded into the central line of the 

resonator, where the microwave magnetic field becomes largest at the fundamental resonance mode.  

Further narrowing of this constriction, down to nano-scales, will allow for a large enhancement of the 

microwave magnetic field at the micro-constriction location.  Together with the enhancement in the spin-

photon coupling offered by some mononuclear lanthanide SMMs, this is imperative for reaching the 

strong coupling regime between the cavity mode and a reduced number of spins.  This should enable a 

real potential of achieving strong coupling to a single spin for the first time.  

3.4 Conclusions 

CPW resonators to our specifications have been purchased from and fabricated by STAR Cryo-

electronics, with various dimensions and geometries of coupling gaps as well as two different lengths of 

the central line corresponding to a 7 GHz and 14 GHz resonance. We plan to characterize the different 

resonator gap lengths and designs to observe performance at magnetic fields up to at least 1 Tesla and 

temperatures below 100mK.  The microwave current density achieved in the constricted area of the 

resonator for powers above 0 dBm overcomes the critical current density of YBCO at the constriction 

(center of the line), where the maximum current density is reached for the fundamental resonant mode 

[14].  This is indicative that the ac current is greatly enhanced in the vicinity of the constricted section of 

the resonator, which in turn translates into a substantial increase of the ac magnetic field at the sample 

position, ultimately enhancing the coupling parameter g. The estimated enhancement in the microwave 

magnetic field in nano-constricted resonators can reach two orders of magnitude, bringing the coupling 
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parameter up to g ≈ 0.2 MHz, hopefully overcoming the intrinsic dephasing in SMMs and allowing for 

strong coupling between a cavity mode and low numbers of spins. 

Eventually we plan to study the coupling between a superconducting cavity mode and 

mononuclear lanthanide-based SMMs in the strong coupling regime. Both single-crystals and isolated 

molecules deposited on the surface of the resonators will be investigated.  Initially the hope is to use these 

resonators to observe the coherent collective coupling of a large number of spins with a single cavity 

mode, which will be made possible by the high degree of monodispersity found in single crystals of 

mononuclear SMMs, where all spins are identical and feel a radiation field of wavelength larger than the 

size of the crystal. According to the estimates given earlier (g ≈ 0.2 MHz, 𝑘𝑝ℎ𝑜𝑡𝑜𝑛 ≈ 0.01 MHz, and γφ ≈

0.1 MHz), N > 100 molecular spins coherently coupled to a superconducting cavity would be sufficient to 

generate Rabi oscillations at a rate faster than the system dephasing. Note that a typical magnetically 

dilute (0.001%) crystal of mononuclear SMMs, with a volume of 103 µm3, contains roughly 1012 molecular 

spins. In fact, the low number of molecules required to achieve the strong coupling regime will allow the 

possibility of working with molecules directly deposited on top of the surface of the resonators, rather 

than a large crystal. In addition, experiments employing ultra-low power microwave stimuli may be 

performed in order to perform measurements with a low number of photons in the cavity, with the 

objective of observing the coherent collective coupling of a low number of molecular spins with a single 

photon.  Note that at  

𝑇 = 40 𝑚𝐾 (< 𝑇0 =
ℏ𝜔𝑛

𝑘𝐵
= 340 𝑚𝐾) 

(3.11) 
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a 10 GHz resonator is in its ground state with a thermal occupancy of 𝑁𝑝ℎ𝑜𝑡𝑜𝑛 = 0.033 (number of photons 

in the cavity).  Future efforts are focused on improving the assembly of the microwave lines, and 

thermalization and cryogenic amplification stages in the dilution cryostat that will enable measurements 

with an extremely low number of photons. 
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CHAPTER 4: THE IMPACT OF SERVICE-LEARNING COURSEWORK 

ON UNDERGRADUATE STUDENTS’ LERANING PROCESS 

The material presented in this chapter is based on the paper “Assessment of the Effect of Service-Learning in 

Nanoscience on Student's Depth of Learning and Critical Thinking”, published in Volume 6 Issue 1 of PRISM: A Journal 

of Regional Engagement. The authors are myself, Rebecca Cebulka, and my advisor, Enrique Del Barco.  The journal’s 

copyright policy is attached in Appendix A, while the IRB approval for the research is attached in Appendix B.  The 

paper was published online in 2017. [1] 

In addition to the technical advances detailed in the previous two chapters, there is a wider need 

to understand nanomagnetism and nanotechnology in general in order to support future experiments and 

development along this path. Science and technology at the nanoscale are focused on the investigation 

of structures having one or more dimension being less than several hundred nanometers.  These types of 

structures exhibit phenomena which are unique to their small size and are promising in many applications, 

with the potential for a significant impact across many fields including physics, biology, chemistry, 

materials science and engineering.  While research into nanoscience unquestionably has and will continue 

to play a vital role in developing cutting-edge science and engineering technologies, there remains a lack 

of talented students who have been attracted to fields in nanotechnology.  Many universities do not have 

the capability to introduce or expose their students to the processes involved with nanofabrication and 

development, regardless of recommendations from both the President’s Council of Advisors on Science 

and Technology and the NSF [2] to improve education and training of the next generation of students so 

as to graduate with a general understanding of nanoscience and technology. As a direct consequence, 

among the many teaching and learning activities being developed at the University of Central Florida (UCF) 

(including large scale-up reversed classes for introductory physics courses, extra-curricular support for 

physical science students, online and in-person tutoring, and both professional and peer-mentoring 

programs for Physics majors), a new degree option for a minor in Nanoscale Science and Technology was 

https://encompass.eku.edu/cgi/viewcontent.cgi?article=1109&context=prism
https://encompass.eku.edu/cgi/viewcontent.cgi?article=1109&context=prism
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initiated and offered for the first time in the Fall 2015 semester.  The minor was designed to attract 

students from a wide variety of disciplines and is structured around three main “nano-courses,” to be 

taken in any order.  These three main courses were tailored to provide exposure to the basics of nanoscale 

science and technology, both from a physical and computational standpoint as well as examining the 

societal impact of modern emergent nanotechnologies.  More specifically, for these three main courses 

there exists a three-fold aim:  

i. That undergraduate students at UCF will become familiar with various nanoscience concepts by 

conducting and presenting individual study into advanced topics linked to the contents of the 

courses;  

ii. That local middle school students be introduced to some of the most inviting facets of STEM fields 

of research - those incorporating nanotechnologies or nanoscience which may have a great effect 

on human society – hopefully with a high likelihood of convincing the younger generation to aspire 

towards careers in nanoscience; and,  

iii. That local middle school instructors as well as students will benefit from lasting products of their 

interactive partnership with the undergraduate students in the courses.  

The last two goals may seem to point towards a collaboration between the undergraduate students 

who have enrolled in the courses and a local middle school audience; in point of fact, all three of the main 

“nano-courses” were designated through UCF to be service-learning.  For the reader who may be 

unacquainted, service-learning is described by UCF as “a teaching method that uses community 

involvement to apply theories or skills being taught in a course” [3].  For a more thorough explanation of 

service-learning courses and various teaching methods, see [4].  Each of the three main courses has been 

made to require that enrolled students “teach” at a local middle school for one class period about a part 
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of the course they thought was exciting, so as to combine more traditional teaching methods with a type 

of community service.  Ideally, this would also contribute to the recruitment of even more young minds 

towards a career in a STEM-related field. The students who are enrolled should gain an increased feeling 

of both personal and civic responsibility, through the creation and dissemination of their own interactive 

lecture in a classroom and by venturing into the local community to impart knowledge and experiences 

relating to nanotechnology to its younger members, most particularly potential future female STEM 

workers.  The remainder of this chapter concerns itself with a study performed as part of my receipt of a 

2015-2016 iSTEM Fellowship, into the effect of service learning on the novel course series on nanoscience 

described above taught in the UCF physics department. 

4.1   Background 

"Nanoscience II: Technology and Applications,” was the initial course to be offered in the Fall 

semester of 2015 to a class of 12 students.  It was comprised of 60% lecture-related activities and 40% 

service-learning-related activities. The lecture part of the course consisted of an overview of the basic 

physics and applications of nanoscience/nanotechnology, and heavily emphasized in-class student 

interaction with the lecturer and each other. Homework was presented as miniature-research 

assignments, with either a group of students or individuals investigating a topic related to the lecture 

material outside of class and then presenting it in-class to their fellow students. In the service-learning 

aspect, students were divided into groups of 3 and told to choose an area of developing nanoscience 

applications that interested them.  They were to study them on their own, outside of class, to eventually 

be presented in a local middle school.  The middle schools ultimately chosen for these presentations were 

suggested by the Executive Director of Secondary and Middle Schools in each school district.   
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The approach behind the course was intentionally chosen so that the majority of student learning 

would follow from their own research initiative, both individually and through interactions with their 

fellow students, in addition to experiences with a wider audience at the middle schools through the 

service-learning portion. As well as being necessary to passing the course the idea was for the service-

learning presentations, each of which had at least one female presenting, to have a community service 

effect.  Hopefully they would also encourage middle school students to become more attracted to a career 

in STEM, in particular young women who still remain underrepresented in a large number of the hard 

sciences.  The presenters, especially the female presenters, who travelled to the local schools would 

function as role models to the students. Of course, there has been a large volume of research performed 

concerning the beneficial impact of female role models in recruitment and retention of women in STEM 

fields [5-8].   

The student presenters were placed in contact with the middle school teachers through an 

intermediary (myself, the course TA) so as to determine which topics would be the best fit for each 

classroom, as the middle school audience ranged from 6th to 8th grade and were covering different topics 

in their science lessons.  This worked to engender a sense of cooperation between the students enrolled 

in the course and the surrounding community.  As an accompaniment to the scientific subjects being 

discussed, the presenters also shared with the middle school classes their personal experiences at UCF, 

involvement in the nanoscience course, and plans for a future career.  Academically, the rewards of using 

service-learning as an instruction method have been known for decades and can be found in numerous 

studies [9-11].  Documented advantages to the approach include but are not limited to increased critical 

thinking skills, increased problem-solving skills, increased student engagement in class, and increased 

engagement in the community. 
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It was decided to integrate a nanoscience course with service-learning teaching methods because 

while UCF has a generally impressive record of providing service-learning education options, including an 

entire department devoted to the application and understanding of experiential learning methods, 

virtually none of the service-learning courses offered at the time this study began were involved with a 

scientific topic.  As an example, in the Spring semester of 2016 which immediately followed the course 

discussed in this chapter, two nursing and eleven creative writing, teaching, or other humanities courses 

made up the majority of the fourteen service-learning designated courses that were offered at UCF.  The 

only service-learning course that semester related to STEM directly was the continuation of the course 

discussed here.  Given the degree of involvement UCF has shown in service-learning activities, it felt 

obligatory to include a more scientific option by providing nanotechnology courses with a service-learning 

component to students at an undergraduate level.  This series of nanoscience courses is only the second 

physics service-learning option offered by the department; the other was designed to train future physics 

instructors. As a consequence, research as to its effectiveness was warranted to help decide if this 

teaching method for this subject should continue to be implemented in the future. 

While a large volume of research has been carried out as to the effect of service-learning on 

courses which do not focus on science and technology [12-18], at the time this study was performed very 

little had been aimed towards service-learning in STEM courses in general, and virtually none for 

nanoscience courses specifically.  In the research presented in this chapter, learning assessment results 

have been used to examine students' depth of learning and critical thinking over the course of the UCF 

service-learning nanotechnology course. To this end, nanoscience pre- and post-tests [Appendix F] were 

administered to the enrolled students at the beginning and end of the semester, in order to help quantify 

general depth of learning.  Students were also required to write a critical reflection paper at the end of 
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the semester, which was intentionally designed to focus on their service-learning experiences.  For this 

paper, each student wrote an initial draft, was given constructive criticism by the instructors, and 

submitted a final reflection. Both the initial drafts and the completed reflections were made anonymous 

and provided to the Program Director of Service-Learning at UCF with no student contact.  The papers 

were evaluated in accordance with the Describe, Examine, and Articulate Learning (DEAL) model [15], 

which has been shown in previous research to be an effective method to assist students in developing 

their critical thinking skills [19,20] as well as a valid way to evaluate improvement in said skills [15]. 

4.2   Methodology 

4.2.1   Research Participants 

Participating in the research study were myself and my advisor (Enrique Del Barco, who taught 

the majority of the course while I acted as the TA) as the principal investigators (PIs), and the 12 students 

who were enrolled as the research subjects.  The course name was PHZ 3464 Nanoscience II: Technology 

and Applications and was offered at UCF in the Fall semester of 2015.  This study took place during that 

same semester (Fall 2015).  The research subjects were comprised of one sophomore, one junior, and ten 

seniors, with majors including physics, engineering, biology, and chemistry.  Out of the twelve students, 

nearly half were female.  The research purpose was explained to all of the subjects in accordance with IRB 

protocol and all of the students enrolled in the course did choose to participate.  

4.2.2   Course Design 

When designing the course, we specifically intended for PHZ 3464 to focus more on learning 

outside the classroom than on lecture content.  The overarching goal was to increase students’ experience 

in research discussions and presentations about scientific topics of their own choice.  The total grade was 

made up of 40% contribution from the service-learning aspect and 60% contribution from more formal 
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coursework.  Table 4.1 shows the grading rubric for the final grades.  To facilitate experience in 

presentations and discussion, homework assignments were to select a topic somehow related to what 

was currently being discussed in class, research it at home either in groups or individually, and then give 

a short presentation on that topic in-class.  Students were made aware of the presentation grading rubric 

at the start of the semester.   Lectures by the professor were complemented by student discussions about 

recent articles from academic journals, in addition to time dedicated to research and planning for the end 

of semester service-learning projects, which are explained in the next paragraph.  There were also several 

student visits to on-campus microfabrication facilities, with hands-on components included.   

Table 4.1: Nanoscience Course Rubric 

Overall grading rubric for the Nanoscience II: Technology and Applications course. 

Service Learning (40%) 

In-class presentations (15%) 

Final reflection paper (15%) 

Middle school presentations (10%) 

Formal Coursework (60%) 
Exams (40%) 

Homework (20%) 

 

For the end of semester service-learning projects students were divided into four groups of three 

students each and put in contact with local middle school teachers.  They chose a modern nanoscience 

application/technology that interested them, researched it outside of class and prepared an interactive 

presentation to be “taught” in a middle school class during their normal science period (about 40 

minutes).  Topics were selected from the journal Nature; several articles relating to emergent 

nanotechnologies were submitted to the TA (myself) who worked with the middle school teachers to 

select the best options for each class.  A total of eight different classes, roughly 20 middle school students 

per class, and three separate schools were part of the projects.  The presenters were asked to emphasize 
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relatability and classroom interaction and minimize the use of PowerPoint slides and lecturing; some 

examples of the classroom presentations are shown in Figure 4.1.  Ultimately the service-learning projects 

were graded on a progress report performed during normal class time, before the visits to the local 

schools; the middle school presentations themselves; and the final reflection paper.  Each group also 

presented a poster about the experience in the middle schools at the end of the semester, which were 

then submitted to the annual UCF service-learning showcase in the Spring semester of 2016.    

Figure 4.1: Participants Presenting in Middle Schools 

Top: One of the study participants presenting on “Using Nanotechnology to filter/purify water” shows a culture of 

bacteria under a microscope. Middle: The group presenting on “Wearable Nanotechnology” illustrates the difference 

between a normal glove and a nanoparticle-coated water-repellent glove by inviting the audience to touch them.  

Bottom: A participant presenting on “Using Nanotechnology to treat/cure diseases” demonstrates the ability of 

nanoparticles to ‘stick’ to certain cells by involving the audience in an interactive game. [1] 

As an aside, the experience with the middle schools was very positive.  The teachers were 

extremely excited about the project and response from the middle school students overall was 
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encouraging.  Remarks from the teachers included “Thanks so much for coming to my class today! I can 

tell they really enjoyed it!  As, did I!  It was really great!” [21] and “They really loved it!” [22].  There were 

requests for additional presentations as well as interest about collaborating again in the future for similar 

projects. 

4.2.3   Assessments 

Research subjects were asked to take a pre-test on the first day of class and a post-test on the last 

day of class made up of 27 multiple-choice questions selected to assess general knowledge of nanoscience 

topics [Appendix F].  A few previously designed nanoscience concept inventories were found [23,24], but 

were intended for upper-level courses as opposed to an introductory course, and they put a heavy 

emphasis on the engineering processes. A more wide-ranging, introductory nanoscience concept 

inventory was developed by the professor and TA (myself) before the course curriculum was written, so 

as to avoid tailoring it specifically to the course material.  As we will see in the next section, significant 

improvement was seen from the beginning of the course to the end of the semester. 

 Near the end of the course, subjects were required to write a two-page critical reflection paper 

about the process of their service-learning project, how they were affected, and how they felt the project 

affected their local community.  A copy of the DEAL model rubric that was used to score the reflections 

[Appendix G, [25]] was made available to them before they started their first drafts.  Once completed, 

those drafts were read by the course instructors (including myself) and returned to the subjects with 

feedback and criticism. The subjects then handed in their final reflection papers on the last day of class, 

to be anonymously scored together with their initial drafts by the Program Director of Service-Learning at 

UCF.  They were judged by the same DEAL model rubric that had been provided to the subjects.  All 

versions of the critical reflections, from all students, had the formatting standardized as well as titles and 
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the student’s names removed. Additionally, each paper was assigned a different random number as an 

identifier, with drafts mixed in with final versions. All were scored by one person who had no previous 

contact with the students.  The reason behind scoring the critical reflections in this manner was to 

evaluate the development of critical thinking skills while increasing overall objectivity during the scoring.  

As will be discussed in section 4.3, the results did show improvement. 

 After the conclusion of the semester, we requested that research participants complete a post-

survey [Appendix H] asking them to rate statements about the impact of their service-learning experience 

on themselves and the community, as well as the contribution service-learning had towards the overall 

learning in the classroom, from Strongly Agree to Strongly Disagree.  This survey was based on a survey 

utilized by the UCF Arboretum [26] to assess the impact that service-learning courses involving work in 

the Arboretum had on students’ educational experiences.  Participants were informed that their professor 

would be unable to see the individual respondents, to encourage honest responses.  Anything related to 

the submission or scoring of the post-survey was taken care of by the TA, with the professor only being 

shown the statistics presented in this chapter. Nine of the twelve students chose to participate in the 

survey.  

4.3   Results 

The results of this study showed a distinct increase both in nanoscience subject knowledge and 

general critical thinking skills.  Results were quantified through the use of paired, two-tailed T-tests and 

the calculation of the percent gain as in (4.1).  A paired T-test is used as a method of statistical analysis 

when comparing two data samples which are linked, particularly in cases of before-and-after studies.  It 

can help determine if the “between” methods had a significant impact on the sample means.  Two-tailed 

refers to the hypothesis used to test whether the difference between before and after samples is 
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meaningful, or due to random fluctuations; a paired two-tailed p-test starts from the hypothesis that the 

difference is meaningful to start, and that the direction of that difference does not matter.   Therefore, 

performing this manner of analysis will inform us as to whether our service-learning method had a 

meaningful effect on students’ learning.  A walkthrough of a simple paired T-test is presented in [27]; the 

values presented in this section were calculated using Excel’s built-in paired T-test formula.  The meaning 

of the t- and p-values is to determine how likely it is that there was no significant difference between the 

before-and-after sample means.  The larger the magnitude of the t-value, or the farther it is from zero, 

the more likely the difference is significant.  The smaller the magnitude of the p-value, conversely, the 

more likely it is that the difference between the two means is statistically significant.  Commonly accepted 

nomenclature is to refer to p-values <0.05 as “statistically significant,” and <0.001 as “statistically highly 

significant,” with the former having less than a 1 in 20 chance of being wrong and the latter having less 

than 1 in 1000 chance.  The percent gain is somewhat easier to understand.  It simply calculates how much 

improvement was shown out of how much was possible, scaled to the initial score.  The formula used 

here is 

% 𝑔𝑎𝑖𝑛 =  100 ∗
(𝑓𝑖𝑛𝑎𝑙𝑠𝑐𝑜𝑟𝑒−𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑠𝑐𝑜𝑟𝑒)

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑐𝑜𝑟𝑒
 . 

(4.1) 

In summary, the post-test showed an average percent gain of 28.86% from the pre-test, with a p-

value of 0.000321 and t-value of -5.1435. The initial mean score (out of 100) was 59.88 with standard 

deviation of 16.246 and standard error of 4.69, and the final mean score was 77.16 with standard 

deviation of 7.03 and standard error of 2.03 (see Figure 4.2). The critical reflection papers showed an 

average percent gain of 11.54%, with a p-value of 0.00326 and t-value of -3.7407.  By accepted 

nomenclature, that makes the improvement seen in the concept inventories statistically highly significant 

and improvement in the reflection papers statistically significant. 
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Figure 4.2: Overall Concept Inventory Scores 

Average nanoscience concept inventory total scores (out of 100) for the pre- and post-test.  Error bars shown 

represent the standard error calculated for each concept inventory.  [1] 

4.3.1   Pre/Post-Tests 

The pre/post-test questions were grouped into the following five categories: Undergraduate 

Quantum Mechanics, Semiconductor Physics, Micro-device Fabrication, Nanoscience, and 

Nanotechnology/ Applications.  The percent gains for each topic, averaged over the twelve study 

participants, are shown in Figure 4.3 above the average total scores for each topic.  As can be seen in the 

figure, Nanoscience and Nanotechnology/Applications exhibit the greatest average percent gain over the 

semester, in addition to having some of the lowest pre-test scores.  As would be expected for a 

nanoscience course that sets its focus on technological applications, those two topics showed the most 

overall improvement.   
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Figure 4.3: Concept Inventory Scores by Topic 

Improvement on the nanoscience concept inventory in each topic. Top: Average percent gains per topic. Bottom: 

Average total scores (out of 100) per topic, for both pre- and post-tests.  [1] 

4.3.2   Critical Reflections 

Participants achieved good scores on both the drafts and final submissions of the critical reflection 

papers, with an average score for the drafts (out of 100) being 88.7 and that of the final submissions being 

98.9.  Critical reflections scoring was grouped into the following eleven categories (with an explanation of 

each): 

i. Integration: ability to draw connections between the experience and the learning 

ii. Relevance: discussion remained focused on the learning 

iii. Accuracy: statements were accurate and well-supported 

0.00

20.00

40.00

60.00

80.00

100.00

A
v
er

ag
e 

S
co

re
 o

u
t 

o
f 

1
0

0

Pre-Test Post-Test

3.64
13.51

36.36

80.77

37.04

0.00

20.00

40.00

60.00

80.00

100.00

A
v
er

ag
e 

P
er

ce
n
t 

G
ai

n



104 
 

iv. Clarity: provided examples, illustrated points, and defined terms 

v. Precision: gave specific descriptions or data 

vi. Writing: no typographical, spelling, or grammatical errors 

vii. Depth: avoided oversimplifying; addressed questions arising from statements made 

viii. Breadth: considered alternate points of view or alternate interpretations 

ix. Logic: conclusions consistently followed the line of reasoning 

x. Significance: substantially addressed the most significant issue(s) raised by the experience 

xi. Fairness: represented others’ perspectives without bias. 

Figure 4.4: Critical Reflection Scores  

Top: Average percent gain for each category. Bottom: Average total scores (out of 4) in each category for both drafts 

and final submissions. [1] 
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The average percent gains as well as the average scores for both drafts and final submissions are 

shown in Figure 4.4, broken down by category.  With the exception of the Writing and Breadth categories, 

each area received a perfect score on the final critical reflection submission.  The main category 

participants struggled with was the breadth of their reflections; that is [Appendix G], “Giving meaningful 

consideration to alternative points of view and making good use of them in shaping the learning.”   

4.3.3   Post-Survey 

To finish, the service-learning post-survey [Appendix H] showed very optimistic responses to the 

service-learning experience in general and encouraging reactions to the impact on their more 

conventional classroom learning.  Participants confirmed their desires to continue involvement with the 

community after the course and conveyed that they discovered a clearer image of their career goals while 

becoming more marketable in their ideal profession as a direct consequence of the service-learning 

experience.  Regarding academic engagement, participants did report an increased interest in the course 

material relating to their service-learning projects, encouraging them to voluntarily study those topics on 

their own in more detail than they would have in a standard, non-service-learning course. 

The below statements have been selected as being the most relevant to identifying the service-

learning experience’s impact on academic learning in the classroom: 

“Q2: The community work I did increased my ability to understand and apply the academic course 

material. 

Q4: The reflection activity added to my learning experience by helping me to consider course 

concepts more deeply. 

Q14: Outside of class time and service hours, I frequently thought about the issues raised in class. 
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Q19: I have a better understanding of nanoscience and technology because of my service 

experience.” [Appendix H] 

The participant responses to these statements (ranked from Strongly Agree to Strongly Disagree) 

are shown in Figure 4.5.  All but one participant agreed that the service-learning experience increased 

their understanding of the course material as well as nanoscience and technology in general.  Most of the 

participants agreed that the critical reflection influenced them to consider concepts more deeply, and 

almost half said they frequently thought about issues raised in class outside of the requirements of the 

course.   

Figure 4.5: Post-Survey Responses 

Student responses to the post-survey questions discussed in text.  Responses have been grouped in three categories: 

Agree (includes both Agree and Strongly Agree), Neutral (Neither Agree nor Disagree), and Disagree (includes both 

Disagree and Strongly Disagree).  The total number of responses for each question is 9. [1] 

4.4   Discussion and Summary 

The assessments of student depth of learning and critical thinking skills demonstrate a positive 

development over the course of the semester. Although it is possible that this improvement could be 

attributed to the lecture and formal coursework aspects of the class, the response from study participants 

show indication that improvement is at least somewhat due to the service-learning project and related 
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classroom preparation. Specific comments from the participants as well as the post-survey responses 

point to the substantial impact of service-learning on both participants’ traditional learning and their 

future careers.  We associate the observed learning gains with increased student engagement in the 

course, resulting from the service-learning projects.  This conclusion is supported by the participant replies 

to survey questions as well as their comments to the course instructors about the effect service-learning 

had on their interest in the course. 

As an interesting aside, the statements isolated from the post-survey in the last paragraph of 

section 4.3.3 are bear some resemblance to several questions asked of students in the service-learning 

focus groups in [28], including “Did participating in service learning help you to learn or understand the 

course material better?” and “Did service learning help you to learn specific skills or knowledge that you 

might not learn in college classes that did not offer service learning?”  As a direct consequence of the 

positive student responses to both focus group interviews and more standard assessments explained 

further in their report, Prentice & Robinson concluded that service-learning appeared to be a decisively 

positive contributing factor to students’ academic learning.  For their assessments (although not their 

focus group interviews) they were also able to gather data from similar courses both with and without 

service-learning as a comparison, which was unfortunately not possible in the study discussed in this 

chapter. 

 Obviously, there were some limitations to this study, including the small number of students who 

participated in the course and lack of a non-service-learning comparison group.  There also was only one 

person who scored all of the critical reflection papers; while this removes any question of interrater 

reliability, it necessitates accepting one single appraisal of participants’ critical thinking skills.  The 

conclusions drawn thus rely somewhat on student response and opinion, and although critical reflection 



108 
 

improvement was quantitatively observed it would be an improvement moving forward to have multiple 

scorers to help ensure grading is as fair, impartial, and accurate as possible. Nevertheless, we see this to 

be an encouraging starting point for evaluating the effect that service-learning has on students’ overall 

learning, knowledge and critical thinking skills in nanoscience-based courses. Although it was initially 

implemented in just the last few years, the new UCF “Nanoscience and Nanotechnology” degree did 

continue beyond the first installment studied in this paper, with the other two core courses having been 

offered in consecutive semesters.  If student response continues to be positive, incorporating service-

learning may prove to constitute a way of drawing more undergraduates towards STEM fields and 

nanoscience, addressing the need for qualified graduates in the workforce.  Additional outreach initiatives 

have been implemented by the PIs following this study, such as the development of the Physics Youth 

Scholastic and Instructing Camp for Orlando Scientists (PhYSICOS) in conjunction with the already 

established Chemistry and Biology summer camps at UCF.  PhYSICOS had its inaugural session in the 

Summer of 2017 and was offered at no cost to high-performing local high school students.  The curriculum 

was written, sessions were taught, and the camp as a whole was organized entirely by graduate students 

(particularly the first year, in which my research group oversaw it).  Students who participate in the 

PhYSICOS summer camp experience instructional sessions and enrichments activities that focus on 

magnetism and giving attendees an overview of some undergraduate introductory physics material.  In 

particular, hands-on experiences with lab experiments and basic device fabrication are provided.  

PhYSICOS has since transitioned into primarily being organized by the Graduate Society of Physics 

Students (GSPS) and the Physics Women Society (PWS) in our department.  
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CHAPTER 5: CONCLUSION 

Accompanying the current global interest aimed towards emerging quantum technologies, the 

field of molecular magnetism has focused on understanding the quantum dynamical properties of the 

spin in single-molecule and single-ion magnets.  They have turned their eyes to exploring the real 

possibilities of utilizing the unique characteristics inherent in these systems in existing quantum 

technologies.  In this dissertation I have sought to bring together an integration of experimental and 

educational frameworks geared towards the study, understanding, and dissemination of knowledge of 

the quantum dynamics of spin in molecular nanomagnets.  I have been primarily concerned with the 

nature of light-matter interaction in SMMs, and with enabling coherent quantum control over the 

molecular spin.  I have described the experimental setups I have accomplished in order to investigate this 

interaction in both the weak and strong coupling regimes. 

The larger SMM community has only recently begun to develop our understanding of the effects 

of light-matter interaction in molecular nanomagnets as well as the intrinsic sources of decoherence in 

their crystalline form, with the limiting factor in most experiments being dipolar dephasing.   To overcome 

this limitation, common practices include diluting the samples in solution and polarizing the spin bath via 

a large applied magnetic field.   Drawbacks of these methods include the loss of a crystalline, 

monodisperse structure as well as the simultaneous requirement for high magnetic fields and therefore 

high microwave frequencies, meaning the molecules’ intrinsic magnetic properties are subsumed by the 

large Zeeman interaction.  A different approach has therefore been needed if studies into the intrinsic 

sources of decoherence in a well-ordered crystalline magnetic structure are to be performed; this was the 

subject of chapter 2 of this dissertation.     
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  To this end, I have developed and tested a unique electron spin-echo experimental setup which 

can operate at frequencies near 10 GHz and temperatures below 100 mK, while allowing for the possibility 

of studying 2D films and potentially even single molecules.  This has placed our research group in an 

unprecedented position to undertake time-resolved studies of spin quantum dynamics in non-diluted 

crystals of SMMs, allowing the probing of ground states involving quantum spin superpositions dictated 

by the anisotropy of the system.  These types of studies should permit measurements of decoherence 

rates several orders of magnitude lower than what has been achieved at higher fields/temperatures 

previously.  The continuance of this project will focus on time-resolved determination of the spin-lattice 

and the spin-spin relaxation times of mononuclear SMMs, particularly those based on lanthanide 

complexes.  Ideally, investigation will be done on both 𝑇1 and 𝑇2 as a function of magnetic dilution and 

molecular composition (which lanthanide is used); this should assist in gaining deep insights into the 

factors governing decoherence of spins in SMMs.  In addition, there are plans in place currently to control 

the quantum state of the systems’ spins by means of Rabi nutation experiments that will be achieved by 

extending the current spin-echo setup capabilities to higher powers.  This may be done by the acquisition 

of a high-power microwave amplifier, providing a minimum output power of 20 W in the 4.5- 18 GHz 

frequency range, with a maximum of 65 W at ≈ 10 GHz (such an amplifier has already been identified). 

This would represent almost two orders of magnitude improvement in the available microwave power 

with respect to the current capability of 1 W. 

 

In the strong coupling regime, the topic of chapter 3, high quality factor superconducting 

resonators with micro-constrictions have been designed and fabricated for use in investigating the 

vacuum Rabi splitting between a photon and the spins of SMMs.  The purpose behind the design of these 

resonators was to continue increasing the coupling parameter by narrowing the center line of the coplanar 
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waveguide (CPW) resonator down to nanometer scales. CPW resonators fabricated by STAR Cryo-

electronics with various geometries of coupling gaps and lengths of the central line have been purchased 

and received in our lab.   They will be characterized at magnetic fields up to 1 T, and at temperatures 

below 100 mK.  These resonators, coupled with some modifications to our dilution refrigerator, will permit 

measurements of coherent collective coupling between molecular spins and a low number of photons, 

ideally down to a single photon. In particular, the use of mononuclear SMMs, which bring enhanced spin-

photon coupling, may even allow reaching the strong coupling regime with only a single spin.  The ultimate 

plan is to eventually investigate the coupling between a superconducting cavity mode and both single-

crystal and isolated molecules of mononuclear SMMs.  The initial focus will be on observation of coherent 

coupling of a large number of spins to a single cavity mode.  Ultra-low power microwave experiments are 

also being developed, so as to take measurements with a low number of photons inside the cavity.  Our 

dilution fridge will need to be configured with the appropriate cryogenic attenuation and amplification 

stages to accomplish this. 

Finally, to marry the scientific aspect of this dissertation to a broader context, I performed some 

research concerning the best methods of educating new minds in the field of 

nanotechnology/nanomagnetism.  While research and development of new nanoscale materials and 

applications is still certainly a hot topic, there remains a lack of qualified, interested students who 

continue into relevant careers.  To this end, we designed and implemented a service-learning nanoscience 

course through the university (UCF), and conducted a study into its effectiveness on student learning.  

Learning assessment results showed a significant improvement in students’ depth of learning and critical 

thinking throughout the course.  Students expressed their approval of the service-learning aspect and its 

impact on their learning and interest in the course material, as well as future careers. 
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To summarize, molecular nanomagnets have great potential for use in ultra-high-density 

integration and quantum information processing; therefore, the experiments that have been enabled 

during my tenure as a graduate student here at UCF may lead to new and revolutionary quantum 

technologies. Diminishing and controlling sources of decoherence in SMM/SIMs will enable the large 

number of gate operations demanded by quantum algorithms and quantum error correction protocols.  

New interest in the field of nanotechnology and nanomagnetism has been and continues to be fostered 

through the availability of inclusive STEM courses for college students and even my development of a 

physics summer camp for local high school students.  Over the course of this dissertation I have 

successfully demonstrated a combination of my scientific and technical training with educational and 

science education research exposure, with wide-ranging benefits not only to the scientific community but 

also the world at large. 
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JOURNAL OF REGIONAL ENGAGEMENT 
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Below is a pdf copy of the author rights for papers published in PRISM: A Journal of National Engagement.  

It states that the author is free to use the work in any way she/he wishes so long as acknowledgement to 

PRISM is made.  The full policy may be found at  

https://encompass.eku.edu/prism/policies.html  

 

 

  

https://encompass.eku.edu/prism/policies.html
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APPENDIX B: IRB APPROVAL LETTER 
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APPENDIX C: DETAILED LIST OF SPIN ECHO CIRCUIT 

COMPONENTS 
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Figure C.1: Spin Echo Circuit in Detail 

The spin echo circuit described in chapter 2, with each component labelled.  The following page has the components listed next to their identifying letter.
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A) Agilent E8364B PNA Series Network Analyzer 

B) Agilent 87301D Directional Coupler Opt 240 

C) Pasternack Circulator Model no. PE8404 w/50 ohm terminator on port 2 

D) HP SPST 33144A Microwave Switch with HP 33190B driver (Trise = 5ns, Tfall = 7ns maximum) 

E) Agilent 81110A Pulse Generator 

F) SH Series 11SH10-2000/U18000-O/O 2-18GHz BP filter 

G) Agilent 83020A Microwave System Power Amplifier (30dB gain, 30dBm maximum output) 

H) MiniCircuits CD Block BLK-18+ up to 18GHz 

I) dilution refrigerator (KelvinoxMX100) inside vector magnet (3-axis American Magnetics Inc) 

J) In-House Fabricated Microstrip Resonator (see Appendix D for recipe)  

K) Quinstar Technology, Inc. QCY-150600P000 Cryogenic Circulator 

L) CalTech CIT618 Cryogenic HEMT Cryogenic Signal Amplifier (see Appendix E for more details) 

M) MiniCircuits CD Block BLK-18+ up to 18GHz 

N) Pasternack Circulator Model no. PE8404 w/50 ohm terminator on port 2 

O) AMC Solid State Switch Model no. SWM-DJV-1DT-2ATT Opt. no. 20F (Trise = 2ns = Tfall maximum) 

P) SH Series 11SH10-2000/U18000-O/O 2-18GHz BP filter 

Q) Mini-Circuits Amplifier ZVE-3W-183+ (35dB gain, 35dBm maximum output) 
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R) CTT Amplifier APM/180-2741-22 (66087) (41dB gain, 27dBm maximum output)  

S) Stellex Quadrature Mixer M38UC 

T) Aeroflex Weinschel Model 981 Coaxial Phase Shifter 

U) Agilent Infiniium DS08194A Oscilloscope 
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APPENDIX D: MICROSTRIP RESONATOR FABRICATION RECIPE 
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Chemicals and Equipment Needed:  

• Isopropyl, Methanol, Acetone, DI water 

• GaAs wafer 

• LOR and Shipley photoresists, CD-26 developer 

• Pipettes, beakers, tweezers 

• Nitrogen gas supply 

• Gold, Copper, and Titanium pellets 

• UV exposure mask, mask aligner, hot plate, spin coater, e-beam evaporation chamber 

Spin Coating Procedure:  

• Clean GaAs wafer with Acetone, Methanol, Isopropyl (in that order) then blow dry with Nitrogen 
gas. 

• Spin LOR resist with following recipe: 2s at 500rpm, 30s at 3000rpm, 2s at 0rpm.  Bake on hotplate 
for 5 minutes at 175°C. 

• Spin Shipley resist with following recipe: 2s at 500rpm, 30s at 5000rpm, 2s at 0rpm.  Bake on 
hotplate for 2 minutes at 120°C. 

Mask Aligning Procedure:  

• Select mask and clean with Acetone, Methanol, IPA, and DI water then blow dry with Nitrogen 
gas. 

• Place wafer on mask aligner using cut away Parafilm to ensure sample vacuum. Follow SOP for 
the mask aligner you are using. 

• Once the wafer is aligned with the resonator pattern on the mask, check the intensity of the UV-
light so as to choose the time of exposure correctly.  The relation should be  

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

126
𝒎𝑱

𝒄𝒎𝟐

= 𝑡𝑖𝑚𝑒 (𝑠) 

(D.1) 

Evaporation and Liftoff Procedure:  

• Clean the patterned wafer by dry plasma etching in an O2 plasma at 53mTorr for 15 seconds. 

• Carefully place sample on sample holder and mount in chamber. 

• Evaporations should occur at less than 5e-6 Torr. 

• Evaporate 10nm of Titanium, followed by 125nm of Copper, followed by 10nm of Gold. 

• Remove wafer from evaporation chamber and place in acetone on a hot plate at 30°C until the 
metal lifts off.  Use a pipette to squirt acetone across the surface gently if needed. 
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APPENDIX E: CRYOGENIC AMPLIFIER 
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CIT618 Cryogenic HEMT Low Noise Amplifier, purchased from Caltech. 

The CIT618 is a GaAs HEMT cryogenic, low noise, broadband amplifier. In its standard configuration it 
comes with female K connectors (mate with SMA) on the RF-input and output and a 4-pin 2 mm pitch 
header for the DC. The amplifier requires one drain voltage in the 0.5V to 1.5V range and one gate voltage 
in the -3 V to +1 V range (terminals Vg1 = Vg2) into 11K DC resistance. If desired the gate supply can be 
eliminated (open pins on Vg1 and Vg2) at slightly less than optimum performance. 

The amplifier may be operated at room temperature to give a noise figure < 1.9dB and gain ~35dB. Note 
that a more negative gate supply voltage, typically -1.5V is required at room temperature but the amplifier 
is not damaged (but has no gain) if the gate voltage for cryogenic operation, typically 0V, is applied at 
room temperature. Input and output return loss change very little from 300K to 4K.  

Figure E.1: Cryogenic Amplifier 

Top: Schematic of the cryogenic amplifier purchased from Caltech to enable ultra-low-power studies to be performed 

in our dilution refrigerator.  Bottom:  Performance data for the amplifier.   
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APPENDIX F: NANOSCIENCE AND TECHNOLOGY CONCEPT 

INVENTORY 
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APPENDIX G: DEAL MODEL RUBRIC USED TO SCORE CRITICAL 

REFLECTIONS 
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APPENDIX H SERVICE-LEARNING POST-SURVEY 
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