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ABSTRACT

Recent trends in turbomachinery blade technology have led to increased use of monolithically

constructed bladed disks (blisks). Although offering a wealth of performance benefits, this con-

struction removes the blade-attachment interface present in the conventional design, thus unin-

tentionally removing a source of friction-based damping needed to counteract large vibrations

during resonance passages. This issue is further exacerbated in the presence of blade mistuning

that arises from small imperfections from otherwise identical blades and are unavoidable as they

originate from manufacturing tolerances and operational wear over the lifespan of the engine. Mis-

tuning is known to induce vibration localization with large vibration amplitudes that render blades

susceptible to failure induced by high-cycle fatigue. The resonance frequency detuning (RFD)

method reduces vibration associated with resonance crossings by selectively altering the blades

structural response. This method utilizes the variable stiffness properties of piezoelectric materi-

als to switch between available stiffness states at some optimal time as the excitation frequency

sweeps through a resonance. For a single-degree-of-freedom (SDOF) system, RFD performance

is well defined. This research provides the framework to extend RFD to more realistic applica-

tions when the SDOF assumption breaks down, such as in cases of blade mistuning. Mistuning is

inherently random; thus, a Monte Carlo analysis performed on a computationally cheap lumped-

parameter model provides insight into RFD performance for various test parameters. Application
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of a genetic algorithm reduces the computational expense required to identify the optimal set of

stiffness-state switches. This research also develops a low-order blisk model with blade-mounted

piezoelectric patches as a tractable first step to apply RFD to more realistic systems. Application

of a multi-objective optimization algorithm produces Pareto fronts that aid in the selection of the

optimized patch parameters. Experimental tests utilizing the academic blisk with the optimized

patches provides validation.

iv



ACKNOWLEDGMENTS

This research was supported by the Office of Naval Research through grants titled “Autonomous

Self-Powered Vibration Reduction of Turbomachinery Bladed Disks” (N00014-13-1-0538) and

“Integrated Smart Turbomachinery Blades for Cooperative Vibration Reduction” (N00014-17-1-

2527) monitored by Dr. Joseph Doychak and Dr. Knox Millsaps and Dr. Steven Martens. I would

also like to acknowledge the supplemental travel support provided by grants through the University

of Central Florida.

I would like to extend my deepest gratitude to Dr. Jeff Kauffman for playing a pivotal role as

my academic advisor during my time as a graduate student at the University of Central Florida.

Dr. Kauffman took me on as a graduate student during a transitional period in my early career

following the completion of my undergraduate degree, where I still had questions and uncertainties

surrounding my future career path, and led me to a more research-orientated path with challenging

and fulfilling projects, both presented in this dissertation and extending beyond. I am extremely

grateful for his guidance and insight during our weekly research meetings, the opportunities he

provided for me to attend conferences domestic and abroad, and the welcoming and enjoyable

research environment that he provided within the lab, all of which have stimulated my development

as both a researcher and a more, well-rounded individual. I could not have envisioned a more

fulfilling experience when beginning graduate school, and I look forward to our future interactions.

v



Next, I would like to thank my committee members Dr. Raghavan, Dr. Viana, and Dr. Catbas.

Although we did not meet often, I am very grateful for their role in reviewing my dissertation and

for providing their unique perspectives and areas of expertise.

I would also like to extend my gratitude to the members of the Structural and Thermal Sys-

tems Branch at NASA Langley Research Center and the members of the Experimental Structural

Dynamics Department at Sandia National Labs. Both of these groups provided me with summer

internships complete with engaging projects extending beyond my dissertation research. The lo-

cation of these internships also provided me the opportunity to explore vastly different regions of

the country and build memories that I will cherish throughout my life.

Thank you to my fellow members of the Structural Dynamics and Adaptive Structures Lab,

specifically Daniel Geiyer, Chris Kelley, Brandi McPherson, Andres Rodriguez, James Little, and

Christian Vazquez. I thoroughly enjoyed my time spent with them over the last few years, whether

it be through our interactions in the lab, attending conferences, playing intramural sports, or any

number of various activities.

Thank you to my parents. They always enabled me the freedom to pursue my own path through

life and offered their support every step of the way. Thank you to all of my other family and friends.

Often times, the many aspects of graduate school have taken priority and I would like to thank them

for their patience and support.

Finally, thank you to Tiffany who has been by my side the last three years. She has been a

constant source of motivation and support through all of the long hours spent working and I look

forward to all of our future experiences together.

vi



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

CHAPTER 1 : INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Turbomachinery Blade Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Monolithic Blisks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 High-Cycle Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Mistuning Defined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Resonance Frequency Detuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Dissertation Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

CHAPTER 2 : BACKGROUND REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Overview of the Vibration Reduction of Bladed Disks . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Friction Dampers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

vii



2.1.2 Dynamic Vibration Absorbers and Impact Dampers . . . . . . . . . . . . . . . . . . 18

2.1.3 Viscoelastic-Layer Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.4 Eddy-Current Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.5 Intentional Mistuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.6 Piezoectric-Shunt Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Piezoelectric-Shunt Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Piezoelectricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2 Constitutive Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.3 Electromechanical Coupling Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.4 Passive Shunts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.5 Switched Shunts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.6 Implementation Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

CHAPTER 3 : LUMPED-PARAMETER BLISK MODEL AND APPLICATIONS . . . . . 46

3.1 Model Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.2 Nondimensional Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Modal Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.1 Tuned System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

viii



3.2.2 Mistuned System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.3 Response to Transient Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

CHAPTER 4 : VIBRATION REDUCTION VIA RESONANCE FREQUENCY DETUN-

ING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1 Optimal Trigger Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1.1 Limiting Case of Harmonic Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1.2 Optimal Trigger Identification for Transient Excitation . . . . . . . . . . . . . . . . 94

4.2 Parametric Study via Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

CHAPTER 5 : APPLICATION TOWARDS AN ACADEMIC BLISK—PART 1: MODEL-

ING AND OPTIMIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.1 Blisk Model Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1.1 Total System Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1.2 Continuity at Substructure Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.1.3 Virtual Work due to External Forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.1.4 Cyclic Symmetry of a Tuned Blisk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.1.5 Assumed Displacement and Voltage Fields . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.1.6 System Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.1.7 Lagrangian Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

ix



5.1.8 Spatial Fourier Transform of System Matrices . . . . . . . . . . . . . . . . . . . . . . . 144

5.1.9 Modal Analysis for a Bare Blisk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.1.10 Modal Analysis for the Blisk Including the Piezoelectric Patches . . . . . . . . 154

5.2 Piezoelectric Patch Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.2.1 Evaluation of the Coupling Coefficients for a Truncated Set of Bare-Blisk

Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.2.2 Evaluation of the Coupling Coefficients Neglecting the Mechanical Influ-

ence of the Patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.2.3 Multi-Objective Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

CHAPTER 6 : APPLICATION TOWARDS AN ACADEMIC BLISK—PART 2: EXPERI-

MENTAL ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.1 Hardware Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.2 Modal Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.3 RFD Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

CHAPTER 7 : CONCLUDING REMARKS AND FUTURE RESEARCH DIRECTIONS 195

7.1 Key Research Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.1.1 Resonance Frequency Detuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.1.2 Assumed-Modes Blisk Model and Piezoelectric Optimization . . . . . . . . . . 199

x



7.1.3 Experimental Testing of a Mistuned Blisk . . . . . . . . . . . . . . . . . . . . . . . . . . 201

7.2 Recommendations for Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . 202

7.2.1 Model-Independent Switching Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

7.2.2 Further Development of the Assumed-Modes Blisk Model . . . . . . . . . . . . . 203

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

xi



LIST OF FIGURES

Figure 1.1 Example of a Campbell diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 1.2 Turbomachinery blade construction examples. . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 1.3 Characteristics of high-cycle fatigue. (from [1]) . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 1.4 Example mode shapes of a blisk. (from [2]) . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 1.5 Tuned blisk natural frequencies as a function of the number of nodal diameters 9

Figure 1.6 Example of the RFD concept at a resonance crossing . . . . . . . . . . . . . . . . . . . 11

Figure 2.1 Diagrams of friction-based damping designs. . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 2.2 Diagrams of order-tuned DVA concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 2.3 Diagrams of viscoelastic-layer damping concepts. . . . . . . . . . . . . . . . . . . . . . 23

Figure 2.4 Eddy-current damper concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 2.5 Intentionally mistuned blisk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 2.6 Diagram of piezoelectric patch showing typical orientation . . . . . . . . . . . . . . 29

Figure 2.7 Performance characteristics of passive shunts . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 2.8 Performance characteristics of switched shunts . . . . . . . . . . . . . . . . . . . . . . . 41

xii



Figure 2.9 Examples of piezoelectric-based composites. . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 3.1 SDOF-per-sector blisk model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 3.2 Tuned-blisk mode shapes and corresponding spatial harmonics . . . . . . . . . . . 65

Figure 3.3 Frequency response of all blades of a tuned blisk subjected to 3EO excitation. 66

Figure 3.4 Mistuned blade mode shapes and corresponding spatial harmonics . . . . . . . . . 71

Figure 3.5 Frequency response magnitude of the blades on the mistuned blisk . . . . . . . . 73

Figure 3.6 Effect of the sweep rate on maximum blisk response . . . . . . . . . . . . . . . . . . . 78

Figure 3.7 Semi-analytical and numerical response comparison . . . . . . . . . . . . . . . . . . . 80

Figure 4.1 RFD of tuned system subjected to harmonic excitation. . . . . . . . . . . . . . . . . . 85

Figure 4.2 RFD of mistuned system with decoupled blades and harmonic excitation. . . . 87

Figure 4.3 Example of RFD applied to a mistuned 2-DOF system. . . . . . . . . . . . . . . . . . 92

Figure 4.4 The effects of mistuning strength for the 2-DOF mistuned system. . . . . . . . . . 93

Figure 4.5 Optimization results when considering only a single switch trigger. . . . . . . . . 98

Figure 4.6 Optimization results when considering multiple single switch triggers. . . . . . 99

Figure 4.7 Monte Carlo simulation results for mistuning strength . . . . . . . . . . . . . . . . . . 105

Figure 4.8 Monte Carlo simulation results for sweep rate . . . . . . . . . . . . . . . . . . . . . . . . 106

Figure 4.9 Monte Carlo simulation results for modal damping . . . . . . . . . . . . . . . . . . . . 106

Figure 4.10 Monte Carlo simulation results for electromechanical coupling . . . . . . . . . . . 106

xiii



Figure 5.1 Diagram of the academic blisk model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Figure 5.2 Disk diagram showing the artificial springs coupling the neighboring sectors. 119

Figure 5.3 Images of the tuned system matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Figure 5.4 Nodal diameter map of the tuned academic blisk. . . . . . . . . . . . . . . . . . . . . . 150

Figure 5.5 Influence of mistuning on the academic blisk. . . . . . . . . . . . . . . . . . . . . . . . . 152

Figure 5.6 Example mode shape for the tuned academic blisk. . . . . . . . . . . . . . . . . . . . . 153

Figure 5.7 Example mode shape for the mistuned academic blisk. . . . . . . . . . . . . . . . . . 153

Figure 5.8 Example displacement mode shapes of blisk with piezoelectric patches. . . . . 168

Figure 5.9 Example strain mode shapes of the blisk with piezoelectric patches. . . . . . . . 168

Figure 5.10 Effect of piezoelectric thickness on the electromechanical coupling coefficients. 169

Figure 5.11 Pareto-optimal fronts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Figure 5.12 Mode shapes targeted by the optimization procedure. . . . . . . . . . . . . . . . . . . 174

Figure 5.13 Nodal-diameter map of the tuned academic blisk with piezoelectric patches. . 177

Figure 5.14 Tuned-blisk coupling coefficients as a function of the nodal diameter. . . . . . . 177

Figure 6.1 Academic blisk setup for experimental study. . . . . . . . . . . . . . . . . . . . . . . . . 179

Figure 6.2 Experimental frequency response of the blisk subjected to 1EO excitation. . . 181

Figure 6.3 Experimental mode shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Figure 6.4 RFD performance for the blisk subjected to 1EO excitation . . . . . . . . . . . . . . 193

xiv



Figure 6.5 RFD performance for the blisk subjected to 4EO excitation . . . . . . . . . . . . . . 194

Figure 6.6 Numerical and experimental performance comparison . . . . . . . . . . . . . . . . . . 194

xv



LIST OF TABLES

Table 3.1 Natural frequencies of the tuned blisk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Table 3.2 Natural frequencies of the mistuned blisk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Table 5.1 Example blisk parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Table 5.2 Natural frequencies for the 6th mode family of the tuned and mistuned blisk. . . . 152

Table 5.3 Piezoelectric patch parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Table 6.1 Blisk modal parameters for the 3B1CB mode family. . . . . . . . . . . . . . . . . . . . . 184

xvi



CHAPTER 1
INTRODUCTION

This chapter serves as an introduction for the primary focus of this research effort. Section 1.1 be-

gins the chapter with an introduction to the loads experienced by turbomachinery blades and the ex-

ternal dynamic forcing mechanism. Section 1.2 introduces the bladed disk (blisk), also referred to

as an integrally bladed rotor (IBR), with an accompanying discussion highlighting the advantages

and drawbacks of the blisk compared to conventional turbomachinery technology. Section 1.3

describes the problem of high-cycle fatigue (HCF), the leading cause of jet engine component fail-

ure. Section 1.4 defines the phenomena of blade mistuning, or random deviations in the nominal

blade properties, that can cause vibration-energy confinement that can lead to the failure of a small

number of “rogue” blades. Section 1.5 presents the resonance frequency detuning (RFD) concept,

the strategy adopted in this research proposal to reduce blade vibrations. Section 1.6 concludes the

chapter with a discussion of the key aspects investigated in this research effort.

1.1 Turbomachinery Blade Vibration

Turbomachinery blisks operate in extremely harsh and highly stressed environments that subject

the blades to both large static and dynamic loads. Under typical operating conditions, the large

1



static loads arise through thermal gradients and centrifugal forces. Dynamic loads arise from ro-

tations of the rotor blades through pressure disturbances in the flow field introduced by the wakes

generated from upstream stator vanes. Rotation through these essentially static pressure distur-

bances generates a periodic forcing on the rotor blades, referred to as engine-order excitation.

From this point forward, the naming convention when discussing engine-order excitations is nEO,

where n is the total number pressure disturbance encountered during a single revolution of the

rotor, and corresponds to the number stator vanes in the upstream row. The excitation frequency

experienced by the rotor blades is thus f = n× (RPM/60) Hz.

Typically, designers use a so-called Campbell diagram to ensure the intended blade design

does not experience resonance near normal operating conditions. Figure 1.1 shows an example

Campbell diagram for a single blade that shows the blade’s natural frequencies (solid curves) as

a function of the engine rotation speed. The ’1T’, ’1B’, and ’2S’ labels, for example, denote the

blade natural frequencies associated with the 1st torsion, 1st bending, and 2-stripe modes, respec-

tively. Typically, increasing engine RPM induces centrifugal forces that stiffen the blade’s natural

frequencies; however, in some cases, for example, the torsion modes of twisted blades, these forces

tend to untwist the initial blade curvature resulting in a softening effect. Also shown are the lin-

early varying excitation frequencies, or “speed lines,” corresponding to various engine orders (gray

dashed lines). Resonance occurs at rotation speeds where these speed lines and blade natural fre-

quencies intersect, for example, at the intersection of the 10EO speed line with the 2S mode near

4000 RPM. For typical operating conditions, blade designs avoid these resonant conditions; how-
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ever, resonance is unavoidable during spool-up or spool-down of the engine, thus resulting in large

dynamic stresses associated with the increased vibration levels.

Figure 1.1: Example of a Campbell diagram showing rotation-dependent blade natural frequencies
(solid lines) and speed lines corresponding to various engine order excitations (gray

dashed lines) (from [3])

1.2 Monolithic Blisks

Over the last couple of decades, advances in turbomachinery technology have led to increased

use of bladed disks, or blisks [4]. Conventional designs incorporate the individual blades into the

disk through dovetail attachments, whereas blisks are monolithically constructed from a single

piece of material. Figure 1.2a shows the monolithic construction of a blisk and Fig. 1.2 shows the

conventional design. The monolithic construction offers performance benefits over their conven-
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tional counterparts that include increased aerodynamic efficiency, and decreased parts count and

complexity, thus resulting in a higher-performance, more light-weight design.

(a) Compressor blisk manufacture by GE.
(from [5])

(b) Individual blades attached to the disk.
(from [6])

Figure 1.2: Turbomachinery blade construction examples.

Although offering many benefits, blisks aren’t without their disadvantages. For example, re-

placing a damaged blade, although a straightforward procedure for the conventional design by

inserting replacement blades, can be a labor-intensive process for the blisk. For minor damages

(e.g., scratches, dents, etc.) incurred through foreign-object damage, repairing the damage requires

the “blending” repair process to smooth the sharp edges that can lead to stress concentrations [7].

More serious damages may require welding a replacement blade to the blisk or replacing the blisk

entirely [4]. Furthermore, the dovetail attachment found in conventional designs provides a nat-

ural source of friction-based damping induced by the relative motion between the blades and the

disk. Blisks lack this attachment interface, thus removing this natural damping mechanism that
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significantly lowers the inherent damping. As such, these designs no longer have the necessary

damping to counteract the large vibratory motions generated from repeated resonance crossings

and are highly susceptible to blade failure induced by high-cycle fatigue (HCF).

1.3 High-Cycle Fatigue

Repeated vibratory stresses under the yield stress of a material and over a large number of cycles

can lead to failure induced by HCF. This failure mode is one of the leading causes of engine

component failure and accounts for nearly 25% of failures, where blades are the leading component

suffering from HCF [8]. Figure 1.3a shows that HCF is especially troublesome as the initial crack

remains below the inspection limit for nearly the entire fatigue life of the blade and, consequently,

there is rapid crack propagation and growth near the end of the blade’s life. As operating conditions

can cause blades to vibrate in the kHz range, a large number of vibratory cycles with stresses over

the fatigue limit incur within a short period of time, thus causing rapid crack growth that can lead

to failure within minutes.

Figure 1.3b shows a Modified Goodman Diagram that designers use to avoid issues pertaining

to HCF. The abscissa corresponds to the dynamic vibratory stresses whereas the ordinate corre-

sponds to the mean or steady stresses typically attributed to centrifugal loading. Creating such

diagrams involve testing coupons over a large number of cycles, typically > 107, at various non-

zero static stress states. These diagrams can also be created using experimental data obtained from

vibration shaker tests of specific blade designs. Including a margin of safety on the maximum
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allowable vibratory stress results in the safe life region where HCF will not be problematic over

the blade’s life span. Utilizing such an approach, however, can lead to over-conservative blade

designs that are heavier and reduce overall performance. Furthermore, some damage types, such

as foreign-object damage and fretting fatigue, significantly reduce the blade’s fatigue strength.

Lastly, as covered in more detail in the proceeding section, blade mistuning can result in vibration

localized to a small region of blades, thus significantly increasing the vibratory stresses compared

to the intended design.

(a) Differences between low- and high-cycle
fatigue.

(b) Modified Goodman Diagram of a typical
turbomachinery blade.

Figure 1.3: Characteristics of high-cycle fatigue. (from [1])

1.4 Mistuning Defined

Ideally, blisks are systems with identical blades distributed circumferentially around the disk. In

such an ideal state, the blisk is referred to as tuned. Each blade is coupled to the neighboring blades

mechanically (e.g., through the disk or the shroud casing and snubbers, if present) or aerodynami-
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cally through the flow field, thus producing a cyclically symmetric structure. Cyclically symmetric

structures composed of Ns identical substructures have mode shapes composed of a single spatial

harmonic wrapped around the structure’s circumference [9]. These mode shapes are readily iden-

tified by the number of nodal diameters running across the blisk. The number of nodal diameters

(ND) occurs between ND = 0 to a maximum NDmax = N/2 for an even number of substructures,

and NDmax = (N− 1)/2 for an odd number of substructures. Similar to the naming convention

used for the engine order, the convention used to identify the nodal diameter henceforth is hND.

Most modes, the 0ND and (N/2)ND modes excluded, occur in degenerate orthogonal pairs, with

each pair corresponding to mode shapes rotated by an angle π/2h relative to each other. As each

tuned mode shape corresponds to a single nodal diameter value, nEO excitation will only excite

the hND mode when h = n due to the orthogonality of all other mode shapes to the forcing config-

uration. Furthermore, each of the substructures will respond at the same magnitude when forced

by nEO excitation.

Physical construction of a blisk, however, will have small blade-to-blade variations, referred to

as mistuning, that arise from slight imperfections induced by the manufacturing process or uneven

wear and foreign-object damage over the lifespan of the engine. Such unavoidable variations de-

stroy the cyclic symmetry of the system and can split the natural frequencies of the degenerate pair,

as well as induce response amplitudes that are much larger than that of their tuned counterpart [10].

Furthermore, the mistuned mode shapes no longer contain a single spatial harmonic, but are instead

composed of a distrubution of all of the spatial harmonics. As an example, Figure 1.4a shows the

3ND tuned mode shape, while Fig. 1.4b shows a mistuned mode with localized vibration. Because
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each mode shape contains a distribution of spatial-harmonic content, nEO excitation can excite all

modes with a magnitude dependent on the harmonic content present within the mode shape (i.e.,

nEO excitation strongly excites a mode containing a large contribution of the nND shape).

(a) 3ND mode shape of a tuned blisk. (b) Localized mode shape of a mistuned blisk.

Figure 1.4: Example mode shapes of a blisk. (from [2])

Although the maximum blade response is system dependent, in as early as 1966, Whitehead

derived a theoretical maximum of the amplification factor (AF), the ratio of the maximum re-

sponse of all blades of the mistuned blisk to the maximum blade response of the tuned blisk.

This maximum factor is AFmax =
1
2(1+

√
Nb) and depends on the total number of blades Nb [11].

This limiting amplification factor is only attainable under very specific circumstances that are not

likely achievable in operation; however, it shows the potential danger that arises from mistuning

in that some blades may experience much larger vibratory stresses than initially expected from a
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tuned-system analysis. Thus, these larger vibratory stresses, if unaccounted for, can lead to HCF

occurring prematurely, thus significantly reducing blade life.

Figure 1.5: Tuned blisk natural frequencies as a function of the number of nodal diameters (spatial
harmonic number) of the corresponding mode shape. (from [2])

For an un-shrouded blisk, the blade-to-blade coupling predominantly arises as mechanical cou-

pling through the disk. For blade-dominated modes, most of the motion and corresponding strain

energy for a particular mode is confined within the blades and there is minimal coupling between

neighboring blades. For disk-dominated modes, most of the strain energy is confined within the

disk. Figure 1.5 shows a commonly used plot of the natural frequency versus the nodal diame-

ter that is used to identify these blade-dominated and disk-dominated regions for a tuned system.

Each line corresponds to a family of blade modes where, for example, the 1F line corresponds

to the 1st-flexural mode family, the 1T corresponds to the 1st-torsional mode family, etc. For the

blade-dominated modes, there is little sensitivity in the natural frequencies as the nodal diame-
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ter increases, thus resulting in relatively flat curves. Conversely, for the disk-dominated modes,

the natural frequencies rapidly increase as nodal diameter increases, thus resulting in the sloped

curves. In regions where there is a veering between the curves of two mode families, there is a

considerable interaction between the disk and the blades. As a result, these regions are the most

susceptible to localized vibration corresponding with the largest response magnitudes [2].

1.5 Resonance Frequency Detuning

Over the last few decades, researchers have continuously investigated methods to counteract these

large vibratory stresses induced within turbomachinery blades. Such methods include friction-

based dampers, tuned vibration absorbers, impact dampers, viscoelastic-layer dampers, and eddy-

current dampers, to name a few; Ch. 2 provides a more thorough background of these methods.

Piezoelectric-based vibration reduction has also garnered widespread interest over the last few

decades due to their inherent adaptability to ever-changing environments. This research effort

specifically focuses on developing further the RFD concept, a piezoelectric-based vibration reduc-

tion approach designed specifically for turbomachinery environments.

Originally developed by Kauffman and Lesieutre, RFD reduces vibration associated with tran-

sient passages through resonance [3]. The working concept behind RFD is to avoid resonance

crossings by perturbing the blade stiffness at some optimal time. For example, Fig. 1.6 shows a

zoomed window around the resonance crossing of the previously discussed Campbell diagram in

Fig. 1.1. As the engine spools up, the excitation frequency increases, and the blade operates in a
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high-stiffness state (2S1). At some optimal engine speed or, by proxy, excitation frequency, the

blade switches to a lower stiffness state (2S0). Switching in this manner results in the excitation

frequency having already surpassed the softened blade natural frequency, thus avoiding resonance

and reducing vibration.

Figure 1.6: RFD concept shown on a zoomed view around the resonance crossing (black circle in
Fig. 1.1) near 3950 RPM. (from [3])

To initiate the stiffness modulation, RFD employs piezoelectric materials due to their rapid

response times. Researchers have also employed shape memory alloys to initiate this variable-

stiffness effect that, although offering larger potential differences between available stiffness states,

appear limited by their slow response times when considering transient excitations [12, 13]. By

exploiting this variable-stiffness effect, RFD provides robust performance to any unexpected pa-

rameter variations and has the ability to target vibration for a number of resonance crossings,

provided the piezoelectric elements remain located in a region of high modal strain. Kauffman
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and Lesieutre’s initial analysis focused on a single, well-separated mode of an academic blade,

and showed that the excitation sweep rate, the inherent blade damping, the electromechanical cou-

pling, and the timing of the stiffness modulation, were the primary parameters governing vibration

reduction performance [3]. Experimental tests conducted on an academic blade, idealized as a

trapezoidal plate, validated the RFD concept. In a subsequent study, Lopp and Kauffman showed

that the electromechanical coupling was the primary parameter governing the timing of the optimal

stiffness modulation. [14]

1.6 Dissertation Objectives

The ultimate goal of this research effort is to provide a method to reduce, and ideally eliminate, the

harmful effects associated with HCF. Successful development and implementation of this method

will extend blade life, reduce maintenance costs, increase passenger safety, as well as decrease

conservatism, thus leading to higher-performance blade designs. To achieve this goal, RFD shows

promise but, as it currently stands, requires further development to ultimately prove its viability.

For example, previous studies focused the analysis of RFD towards a sufficiently well-separated

vibration mode of a blade detached from the disk; however, for a built blisk, the coupling between

neighboring blades, in conjunction with blade mistuning, causes this previously well-separated

blade mode to now reside in a region of high modal density. As such, the SDOF assumption

breaks down.
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First and foremost, extending RFD towards blisk applications requires developing a represen-

tative model that can capture the relevant dynamics. In their simplest form, lumped-parameter

models facilitate a computationally cheap method for employing the large-scale statistical inves-

tigations necessitated by the inherently random nature of mistuning. A natural progression then

consists of the development of a more complex blisk model that includes the electrical influence

of the piezoelectric materials. Development of such a model enables the application of a multi-

objective optimization procedure to identify the piezoelectric patch parameters that maximize the

electromechanical coupling, a key parameter that influences RFD performance.

The success of RFD also requires the identification of the optimal time to trigger the stiffness-

state perturbation, referred to henceforth as simply the trigger. Previously, RFD only required

identifying a single optimal trigger and utilized an exhaustive-search strategy to do so. For mis-

tuned blisks, however, multiple modes influence the forced response such that RFD may require

multiple triggers to maximize performance. Due to the increased number of parameters to opti-

mize, an exhaustive-search strategy is not feasible to complete in a timely manner. As such, the

identification of these optimal triggers requires application of a more computationally efficient

optimization procedure.

Furthermore, experimental validation of the RFD concept only exists for a single blade de-

tached from the disk. As such, experimental validation should also include testing of a built blisk.

Complexity does arise in simulating the operating environment of a blisk, particularly in develop-

ing a test rig capable of providing the necessary rotation speeds. Instead, this research tests a blisk

in the stationary frame subjected to traveling-wave excitation. Although piezoelectric materials
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provide the necessary stiffness modulations for RFD, these materials will also serve as the actuat-

ing mechanism to generate the traveling waves associated with specified engine-order excitations.

1.7 Dissertation Overview

This dissertation serves to guide the reader by providing the necessary details for the extension of

RFD to reduce harmful vibrations of mistuned blisks. An outline of the subsequent chapters is as

follows:

Chapter 2 provides a review of blade-damping technology conducive to familiarize the inter-

ested reader with the current state-of-the-art. It includes the background on piezoelectricity and its

history and application in vibration control necessary for understanding the underlying concept of

the proposed approach. It also provides a subsequent discussion that identifies potential limitations

of piezoelectric elements as utilized in a turbomachinery application.

Chapter 3 presents the lumped-parameter blisk model with the blade-mounted piezoelectric

elements utilized in this analysis. It focuses on the electromechanical coupling coefficient, an

important parameter for RFD, and the qualitative behavior for both tuned and mistuned blisks. It

then presents a semi-analytical solution for transient excitation adapted to include the stiffness-

state switching.

Chapter 4 provides an analysis of the RFD concept with the corresponding application towards

the lumped-parameter model. It provides a discussion regarding identification of the optimal sets

of switch triggers; for mistuned blisks, this requires application of a genetic algorithm due to the
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large computational expense of an exhaustive search. It also presents the results of Monte Carlo

simulations to identify performance trends for several key parameters.

Chapter 5 is part one of a two-chapter analysis that focuses on the application of RFD towards

a more physically representative blisk. It develops a low-order, numerical model of an academic

blisk with blade-mounted piezoelectric elements. It also details the application of a multi-objective

optimization algorithm used to optimize electromechanical coupling for several vibration modes

of interest.

Chapter 6 is part two of the two-chapter analysis that focuses on the experimental testing of

the academic blisk. It begins with a discussion of the test setup, as well as the methods utilized to

experimentally characterize the blisk. It then presents a hybrid model that utilizes the the exper-

imentally obtained modal data to identify the optimal sets of triggers. It then presents the results

from both the numerical simulations and experimental tests.

Chapter 7 offers concluding remarks that highlights the key findings and significant contribu-

tions of this research effort specific not only to RFD, but also for the turbomachinery community

as a whole. It also outlines some remaining questions as well as offers a discussion on potential

paths forward.
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CHAPTER 2
BACKGROUND REVIEW

This chapter discusses the background necessary for the reader to familiarize themselves with the

concepts presented in this research. Section 2.1 outlines a number of damping strategies utilized to

reduce vibration of turbomachinery blades. Section 2.2 introduces piezoelectric materials and dis-

cusses their role in vibration control applications. It also highlights some of the current limitations

of the more classical piezoelectric-based vibration reduction strategies as applied to turbomachin-

ery environments.

2.1 Overview of the Vibration Reduction of Bladed Disks

2.1.1 Friction Dampers

One of the most well-known methods for reducing blisk vibrations is through friction-based damp-

ing. These approaches dissipate the vibration energy as heat through relative motion between two

contacting surfaces. For turbomachinery applications, these approaches typically introduce this

friction-based damping mechanism using the relative motion between the blades and the disk, or

between neighboring blades [15]. Conventional blade designs inherently contain a natural source
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of friction-based damping through the contact interface between the blade and the disk introduced

by the dovetail attachment. Under-platform dampers are also a popular method of increasing damp-

ing in conventional designs and rely on centrifugal loading of “cottage-roof” shaped dampers to

induce a friction force between neighboring blades. Figure 2.1a shows an example of this under-

platform damping concept.

(a) Under-platform damper.
(from [16])

(b) Friction-ring damper.
(from [17]

Figure 2.1: Diagrams of friction-based damping designs.

The monolithic construction of blisks removes any joints and friction interfaces, thus lead-

ing researchers to pursue friction-ring dampers. Figure 2.1b shows an example of one of these

fricition-ring dampers that sit within a groove on the underside of the disk. Laxalde et al. utilized

both a lumped-parameter model, and a higher-fidelity finite element model to analyze friction-ring

dampers [18, 17]. Both studies showed that friction-ring damping performance depends on the

relative motion between the blades and the disk, thus requiring large bladed-disk coupling. Conse-
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quently, these friction rings introduce minimal damping for modes with weak blade-disk coupling,

a characteristic of the blade-dominated modes. Furthermore, these approaches largely depend on

the centrifugal loading and consequently, the rotation speed of the engine; too small of a centrifu-

gal load results in small friction forces and minimal damping, but too large of a centrifugal load

results in the damper sticking with no relative motion. Furthermore, due to the nonlinear nature of

such friction-based mechanisms, the theoretical analysis and optimization of these designs remains

a difficult procedure.

2.1.2 Dynamic Vibration Absorbers and Impact Dampers

A dynamic vibration absorber (DVA) is a small oscillating mass attached to a vibrating host struc-

ture that is tuned to counteract the vibration amplitudes. Tuning the undamped DVA frequency

to the forcing frequency localizes the vibration in the DVA that generates a spring force to com-

pletely cancel vibrations of the host structure at that frequency. As such, tuning the undamped

DVA to match the host structure’s natural frequency completely cancels resonant vibrations. The

additional degree-of-freedom introduced by the DVA does, however, couple with the main system

and produces two resonance peaks around the initial resonance, thus reducing performance for a

non-stationary excitation. Introducing damping in the DVA offers a means to generate a damping

force to reduce these resonant amplitudes from infinity in the undamped case, to some finite value.

If the damping value approaches zero, the system operates in the undamped state with two resonant

peaks at an infinite amplitude; conversely, if the damping value approaches infinity, there is zero
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relative motion between the DVA and the host structure, thus generating only a single resonant

peak, again with infinite amplitude. Between these limiting cases, there exists an optimal damping

value that minimizes the maximum system response. Damped DVAs also increase performance

bandwidth compared to undamped DVAs and is more robust to the frequency scattering associated

with mistuning.

Typically, a single tuned DVA can only target a single mode of vibration, thus, reduced vibra-

tions for a blisk is only achievable for a single resonance crossing. To enhance performance for

multiple resonance crossings, Hollkamp et al. introduced a tunable DVA that consists of a pendu-

lum contained in a hollow cavity within the blade [19]. Leveraging artificial gravity induced by

rotation-based centrifugal forces resulted in a DVA with a rotation-dependent natural frequency.

By appropriately sizing the pendulum, the DVA tracks a speed line associated with a chosen en-

gine order, thus reducing vibration at multiple resonance crossings. Figure 2.2a shows a diagram

of this order-tuned DVA concept. Hollkamp et al. also discussed several practical implementation

concerns: The blade must contain a hollow cavity large enough to house the pendulum assembly

without impacting the sides. Detuning of the pendulum can occur due to degrading parameters

during operation, thus causing the DVA to no longer track the target speed line. Lastly, multiple

engine orders can excite the blades over a given operating range, thus requiring multiple pendulum

absorbers to fully attenuate vibration [19].

Building on this order-tuned DVA concept, Duffy et al. replaced the pendulum with a ball

traversing a spherical trough that mitigates vibration through impacts with the sides of the cav-

ity [20]. Figure 2.2b shows a diagram of this concept. Shaw and Pierre conducted a follow-up
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study to provide further analytical insight to the complicated dynamics associated with the im-

pacts [21]. Similar to the pendulum DVA, the impact damper utilizes centrifugal effects to obtain

a linear dependence of the damper natural frequency with the rotor angular velocity. As such, con-

trolling the ball’s radial distance from the center of rotation, the ball’s radius, and the radius of the

spherical trough, the damper frequency directly tracks the engine-order excitation frequency. For

small excitation levels, Shaw and Pierre showed the damper operates in the linear regime without

impacting the cavity walls [21]. While operating in this regime, slightly under-tuning the damper

results in resonance avoidance during a resonance crossing; however, Gozen et al. showed that

for multiple modes in the blade model, this so-called “no-resonance zone” only exists for the first

resonance crossing [22]. Furthermore, the absorber amplitude is inversely proportional to the ratio

of the absorber mass to system mass, which is typically small. As such, there is only a small range

of forcing amplitudes before the damper begins impacting the cavity sidewalls. For impacting op-

eration, energy dissipation during sidewall impacts and the resulting response is nonlinear, thus

leading to amplitude-dependent damping performance [20]. Optimal damping performance then

requires an adequate estimate of the response amplitudes, which can lead to performance losses

due to unexpected vibration localization caused by mistuning.

In a separate approach, Hartung et al. utilized small masses located within blade cavities to

function as “impulse mistuners.” [23] As these impulse mistuners are small, they do not dissipate

much energy through sliding friction or from impacts with the sides of the cavity. Instead, the

working principle of this concept is that when operating at certain frequencies, the impacts effec-

tively alter the blade’s stiffness and, consequently, the blade’s natural frequencies, thus avoiding
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a strong resonant condition. Hartung et al. likened this observed detuning effect to that of RFD,

though emerging from a mechanical-based avenue, rather than a piezoelectric-based one.

(a) Order-tuned DVA as designed by Hollkamp.
(from [19])

(b) Order-tuned DVA as designed by Duffy et al. .
(from [20])

Figure 2.2: Diagrams of order-tuned DVA concepts.

2.1.3 Viscoelastic-Layer Damping

A viscoelastic material has the tendency to behave as both an elastic solid and viscous fluid when

undergoing deformation. Upon removal of a stress, the elastic behavior allows the material to

return to its undeformed state, while the viscous behavior causes this return to occur more slowly

than the typical elastic case. When subjected to harmonic excitation, this viscoelastic behavior

causes the induced strain to lag behind the applied stress, thus resulting in a hysteresis loop and an

increase in the loss factor, or damping. The elastic modulus and loss factors of these materials show
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strong temperature and frequency dependency, with the largest loss factors occurring within the

transition region between the glassy and rubbery states. For damping treatments, these materials

can be layered on a free surface, referred to as free-layer damping, or sandwiched between two

panels, referred to as constrained-layer damping. [24] Figure 2.4a shows the differences between

these two different configurations.

Near the turn of the century, these viscoelastic damping treatments were investigated for use

in advanced turbofan blade concepts developed at NASA. [25, 26, 27, 28] In their initial anal-

ysis, Kosmatka et al. provided the damping treatment to composite fan blades idealized with

both flat and pre-twisted plates and with viscoelastic patches sandwiched between two composite

sheets. [25] Figure 2.3b shows the construction of their test article that included a border around

the viscoelastic patch to prevent the damping material from flowing under centrifugal loading.

They showed both numerically and experimentally that selectively choosing the patch shapes and

locating them in regions of large modal strain increased the loss factors for the targeted modes.

A subsequent analysis showed that the patches provided an order of magnitude increase in the

loss factor for a total patch volume less than 10% of the blade volume. [26] In both these studies,

however, the finite-element models significantly over-predicted the experimentally measured loss

factors. Biggerstaff and Kosmatka showed that these discrepancies arose from the epoxy resin

penetrating the damping material during the curing process [29]. Including a polyamide film as

a barrier between these two layers prohibited the epoxy resin from interacting with the damping

material, thus resulting in the expected loss factors. Kosmatka and Mehmed also experimentally

analyzed the performance of these composite blades in the presence of rotation-based centrifugal
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forces [27]. For modes that stiffened due to the centrifugal force, the loss factors decreased, and

vice versa. The authors postulated that this effect occurred due to the increased energy storage

capacity of the stiffened blades; a result that Lesieutre later verified analytically. [30]

(a) Configuration of free-layer damping (top) and
constrained-layer damping (bottom).

(from [24])

(b) Constrained-layer damping of a representative
turbomachinery blade idealized as a plate.

(from [25])

Figure 2.3: Diagrams of viscoelastic-layer damping concepts.

2.1.4 Eddy-Current Damping

Movement of a nonmagnetic conductor relative to a magnetic field continually generates eddy cur-

rents via a changing magnetic flux, thus generating an electromotive force (EMF). In turn, these

eddy currents produce their own magnetic fields with an opposing polarity than that of the ini-

tial magnetic field, thus providing a repulsive force with a magnitude proportional to the velocity,
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similar to a viscous damper. Eddy currents are generated either through a motional EMF or trans-

former EMF. A motional EMF arises from motion of a conductor through a stationary magnetic

field, whereas transformer EMF arises from a stationary conductor subject to a time-varying mag-

netic field. Graves et al. theoretically showed that both of these methods of producing an EMF

generate a damping force [31]. Bae et al. used eddy currents to damp vibrations in a beam induced

by a transformer EMF. Connecting permanent magnets to the beam tip using a flexible linkage en-

abled the motion of the magnets around a conductor fixed on the beam tip [32]. Although providing

significant damping increases, the eddy-current damper’s location on the beam tip drastically al-

tered the beam’s dynamics. Sodano et al. presented a noncontact method to damp vibrations of

a beam using the motional EMF [33]. This method required locating a conductive patch on the

beam tip that oscillated over a fixed permanent magnet. Decreasing the initial gap between the

conductive patch and the magnet significantly increased damping performance. Sodano and Bae

provide a more comprehensive review on the concept of eddy-current damping and their role in

damping structural vibrations. [34]

Laborenz et al. investigated two eddy-current damping concepts to damp blade vibrations by

using the relative motion between neighboring blade tips [35]. The first concept utilized a copper

plate located on one blade tip situated across from a permanent magnet on the neighboring blade

tip, and the second concept utilized a permanent magnet fixed behind a copper plate on one blade

tip with a mirrored version of the same assembly on the neighboring blade tip. Figure 2.4b shows

their two-blade experimental setup as well as their two proposed damper configurations. While
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these concepts show promise, they may require relatively large magnets situated in the flow-stream

to provide adequate damping performance.

(a) The generation of eddy currents in a conductive
material passing through a magnetic field.

(from [34])

(b) Two-blade experiment used by Laborenz et al.
to investigate eddy-current dampers.

(from [35])

Figure 2.4: Eddy-current damper concept.

2.1.5 Intentional Mistuning

A tuned blisk is highly sensitive to mistuning such that even small perturbations from the nom-

inal blade design can lead to significant increases in the vibratory response; however, for highly

mistuned systems, both the maximum response levels and the sensitivity to additional mistuning

tapers off. [2] Researches have exploited this phenomena by incorporating intentional mistuning

into blisk designs. Whereas random mistuning refers to the inherently random blade-to-blade vari-
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ations present in physical blisks, intentional mistuning refers to the inclusion of mistuning in a

deliberate and systematic manner. Griffin and Hoosac first showed numerically that placing blades

with a high and a low stiffness in an alternating pattern around the blisk can reduce the peak

response compared to the randomly mistuned case [36].

Figure 2.5: Intentionally mistuned blisk with harmonic (left) and square-wave mistuning (right).
(from [37])

Building on this intentional mistuning concept, Castanier and Pierre showed that including har-

monic mistuning patterns can reduce the maximum peak response while also reducing the sensitiv-

ity to random mistuning [37]. Including blades in harmonic patterns would significantly increase

manufacturing costs by requiring numerous blade designs with the required stiffness (or mass) vari-

ations. As such, they also showed that representing the harmonic patterns with only two different

blade designs, effectively produce square-wave mistuning patterns around the blisk, can achieve

similar performance. Figure 2.5 shows examples of both a harmonic and a square-wave mistuning

pattern. Intentionally mistuning the blisk with harmonic patterns, however, is not the only means

of achieving this reduced vibration and sensitivity towards mistuning. Instead, Choi et al. incor-
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porated a genetic algorithm to identify the optimal mistuning configuration when considering only

two different blade designs. [38]

2.1.6 Piezoectric-Shunt Damping

Researchers have also shown a growing interest in utilizing the energy-conversion properties of

piezoelectric materials to damp structural vibrations. These materials rely on the piezoelectric ef-

fect that enables the conversion of energy between the mechanical to electrical domains. These

methods incorporate piezoelectric materials mounted on, or embedded in, a vibrating host struc-

ture. As the structure vibrates, the piezoelectric material converts a percentage of the mechanical

strain energy to the electrical domain. Attaching the piezoelectric material to a shunt circuit enables

the manipulation of this transformed electrical energy, including energy dissipation for damping

applications. The following section provides a more thorough overview of the concept of piezo-

electricity, including a discussion outlining their use in the vibration reduction of bladed disks.

2.2 Piezoelectric-Shunt Damping

2.2.1 Piezoelectricity

“Smart” or “intelligent” materials are a certain class of materials that exhibit a coupling between

two domains. Piezoelectric materials are a subset of these materials that exhibit a two-way coupling
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between the mechanical and electric domains. The direct piezoelectric effect refers to the property

that enables the material to produce an electric charge when stimulated by mechanical pressure.

In 1880, the Curie brothers originally discovered this piezoelectric effect present in various types

of natural crystals [39]. A few years later, Lippman theoretically predicted that these crystals

should also exhibit the inverse piezoelectric effect, or mechanical deformation due to an electrical

stimulus; the Curie brothers experimentally verified this inverse effect the following year. The

piezoelectric effect occurs in many natural or synthetic forms. Crystals such as quartz, topaz, and

Rochalle salt, to name a few, naturally exhibit the piezoelectric effect but lack the energy conver-

sion capabilities to be effective in vibration control applications. Over time, advances in material

technology lead to synthetic ceramics, such as the commonly used zirconate titanate (PZT), that

exhibit much stronger coupling, thus making them ideal candidates for many piezoelectric-based

applications [40].

2.2.2 Constitutive Equations

For piezoelectric materials, the piezoelectric effect arises from a net dipole within the unit cell

at temperatures below the Curie temperature. Joining these unit cells together results in local re-

gions with a net polarity that are randomly distributed throughout the material. During the poling

process, the application of a large electric field aligns these dipoles along a single axis, thus gener-

ating a permanent polarity for the entire material. Piezoelectric materials are generally transversely

isotropic where the plane of isotropy is perpendicular to the poling axis. Typical convention aligns
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the 3-axis (or z-axis) with the poling axis and the isotropic plane corresponds to 12-plane. Fig-

ure 2.6 shows a diagram of a typical piezoelectric patch with electrodes on the top and bottom

surfaces and poled through the patch thickness.

Figure 2.6: Diagram of a rectangular piezoelectric patch with electrodes on the top and bottom surface
and poled through the patch thickness. (from [41])

The constitutive equations governing the electromechanical coupling behavior exist in various

forms; one such form relates the stress T and electric displacement D vectors to the strain S and

the electric field E vectors such that [42]

 T

D

=

cE −et

e εεεS


 S

E

 (2.1)
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where the stress, strain, electric displacement, and electric field vectors in expanded form are

T =



T11

T22

T33

T23

T13

T12



=



T1

T2

T3

T4

T5

T6



, S =



S11

S22

S33

2S23

2S13

2S12



=



S1

S2

S3

S4

S5

S6



, D =


D1

D2

D3

 , E =


E1

E2

E3

 (2.2)

Furthermore, c is the stiffness tensor relating the stress and strain; e is the electromechanical cou-

pling tensor relating the stress to the electric field and the electric displacement to the strain; and

εεε is the dielectric tensor relating the electric displacement to the electric field. The superscript t

denotes the transpose operator, whereas the superscripts S, T , E, and D denote quantities measured

at the various mechanical and electrical boundary conditions. For example, the above constitutive

equations contain quantities measured at zero electric field (i.e., the short-circuit state) denoted

with the superscript E, and quantities at zero strain (i.e., the strain-free state) denoted with the

superscript S. The other forms of the constitutive equations utilize quantities measured at zero

electric displacement (i.e., the open-circuit state) denoted with the superscript D, and quantities

measured at zero stress (i.e., the stress-free state) denoted with a superscript T . One such example

is the open-circuit stiffness tensor

cD = cE + et(εεεT )−1e (2.3)
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that relates the open-circuit stiffness tensor to the short-circuit stiffness tensor. Note here that the

electromechanical coupling effect induces an additional stiffness (second term on the right-hand-

side of the equation). A separate example is the stress-free dielectric tensor

εεε
T = εεε

S + e(cE)−1et (2.4)

that relates the stress-free dielectric tensor to the strain-free dielectric tensor.

2.2.3 Electromechanical Coupling Coefficients

Piezoelectric elements commonly operate with a single poling axis and a load applied in a sin-

gle direction. These common modes of operation include the longitudinal case (poling and strain

aligned in the same direction), the transverse case (poling in one direction with a force in a per-

pendicular direction), and the shear case, (poling in one direction with a shear force acting on the

plane perpendicular to that direction). [41] For the poling axis in the i direction and a force in the

j direction, the constitutive equations reduce to a set of scalar equations

Tj = cE
j jS j− ei jEi (2.5)

Di = ei jS j + ε
S
ii (2.6)

A more intuitive approach to identifying the electromechanical coupling behavior in such cases is

through the electromechanical coupling coefficient that, when squared, is the amount of imposed
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mechanical work converted to electrical energy, and vise versa. This coefficient depends on either

the difference between the open- and short-circuit stiffness values, or the difference between the

stress-free and strain-free dielectric permittivity values such that [42]

k2
i j =

cD
j j− cE

j j

cD
j j

=
εT

ii − εS
ii

εT
ii

=
e2

i j

εT
ii cE

j j− e2
i j

(2.7)

Complete and perfect energy conversion results in k2
i j = 1, and no energy conversion results in k2

i j =

0. For example, using the material properties for PZT-5A, a commonly used piezoceramic, the

longitudinal coupling coefficient is k2
33 = 0.49, and the transverse coupling coefficient is k2

31 = 0.12.

For built systems, the piezoelectric elements are in parallel with some other stiffness, resulting

in a smaller percentage of strain energy converted to electric energy and, consequently, smaller

coupling coefficients. For dynamic systems, the electromechanical coupling behavior depends on

the vibration mode of interest. As such, the dynamic form of the coupling coefficient, known as

the effective electromechanical coupling coefficient, depends on the open- and short-circuit natural

frequencies of the rth vibration mode [42]

k2
eff,r =

ω2
oc,r−ω2

sc,r

ω2
oc,r

(2.8)
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2.2.4 Passive Shunts

The most classical method of piezoelectric shunt damping consists of passive circuit elements

dissipating the transformed electrical energy as heat through a resistor. Forward originally attached

a shunt circuit consisting of both a resistor and inductor that, when combined with the capacitance

of the piezoelectric element, produced a resonant circuit [43]. An experimental test on a resonant

bar reduced the Q factor by a factor of 10 compared to the undamped system. Over a decade later,

Hagood and von Flotow developed the theoretical framework for damping vibrations via passive

shunts utilizing both a resistive shunt and resonant shunt [41]. They showed that resistive shunts

produce a frequency-dependent stiffness and loss factor similar to that of viscoelastic materials

operating in the transition region between the glassy and rubbery states. For a single mode, they

presented a closed-form solution for the optimal shunt resistance to maximize damping at a specific

operating frequency. Furthermore, Hagood and von Flotow showed that incorporating an inductor

into the circuit forms a resonant circuit, where proper choice of the inductance tunes the electrical

natural frequency to match that of the system natural frequency, thus producing similar behavior to

a DVA. Using principles from DVA design, they presented a closed-form solution for the optimal

resistor to maximized damping performance Figure 2.7 shows an example of these two passive

shunts as applied to a SDOF system using PZT-5A with k2
31 = 0.12. The resonant shunt shows

significant damping increases compared to the resistive shunt, though at the expense of operating

bandwidth.
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(a) Resistive (R) shunt. (b) Resonant (RL) shunt.

(c) Frequency response magnitude for the shunts
with optimized parameters.

Figure 2.7: Performance characteristics of passive shunts for a piezoelectric material with k2
31 = 0.12.

These curves are generated using the equations derived in Ref. [41]

Beginning in the early 2000s, researchers have incorporated passive shunts into turbomachin-

ery blade applications. Cross and Fleeter experimentally investigated passive shunts for reducing

resonant vibrations of a stator blade subjected to a periodic forcing induced by wakes shed from

upstream rotor blades [44]. They mounted four piezoelectric elements on the stator blade and

tuned the shunt circuit parameters to target the vibrations of the first chord-wise bending mode.

Although the tuned resistive shunt showed minimal performance, the resonant showed showed a

40% reduction in amplitude compared to the baseline case with no shunt. Schwarzendahl et al.

embedded the piezoelectric element within a cavity of a representative turbomachinery blade at a
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location optimized to target the first chord-wise bending mode; tuning the resonant circuit to target

this same mode reduced the amplitude by a factor of 11. [45]

These two previous efforts investigated damping performance for a single blade decoupled

from the disk; however, researchers have also turned their attention to blisk assemblies. Yu and

Wang employed resonant shunts to target vibration of an entire mode family [46, 47]. Using a

SDOF-per-sector model, they showed that for independent resonant shunts attached to each blade,

the optimally tuned inductance depends on the nodal diameter associated with the target mode,

thus resulting in degraded performance for all other nodal-diameter modes within the mode fam-

ily. They further showed that coupling the circuits together with an analytically derived optimal

capacitor effectively removes this nodal-diameter dependence on the inductor, thus resulting in

vibration reduction across the entire mode family [46]. Yu and Wang presented a subsequent study

that incorporated a 2DOF-per-sector model to include the flexibility of the disk that captured the

curve veering phenomena [47]. Similar to their previous study, they showed that an optimally

tuned capacitor that links the various resonant shunts reduced vibration across all modes within

the mode family. To supplement the numerical results, they provided an experimental study with a

setup that incorporated cantilever beams connected through coupling springs to simulate the blisk

dynamics. Utilizing piezoelectric actuators to force each of the beams according to the prescribed

engine order, they validated their numerical results across all engine-order excitations. Hohl et al.

used a resonant shunt tuned to reduce vibrations of the 4ND mode of an 8-blade academic blisk

subjected to 4EO excitation [48]. Using a similar excitation strategy as Yu and Wang to simu-

late engine-order excitations, both numerical and experimental results showed significant damping

35



performance for the target mode. They showed the potential of further damping improvements by

incorporating a negative-capacitance shunt, though such implementation would require op-amps

that require some power to operate.

The previous strategies to reduce blisk vibrations incorporated piezoelectric patches mounted

on the blades. Separate research efforts have investigated damping strategies with the piezoelectric

patches located on the disk portion of the blisk and away from the flow field. Mokrani et al.

distributed piezoelectric elements on the underside of the disk and analyzed two separate resonant

shunt configurations [49]: The first configuration employed independent resonant circuits attached

to each piezoelectric element with the shunt circuit parameters tuned to target a single mode.

The second configuration placed multiple patches in parallel with the electrical connections in a

systematic manner that targets a mode with a specified nodal diameter; this parallel configuration

reduced inductance requirements compared to the independent shunts. A numerical analysis on a

tuned blisk showed that the independent shunts showed vibration across most modes of a mode

family, with performance degrading for the higher-frequency, blade-dominated modes; conversely,

the parallel shunt showed increased damping solely for the target mode. The experimental analysis

showed that the independent shunts again offered better damping performance, but now the parallel

shunt showed increased damping for multiple modes, as mistuning caused a dispersion of spatial

harmonic content across the modes of the family. Zhou et al. located independently shunted

piezoelectric elements in parallel to the coupling springs that connected the disk components of a

3DOF-per-sector model [50]. Citing the problems associated with operational wear that can induce

time-dependent mistuning patterns, they employed a strategy to adaptively control each shunt’s
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inductance components to continuously minimize vibration in the presence of any operational

uncertainties. This method showed promising performance for the modes with appreciable disk

motion, but did not show significant damping for the blade-dominated modes.

Although passive shunts, resonant shunts specifically, have shown increased attention for re-

ducing vibrations of both stand-alone blades and full blisk, such approaches require tight tuning

of circuit parameters, thus limiting their operating bandwidth to a small range of frequencies sur-

rounding the target mode. To address this issue, Hollkamp introduced additional RLC branches to

the resonant circuit for each additional mode targeted; however, with this updated circuit, the SDOF

tuning of the circuit elements no longer applies [51]. Instead, minimizing a cost function using the

vibration amplitudes as the performance measure enabled identification of the optimally tuned val-

ues of the circuit elements. An experimental analysis showed the multi-mode shunt suppressed the

second and third bending modes of a cantilever beam and provided similar damping performance

to that of the single-mode circuit tuned to target the second bending mode. In a separate but similar

manner, Wu developed a “blocking” circuit capable of damping multiple modes [52]. Each branch

of the circuit consisted of a resonant shunt tuned to a single mode, but also consisted of a series

of inductors and capacitors in parallel, tuned to operate as bandstop filters for all others modal fre-

quencies. Experimental results on a cantilever beam showed increased damping for three modes.

Although these methods show excellent multi-modal damping performance, they require separate

circuit branches for each additional target mode. Due to the increase in the size and complexity

of the circuit when targeting additional modes and considering the stringent geometric constraints
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imposed by a turbomachinery application, such approaches may not be feasible for a physical

implementation.

2.2.5 Switched Shunts

To address the aforementioned bandwidth limitations imposed by the passive shunts, researchers

have since developed switched shunts. These techniques reduce vibration by switching the piezo-

electric patch onto a shunt circuit synchronously with the vibration cycle of the host structure.

They are semi-active by nature due to the small amount of power required to periodically perform

the swtich. Typically, the patch operates in the open-circuit state as the system moves away from

equilibrium, thus generating a voltage proportional to the displacement. Switching the patch onto

the shunt at a displacement extremum rapidly dissipates this stored electrical energy. Furthermore,

the circuit elements and the amount of time the piezoelectric element remains attached to the circuit

depends on the approach employed.

Clark initially developed a switching strategy where the patch switched to a short circuit in

quarter-cycle increments (i.e., closing the switch at displacement extrema and opening the switch

at displacement equilibria.) [53] A numerical simulation showed promising damping performance

for the impulse response of a single oscillator. A follow-up numerical study showed that this state-

switching concept provided similar damping performance to that of a passive resistive shunt; this

study also showed switching onto an optimally tuned resistor in the shunt circuit offered better

performance [54].
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Around the same time, Richard et al. introduced synchronized switch damping on a short

circuit (SSDS), a similar switching concept but with a switching strategy that opens the circuit

immediately after the switch to a short circuit [55]. Switching in this manner generates a piezo-

electric voltage with a square wave component that opposes the system velocity, thus generating a

damping force. A year later, Richard et al. showed that placing an inductor in the shunt circuit, an

approach termed synchronized switch damping on an inductor (SSDI), to invert the piezoelectric

voltage offers better performance [56]. The role of the inductor is to induce a resonant response

with the piezoelectric capacitance that enables a voltage inversion. The patch then switches onto

the inductive shunt just long enough for the voltage to invert, then reopens the circuit; the only

limitation on the inductor is that it must be small enough to invert the voltage at a much higher fre-

quency than the vibration. Similar to SSDS, the generated piezoelectric voltage contains a square

wave component that opposes the system velocity but larger in magnitude, thus leading to a larger

damping force. The magnitude of this opposing force depends on the voltage generated across the

electrodes of the piezoelectric patches. As such, the effectiveness of SSDI depends on the quality

of the voltage inversion; however, there are voltage losses in the circuit that limits the performance.

Lefeuvre et al. offered further improvements by including a constant voltage source in the shunt

circuit, an approach termed synchronized switch damping on a voltage source (SSDV). The ap-

proach is similar to that of SSDI, but the presence of the voltage source increases the voltage on

the patch, thus increasing the damping force [57]. Further building on the SSDV concept, Badel

et al. used a voltage source that supplies a voltage with a magnitude dependent on the vibration

amplitude, thus increasing the stability [58].
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As a low-power alternative to increasing SSDI performance, Ji et al. developed an approach,

termed synchronized switch damping on a negative capacitance, that replaced the inductor in the

shunt circuit with a negative capacitance element [59]. Although the shunt circuit no longer res-

onates, the inclusion of the negative capacitance still enables a voltage inversion, though in a dif-

ferent manner, provided the magnitude of the negative capacitance is larger than the piezoelectric

capacitance. The shunt also includes a resistor so that when the patch switches onto the shunt, the

negative capacitance inverts the voltage in an exponential manner; the magnitude of this inversion

depends on the ratio of the piezoelectric capacitance to the difference between the negative capac-

itance and the piezoelectric capacitance. Maximizing this voltage inversion then requires choosing

a negative capacitance with a magnitude slightly larger than the piezoelectric capacitance; how-

ever, as the negative capacitance is an active element, the system becomes unstable if the negative

capacitance has a magnitude equal to or less than the piezoelectric capacitance.

Figure 2.8 shows the performance of several of these switched shunts in both the time and

frequency domains. Figure 2.8a shows that for the un-switched, open-circuit case, the voltage

oscillates with the displacement. When switching, the voltage immediately dissipates of inverts,

thus creating a square wave component that opposes the velocity that provides the damping force.

Figure 2.8b shows the dependence of the damping on the generated voltage, where larger voltages

provide the greatest performance.

Citing the performance benefits of the SSDNC approach, Liu et al. applied the approach to

reduce vibration in tuned and mistuned blisks modeled using lumped-parameter elements [60, 61].

In their initial analysis, they showed that SSDNC offers excellent performance when considering
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multiple modes and is not susceptible to environmental drift that can alter the system frequencies,

both of which are advantages over a tuned RL shunt. [60] As the switching circuit is nonlinear, they

also applied a nonlinear component mode synthesis approach to decrease the computation time re-

quired to obtain the steady-state response magnitude. [61] This solution approach enabled a perfor-

mance analysis of a mistuned blisk via Monte Carlo simulations that showed that SSDNC offered

excellent vibration-reduction potential over all engine-order excitations and mistuning strengths

tested.

(a) Time response. (b) Frequency response.

Figure 2.8: Performance characteristics of switched shunts for a piezoelectric material with
k2

31 = 0.12. These curves are generated using the equations derived in Refs. [58] and [59]

As with the passive shunts, there are some inherent drawbacks associated with these switching

approaches. One such drawback is that the square wave component of the piezoelectric voltage

is composed of a superposition of sinusoidal waves oscillating at the vibrating frequency and an

infinite number of the higher-frequency odd harmonics. Consequently, the voltage will excite the

system if one of the system’s natural frequencies occurs near one of these higher harmonics. Fur-

thermore, Larson et al. showed experimentally on a switched underwater transducer that the rapid

voltage dissipation accompanying the switch from the open-circuit state to the shunt-circuit state
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effectively acts as an impulsive force capable of exciting high-frequency modes [62]. Acknowl-

edging the potential harm in exciting these transients, a class of state-switched vibration absorbers

developed by Cunefare et al. constrained the switch to occur at zero displacement, or when the

piezoelectric voltage is effectively zero [63]. Such switching logic, however, is not applicable to

synchronized switching approaches that must switch at, or near, a displacement extremum. These

approaches also require four switching events per vibration cycle, and perhaps more when con-

sidering a multi-modal response. As many resonance crossings associated with turbomachinery

blades may occur in the kHz range, this would require thousands of switches per crossing. Such

high switching demands may be prohibitive for typical relays; specifically, electromechanical re-

lays utilize a mechanical armature to open and close the circuit that may also be susceptible to

failure induced by high-cycle fatigue.

Both passive and switched shunts offer excellent vibration reduction potential. In fact, both the

tuned RL shunt and SSDI approaches outperform RFD when considering transient excitation [64];

however, RFD trades performance for a more feasible turbomachinery implementation. Compared

to passive approaches, RFD provides a more broadband approach as the underlying mechanism

relies solely on a perturbation in the modal stiffness, thus enabling a means of reducing vibration

for all modes, providing some electromechanical coupling exists. Compared to the synchronized

switching approaches, RFD reduces the switching demands by only requiring a minimal number

of switches per resonance crossing and does not rely on switching at a certain point within the

vibration cycle.
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2.2.6 Implementation Considerations

Turbomachinery blades operate in an extremely harsh environment with stringent geometric con-

straints. The design and implementation of any vibration-reduction system requires careful con-

sideration to ensure the system’s effectiveness and survivability over the lifespan of the engine.

Specifically, for piezoelectric materials, this requires focusing special attention towards their tem-

perature limitations and possible on-blade implementations.

The piezoelectric effect arises due to a lack of symmetry in the material’s crystal structure at

temperatures below the Curie temperature. At larger temperatures, the crystal structure becomes

symmetric, thus losing its piezoelectric properties. Common piezoceramics have Curie tempera-

tures below 350o; some higher-temperature materials exist, but typically have reduced electrome-

chanical coupling properties. [65] As such, the fan blades and cold-side of the compressor are ideal

locations for a piezoelectric-based application.

The possible on-blade implementations also requires some discussion. Piezoceramics are brit-

tle by nature, thus cannot undergo the strains necessary to conform to the curved surfaces typical

of blades. Advances in piezoelectric technology have led to the developments of piezoelectric

fiber composites (PFC) that utilize piezoelectric fibers embedded in a compliant matrix. [66, 67]

The matrix material increases the flexibility of the patch, thus enabling the large static strains re-

quired to conform to curved surfaces, while also offering protection for the brittle piezoelectric

fibers. These designs can also incorporate interdigitated electrodes to exploit the high d33 mode of

coupling for the material that offers improved performance.
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For a blade-mounted application, an external mounting location on the blade may not be feasi-

ble due to the shear forces exerted by the air flow and the risk of damage induced by foreign-object

strikes. To bypass this limitation, some researchers have investigated systems that locate the piezo-

electrics on the disk and away from the blades. [49, 50] This off-blade location, however, is unable

to target modes where the vibration is predominantly located on the blades. A second approach

may involve locating the piezoelectric materials in a cavity within the blade. [45] In such an ap-

proach, care must be taken that this internal cavity does not adversely affect the structural integrity

of the blade.

(a) Piezoelectric fiber composite.
(from [66])

(b) Piezoelectric-coated fiber.
(from [68]

Figure 2.9: Examples of piezoelectric-based composites.

The introduction and continued interest of composites as materials for fan and compressor

blades offers a promising avenue for implementation. [69, 70] As the piezoelectric fibers in PFCs

offer a fraction of the tensile stiffness as typical fiber reinforcements, embedding them within a
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composite blade may lead to structural integrity concerns. Citing these structural concerns, Lin

and Sodano recently developed an active fiber concept that coats a conducting fiber with piezo-

electric material for use within a composite layup. [71, 68] Figure 2.9b shows a diagram of this

piezoelectric fiber.

45



CHAPTER 3
LUMPED-PARAMETER BLISK MODEL AND APPLICATIONS

Ultimately validating RFD as a viable approach to reduce blisk vibrations requires confidence of

successful performance over a range of various design parameters. As such, numerical analy-

sis requires adequate modeling that captures the mistuning phenomena. This chapter presents a

lumped-parameter blisk model typically employed when qualitatively analyzing blisk vibrations;

this model includes the electrical dynamics introduced by with blade-mounted piezoelectric ele-

ments. Section 3.1 derives the lumped-parameter blisk model that considers only a single-degree-

of-freedom (SDOF) per sector; a corresponding nondimensionalization generalizes the analysis.

Section 3.2 uses modal analysis to provide information about the free- and forced-response char-

acteristics associated with the tuned and mistuned systems. It considers for the forced response

both harmonic and transient excitation, the latter idealized with constant acceleration frequency

sweeps. It then presents the adaptation of a semi-analytical solution to swept excitation for the

model used here.
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3.1 Model Development

Due to the stochastic nature of mistuning, analysis via Monte Carlo simulations provides an ex-

cellent tool for identifying key design parameters. Griffin and Hoosac first utilized a lumped-

parameter blisk model as a computationally cheap means to perform large-scale statistical analy-

sis [36]; thus, as a first step, modeling each blade sector as a single oscillator can provide funda-

mental insight towards RFD performance towards mistuned blisks. Figure 3.1 shows a diagram

of the lumped-parameter model where each oscillator represents the blade corresponding to the

jth sector of an Ns-sector blisk. Each blade has a nominal mass m, damping c, and stiffness k0

and is grounded to a rigid disk. Furthermore, RFD is a blade-mounted approach, thus required the

placement of piezoelectric elements in parallel with the damping and stiffness elements of each

blade. The springs kc represent the coupling between neighboring blades that enable the flow of

vibration energy around the disk.

Figure 3.1: SDOF-per-sector blisk model.
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3.1.1 Equations of Motion

The derivation of the electromechanical equations of motion begins with balancing the forces on

the each oscillator such that

mẍ j + cẋs− kcx j−1 +(k j + kp, j +2kc)x j− kcx j+1−θVj = fm, j (3.1)

θx j +CpVj = Q j, for j = 0, · · · ,Ns−1 (3.2)

where the j subscript denotes a quantity associated with the jth blade. The variable kp is the

stiffness of the piezoelectric element in the short-circuit state, θ is the electromechanical coupling

term, Cp is the piezoelectric capacitance, V is the piezoelectric voltage, and Q is the generated

charge. For a tuned system with the piezoelectric elements shorted, there is zero voltage generated

by each element such that Vj = 0 for j = 0, · · · ,Ns− 1, and the nominal blade and piezoelectric

stiffness in the short-circuit state are k0 and kp,0; the short-circuit stiffness of the nominal blade

that includes the stiffness contribution of the piezoelectric element is ksc,0 = k0+kp,0. Slight blade-

to-blade variations break the cyclic symmetry of the system, thereby inducing mistuning. For

the lumped-parameter model, representing these variations as small perturbations in each blade’s

nominal stiffness provides a similar effect. Each modified blade stiffness is then

ksc, j = ksc,0(1+δmis,sc, j) (3.3)
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where δmis,sc, j is the short-circuit stiffness perturbation induced by mistuning and that is a random

sample of a normal distribution with zero mean and a user-assigned standard deviation σmis.

With each piezoelectric element’s electrodes open, there is a constant charge that depends on

the initial displacement at the time of the switch xsw such that Qsw, j = θxsw, j for j = 0, · · · ,Ns−

1. [72] As such, the generated voltage for the jth element is proportional to the blade displacement

plus a constant term:

Vj =
θ

Cp
xsw, j−

θ

Cp
x j (3.4)

Inserting this voltage into Eq. 3.1 results in

mẍ j + cẋ j− kcx j−1 +(ksc, j +
θ 2

Cp
+2kc)x j− kcx j+1 = fm, j +

θ 2

Cp
xsw, j (3.5)

where there is a constant forcing term arising from the initial charge when switching to the open-

circuit state that depends on the initial displacement. Furthermore, the modified stiffness term

associated with x j is the blade stiffness in the open-circuit state

koc, j = ksc, j +
θ 2

Cp
(3.6)

and is always greater than the short-circuit stiffness, provided there is non-zero electromechanical

coupling. Subtracting the short-circuit stiffness from the open-circuit stiffness results in

∆kp = koc, j− ksc, j =
θ 2

Cp
(3.7)
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where ∆kp is the stiffness perturbation when switching between the open- and short-circuit state

and is constant for each blade. During spool-up of the engine, the blades operate in the higher,

open-circuit stiffness state for the majority of the operation and only switches to the short-circuit

state during resonance passages. As such, recast the previously derived equations into open-circuit

form by rearranging Eq. 3.2 to solve for Vj such that

− θ

Cp
x j +

1
Cp

Q j =Vj (3.8)

Inserting the above voltage into Eq. 3.1 results in

mẍ j + cẋ j− kcx j−1 +(koc, j +2kc)x j− kcx j+1−
θ

Cp
Q j = fm, j (3.9)

Representing the equations in open-circuit form also requires setting the stiffness perturbations

with respect to the open-circuit blade stiffness; this is done by substituting the short-circuit stiffness

of Eq. 3.3 into the open-circuit stiffness of Eq. 3.6 such that

koc, j = koc,0(1+
ksc,0

koc,0
δmis,sc, j) = koc,0(1+δmis,oc, j) (3.10)

The perturbation to the open-circuit blade stiffness from mistuning relates to the perturbation to

the short-circuit blade stiffness as

δmis,oc, j =
ksc,0

koc,0
δmis,sc, j = (1−

∆kp

koc,0
)δmis,sc, j = (1−δp)δmis,sc, j (3.11)

50



where δp is the switch-induced stiffness perturbation normalized by the nominal open-circuit blade

stiffness.

3.1.1.1 Engine-Order Excitation

RFD is inherently a transient approach that reduces vibration induced from engine-order excita-

tions that sweep through resonance. Although in turbomachinery operation, engine-order excita-

tion refers to the blades rotating through essentially static pressure disturbances, the analysis here

assumes a stationary blisk with a traveling-wave excitation. As such, a linear frequency sweep

idealizes the excitation with constant amplitude fm,0 and a blade-dependent phase; thus, the force

applied to the jth blade is

fm, j = fm,0 sinϕ j(t)

ϕ j(t) =
ωrate

2
t2 +ω0t + γ j

(3.12)

where ωrate is the linear frequency sweep rate and ω0 is the initial operating frequency (taken as

zero at start-up). The traveling-wave excitation arises through inclusion of the constant, blade-

dependent phase γ j that varies linearly around the disk circumference according to

γ j =
2πn( j−1)

Ns
(3.13)
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and is an integer multiple ( j−1) of the interblade phase angle (IBPA)

IBPA =
2πn
Ns

(3.14)

The IBPA is a constant that depends on the engine order and the total number of blades.

3.1.2 Nondimensional Equations of Motion

Nondimensionalizing the equations of motion both generalizes the analysis and reduces the number

of independent variables, thus facilitating a parametric study over various design parameters. The

nondimensional variables with respect to parameters in the open-circuit state are

t̄ =

√
koc,0

m
(t− t0) = ωoc,0(t− t0) (3.15)

x̄ j =
koc,0

fm,0
x j (3.16)

ζ0 =
c

2
√

koc,0m
(3.17)

V̄j =
θ

fm,0
Vj (3.18)

Q̄ j =
θ

Cp fm,0
Q j (3.19)

ω̄rate =
ωrate

ω2
oc,0

(3.20)

ω̄0 =
ω0 +ωratet0

ωoc,0
(3.21)
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where the overbar corresponds to a nondimensional variable. The resulting nondimensional equa-

tions of motion for the jth blade are

x̄′′j +2ζ0x̄′j− k̄cx̄ j−1 +(1+δmis,oc, j +2k̄c)x̄ j− k̄cx̄ j−1− Q̄ j = f̄m, j (3.22)

−δpx̄ j + Q̄ j = V̄j (3.23)

where ()′ indicates a derivative with respect to the nondimensional time. Also, the nondimensional

mechanical force is

f̄m, j = sin
(1

2
ω̄ratet̄2 + ω̄0t̄ +

1
2

ωratet2
0 +ω0t0 + γ j

)
(3.24)

where the last three terms are the constant portion of the phase that depends not only on γ j, but

also the initial time of operation t0.

3.1.2.1 Stiffness-State Switching

When operating in the open-circuit state, the nondimensional equations are

x̄′′j +2ζ0x̄′j− k̄cx̄ j−1 +(1+δmis,oc, j +2k̄c)x̄ j− k̄cx̄ j−1 = f̄ j +δpx̄sw, j (3.25)

−δpx̄ j = V̄j (3.26)
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Conversely, when operating in the short-circuit state, the nondimensional equations are

x̄′′j +2ζ0x̄′j− k̄cx̄ j−1 +(1−δp +δmis,oc, j +2k̄c)x̄ j− k̄cx̄ j−1 = f̄ j (3.27)

δpx̄ j = Q̄ j (3.28)

In a physical implementation, a typical relay opens/closes the shunt circuit attached to the elec-

trodes of the piezoelectric element to provide a means of rapidly switching between the open- and

short-circuit states. Typical bandwidth of relays can be on the order of microseconds, and is much

faster than a period of vibration for the blisk with vibration frequencies expected in the kHz range.

Such reasoning enables use of a discrete switching model to instantaneously switch between the

open- and short-circuit states, thereby decoupling the equations of motion into purely mechanical

form:

x̄′′j +2ζ0x̄′j− k̄cx̄ j−1 +
[
1+2k̄c +δmis,oc, j− (1− s j)δp

]
x̄ j− k̄cx̄ j−1 = f̄m, j + s jδpx̄sw, j (3.29)

where s j is a binary number that depends on the stiffness state of the jth piezoelectric element such

that

s j =


0, short-circuit state

1, open-circuit state

(3.30)

Note here that the use of a discrete switching model leads to a discontinuity in the system dynam-

ics when switching between stiffness states. For example, when switching from the open- to the

short-circuit state, there is initially a voltage generated across the piezoelectric immediately pre-
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ceding the switch. The discrete switching model assumes this voltage dissipates instantaneously

immediately following the switch. This rapid voltage dissipation results in an impulsive-like force

capable of exciting high-frequency modes and that results in high-frequency transients observed

in the acceleration response [62, 73, 74]. Similar to impulses, the duration of this voltage dis-

sipation dictates the frequency content excited when switching. Controlling the shunt circuit’s

time constant by including an appropriately-sized resistor can significantly reduce any developed

mechanical transients [75].

3.1.2.2 Equations of Motion in Matrix Form

In matrix form, the nondimensional equations of motion in matrix form are

M̄x̄′′+ C̄x̄′+ K̄x̄ = F̄m + F̄sw (3.31)

where the mass, damping, and stiffness matrices, as well as the mechanical and switch-induced

forcing vectors are
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M̄ = I (3.32)

C̄ = 2ζ0I (3.33)

K̄ = I+ K̄c +∆∆∆K̄mis,oc− [I−S]∆∆∆K̄p (3.34)

F̄m =
[

f̄m,0 · · · f̄m,Ns−1
]t (3.35)

F̄sw = S∆∆∆K̄px̄sw (3.36)

where I is the Ns×Ns identity matrix. Four components comprise the stiffness matrix: 1) The

first component is the identity matrix that corresponds to the open-circuit stiffness of the nominal

blade. 2) The second component corresponds to the stiffness elements coupling the blades:

K̄c = k̄c



2 −1 0 · · · · · · 0 −1

−1 2 −1 0 · · · · · · 0

0 −1 2 −1 0 · · · · · · 0

... . . . ...

... . . . ...

0 · · · · · · 0 −1 2 −1 0

0 · · · · · · 0 −1 2 −1

−1 0 · · · · · · 0 −1 2



(3.37)
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3) The third component is a diagonal matrix that corresponds to the stiffness perturbations induced

by the blade mistuning:

∆∆∆K̄mis,oc = diag(δmis,oc,0, · · · ,δmis,oc,Ns−1) (3.38)

4) The fourth component corresponds to the perturbations induced by the stiffness-state switching

where S is the switching matrix and ∆∆∆K̄p is the stiffness perturbation between the open- and short-

circuit states:

S = diag(s0, · · · ,sNs−1) (3.39)

∆∆∆K̄p = δpI (3.40)

where S = 0 for all blades operating in the short-circuit state and S = I for all blades operating in

the open-circuit state.

3.2 Modal Response

As is typical for many second-order, MDOF systems, coupling exists between the degrees of free-

dom; here, this coupling arises through the stiffness components linking neighboring blades. This

coupling stiffness matrix is circulant, thus also resulting in a circulant stiffness matrix for the

tuned system. A property of such systems enables a transformation using the Fourier matrix F

to decouple the equations of motion. [76] I.e., a real-valued Fourier series comprises each blade’s
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displacement such that

x̄ j =
1√
Ns

x̃(0)+

√
2
Ns

κ

∑
h=1

[
cos( jhα)x̃(h,c)+ sin( jhα)x̃(h,s)

]
+

(−1) j
√

Ns
x̃(Ns/2) (3.41)

where α is the angle between neighboring sectors on the blisk that takes the value of α = 2π/Ns, κ

is a quantity that takes the value of κ = Ns/2−1 for an even number of sectors, or κ = (Ns−1)/2

for an odd number of sectors, x̃ is the response of a reference sector in the cyclic domain, and

the superscript denotes the associated spatial harmonic; e.g., (0) denotes the zeroth harmonic,

(h,c) and (h,s) denote the cosine and sine components of the hth harmonic, and (Ns/2) denotes

the component of the (Ns/2)th harmonic and is present only if Ns is even. Stacking each sector’s

transverse displacement into a single column vector and expanding the summation leads to the

displacement in matrix form

x̄ = Fx̃ (3.42)

where

x̄ =
[
x̄0 · · · x̄Ns−1

]t (3.43)

x̃ =
[
x̃(0) x̃(1,c) x̃(1,s) · · · x̃(κ,c) x̃(κ,s) x̃(Ns/2)

]t
(3.44)
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and F is the Fourier transformation matrix

F =
1√
Ns



1
√

2 0 · · · 0 1

1
√

2cosα
√

2sinα · · ·
√

2sinκα −1

1
√

2cos2α
√

2sin2α · · ·
√

2sin2κα 1

...
...

...
...

...

1
√

2cos(Ns−1)α
√

2sin(Ns−1)α · · ·
√

2sin(Ns−1)κα (−1)Ns−1


(3.45)

The columns of F, denoted by F(h), correspond to the specified spatial harmonic. The 1st column,

denoted by F(0), corresponds to the 0th harmonic, whereas the last column, denoted by F(Ns/2),

corresponds to the (Ns/2)
th

harmonic, and only exists if Ns is even. All other harmonics contain

both cosine and sine components such that there are two columns in F for each harmonic; these

columns correspond to the cosine component, denoted by F(h,c), and the sine component, denoted

by F(h,s). Furthermore, F is a unitary matrix with the defining property FtF = I.

Next, insert the transformation in Eq. 3.42 into Eq. 3.31 and premultiplying by Ft to obtain the

equations of motion in the cyclic domain

M̃x̃′′+ C̃x̃′+ K̃x̃ = F̃m + F̃sw (3.46)
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where the cyclic mass, damping, and stiffness matrix, as well as the cyclic forcing vectors are

M̃ = I (3.47)

C̃ = 2ζ0I (3.48)

K̃ = I+FtK̄cF+Ft
∆∆∆K̄mis,ocF−δpFt [I−S]F (3.49)

F̃m = FtFm (3.50)

F̃sw = δpFtSFx̃sw (3.51)

3.2.1 Tuned System

3.2.1.1 Free Response Characteristics

Consider the case of the tuned system with all blades operating in the open-circuit state. As the

system is tuned, there is no stiffness perturbation induced by mistuning such that ∆∆∆K̄mis,oc = 0.

Neglecting the influence of damping and any applied forces, Eq. 3.46 reduces to

M̃x̃′′+ K̃0x̃ = 0 (3.52)

where K̃0 is the tuned stiffness matrix:

K̃0 = I+FtK̄cF−δpFt [I−S]F (3.53)
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The second term FtKcF is a diagonal matrix with the diagonal components defined for each spatial

harmonic. Assuming no switch-induced stiffness perturbation such that S = I, Eq. 3.52 reduces to

M̃x̃′′+ K̃0,ocx̃ = 0 (3.54)

where K̃0,oc is the open-circuit, tuned stiffness matrix that is diagonal where the components are

the squared, open-circuit, tuned natural frequencies:

K̃0,oc = diag
(

ω̄
(0)2

0,oc , ω̄
(1,c)2

0,oc , ω̄
(1,s)2

0,oc , · · · , ω̄(κ,c)2

0,oc , ω̄
(κ,s)2

0,oc , ω̄
(Ns/2)2

0,oc

)
(3.55)

The squared natural frequencies for the 0th and (Ns/2)th harmonics are

ω̄
(0)2

0,oc = 1 (3.56)

ω̄
(Ns/2)2

0,oc = 1+4k̄c (3.57)

All other harmonics occur in degenerate pairs where the squared natural frequencies are

ω̄
(h,c)2

0,oc = ω̄
(h,s)2

0,oc = 1+2k̄c(1− coshα) (3.58)

Furthermore, as M̃ and K̃0,oc are diagonal and because M̃ = I, the columns of F correspond to the

mass-normalized mode shapes.
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Next, consider the case with all blades operating in the short-circuit state such that the switching

matrix is S = 0, Eq. 3.52 becomes

M̃x̃′′+ K̃0,scx̃ = 0 (3.59)

where K̃0,sc is the short-circuit, tuned stiffness matrix:

K̃0,sc = K̃0,oc−δpI (3.60)

that is also diagonal where the components are the squared, short-circuit, tuned natural frequencies:

K̃0,sc = diag
(

ω̄
(0)2

0,sc , ω̄
(1,c)2

0,sc , ω̄
(1,s)2

0,sc , · · · , ω̄(κ,c)2

0,sc , ω̄
(κ,s)2

0,sc , ω̄
(Ns/2)2

0,sc

)
(3.61)

The short-circuit, tuned natural frequencies relate to the open-circuit, tuned frequencies by

ω̄
(h)2

0,sc = ω̄
(h)2

0,oc −δp (3.62)

The above relation shows that compared to the open-circuit case, there is a uniform decrease in

the short-circuit modal stiffness (squared natural frequencies) by an amount δp for all harmonics.

Furthermore, as δpI is proportional to the mass matrix, or the identity matrix, the mode shapes

between these two operating states remain unchanged. To obtain the electromechanical coupling

coefficients, substitute the analytical values for the open- and short-circuit, tuned natural frequen-

cies into Eq. 2.8 such that

k(h)
2

eff =
ω̄

(h)2

0,oc − ω̄
(h)2

0,sc

ω̄
(h)2

0,oc

=
δp

ω̄
(h)2

0,oc

(3.63)
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or

k(h)
2

eff =



δp, h = 0

δp
1+4k̄c

, h = Ns
2

δp
1+2k̄c(1−coshα)

, all other h

(3.64)

If, instead of all blades uniformly operating in one of the stiffness states, there is an arbitrary

arrangement of blades operating in either stiffness states such that S 6= I,0, the term Ft [I− S]F

appearing in K̃0 is, in general, no longer diagonal, thus resulting in the coupling of the various

spatial harmonics; i.e., the blades no longer operate uniformly with an equal stiffness around the

blisk, thus breaking the cyclic symmetry of the system, thus inducing a switch-dependent stiffness

pattern capable of mistuning an otherwise tuned system. The coupling of the various harmon-

ics for the mistuned blisk requires solving an eigenvalue problem to extract the mistuned natural

frequencies and mode shapes, a topic covered in the following section.

As an example, consider a 13-sector system with parameters k̄c = 0.02 and δp = 0.05. Table 3.1

shows the natural frequencies with all blades operating in either the open- or short-circuit states.

As there is an odd number of blades, all harmonics occur in degenerate orthogonal pairs except for

the 0ND harmonic. This table also shows the coupling coefficients for each mode evaluated using

Eq. 3.64; these coefficients exhibit a slight decrease in coupling with increasing harmonic number;

however, because k̄c� 1, this decrease is small and k2
eff ≈ δp for all harmonics. Figure 3.2 shows

the tuned mode shapes obtained from the columns of F (left plots) where the ordinate corresponds

to the blade number. It also shows the magnitude of the Fourier components associated with

each mode shape (right bar plots) where the ordinate corresponds to the spatial harmonic(nodal
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diameter). The tuned mode shapes include only a single spatial harmonic (single nodal diameter)

as evidenced by the presence of a single Fourier component for each shape.

3.2.1.2 Harmonic Response to Engine-Order Excitation

Although RFD is a transient approach, analyzing the limiting case of zero sweep, or harmonic

excitation, can provide a fundamental understanding of the underlying forced-response dynam-

ics. Assuming the engine-order excitation is harmonic and neglecting any initial conditions, the

nondimensional force acting on the jth blade is

f̄ j = eiω t̄eiγ j (3.65)

Obtaining the cyclic components of the forcing vector requires applying the inverse Fourier trans-

form to the force acting on each of the blades such that

f̃ (0)m =
1√
Ns

Ns−1

∑
j=0

f̄ j

f̃ (h,c)m =

√
2
Ns

Ns−1

∑
j=0

cos( jhα) f̄ j

f̃ (h,s)m =

√
2
Ns

Ns−1

∑
j=0

sin( jhα) f̄ j

f̃ (Ns/2)
m =

1√
Ns

Ns−1

∑
j=0

(−1) j f̄ j

(3.66)
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Table 3.1: Natural frequencies of the tuned blisk.

Mode, r Harmonic, h
Natural Frequency, ω̄2

r Coupling
Coeff., k2

eff,rOpen-Circuit Short-Circuit
1 0 1.000 0.975 0.050
2 1,c 1.023 0.977 0.050
3 1,s 1.023 0.977 0.050
4 2,c 1.009 0.984 0.049
5 2,s 1.009 0.984 0.049
6 3,c 1.017 0.993 0.048
7 3,s 1.017 0.993 0.048
8 4,c 1.027 1.002 0.047
9 4,s 1.027 1.002 0.047

10 5,c 1.034 1.010 0.047
11 5,s 1.034 1.010 0.047
12 6,c 1.039 1.014 0.046
13 6,s 1.039 1.014 0.046

Figure 3.2: Unwrapped tuned-blisk mode shapes (left plots) where the ordinate corresponds to the
blade number. Also shown is the magnitude of the Fourier components associated with

each mode shape (right bar plots) where the ordinate corresponds to the spatial harmonic
(nodal diameter).
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A characteristic property of the tuned-blisk forced response is that the excitation only excites the

modes with a harmonic number equal to the engine order due to orthogonality with all other har-

monics (i.e., f̃ (h)m = 0 if h 6= n). As such, the complex forced response of the jth blade is

H̄(n)
j (ω̄) =

ei jnα

ω̄
(n)2

0 − ω̄2 + i2ζ0ω̄

(3.67)

where ω
(h)
0 is the tuned natural frequency for either the open- or short-circuit state derived pre-

viously. Although the numerator term ei jhα indicates that the phase of the response is blade de-

pendent, the magnitude is constant for all blades. As an example, consider again the blisk with

parameters provided in the previous section with ζ0 = 0.001 and subjected to 3EO excitation.

Figure 3.3 shows the frequency response of all blades of the tuned blisk in both the open- and

short-circuit states. Only a single resonance exists at the natural frequencies of the 3ND mode pair

corresponding to modes 6 and 7 shown in Table 3.1.

Figure 3.3: Frequency response of all blades of a tuned blisk subjected to 3EO excitation.
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3.2.2 Mistuned System

3.2.2.1 Free Response Characteristics

Next, consider the mistuned system such that ∆∆∆K̄mis,oc 6= 0. Again, neglecting the damping and

external forces, the resulting unforced equations of motion in the cyclic domain are

M̃x̃′′+ K̃x̃ = 0 (3.68)

where K̃ is the mistuned, cyclic stiffness matrix from Eq. 3.49 and rewritten here as

K̃ = K̃0,oc +Ft
∆∆∆K̄mis,ocF−δpFt [I−S]F (3.69)

With all blades operating in the open-circuit state such that S = I, this equation reduces to

M̃x̃′′+ K̃ocx̃ = 0 (3.70)

where the open-circuit, mistuned cyclic stiffness matrix is

K̃oc = K̃0,oc +Ft
∆∆∆K̄mis,ocF (3.71)

Although K̃0,oc is diagonal, the matrix Ft∆∆∆K̄mis,ocF is, in general, not diagonal, thus resulting in

the coupling of the various spatial harmonics. As such, decoupling these equations requires solving
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the eigenvalue problem (
K̃oc−λM̃

)
P = 0 (3.72)

where the eigenvalues correspond to the squared, open-circuit, mistuned natural frequencies (λr =

ω2
oc,r). Also, assembling the associated eigenvectors (Pr) column-wise produces the transformation

matrix P = [P1, · · · ,PNs]. The mistuned-system mode shapes are then a linear combination of the

tuned-system mode shapes

ΦΦΦ = FP (3.73)

where Pr contains the associated weights for the rth mistuned mode. The above result indicates

that the tuned mode shapes, containing a single spatial harmonic, form the basis of the mistuned

mode shapes, that contain multiple spatial harmonics. Next, insert the transformation

x̃ = Pηηη (3.74)

into Eq. 3.68 and premultiply by Pt to obtain the modal equations of motion with respect to the

open-circuit, mistuned system

M̂ηηη
′′+ K̂ηηη = 0 (3.75)

where the modal mass matrix M̂ remains the Ns×Ns identity matrix. The mistuned modal stiffness

matrix K̂ is

K̂ = K̂oc−δpΦΦΦ
t [I−S]ΦΦΦ (3.76)
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where K̂oc is the open-circuit, mistuned modal stiffness matrix that is diagonal where the compo-

nents are the squared, open-circuit, mistuned natural frequencies:

K̂oc = diag
(
ω̄

2
oc,1, · · · , ω̄2

oc,Ns

)
(3.77)

When all blades operate in the short-circuit state such that S = 0, Eq. 3.75 becomes

M̂ηηη
′′+ K̂scηηη = 0 (3.78)

where K̂sc is the short-circuit, mistuned modal stiffness matrix that is also diagonal where the

components are the squared, short-circuit, mistuned natural frequencies:

K̂sc = diag
(
ω̄

2
sc,1, · · · , ω̄2

sc,Ns

)
(3.79)

Similar to the tuned system, the short-circuit, mistuned natural frequencies relate to the open-

circuit, mistuned natural frequencies by

ω̄
2
sc,r = ω̄

2
oc,r−δp (3.80)

resulting in the electromechanical coupling coefficients

k2
eff,r =

δp

ω̄2
oc,r

(3.81)
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Also similar to the tuned system, the mistuned mode shapes are identical in both the open-circuit

and short-circuit operating states.

As an example, consider again the same blisk previously examined except with random stiff-

ness perturbations generated using σmis = 0.03. Table 3.2 shows the natural frequencies for both

the open- and short-circuit cases. The mistuning splits the natural frequencies of all degenerate

pairs of the tuned blisk. Also, similar to the tuned blisk, k2
eff decreases with increasing natural

frequency. Figure 3.4 shows the mistuned mode shapes for each mode (left plots) where the ordi-

nate corresponds to the blade number. This figure also shows the magnitude of the corresponding

Fourier coefficients associated with each mode shape (right bar plots) where the ordinate corre-

sponds to the spatial harmonic (nodal diameter). The various Fourier coefficients in each mistuned

mode shape indicate that multiple spatial harmonics compose these shapes and these coefficients

directly relate to the columns of P. The mistuning also induces localized vibration for some of the

modes (e.g., blades 10 and 11 in mode 1, blade 5 in mode 2, etc.)

3.2.2.2 Response to Harmonic Forcing

Next, consider the effects of the damping and applied force, the mistuned modal equations of

motion are

M̂ηηη
′′+ Ĉηηη

′+ K̂ηηη = F̂m + F̂sw (3.82)
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Table 3.2: Natural frequencies of the mistuned blisk.

Mode, r
Natural Frequency, ω̄2

r Coupling
Coeff., k2

eff,rOpen-Circuit Short-Circuit
1 0.990 0.964 0.051
2 0.990 0.965 0.051
3 1.003 0.978 0.050
4 1.008 0.983 0.049
5 1.016 0.991 0.048
6 1.021 0.996 0.047
7 1.030 1.005 0.047
8 1.033 1.008 0.047
9 1.038 1.014 0.046

10 1.042 1.018 0.046
11 1.045 1.020 0.046
12 1.050 1.026 0.045
13 1.065 1.041 0.044

Figure 3.4: Unwrapped mistuned blade mode shapes (left plots) where the ordinate corresponds to the
blade number. Also shown is the magnitude of the corresponding Fourier components

associated with each mode shape (right bar plots) where the ordinate corresponds to the
spatial harmonic (nodal diameter).
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The corresponding modal matrices and force vectors are

M̂ = I (3.83)

Ĉ = 2ζ0I (3.84)

K̂ = K̂oc−δpΦΦΦ
t [I−S]ΦΦΦ (3.85)

F̂m = Pt F̃m = ΦΦΦ
tFm (3.86)

F̂sw = Pt F̃swP = δpΦΦΦ
tSΦΦΦηηηsw (3.87)

In the tuned system, the only non-zero components of the cyclic force in Eq. 3.66 arise when the

spatial harmonic equals the engine order. In the mistuned system, the premultiplication of F̃m by

Pt enables a single engine order to excite all mistuned modes. As the columns of P directly relate

to the Fourier components of each mistuned mode, the participation of each mistuned mode in

the overall response directly depends on the magnitude of the Fourier coefficient associated with

the spatial harmonic that equals the engine order. Neglecting any initial conditions, the complex

frequency response of the jth blade is

H̄ j(ω̄) =
Ns

∑
r=1

φ j,r ∑
Ns−1
j=0 φ j,reiγ j

ω̄2
r − ω̄2 + i2ζ0ω̄

(3.88)

As an example, consider again the blisk utilized previously. Figure 3.5 shows the frequency

response of the mistuned blisk for both the open-circuit and short-circuit cases. The 3EO excitation

now excites all modes because each mistuned mode shape contains many spatial harmonics, thus
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inducing the region of high modal density. Furthermore, each of the blades respond with distinct

magnitudes (light, thin curves) resulting in a larger maximum response of all blades (dark, thick

curves) as compared to their respective tuned cases (dashed lines). Mode 8 contributes the largest

response due to this mode containing the largest amount of 3ND content that matches the 3EO

excitation.

Figure 3.5: Frequency response magnitude of all blades of a mistuned blisk in the open-circuit (light
blue) and short-circuit (light red) states. The thicker curves indicate the maximum blade
response at each frequency line. Also shown is the tuned frequency response magnitudes

(black dashed) for both stiffness states.

3.2.3 Response to Transient Excitation

The examples in the the preceding sections served to illustrate how regions of high modal density

arise in the forced response of mistuned blisks. As RFD is a transient approach, this section con-

siders the transient excitation with an idealized linear frequency sweep with constant amplitude.
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This section also adapts a previously-derived, semi-analytical solution for use with swept excita-

tion associated with a chosen engine order and when considering the switch-induced force. When

solving for the response, numerical-integration schemes can lead to large computation times, par-

ticularly for large numbers of degrees of freedom or for slow sweeps due to the increased number

of oscillations per resonance crossing. Fortunately, Markert and Seidler derived an analytical solu-

tion for a SDOF system subjected to swept excitation [77]. Analyzing RFD requires adapting their

solution to a blisk subjected to engine-order excitation and begins with the forced modal equations

of motion; for the rth mode, these equations are

η̈r +2ζrω̄rη̇r + ω̄
2
r ηr = f̂m,r + f̂sw,r (3.89)

where the mechanical modal force for the rth mode is

f̂m,r =
Ns−1

∑
j=0

φ j,r f̄m, j (3.90)

As such, f̂m,r is a linear combination of swept sinusoidal waves with differing amplitudes and

phases. An expression for this combination of sinusoidal waves represented as a single wave with

amplitude f̂m,0,r and phase Γr is

f̂m,r = f̂m,0,r sin
(1

2
ω̄ratet2 + ω̄0t̄ +Γr

)
(3.91)
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where

f̂m,0,r =

√√√√[Ns−1

∑
j=0

φ j,r cos(γ j)

]2

+

[Ns−1

∑
j=0

φ j,r sin(γ j)

]2

(3.92)

Γr = tan−1
[

∑
Ns−1
j=0 φ j,r sin(γ j)

∑
Ns−1
j=0 φ j,r cos(γ j)

]
(3.93)

To stay consistent with the form of the equations derived in [77], scale the already nondimensional

time such that

t̆r = ω̄r(t̄− t̄0) (3.94)

where (̆) corresponds to a scaled variable. The quantity t̄0 is the initial time of operation in a

particular stiffness state. For example, t̄0 = 0 at start-up with all blades operating in the open-

circuit state, and t̄0 = t̄sw following any switch to a separate stiffness state. The scaled phase of

excitation is

ϕ̆r(t̆r) =
1
2

ω̆rate,rt̆2
r + ω̆0,rt̆r + Γ̆r (3.95)

where

ω̆rate,r =
ω̄rate

ω̄2
r

(3.96)

ω̆0,r =
ω̄ratet̄0 + ω̄0

ω̄r
(3.97)

Γ̆r = (
1
2

ω̄ratet̄2
0 + ω̄0t̄0 +Γr) (3.98)
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and the scaled modal displacement is

η̆r =
ω̄2

r

f̂m,0,r
ηr (3.99)

The resulting scaled modal equation of motion is

˚̊̆ηr +2ζr ˚̆ηr + η̆r = sin ϕ̄(t̄r)+ f̄sw,r (3.100)

where (̊) denotes a derivative with respect to the scaled time. The response for these equations of

motion is a superposition of three solutions:

η̆r = η̆c,r + η̆p1,r + η̆p2,r (3.101)

where η̆c,r is the complementary solution of the homogenous form of the modal equation

η̆c,r = c1eλ1,r t̆r + c2eλ2,r t̆r (3.102)

where λ1 and λ2 are the scaled eigenvalues for the rth mode such that λ1,2 = −ζr±
√

1−ζ 2
r ; the

constants c1 and c2 are determined from the initial conditions. Additionally, η̆p1,r is the particular

solution for the swept excitation obtained from

η̆p1,r =
1√

1−ζ 2
r

∫ t̆r

0
sin ϕ̆r(t̆r)e−ζr(t̆r−τ) sin

√
1−ζ 2

r (t̆r− τ)dτ (3.103)
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and η̆p2,r is the particular solution for the constant force induced by the switch from the short- to

open-circuit state obtained from

η̆p2,r =
1√

1−ζ 2
r

∫ t̆r

0
f̆sw,re−ζr(t̆r−τ) sin

√
1−ζ 2

r (t̆r− τ)dτ (3.104)

The entirety of the steps required to obtain these solutions is omitted here for brevity. However, the

derivation for the solution to the swept excitation that includes the initial conditions can be found

in [77]; the solution to the constant forcing term can be found in typical textbooks on mechanical

vibrations. As such, the scaled modal response is

η̆r = |N̆r(t̆r)|sin[ϕ̆r(t̆r)+ β̆r(t̆r)]+ f̆sw

[
1− e−ζr t̆r√

1−ζ 2
r

sin
[√

1−ζ 2
r t̆r + tan−1

(√
1−ζ 2

r
ζr

)]]
(3.105)

where N̆r(t̆r) is a complex amplitude and β̆r(t̆r) is the phase difference between the response and

excitation. Note here that the first term on the right-hand-side takes a similar form as that of

harmonic excitation; however, the present case shows a time dependency for both the magnitude

and phase components.

Continuing with the previous mistuned blisk example, Fig. 3.6 shows the transient response

generated from 3EO excitation for an increasing sweep rate and with all blades operating in the

open-circuit state. Each curve corresponds to the maximum response of the set of blades at each

time instant. For this case, sweeping through the resonance crossings delays the maximum re-

sponse peaks past the harmonic resonance, causing the peaks to both broaden and decrease in

amplitude. As the sweep rate slows, the maximum blade response approaches that of harmonic
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excitation. For rapid sweeps, the excitation quickly passes through resonance, thus generating lit-

tle vibration. Although not shown here, i some situations, sweeping through the closely-spaced

modes of a mistuned blisk can result in an amplification of the maximum blisk response that is

larger than the harmonic case. This effect arises due to a superposition of each modal response of

the closely-space modes and has been observed in both numerical and experimental tests [78, 79].

Figure 3.6: The effect of an increasing sweep rate on the maximum blisk response with all blades
operating in the open-circuit state. Also shown is the limiting case of harmonic excitation,

or zero sweep rate.

Using the solution obtained by numerical integration as a point of comparison can offer vali-

dation for the implementation of the solution as developed here. This solution utilizes MATLAB’s

built-in ode45 function that uses an explicit Runge-Kutta formulation; using this function requires

casting the equations of motion in Eq. 3.31 into first-order form. Defining the states as y1 = x and
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y2 = x′, the first-order equations of motion are


y′1

y′2

=

 0 I

−M̄−1K̄ −M̄−1C̄




y1

y2

+


0

M̄−1(F̄m + F̄sw)

 (3.106)

Continuing with the previous example system, Fig. 3.7 shows the time response of all blades

of the blisk subjected to 3EO excitation with ω̄rate = 10−6. The piezoelectric elements on all of

the blades initially begin in the open-circuit state, then followed by three switches: 1) the first

switch occurs at ω̄sw,1 = 0.98 to the short-circuit state, 2) the second switch occurs at ω̄sw,2 = 1.01

returning to the open-circuit state, and 3) the final switch occurs at ω̄sw,3 = 1.04 again returning

to the short-circuit state. Figure 3.7 shows these three separate switches as vertical lines in each

time response. This figure from the developed solution (red) superposed on the response obtained

from MATLAB’s ode45 solver (black). The solutions are nearly identical, thus validating the

implementation of the solution developed here. Furthermore, both simulations were performed

using a personal computer with a 3.40 GHz Intel Core i7 processor with 8.00 GB of RAM. The total

computation time using MATLAB’s ode45 solver was 133.803 s, while the computation time using

the developed analytical solution was an order of magnitude less at 12.194 s. As the analytical

solution significantly reduces the computational expense while offering similar accuracy, this is

the chosen solution henceforth.
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Figure 3.7: Comparison between the time responses of each blade obtained using MATLAB’s ode45
solver (black curves) and the developed solution (red curves). These plots also show the

three arbitrarily chosen switch triggers (vertical dashed lines)
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CHAPTER 4
VIBRATION REDUCTION VIA RESONANCE FREQUENCY

DETUNING

This chapter presents the RFD concept as applied to the lumped-parameter model. Section 4.1

discusses the identification of the optimal sets of switch triggers that optimize RFD vibration re-

duction performance. It begins with an analytical determination of the optimal triggers for the

limiting case of harmonic excitation. It also presents the optimization procedure used to iden-

tify the optimal triggers when considering transient excitation. Section 4.2 presents the results of

Monte Carlo simulations used to identify general trends for various design parameters.

4.1 Optimal Trigger Identification

The performance of RFD depends largely on when the switch between stiffness states initiates.

When considering a mistuned system, RFD may require multiple switches to avoid the increased

number of resonance peaks present in the forced response. As such, identification of these optimal

switch triggers is paramount to RFD’s success.
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4.1.1 Limiting Case of Harmonic Excitation

Although RFD is a transient approach, the limiting of harmonic excitation, or zero sweep rate,

offers fundamental insight into the identification of the optimal trigger sets. The analysis presented

here considers three separate cases: 1) a tuned blisk, 2) a mistuned blisk with decoupled blades,

and 3) a mistuned blisk that includes the interblade coupling.

4.1.1.1 Tuned Blisk

Consider first the case of a tuned blisk. As derived previously and shown in Eq. 3.67, the frequency

response magnitudes for nEO excitation and with all blades operating in either the open- or short-

circuit states are

|H̄oc|=
1√{

[1+2k̄c(1− cosnα)]− ω̄2
}2

+(2ζ0ω̄)2
(4.1)

|H̄sc|=
1√{

[1+2k̄c(1− cosnα)]−δp− ω̄2
}2

+(2ζ0ω̄)2
(4.2)

In this case, the optimal switch triggers minimize the maximum blisk response. Similar to the

SDOF case, there is only a single optimal trigger ω̄∗sw and it corresponds to the frequency where

both the OC and SC response magnitudes intersect [80, 14]. Equating these response magnitudes
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and solving for the frequency results in

ω̄
∗
sw =

√
[1+2k̄c(1− cosnα)]− 1

2
δp (4.3)

where ω̄∗sw is a function of the coupling stiffness, the excitation order, and the amount of elec-

tromechanical coupling. Inserting ω̄∗sw back into Eq. 4.1 results in the optimal response magnitude

|H̄∗|= 2√
δ 2

p +8ζ 2
0 {2[1+2k̄c(1− cosnα)]−δp}

(4.4)

Typical δp values are on the order of 1% (i.e., δp � 2[1+ 2k̄c(1− cosnα)]) and there is light

coupling between blades, (i.e., k̄c� 1). As such, the approximate response magnitude is

|H̄∗| ≈ 2√
δ 2

p +16ζ 2
0

(4.5)

For heavily damped blisks with minimal electromechanical coupling (i.e., ζ0� δp), the response

magnitude is

|H̄∗| ≈ 1
2ζ 2

0
(4.6)

Monolithic blisks, however, are typically lightly damped such that δp � ζ0, and the response

magnitude is

|H̄∗| ≈ 2
δp

(4.7)
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One measure of RFD performance is the amount of reduced vibration relative to the baseline case

with no switching. As such, normalize the optimal RFD response with respect to the case when all

blades operate in the OC state where, at resonance, the maximum response is |H̄oc|max ≈ 1/2ζ0.

The vibration reduction provided by RFD is then

H̄∗norm ≈
4ζ0

δp
(4.8)

The above equation shows that for a tuned blisk, RFD provides the most benefit for blisks with light

damping and large electromechanical coupling. As δp increases, the short-circuit peak increasingly

shifts away from the open-circuit peak, resulting in the earlier application of the optimal switch

and a reduced peak magnitude.

As an example, Fig. 4.1 shows the response magnitudes of a tuned system subjected to nEO

excitation. The open- and short-circuit peaks occur at frequencies defined by Eqs. 3.58 and 3.62

when h = n. This figure also shows the optimal response magnitude obtained by switching all

blades’ stiffness in accordance with Eq. 4.3. As the excitation frequency increases, the blades

initially operate in the open-circuit state until ω̄∗sw when there is a trigger that initiates the switch

to the short-circuit. As Eq. 4.8 predicts, there is a 92% reduction in the response compared to the

un-switched, open-circuit baseline.
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Figure 4.1: Example of RFD applied to a tuned system subjected to harmonic excitation. This figure
shows the open-circuit response (blue), short-circuit response (red), and the optimal

response (gold), as well as the optimal switch and corresponding maximum magnitude
(black circle).

4.1.1.2 Mistuned Blisk with Decoupled Blades

Next, consider the case of a mistuned blisk with each blade decoupled from the neighboring blades

such that k̄c = 0. Due to the mistuning, each blade has separate and distinct natural frequencies such

that the jth blade’s open- and short-circuit natural frequencies are ω̄2
oc, j = 1+ δmis, j and ω̄2

sc, j =

1+δmis, j−δp, respectively. As such, the resulting response magnitudes in the frequency domain

for the jth blade operating in either the open- or short-circuit state is

|H̄oc, j|=
1√{

1+δmis, j− ω̄2
}2

+(2ζ0ω̄)2
(4.9)

|H̄sc, j|=
1√{

1+δmis, j−δp− ω̄2
}2

+(2ζ0ω̄)2
(4.10)
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Using a similar procedure as with the tuned system, the optimal switch for the jth blade is

ω̄
∗
sw, j =

√
1+δmis, j−

1
2

δp (4.11)

As both δmis, j and δp are small, the first-order approximation of this square root is

ω̄
∗
sw, j ≈ 1+

1
2

δmis, j−
1
4

δp (4.12)

and varies linearly with the mistuning. The corresponding optimal response magnitude for the jth

blade is

|H̄∗j |=
2√

δ 2
p +8ζ 2

0 {2(1+δmis, j)−δp}
(4.13)

Using the assumption δp� ζ0, the optimal response is

|H̄∗j | ≈
2
δp

(4.14)

and the optimal response normalized by the maximum open-circuit response is

|H̄∗norm, j| ≈
4ζ0

δp
(4.15)

Similar to the tuned blisk, the jth blade’s optimal switch and corresponding response magnitude

are functions of δp. In the tuned system, however, the optimal trigger for all blades occurs at the
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same frequency, whereas the optimal triggers for the mistuned blisk with decoupled blades are

blade dependent and must account for the mistuning present in the blades.

Figure 4.2: Example of RFD applied to a mistuned system with two decoupled blades and subjected to
harmonic excitation. This figure shows the open-circuit response (blue), short-circuit

response (red), and the optimal response (gold), as well as the optimal switch and
corresponding maximum magnitude (black circles) for each blade. This figure also shows
the response for each blade (light, thin curves) and the maximum response of either blade

(dark, thick curves) at each frequency line.

As an example, Fig. 4.2 shows the frequency response of a mistuned blisk with two decou-

pled blades and subjected to harmonic excitation. The first pair of peaks corresponds to the 1st

blade with the lower stiffness, and the second pair of peaks corresponds to the 2nd blade with the

higher stiffness. This figure also shows the optimal response magnitude obtained by switching each

blade’s stiffness state at the intersection of the respective open- and short-circuit response magni-

tudes, as defined in Eq. 4.11. As the excitation frequency increases, each blade initially operates in

the open-circuit state. Upon reaching ωsw,1, a trigger initiates the switch to the short-circuit state

for the 1st blade. As the excitation frequency increases further, the second blade continues to oper-

ate in the open-circuit state. Upon reaching ωsw,2, a trigger initiates the switch to the short-circuit
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state for the 2nd blade. As Eq. 4.15 predicts, there is a 92% reduction in the response of both blades

compared to the un-switched, open-circuit baseline.

4.1.1.3 Mistuned Blisks Including the Interblade Coupling

As the two preceding sections show, the tuned system requires only one trigger application for all

blades simultaneously, while the system with decoupled blades requires a blade-dependent trigger

application for the Ns blades. In both these limiting cases, each blade will only experience a

single resonance; however, when considering the effects of both the interblade coupling and the

mistuning, the system behaves within these two limiting cases. For example, for blisks where the

mistuning strength is small with respect to the interblade coupling (i.e., σmis� k̄c), the presence

of the mistuning acts as a small perturbation to the tuned system; whereas for blisks where the

mistuning strength is large with respect to the interblade coupling (i.e., σmis� k̄c), the presence of

the mistuning acts as a small perturbation to the mistuned system with decoupled blades [81, 82].

As Fig. 3.5 showed previously, this combination of the interblade coupling with the mistuning

will induce multiple resonances experienced by each blade, with each resonance occurring at the

mistuned blisk’s natural frequencies. As the blades experience each resonance simultaneously,

RFD can reduce vibration by switching each blade’s stiffness simultaneously.

The task then remains to identify the optimal set of switch triggers to reduce vibration for the

mistuned blisks and requires the defining an appropriate objective function to optimize. For many

vibration reduction approaches, the primary goal is to reduce the maximum response of the entire
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blade set; however, solely focusing on reducing this maximum response potentially ignores other

resonance peaks that may appreciably contribute to the total response. As such, a secondary goal is

to reduce the total area under the response envelope curves to target these less-salient resonances.

Considering these two goals, the objective function J that RFD seeks to minimize is

J = w1
|X̄max|
|X̄oc,max|

+w2
∑

Ns−1
j=0

∫ t2
t1 |X̄ j|dt

∑
Ns−1
j=0

∫ t2
t1 |X̄oc, j|dt

(4.16)

where wi are the user-defined weights used to control the relative importance of the two objectives.

As an example, consider again the same 2-DOF system used in the two preceding sections

with k̄c = 0.02, δmis,1 = −0.05, and δmis,2 = 0.05. Figure 4.3a shows the response envelopes for

each blade with the system operating in either the open- or short-circuit state. As the excitation

sweeps up in frequency, RFD requires three application of three triggers to minimize J: 1) the

blades initially operate in the open-circuit state, then switch to the short-circuit state to avoid

the first open-circuit resonance; 2) the blades operate in the short-circuit state, then switch to the

open-circuit state to avoid the second short-circuit resonance; and 3) the blades operate in the open-

circuit state, then switch to the short-circuit state to avoid the final open-circuit peak. Employing an

exhaustive-search strategy to test all various combinations of triggers enables the identification of

the optimal set. Figure 4.3b shows the objective function for each combination of the three triggers.

The dark blue region corresponds to the optimal set of triggers that, for this system, corresponds to

ω̄sw,1 = 0.979, ω̄sw,2 = 1.001, and ω̄sw,3 = 1.039; though, there are other sets of switches that also

offer excellent performance. Figure 4.3a also shows this optimal response with the vertical lines
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indicating the frequencies of the optimal triggers. The optimal response shows a 91.2% reduction

of the maximum response peak, as well reductions in the smaller peaks associated with the first

resonance.

Figure 4.4 shows the effects that the mistuning has on the optimal system response and optimal

switch triggers for the same 2-DOF system, but with the mistuning magnitude ranging from δm,1 =

[−0.15,0] for the 1th blade, and δm,2 = [0,0.15] for the 2nd blade. Each figure shows quantities

corresponding to the optimal trigger obtained when considering only a single switch from the

open- to short-circuit state, as well as the optimal triggers obtained when considering multiple

switches, as in the example shown in Fig. 4.3.

Figure 4.4a shows the influence of the mistuning strength on the optimal triggers and only

shows the triggers that initiate the switch from the open- to short-circuit state, and not vice versa.

When the mistuning is small, there is only a single resonance peak in either the open- or short-

circuit states. As such, the optimal triggers converge to the tuned-system trigger predicted in

Eq. 4.3. As the mistuning magnitude increases, multiple resonance peaks appear in the response

and requires multiple switches to reduce vibration. These optimal triggers branch out to track the

optimal triggers identified for the mistuned blisk with the decoupled blades that vary linearly as

predicted in Eq. 4.12. When considering only a single trigger, the optimal curve tracks the top

curve corresponding to the switch used to avoid the second pair of resonance peaks. This occurs

due to the second open-circuit resonance peak exhibiting a larger magnitude than the first.

Figures 4.4b and 4.4c show the maximum peak response for the entire blade set as well as the

total area under all response envelope curves, the two components making up J in Eq. 4.16. Both
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of these figures show quantities normalized by the quantities obtained for the open-circuit, tuned

system. For small mistuning strengths, the optimal response obtained when considering both a

single trigger, or multiple triggers, converges to a single value corresponding to the tuned-system

optimal response. As the mistuning increases, the optimal response obtained when considering

multiple triggers remains relatively constant; however, the optimal response obtained when con-

sidering a single trigger diverges and performance deteriorates as the single trigger can only reduce

vibration for a single resonance peak.
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(a) Maximum response envelopes with vertical lines indicating the frequencies
of the three optimal switches.

(b) Optimization function for each combination of switches.

Figure 4.3: Example of RFD applied to a mistuned 2-DOF system.
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(a) Optimal switch triggers.

(b) Amplification factor.

(c) Total area under response envelope curves.

Figure 4.4: The effects of mistuning strength for the 2-DOF mistuned system.
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4.1.2 Optimal Trigger Identification for Transient Excitation

As the preceding section showed, a 2-sector mistuned blisk subjected to harmonic excitation re-

quired three switches to maximize RFD performance. In general, an Ns-sector blisk may require up

to 2Ns−1 switches to maximize RFD performance. Furthermore, solving for the response from a

linearly varying excitation requires numerically computing the complex error function to determine

the time-dependent magnitude and phase components in Eq. 3.105, thus significantly increasing

the computational expense compared to the harmonic case. As such, the exhaustive-search strat-

egy employed in the previous example with harmonic excitation is not feasible for identification

of the optimal triggers for blisks with many sectors and subjected to transient excitation. Rather,

this analysis incorporates a more computationally efficient optimization procedure to more rapidly

identify these optimal triggers.

The optimization procedure used here is the genetic algorithm. Darwin’s theory of evolution

forms the basis of this algorithm by simulating a natural selection process to produce the most

fit solution from a population of candidate solutions. During each iteration, or generation, the

candidate solutions are chosen for mating using a probabilistic approach and based on a measure

of their fitness. As such, the solutions with the best fitness have the greatest chance to pass on their

genes to the subsequent generation via application of genetic operators such as genetic crossover

and mutation. Over numerous generations, the natural selection process increases the total fitness

of the population, while simultaneously producing the most fit solution that ideally corresponds to

the problem’s global optimum.
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As applied here, the candidate solutions contain the real-valued switch triggers as their genetic

code. The process begins by randomly generating a total of Npop initial candidates with switch

triggers falling within user-defined upper and lower limits, ω̄sw,U and ω̄sw,L, and generated in as-

cending order. After generating this initial population, each candidate’s fitness is measured by

evaluating a fitness function that corresponds to the inverse of the objective function defined in

Eq. 4.16, or 1/J. As such, the most fit individuals correspond to the individuals that offer the

greatest vibration reduction performance. A tournament selection process then chooses the indi-

vidual candidates for mating. After selecting two candidates in this manner, the candidates mate

and perform a genetic crossover at a probability of Pcross. This analysis uses an arithmetic crossover

to ensure that each offspring contains switch triggers that fall within the previously defined upper

and lower limits. [83] Each gene will then mutate at a probability of Pmut with the mutated gene

replaced by a randomly chosen switch trigger within the previously defined limits. The process

iterates over a total of Ngen, or until satisfying a specified threshold.

As an example of the switch-trigger optimization procedure, consider again the 13-sector

mistuned blisk previously discussed in Chapter 3 and with 6EO excitation sweeping through at

ω̄rate = 10−5. The parameters used in the genetic algorithm are Npop = 50, Ngen = 50, Pcross = 0.80,

and Pmut = 0.05. To verify the implementation of the genetic algorithm, Fig. 4.5 shows the opti-

mization results when considering only a single trigger. Figure 4.5a shows that the mean ob-

jective function for the entire population shows an immediate decrease and stabilizes near the

optimal solution of Jopt = 0.677 within the first three generations. The resulting optimal trig-

ger is ω̄sw,opt = 1.041. Figure 4.5b shows the objective function obtained when employing the
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exhaustive-search strategy to test a range of switch triggers between ω̄sw = [0.92,1.11]. There is a

clear minimum corresponding to the optimal trigger at ω̄sw,opt = 1.041 showing agreement with the

optimal trigger obtained from the genetic algorithm. Figure 4.5c shows the response envelopes for

the open-circuit, short-circuit, and optimal cases. In the short-circuit case, the second largest peak

occurs at a frequency near the largest open-circuit peak. Consequently, although RFD reduces the

maximum peak by 32.8%, these overlapping modes limit the performance.

Continuing with the previous example, Figure 4.6 shows the optimization results when consid-

ering 2Ns−1 switches. Figure 4.6a shows an overall decreasing trend for the mean objective func-

tion with each successive generation that begins to stabilize by the 15th generation. Furthermore,

the optimal solution converges to Jopt = 0.529, a 21.9% improvement when compared to the case

of a single trigger. Figure 4.6b shows the response envelopes for the open-circuit, short-circuit, and

optimal cases. Interestingly, the optimal switch triggers cluster near the largest open-circuit peak

and further decreases the maximum response peak compared to the case of a single trigger. This

trigger clustering shows noticeable increases in RFD performance in the event that open- and short-

circuit resonances overlap. This seemingly promising result may arise since in these two stiffness

states, the overlapping resonance frequencies will have different operating deflection shapes. As

such, the near-periodic switching between these two states does not allow the response to reach

a steady-state condition in any one state before undergoing a switch to the opposing state. Note

here that this not the same effect as the synchronized-switch damping approaches discussed in the

Section 2.2.5 that must switch synchronously with the system deflection (four times per vibration
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cycle). Instead, the approach identified here can switch at any point in the vibration cycle at much

longer time intervals.
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(a) Objective function for each generation.

(b) The objective functions correspond to all switches tested and
the optimal switch from the genetic algorithm.

(c) Response envelopes for the open-circuit (blue), short-circuit
(red), and optimal (gold) cases.

Figure 4.5: Optimization results when considering only a single switch trigger.
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(a) Objective function for each generation.

(b) Response envelopes for the open-circuit (blue), short-circuit
(red), and optimal (gold) cases.

Figure 4.6: Optimization results when considering multiple single switch triggers.
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4.2 Parametric Study via Monte Carlo Simulations

As mistuning is inherently random, Monte Carlo simulations can provide insight on the underlying

fundamental effects of the various design parameters. These parameters may include the mistun-

ing strength, the excitation frequency sweep rate, the modal damping, and the electromechanical

coupling. A Monte Carlo statistical analysis requires performing a large number of simulations to

obtain a representative distribution for each design parameter. The process begins by generating

a system with the desired design parameters. Each generated system contains a different blade-

stiffness distribution randomly obtained from a normal distribution with zero mean and standard

deviation σmis. Applying the switch-trigger optimization procedure to each generated system pro-

duces the optimal response expected from RFD.

Although the genetic algorithm significantly reduces the computational expense for identifying

the optimal sets of switch triggers, the shear number of simulations required for obtaining a rep-

resentative distribution is not feasible to perform in a timely manner. The data set will, however,

trend towards a Weibull distribution, thus enabling the utilization of an accelerated Monte Carlo

analysis [84, 37]. This method requires fitting the cumulative distribution function for a three-

parameter Weibull distribution to a decreased number of data points, thus significantly reducing

the computation expense while still producing high-accuracy estimates. The results presented here

correspond to the 95th percentile of the amplification factors for the maximum peak response of the

entire system normalized by the open-circuit, tuned value(Max-Peak AF), as well as the total area

under all response envelope curves, also normalized by the open-circuit tuned value (Envelope-
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Area AF). Furthermore, the 95th percentile for a data set refers to the value where only 5% of

the data occurs with a greater value. The accelerated Monte Carlo simulations as used here only

require generating and analyzing 50 systems per parameter set to produce estimates of the 95th

percentile of the desired quantities. Furthermore, the genetic algorithm utilized the same param-

eters as in the preceding example; however, the optimization included a convergence threshold to

speed up the trigger identification process. This threshold was satisfied when the optimal objective

function decreased by less than one percent of the mean of the optimal objective function spanning

the previous five generations.

Figures 4.7–4.10 show the results from the Monte Carlo simulations considering the effects

of the mistuning strength, sweep rate, modal damping, and the difference in stiffness states (elec-

tromechanical coupling) on a 13-sector system. Each figure shows quantities corresponding to the

tuned system that include the un-switched, open-circuit response used as the baseline and the op-

timal response provided by RFD. Each figure also shows quantities corresponding to the mistuned

systems that include the open-circuit response, as well as the optimal responses provided by RFD

when considering only a single trigger, or multiple triggers identified using the genetic algorithm.

Figure 4.7 shows the effect that the mistuning strength has on the response with the parameters

ω̄rate = 10−5, ζ0 = 0.001, and δp = 0.05 held constant for all runs. Figure 4.7a shows the effect that

the mistuning strength has on the Max-Peak AF. For the tuned system, RFD reduces the Max-Peak

AF by 67.4%. For the mistuned system operating in the open-circuit state, the response approaches

that of the tuned system for small mistuning. As the mistuning strength increases, the Max-Peak

AF sharply increases until a critical point, then steadily declines. This is a similar trend found
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in the mistuning literature for harmonic excitation [2]. For all mistuning levels, RFD reduces the

Max-Peak AF. For small mistuning levels, RFD performance for the mistuned system converges

to that of the tuned system. As the mistuning increases, the slope of the Max-Peak AF curves

for RFD is smaller than that of the open-circuit case, thus RFD reduces the system’s sensitivity

towards mistuning. Further increases in mistuning cause the performance when only considering a

single trigger to diverge from the performance when considering multiple triggers since there are

multiple resonance peaks present for highly mistuned systems. RFD performance also deteriorates

for both cases in highly mistuned systems as there exists some overlap between the short- and open-

circuit natural frequencies and, consequently, the corresponding resonance peaks can also overlap,

thus hindering RFD performance. Figure 4.7b shows the effect that the mistuning strength has

on the Envelope-Area AF. For the tuned system, RFD reduces the Envelope-Area AF by 62.8%.

Similar to the Max-Peak AF curves, the Envelope-Area AF for the mistuned system approaches the

tuned system for small mistuning and RFD performance also deteriorates for large mistuning. The

performance for RFD for both switch configurations, however, shows an approximate one-to-one

relation for all mistuning values. Although the Max-Peak AF decreases when applying multiple

triggers, the transients developed following each switch may increase the lower-level vibration,

thus causing this one-to-one relation.

Figure 4.8 shows the effect that the excitation sweep rate has on the response with the parame-

ters σm = 0.03, ζ0 = 0.001, and δp = 0.05 held constant for all runs. Figure 4.8a shows the effect

that the sweep rate has on the Max-Peak AF. For the tuned case, RFD provides the most benefit for

slow sweeps, consistent with previous results for a SDOF system [3]. The quick passage through
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resonance for rapid sweeps generates minimal vibration, even for the un-switched, open-circuit

case, thus limiting the benefits provided by RFD. Interestingly, for the open-circuit, mistuned case,

an increasing sweep rate causes an increase in the Max-Peak AF up to a critical point, and only

slightly decreases past this point. For slower sweeps, the response approaches that of harmonic ex-

citation; however, as the sweep rate increases, there is a compounding effect due to the influence of

the closely-spaced modes in the response that results in this increase in the Max-Peak AF [78, 79].

Similar to the tuned case, RFD shows excellent performance for the slow and intermediate sweep

rates, and begins to degrade for the most rapid sweeps tested. Furthermore, RFD with multiple

switches slightly outperforms RFD with only a single switch for all sweep rates tested. Figure 4.8b

shows the effect that the sweep rate has on the Envelope-Area AF. Similar to the Max-Peak AF,

RFD provides the greatest benefit for slow sweeps and degrades for quicker sweeps. Surprisingly,

for the open-circuit mistuned case, the quicker sweeps result in a lower Envelope-Area AF than for

the tuned case. This result suggests that although the mistuned maximum peak is larger than that

of the tuned case, only a small number of blades experience these large magnitudes; conversely,

all other blades respond with comparatively smaller amplitudes. Furthermore, at slower sweep

rates, RFD exhibits better performance when only considering a single trigger due to the afore-

mentioned transients that develop when considering an increased number of triggers; however, this

effect diminishes for quicker sweeps.

Figure 4.9 shows the effect that the modal damping has on the response with the parameters

σm = 0.03, ωrate = 10−5, and δp = 0.05 held constant for all runs. Figure 4.9a shows the effect that

the modal damping has on the Max-Peak AF. For the tuned case, RFD provides the most benefit
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for low modal damping, consistent with previous results for a SDOF system [3]. For the open-

circuit, mistuned case, increasing the modal damping decreases the peak response with respect to

the tuned case. As the damping increases, the closely-spaced resonance peaks broaden and may

become indistinguishable from a single resonance peak, thus reducing the compounding effect

when sweeping through the closely-spaced modes and, consequently, the Max-Peak AF. Similar to

the tuned case, RFD provides the greatest benefit for lightly damped systems. Furthermore, RFD

exhibits only marginally better performance when considering multiple triggers rather than a single

optimal trigger. Figure 4.10b shows the effect that the modal damping has on the Envelope-Area

AF. Similar to the Max-Peak AF, RFD provides the greatest benefit for lightly damped systems. For

the open-circuit, mistuned case, the Envelope-Area AF remains relatively constant for all damping

values. Furthermore, RFD again provides the greatest benefit for the lightly damped systems.

Figure 4.10 shows the effect that the difference in stiffness states (i.e., the electromechanical

coupling) has on the response with the parameters σm = 0.03, ωrate = 10−5, and ζ0 = 0.001 held

constant for all runs. Figure 4.10a shows the effect that the difference in stiffness states has on

the Max-Peak AF. For the tuned case, RFD provides the most benefit for large δp, consistent with

previous results for a SDOF system [3]. For the open-circuit, mistuned case, the Max-Peak AF

is relatively constant for all δp values as this quantity only has an effect when switching between

stiffness states. The deviations from the otherwise constant curve arise due to the stochastic vari-

ability when using the Weibull fit on each of the various sets of 50 data points; including more

data points would diminish this variability at the expense of increased computation time. Simi-

lar to the tuned case, RFD provides the greatest benefit for systems with large δp values as the
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closely-spaced modes corresponding to the short-circuit state shift increasingly further away from

the open-circuit modes. Figure 4.10b shows the effect that δp has on the Envelope-Area AF; the

curves follow the same trends as the Max-Peak AF for all cases.

Overall, the results obtained from the Monte Carlo simulations show that RFD provides the

greatest performance potential for lightly mistuned, lightly damped systems with large electrome-

chanical coupling and excited by slow or moderate frequency sweeps. Utilizing multiple triggers

with RFD offers greater performance for highly mistuned systems compared utilizing on a single

optimized trigger; however, there are only marginal improvements for all other parameters. This

result suggests that for some cases, there is premature convergence of the genetic algorithm on sets

of triggers that correspond to a local minimum for the objective function. Due to the utilization of

a reduced number of 50 data points with the Weibull fit, premature convergence for several of these

points may skew the data, thus leading to an overestimation of the true optimal response. Such a

drawback may be unavoidable when performing large-scale Monte Carlo simulations due to the

large computational expense; however, applying RFD to a single system, as is the case in Fig. 4.6,

enables the utilization of more computational resources to identify a more optimal set of switches.

(a) Maximum peak response. (b) Total area under the response envelope curves.

Figure 4.7: Monte Carlo simulation results showing the effect of the mistuning strength.
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(a) Maximum peak response. (b) Total area under the response envelope curves.

Figure 4.8: Monte Carlo simulation results showing the effect of the sweep rate.

(a) Maximum peak response. (b) Total area under the response envelope curves.

Figure 4.9: Monte Carlo simulation results showing the effect of the modal damping.

(a) Maximum peak response. (b) Total area under the response envelope curves.

Figure 4.10: Monte Carlo simulation results showing the effects of the difference between the open-
and short-circuit stiffness states (electromechanical coupling).
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CHAPTER 5
APPLICATION TOWARDS AN ACADEMIC BLISK—PART 1:

MODELING AND OPTIMIZATION

The following two chapters provide an overview of extending the analysis of the RFD concept

towards more realistic bladed disk models. This chapter details the numerical model develop-

ment and the identification the optimal patch parameters, while the following chapter details the

experimental test setup and corresponding experimental analysis. Section 5.1 begins with the

development of an academic blisk model derived using the assumed-modes approach and that in-

cludes electrical influence of the blade-mounted piezoelectric patches. In a similar manner to blisk

models developed using the finite-element approach, the model developed here exploits the cyclic

symmetry of a tuned blisk to significantly reduce computational expense when performing modal

analysis. Section 5.2 then details the application of multi-objective optimization procedure that

aids in the selection of the optimal piezoelectric patch parameters using the electromechanical

coupling coefficients as the performance measure.
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5.1 Blisk Model Development

This section begins with the development of the academic blisk model that includes the blade-

mounted piezoelectric elements. Although in practice, blisks have significantly more complex

geometries, the blades have similar dynamics to and can be idealized with flat plates. Figure 5.1

shows the academic blisk geometry that is manufactured from a single material with a clamped

boundary condition along the disk’s inner radius. This relatively simple geometry facilitates the

use of the low-order assumed-modes approach to model the blisk. Over the years, several studies

utilized similar energy-based modeling strategies to analyze blisk vibrations [85, 86, 87]. Several

studies also employed the to model piezoelectric-based systems, including a stand-alone turboma-

chinery blade detached from the disk [3, 80, 88]. No such studies exist, however, that utilize the

assumed-modes approach, or a similar energy-based approach, to model a blisk that includes the

influence of blade-mounted piezoelectric patches.

5.1.1 Total System Energy

Deriving the equations of motion using the assumed-modes approach requires calculating the to-

tal system energy. Several terms contribute to the total system energy: the total kinetic energy,

the total potential energy, the internal electrical energy of the piezoelectric patches, and the non-

conservative work performed on the system by the external mechanical forcing and the electric

charge on the piezoelectric patches.
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(a) Full blisk showing the reference sector with a course mesh.

(b) Reference sector showing the distributed springs connecting the
blade and disk portions of the sector.

Figure 5.1: Diagram of the academic blisk with a clamped boundary condition along the inner disk
radius. The model also contains multiple piezoelectric patches (blue rectangles).
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5.1.1.1 Kinetic Energy

The total system kinetic energy of the Ns sectors is

Ttot =
Ns−1

∑
j=0

Td, j +
Ns−1

∑
j=0

Tb, j +
Np

∑
k=1

Ns−1

∑
j=0

Tp,k, j (5.1)

where Td , Tb, and Tp are the kinetic energies of the disk, blade, and the piezoelectric patches,

respectively. The j subscript denotes a quantity associated with the jth sector, and the k subscript

denotes a quantity associated with the kth piezoelectric patch on the jth sector. The corresponding

kinetic energies associated with the jth sector are

Td, j =
1
2

∫
Vd, j

ρd, jẇ2
d, jdV (5.2)

Tb, j =
1
2

∫
Vb, j

ρb, jẇ2
b, jdV (5.3)

Tp,k, j =
1
2

∫
Vp,k, j

ρp,k, jẇ2
p,k, jdV (5.4)

with the integrals evaluated over the volume of the disk, blade, and piezoelectric patches, respec-

tively. The quantities ρd , ρb, and ρp are the densities of the disk, the blade, and the piezoelectric

patches, respectively. This analysis assumes a perfect bond between the piezoelectric patches and

the blades. As such, each patch’s transverse displacement is equal to the blade’s transverse dis-

placement within the area enclosed by the patch (i.e., wp,k, j = wb, j).
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5.1.1.2 Mechanical Potential Energy

The total system potential energy of the Ns sectors is

Utot =
Ns−1

∑
j=0

Ud, j +
Ns−1

∑
j=0

Ub, j +
Np

∑
k=1

Ns−1

∑
j=0

Up,k, j (5.5)

where Ud , Ub, and Up are the mechanical potential energies of the disk, blade, and the piezoelectric

patches, respectively. The corresponding mechanical potential energies associated with the jth

sector are

Ud, j =
1
2

∫
Vd, j

Td
tSddV (5.6)

Ub, j =
1
2

∫
Vb, j

Tb
tSbdV (5.7)

Up,k, j =
1
2

∫
Vp,k, j

Tp
tSpdV (5.8)

where T is a vector of stresses and S is a vector of strains. This analysis assumes that the thick-

ness of the disk, the blades, and all of the piezoelectric patches are small compared to the other

two dimensions, thus resulting in negligible out-of-plane stresses. First, consider the mechanical

potential energy associated with the disk and blades. The proceeding analysis only considers the

blade portion of the sector and omits the disk portion for brevity; however, the disk portion is sim-

ilar to that of the blade, but uses the quantities corresponding to the disk. This analysis assumes

the disk and blades are isotropic. The resulting constitutive equations for the three non-zero stress
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components for the jth blade are


T1

T2

Tb


=


Trr

Tθθ

Trθ


=

Y
1−ν2


1 ν 0

ν 1 0

0 0 1−ν

2




S1

S2

S6


(5.9)

where Y and ν are the Young’s modulus and Poisson’s ratio, respectively. Inserting the stress

components into the blade’s potential energy results in

Ub, j =
1
2

∫
Vb, j

Yb, j

1−νb, j
2

(
S2

1 +S2
2 +2νb, jS1S2 +

1−νb, j

2
S2

6

)
dV (5.10)

Further, the three non-zero strain components are


S1

S2

S6


=


Srr

Sθθ

2Srθ


=



∂ur
∂ r

ur
r + 1

r
∂uθ

∂θ

1
r

∂ur
∂θ

+ ∂uθ

∂ r −
uθ

r


(5.11)

For thin, plate-type structures, the cross-section remains nominally orthogonal to the neutral plane.

As such, the in-plane displacements are related to the transverse displacement according to

u =
[
− z

∂w
∂ r

− z
r

∂w
∂θ

w
]

(5.12)
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where z is the distance from the neutral plane. The resulting strain components as a function of the

transverse displacement are


S1

S2

S6


=


−z∂ 2w

∂ r2

−z
(1

r
∂w
∂ r +

1
r2

∂ 2w
∂θ 2

)
−2z

(1
r

∂ 2w
∂ r∂θ
− 1

r2
∂w
∂θ

)


(5.13)

Utilizing the above strains, the jth blade’s potential energy as a function of the displacement is

Ub, j =
1
2

∫
Vb, j

Yb, jz2

1−νb, j
2

{(
∇wb, j

)2−2
(
1−νb, j

)[1
r

(
∂ 2wb, j

∂ r2
∂wb, j

∂ r

+
1
r

∂ 2wb, j

∂ r2
∂ 2wb, j

∂θ 2

)
− 1

r2

(
∂ 2wb, j

∂ r∂θ
− 1

r
∂wb, j

∂θ 2

)]}
dV

(5.14)

Next, consider the mechanical potential energy of the piezoelectric patches. Assuming the

patches are transversely isotropic with the plane of symmetry orthogonal to the poling direction

(typical convention aligns the poling with the 3-direction, or the z-axis used here), the constitutive

equations for a thin patch are [89]



T1

T2

T6

D3


=



c̄E
11 c̄E

12 0 −ē31

c̄E
12 c̄E

11 0 −ē31

0 0 c̄E
66 0

ē31 ē31 0 ε̄S
33





S1

S2

S6

E3


(5.15)
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where the reduced elastic, electromechanic, and permittivity constants are

c̄E
11 =

sE
11

(sE
11 + sE

12)(s
E
11− sE

12)
(5.16)

c̄E
12 =

−sE
12

(sE
11 + sE

12)(s
E
11− sE

12)
(5.17)

c̄66 =
1

sE
66

(5.18)

ē31 =
d31

sE
11 + sE

12
(5.19)

ε̄
S
33 = ε

T
33−

2d2
31

sE
11 + sE

12
(5.20)

Inserting the stresses into Eq. 5.8 results in the mechanical potential energy for the kth patch on the

jth blade such that

Up,k, j =
1
2

∫
Vp,k, j

(
c̄E

11,k, jS
2
1 + c̄E

11,k, jS
2
2 +2c̄E

12,k, jS1S2 + c̄E
66,k, jS

2
6

)
dV − 1

2

∫
Vp,k, j

ē31,k, j

(
S1 +S2

)
E3dV

=Ustrain,p,k, j−Ucoupled,k, j

(5.21)

where Ustrain,p,k, j is the mechanical strain energy and Ucoupled,k, j is a quantity that couples the

energy between the mechanical and electrical domains. Assuming a perfect bond between the patch

and the blade with a bond layer of negligible thickness, the strain components and displacements

are the same as in Eqs. 5.12 and 5.13 while also using the displacement of the blade’s neutral plane
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as the reference. The mechanical strain potential energy is then

Ustrain,p,k, j =
1
2

∫
Vp,k, j

z2

{
c̄E

11,k, j

(
∂ 2wb, j

∂ r2

)2

+
c̄E

11,k, j

r2

[(
∂ 2wb, j

∂ r2

)2

+
2
r

(
∂wb, j

∂ r

)(
∂ 2wb, j

∂θ 2

)

+
1
r2

(
∂ 2wb, j

∂θ 2

)2]
+

2c̄E
12,k, j

r

[(
∂ 2wb, j

∂ r2

)(
∂wb, j

∂ r

)
+

1
r

(
∂ 2wb, j

∂ r2

)(
∂ 2wb, j

∂θ 2

)]
+

4c̄E
66,k, j

r2

[(
∂ 2wb, j

∂ r∂θ

)2

− 2
r

(
∂ 2wb, j

∂ r∂θ

)(
∂wb, j

∂θ

)
+

1
r2

(
∂wb, j

∂θ

)2] }
dV

(5.22)

Determining the coupling component of the mechanical energy requires the electric field pro-

duced by each piezoelectric element. Assuming that the top and bottom surfaces containing the

conducting electrodes are parallel, the electric field arises from the variation of the voltage V

through the patch thickness

E3 =−
∂V
∂ z

(5.23)

Inserting the electric field and strains into the coupling term in Eq. 5.21 results in

Ucoupled,k, j =
1
2

∫
Vp,k, j

ze31,k, j

(
∂ 2wb, j

∂ r2 +
1
r

∂wb, j

∂ r
+

1
r2

∂ 2wb, j

∂θ 2

)
∂Vk, j

∂ z
dV (5.24)
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5.1.1.3 Internal Electrical Energy

The total internal electrical energy of all piezoelectric patches is

Wie,tot =
Np

∑
k=1

Ns−1

∑
j=0

Wie,k, j (5.25)

For a piezoelectric patch poled in the direction of the z-axis, the internal energy associated with

the kth patch on the jth blade is

Wie,k, j =
1
2

∫
Vp,k, j

D3E3dV (5.26)

Inserting into the above equation the electric displacement in Eq. 5.15 results in

Wie,k, j =
1
2

∫
Vp,k, j

ē31,k, j(S1 +S2)E3dV +
1
2

∫
Vp,k, j

ε̄33,k, jE2
3 dV

=Ucoupled,k, j +Uelectric,k, j

(5.27)

where the first term on the right-hand-side of the equation is the same coupling term provided in

Eq. 5.24, and Uelectric,k, j is the electrical potential energy stored within each patch. Substituting in

the electric field results in

Uelectric,k, j =
1
2

∫
Vp,k, j

ε̄
S
33,k, j

(
∂Vk, j

∂ z

)2
dV (5.28)
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5.1.2 Continuity at Substructure Interfaces

Up to this point, the derivation does not include the coupling between the various substructures that

include the blade and disk portions of a single sector, and also the coupling between neighboring

sectors. In the assumed-modes approach, one method to synthesize the adjacent substructures and

impose continuity at each interface is through the inclusion of artificial springs. [90, 91] Setting

the spring stiffness to a large value compared to the stiffness of each of the substructures creates a

rigid boundary, thereby enforcing both displacement and rotation continuity at each interface.

5.1.2.1 Continuity Between the Blade and Disk

Consider the rigid coupling between the disk and blade portions of a single sector. Figure 5.1b

shows a diagram of the transverse springs kbdi,z and the torsional springs kbdi,Tr and kbdi,T θ that

couple these two substructures where the “bdi” subscript denotes quantities corresponding to the

“Blade-Disk Interface”. The contribution of these springs to the potential energy of the entire

system is

Ubdi,tot =
Ns−1

∑
j=0

Ubdi, j (5.29)

where the spring energy associated with the jth sector is

Ubdi, j =
1
2

∫
θb1

−θb1

[
kbdi,z

(
wb,bdi, j−wd,bdi, j

)2
+ kbdi,Tr

(
∂wb,bdi, j

∂ r
−

∂wd,bdi, j

∂ r

)2

+ kbdi,T θ

(
1

rbdi

∂wb,bdi, j

∂θ
− 1

rbdi

∂wd,bdi, j

∂θ

)2]
rbdidθ

(5.30)
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5.1.2.2 Continuity Between Neighboring Sectors

In this analysis, the intersector coupling arises between neighboring disk sectors; however, cou-

pling can also arise between the blades through shrouds or snubbers, if present. Discrete springs

can also simulate these additional sources of interblade coupling but is beyond the scope of this

analysis. [86] Figure 5.2 shows a diagram of the transverse springs knsi,z and the torsional springs

knsi,Tr and knsi,T θ that couple the neighboring sectors where the “nsi” subscript denotes quanti-

ties corresponding to the “Neighboring-Sector Interface”. The contribution of these springs to the

potential energy of the entire system is

Unsi,tot =
Ns−1

∑
j=0

Unsi, j (5.31)

The spring energy associated with the jth sector refers to the sets of springs located at the

interface of the left-hand-side of the jth sector and the right-hand-side of the ( j+1)th sector such

that

Unsi, j =
1
2

∫ r2

r1

[
knsi,z

(
wd,R, j+1−wd,L, j

)2
+ knsi,Tr

(
∂wd,R, j+1

∂ r
−

∂wd,L, j

∂ r

)2

+ knsi,T θ

(
1
r

∂wd,R, j+1

∂θ
− 1

r
∂wd,L, j

∂θ

)2]
rdθ

(5.32)

where the R and L subscripts denote quantities corresponding to the right- and left-disk-sector

interface.
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Figure 5.2: Disk diagram showing the artificial springs coupling the neighboring sectors.

5.1.3 Virtual Work due to External Forcing

5.1.3.1 Mechanical Forcing

The external mechanical forcing arises due to aerodynamic forces fm acting on each sector. This

force acts through a virtual displacement δw and performs virtual work δWm. The mechanical

virtual work corresponding to the jth sector is

δWm, j =
∫

A,b
fm, jδw jdA (5.33)
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The aerodynamic forcing can act over all components of the sector, including the disk, the blade,

and all piezoelectric patches. As such, the virtual work acting over the entire system is

δWm,tot =
Ns−1

∑
j=0

δWm,d, j +
Ns−1

∑
j=0

δWm,b, j +
Np

∑
k=1

Ns−1

∑
j=0

δWm,p,k, j (5.34)

5.1.3.2 Electrical Forcing

The piezoelectric patches also introduce an electrical forcing mechanism into the system. Similar

to the external mechanical force, this electrical force acts through a virtual voltage δV and performs

virtual work δWe. The electrical virtual work corresponding to the kth patch on the jth blade is

δWe,k, j =
∫

hp,k, j

fe,k, jδVk, jdz (5.35)

where fe is the electric-charge density. The total virtual work generated by all patches is

δWe,tot =
Np

∑
k=1

Ns−1

∑
j=0

δWe,k, j (5.36)

5.1.4 Cyclic Symmetry of a Tuned Blisk

A tuned blisk is an example of a cyclically symmetric system that inherently contains certain

desirable characteristics that enables the efficient computation of the eigenvalue problem of an
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entire blisk by only requiring the system matrices from a single sector. [9] Each tuned mode shape

is characterized by a spatial harmonic with a harmonic index ranging from 0 to Ns/2 for an even

number of sectors and (Ns− 1)/2 for an odd number of sectors. As such, a real-valued Fourier

series comprises the displacement of both the blade and disk portions of each sector [92, 93]

w j =
1√
Ns

w̃(0)+

√
2
Ns

κ

∑
h=1

[
cos( jhα)w̃(h,c)+ sin( jhα)w̃(h,s)]+ (−1) j

√
Ns

w̃(Ns/2) (5.37)

where w̃ is the transverse displacement of the reference sector in the cyclic coordinate system,

α = 2π/Ns, and κ is a quantity that takes the value of κ = Ns/2−1 for an even number of sectors

or κ = (Ns− 1)/2 for an odd number of sectors. Further, the superscript denotes the associated

spatial harmonic; e.g., (0) denotes the zeroth harmonic, (h,c) and (h,s) denote the cosine and sine

components of the hth harmonic, and (Ns/2) denotes the component of the (Ns/2)th harmonic and

is present only if Ns is even. Stacking each sector’s transverse displacement into a single column

vector and expanding the summation leads to the displacement in matrix form

w = Fw̃ (5.38)

where

w =
[
w0 w1 · · · wNs−1

]t (5.39)

w̃ =
[
w̃(0) w̃(1,c) w̃(1,s) · · · w̃(κ,c) w̃(κ,s) w̃(Ns/2)

]t
(5.40)
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and F is the Fourier transformation matrix defined previously in Eq. 3.45 and reproduced here as

F =
1√
Ns



1
√

2 0 · · · 0 1

1
√

2cosα
√

2sinα · · ·
√

2sinκα −1

1
√

2cos2α
√

2sin2α · · ·
√

2sin2κα 1

...
...

...
...

...

1
√

2cos(Ns−1)α
√

2sin(Ns−1)α · · ·
√

2sin(Ns−1)κα (−1)Ns−1


(5.41)

where the last column only exists if Ns is even.

For finite-element models, application of this transformation decouples the equations of motion

such that the resulting system matrices, generated from a single reference sector, only couple

quantities with similar spatial-harmonic content. A following step then imposes continuity between

the reference sector and the neighboring sectors for spatial harmonic before solving the reduced

eigenproblems to obtain the eigenvalues and eigenvectors. Essentially, this process reduces the

eigenproblem from one that requires solving a large, computationally expensive problem, to one

that requires solving several smaller, significantly cheaper eigenproblems. A tuned blisk modeled

using the assumed-modes approach can similarly take advantage of the cyclically symmetric nature

of a tuned blisk to reduce the computational expense as the proceeding section shows.
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5.1.5 Assumed Displacement and Voltage Fields

To begin, the transverse displacement in cyclic coordinates is written as a linear combination of

assumed mode shapes and the corresponding generalized coordinates where

w̃(0)(r,θ , t) =
M f−1

∑
f=0

Mg−1

∑
g=0

q̃(0)m, f g(t)ψR, f (r)ψΘ,g(θ) (5.42)

w̃(h,c)(r,θ , t) =
M f−1

∑
f=0

Mg−1

∑
g=0

q̃(h,c)m, f g(t)ψR, f (r)ψΘ,g(θ) (5.43)

w̃(h,s)(r,θ , t) =
M f−1

∑
f=0

Mg−1

∑
g=0

q̃(h,s)m, f g(t)ψR, f (r)ψΘ,g(θ) (5.44)

w̃(Ns/2)(r,θ , t) =
M f−1

∑
f=0

Mg−1

∑
g=0

q̃(Ns/2)
m, f g (t)ψR, f (r)ψΘ,g(θ) (5.45)

where q̃m is the time-dependent generalized coordinate corresponding to the specified harmonic,

M f and Mg are the number of assumed shapes chosen in each direction, and ψ are the assumed

mode shapes defined at the specified spatial position and that must satisfy the geometric boundary

conditions of the disk or blade. For the disk, the assumed shape requires a clamped condition (i.e.,

zero displacement and slope) at the inner radius. The other boundaries of the disk incorporate

artificial springs at the neighboring-sector interface and the blade-disk interface, thus requiring a

free boundary condition. For the blade, the artificial springs at the blade-disk interface, and those

at the free edges on all other boundaries, similarly require a free boundary condition. These sets

of assumed shapes can incorporate simple polynomials as in Ref [80]; however, such sets can

suffer numerical stability problems when including high-order modes. [94] Instead, this analysis
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utilizes orthogonal polynomials generated using the Gram-Schmidt orthogonalization procedure,

as first applied to structural systems by Bhat, to alleviate any numerical stability concerns. [95]

The Gram-Schmidt procedure begins by first defining an initial shape that satisfies the geometric

boundary conditions; for the disk and the blade, these initial shapes are

ψR,d,0(r) =
( r− r1

r2− r1

)2
(5.46)

ψΘ,d,0(θ) = 1 (5.47)

ψR,b,0(r) = 1 (5.48)

ψΘ,b,0(θ) = 1 (5.49)

The algorithm to obtain subsequent orthogonal shapes for either the disk or blade is as follows:

ψ1 = (x−A1)ψ0

ψl = (x−Al)ψl−1−Blψl−2

(5.50)

where

Al =

∫ b
a xψ2

l−1(x)dx∫ b
a ψ2

l−1(x)dx

Bl =

∫ b
a xψl−1(x)ψl−2(x)dx∫ b

a ψ2
l−2(x)dx

(5.51)

and x is any spatial variable in the interval a≤ x≤ b. After independently generating mode shapes

in the two principle directions, combining the shapes into a single function results in the displace-
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ments:

w̃(0)(r,θ , t) =
Ml−1

∑
l=0

q̃(0)m,l(t)ψl(r,θ) (5.52)

w̃(h,c)(r,θ , t) =
Ml−1

∑
l=0

q̃(h,c)m,l (t)ψl(r,θ) (5.53)

w̃(h,s)(r,θ , t) =
Ml−1

∑
l=0

q̃(h,s)m,l (t)ψl(r,θ) (5.54)

w̃(Ns/2)(r,θ , t) =
Ml−1

∑
l=0

q̃(Ns/2)
m,l (t)ψl(r,θ) (5.55)

where

ψl(r,θ) = ψR, f (r)ψΘ,g(θ)

l = f Mg +g

(5.56)

Next, writing the displacements in vector form

w̃(0)(r,θ , t) = ΨΨΨ(r,θ)q̃(0)
m (t) (5.57)

w̃(h,c)(r,θ , t) = ΨΨΨ(r,θ)q̃(h,c)
m (t) (5.58)

w̃(h,s)(r,θ , t) = ΨΨΨ(r,θ)q̃(h,s)
m (t) (5.59)

w̃(Ns/2)(r,θ , t) = ΨΨΨ(r,θ)q̃(Ns/2)
m (t) (5.60)

and substituting into Eq. 5.38 results in

w = [F⊗ΨΨΨ]q̃m (5.61)
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where

q̃m =
[
q̃(0)t

m q̃(1,c)t

m q̃(1,s)t

m · · · q̃(κ,c)t

m q̃(κ,s)t

m q̃(Ns/2)t

m

]t
(5.62)

and ⊗ is the Kronecker product. The above expression pertains to both the disk and blade portions

of the sector such that

wd = [F⊗ΨΨΨd]q̃d (5.63)

wb = [F⊗ΨΨΨb]q̃b (5.64)

Furthermore, assuming that the voltage generated in each piezoelectric patch linearly varies

through the patch’s thickness and the poling direction is orientate such that there is zero potential

at the interface with the blade, the voltage for the kth patch on the jth blade is

Vk, j(z, t) =
z− zp1,k, j

zp2,k, j− zp1,k, j
qe,k, j(t) (5.65)

where qe is a time-dependent, generalized coordinate corresponding to the piezoelectric voltage

and zp1 and zp2 are the locations of the patch’s surface electrodes with respect to the neutral plane

at the blade interface, and the opposing surface, respectively.
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5.1.6 System Matrices

This section derives the system matrices using the system energies in combination with the dis-

placement fields in Eqs. 5.63 and 5.63, as well as the voltage fields in Eq. 5.63. For brevity, this

section only presents those quantities corresponding to the blades, while omitting those corre-

sponding to the disk, which are similar in form.

5.1.6.1 Mechanical Mass Matrix

To obtain the blade’s mechanical mass matrix, substitute the first time derivative of the jth blade’s

displacement into Eq. 5.4 to obtain the kinetic energy:

Tb, j =
1
2

˙̃qt
b

[(
Fj

tFj
)
⊗Mbb,j

]
˙̃qb (5.66)

where Fj is the jth row of the Fourier transformation matrix in Eq. 3.45 and the components of the

blade mass matrix Mbb,j are

Mbb, j,ls =
∫

Vb, j

ρb, jψb,lψb,sdV (5.67)
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The total kinetic energy for all blades is thus

Ttot,b =
Ns−1

∑
j=0

Tb, j

=
1
2

˙̃qt
b

[(
Ft

0F0
)
⊗Mbb,0

]
˙̃qb + · · ·+

1
2

˙̃qt
b

[(
Ft

Ns−1FNs−1
)
⊗Mbb,Ns−1

]
˙̃qb

=
1
2

˙̃qt
bM̃bb ˙̃qb

(5.68)

where the mass matrix M̃bb associated with the cyclic coordinates is

M̃bb =
[(

Ft
0F0
)
⊗Mbb,0 + · · ·+

(
Ft

Ns−1FNs−1
)
⊗Mbb,Ns−1

]
(5.69)

Similarly, for the disk, the total kinetic energy is

Ttot,d =
1
2

˙̃qt
dM̃dd ˙̃qd (5.70)

where

M̃dd =
[(

Ft
0F0
)
⊗Mdd,0 + · · ·+

(
Ft

Ns−1FNs−1
)
⊗Mdd,Ns−1

]
(5.71)

and

Mdd, j,ls =
∫

Vd, j

ρd, jψd,lψd,sdV (5.72)
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Furthermore, the piezoelectric patches also contribute to the total system kinetic energy; the total

kinetic energy of all of the kth patches is

Ttot,p,k =
1
2

˙̃qt
bM̃bb,p,k ˙̃qb (5.73)

where

M̃bb,p,k =
[(

Ft
0F0
)
⊗Mbb,p,k,0 + · · ·+

(
Ft

Ns−1FNs−1
)
⊗Mbb,p,k,Ns−1

]
(5.74)

and

Mbb,p,k, j,ls =
∫

Vp,k, j

ρp,k, jψb,lψb,sdV (5.75)

5.1.6.2 Mechanical Stiffness Matrix

To obtain the blade’s mechanical stiffness matrix, first substitute the jth blade’s displacement into

Eq. 5.14 to obtain the strain energy:

Ub, j =
1
2

q̃t
b

[(
Ft

jFj
)
⊗Kbb,j

]
q̃b (5.76)
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where the components of the blade stiffness matrix Kbb,j are

Kbb, j,ls =
∫

Vb, j

Yb, jz2

1−ν2
b, j

{
∂ 2ψb,l

∂ r2
∂ 2ψb,s

∂ r2 +
1
r2

∂ψb,l

∂ r
∂ψb,s

∂ r
+

1
r4

∂ 2ψb,l

∂θ 2
∂ 2ψb,s

∂θ 2

+
1
r

∂ 2ψb,l

∂ r2
∂ψb,s

∂ r
+

1
r

∂ψb,l

∂ r
∂ 2ψb,s

∂ r2 +
1
r2

∂ 2ψb,l

∂ r2
∂ 2ψb,s

∂θ 2

+
1
r2

∂ 2ψb,l

∂θ 2
∂ 2ψb,s

∂ r2 +
1
r3

∂ψb,l

∂ r
∂ 2ψb,s

∂θ 2 +
1
r3

∂ 2ψb,l

∂θ 2
∂ψb,s

∂ r

−2(1−νb, j)

[
1
2r

(
∂ 2ψb,l

∂ r2
∂ψb,s

∂ r
+

∂ψb,l

∂ r
∂ 2ψb,s

∂ r2

+
1
r

∂ 2ψb,l

∂ r2
∂ 2ψb,s

∂θ 2 +
1
r

∂ 2ψb,l

∂θ 2
∂ 2ψb,s

∂ r2

)
− 1

r2

(
∂ 2ψb,l

∂ r∂θ

∂ 2ψb,s

∂ r∂θ

− 1
r

∂ 2ψb,l

∂ r∂θ

∂ψb,s

∂θ
− 1

r
∂ψb,l

∂θ

∂ 2ψb,s

∂ r∂θ
+

1
r2

∂ψb,l

∂θ

∂ψb,s

∂θ

)]}
dV

(5.77)

The total strain energy for all the blades is thus

Utot,b =
Ns−1

∑
j=0

Ub, j

=
1
2

q̃t
b

[(
Ft

0F0
)
⊗Kbb,0

]
q̃b + · · ·+

1
2

q̃t
b

[(
Ft

Ns−1FNs−1
)
⊗Kbb,Ns−1

]
q̃b

=
1
2

q̃t
bK̃bbq̃b

(5.78)

where the blade stiffness matrix K̃bb associated with the cyclic coordinates is

K̃bb =
[(

Ft
0F0
)
⊗Kbb,0 + · · ·+

(
Ft

Ns−1FNs−1
)
⊗Kbb,Ns−1

]
(5.79)

Similarly, for the disk, the total strain energy is

Ud =
1
2

q̃t
dK̃ddq̃d (5.80)
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where

K̃dd =
[(

Ft
0F0
)
⊗Kdd,0 + · · ·+

(
Ft

Ns−1FNs−1
)
⊗Kdd,Ns−1

]
(5.81)

and

Kdd, j,ls =
∫

Vd, j

Yd, jz2

1−ν2
d, j

{
∂ 2ψd,l

∂ r2
∂ 2ψd,s

∂ r2 +
1
r2

∂ψd,l

∂ r
∂ψd,s

∂ r
+

1
r4

∂ 2ψd,l

∂θ 2
∂ 2ψd,s

∂θ 2

+
1
r

∂ 2ψd,l

∂ r2
∂ψd,s

∂ r
+

1
r

∂ψd,l

∂ r
∂ 2ψd,s

∂ r2 +
1
r2

∂ 2ψd,l

∂ r2
∂ 2ψd,s

∂θ 2

+
1
r2

∂ 2ψd,l

∂θ 2
∂ 2ψd,s

∂ r2 +
1
r3

∂ψd,l

∂ r
∂ 2ψd,s

∂θ 2 +
1
r3

∂ 2ψd,l

∂θ 2
∂ψd,s

∂ r

−2(1−νd, j)

[
1
2r

(
∂ 2ψd,l

∂ r2
∂ψd,s

∂ r
+

∂ψd,l

∂ r
∂ 2ψd,s

∂ r2

+
1
r

∂ 2ψd,l

∂ r2
∂ 2ψd,s

∂θ 2 +
1
r

∂ 2ψd,l

∂θ 2
∂ 2ψd,s

∂ r2

)
− 1

r2

(
∂ 2ψd,l

∂ r∂θ

∂ 2ψd,s

∂ r∂θ

− 1
r

∂ 2ψd,l

∂ r∂θ

∂ψd,s

∂θ
− 1

r
∂ψd,l

∂θ

∂ 2ψd,s

∂ r∂θ
+

1
r2

∂ψd,l

∂θ

∂ψd,s

∂θ

)]}
dV

(5.82)

Furthermore, the piezoelectric patches also contribute to the total system strain energy; the total

strain energy of all of the kth patches is

Ustrain,p,k =
1
2

q̃t
bK̃bb,p,kq̃b (5.83)

where

K̃bb,p,k =
[(

Ft
0F0
)
⊗Kbb,p,k,0 + · · ·+

(
Ft

Ns−1FNs−1
)
⊗Kbb,p,k,Ns−1

]
(5.84)
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and

Kbb,p,k, j,ls =
∫

Vp,k, j

z2

{
c̄E

11,k, j
∂ 2ψb,l

∂ r2
∂ 2ψb,s

∂ r2 +
c̄E

11,k, j

r2

[
∂ψb,l

∂ r
∂ψb,s

∂ r
+

1
r

∂ψb,l

∂ r
∂ 2ψb,s

∂θ 2

+
1
r

∂ 2ψb,l

∂θ 2
∂ψb,s

∂ r
+

1
r2

∂ 2ψb,l

∂θ 2
∂ 2ψb,s

∂θ 2

]
+

2c̄E
12,k, j

r

[
∂ 2ψb,l

∂ r2
∂ψb,s

∂ r

+
∂ψb,l

∂ r
∂ 2ψb,s

∂ r2 +
1
r

∂ 2ψb,l

∂ r2
∂ 2ψb,s

∂θ 2 +
1
r

∂ 2ψb,l

∂θ 2
∂ 2ψb,s

∂ r2

]
+

4c̄E
66,k, j

r2

[(
∂ 2ψb,l

∂ r∂θ

∂ 2ψb,s

∂ r∂θ
− 1

r
∂ 2ψb,l

∂ r∂θ

∂ψb,s

∂θ

− 1
r

∂ψb,l

∂θ

∂ 2ψb,s

∂ r∂θ
+

1
r2

∂ψb,l

∂θ

∂ψb,s

∂θ

]}
dV

(5.85)

The potential energy arising from the artificial springs also contribute to the system’s stiffness.

To obtain the stiffness matrix corresponding to the artificial springs located along the blade-disk

interface, substitute the blade and disk’s displacements into Eq. 5.30 such that

Ubdi,j =
1
2

q̃t
b

[(
Fj

tFj
)
⊗Kbb,bdi

]
q̃b +

1
2

q̃t
d

[(
Fj

tFj
)
⊗Kdd,bdi

]
q̃d

− 1
2

q̃t
b

[(
Fj

tFj
)
⊗Kbd,bdi

]
q̃d−

1
2

q̃t
d

[(
Fj

tFj
)
⊗Kdb,bdi

]
q̃b

(5.86)
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where the components of the spring stiffness matrices are

Kbb,bdi,ls =
∫

θb1

−θb1

(
kbdi,zψb,bdi,lψb,bdi,s + kbdi,Tr

∂ψb,bdi,l

∂ r
∂ψb,bdi,s

∂ r

+
kbdi,T θ

r2
bdi

∂ψb,bdi,l

∂θ

∂ψb,bdi,s

∂θ

)
rbdidθ

(5.87)

Kdd,bdi,ls =
∫

θb1

−θb1

(
kbdi,zψd,bdi,lψd,bdi,s + kbdi,Tr

∂ψd,bdi,l

∂ r
∂ψd,bdi,s

∂ r

+
kbdi,T θ

r2
bdi

∂ψd,bdi,l

∂θ

∂ψd,bdi,s

∂θ

)
rbdidθ

(5.88)

Kbd,bdi,ls =
∫

θb1

−θb1

(
kbdi,zψb,bdi,lψd,bdi,s + kbdi,Tr

∂ψb,bdi,l

∂ r
∂ψd,bdi,s

∂ r

+
kbdi,T θ

r2
bdi

∂ψb,bdi,l

∂θ

∂ψd,bdi,s

∂θ

)
rbdidθ

(5.89)

Kdb,bdi,ls =
∫

θb1

−θb1

(
kbdi,zψd,bdi,lψb,bdi,s + kbdi,Tr

∂ψd,bdi,l

∂ r
∂ψb,bdi,s

∂ r

+
kbdi,T θ

r2
bdi

∂ψd,bdi,l

∂θ

∂ψb,bdi,s

∂θ

)
rbdidθ

(5.90)

Assuming identical blade-disk interfaces for all sectors, the total spring energy is

Ubdi =
Ns−1

∑
j=0

Ubdi, j

=
1
2

q̃t
b

[
I⊗Kbb,bdi

]
q̃b +

1
2

q̃t
d

[
I⊗Kdd,bdi

]
q̃d

− 1
2

q̃t
b

[
I⊗Kbd,bdi

]
q̃d−

1
2

q̃t
d

[
I⊗Kdb,bdi

]
q̃b

(5.91)
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To obtain the stiffness matrix corresponding to the artificial springs located along the neighboring-

sector interface, substitute the disk’s displacements into Eq. 5.32 such that

Unsi, j =
1
2

q̃t
d

[(
Ft

j+1Fj+1
)
⊗Kdd,RR +

(
Ft

jFj
)
⊗Kdd,LL

−
(
Ft

j+1Fj
)
⊗Kdd,RL−

(
Ft

jFj+1
)
⊗Kdd,LR

]
q̃d

(5.92)

where the components of the spring stiffness matrices are

Kdd,RR,ls =
∫ r2

r1

(
knsi,zψd,R,lψd,R,s + knsi,Tr

∂ψd,R,l

∂ r
∂ψR,s

∂ r
+

knsi,T θ

r2
∂ψd,R,l

∂θ

∂ψd,R,s

∂θ

)
dr (5.93)

Kdd,LL,ls =
∫ r2

r1

(
knsi,zψd,L,lψd,L,s + knsi,Tr

∂ψd,L,l

∂ r
∂ψd,L,s

∂ r
+

knsi,T θ

r2
∂ψd,L,l

∂θ

∂ψd,L,s

∂θ

)
dr (5.94)

Kdd,RL,ls =
∫ r2

r1

(
knsi,zψd,R,lψd,L,s + knsi,Tr

∂ψd,R,l

∂ r
∂ψd,L,s

∂ r
+

knsi,T θ

r2
∂ψd,R,l

∂θ

∂ψd,L,s

∂θ

)
dr (5.95)

Kdd,LR,ls =
∫ r2

r1

(
knsi,zψd,L,rψd,R,s + knsi,Tr

∂ψd,L,l

∂ r
∂ψd,R,s

∂ r
+

knsi,T θ

r2
∂ψd,L,l

∂θ

∂ψd,R,s

∂θ

)
dr (5.96)

Assuming identical neighboring-sector interfaces for all sectors, the total spring energy is

Unsi =
Ns−1

∑
j=0

Unsi, j

=
1
2

q̃t
d

[
I⊗
(
Kdd,RR +Kdd,LL

)
−
(
Ft

RotF
)
⊗Kdd,RL−

(
FtFRot

)
⊗Kdd,LR

]
q̃d

(5.97)
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where FRot is the Fourier matrix rotated around one sector (i.e., each row of F shifted upwards)

such that

FRot =



F1

...

FNs−1

F0


(5.98)

The matrix product corresponding to the stiffness terms coupling the left and right sides of the

reference sector is block diagonal where

Ft
RotF =



1 0 0 · · · 0 0 0

0 cosα −sinα · · · 0 0 0

0 sinα cosα · · · 0 0 0

...
...

... . . . ...
...

...

0 0 0 · · · cosκα −sinκα 0

0 0 0 · · · sinκα cosκα 0

0 0 0 · · · 0 0 −1



(5.99)

and the last row and column only exist if Ns is even. This matrix introduces constraints between

both the left and right sides of the reference sector in a similar manner to the constraints imposed in

a tuned, finite-element model; [92, 93] however, rather than constraining the deflections, as is the

case in the finite-element model, this matrix constrains the disk sector’s generalized coordinates.
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5.1.6.3 Mechanical Forcing Vector

To obtain the forcing vector corresponding to the aerodynamic forces acting on the blades, first

substitute the jth blade’s displacement into Eq. 5.33 resulting in

δWm,b, j = δ q̃t
b
(
Ft

j⊗Fm,b,j
)

(5.100)

where the components of the forcing vector are

Fm,b, j,l =
∫

Ab, j

fm,b, jψb,ldA (5.101)

The total virtual work acting over all blades is thus

δWm,tot,b =
Ns−1

∑
j=0

δWm,b, j

= δ q̃t
b
(
Ft

0⊗Fm,b,0
)
+ · · ·+δ q̃t

b
(
Ft
(Ns−1)⊗Fm,b,Ns−1

)
= δ q̃t

b
(
Ft⊗ I

)
Fm,b

(5.102)

where

Fm,b =
[
Ft

m,b,0 · · · Ft
m,b,Ns−1

]t
(5.103)
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Similarly, for the disk, the total virtual work due to the aerodynamic forcing is

δWm,tot,d =
Ns−1

∑
j=0

δWm,d, j

= δ q̃t
d
(
Ft

0⊗Fm,d,0
)
+ · · ·+δ q̃t

d
(
Ft

Ns−1⊗Fm,d,Ns−1
)

= δ q̃t
b
(
Ft⊗ I

)
Fm,d

(5.104)

where

Fm,d, j,l =
∫

Ad, j

fm,d, jψd,ldA (5.105)

If the aerodynamic forces act over the piezoelectric patches, the total virtual work performed over

all of the kth patches is

δWm,tot,p,k =
Ns−1

∑
j=0

δWm,p,k, j

= δ q̃t
b
(
Ft

0⊗Fm,p,k,0
)
+ · · ·+δ q̃t

b
(
Ft

Ns−1⊗Fm,p,k,Ns−1
)

= δ q̃t
b
(
Ft⊗ I

)
Fm,p,k

(5.106)

where

Fm,p,k, j,l =
∫

Ap,k, j

fm,p,k, jψ
t
b,ldA (5.107)
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5.1.6.4 Electrical Contributions and Electromechanical Coupling

To obtain the piezoelectric patch’s electrical stiffness matrix, first substitute the voltage generated

by the kth patch on the jth blade into Eq. 5.28 resulting in

Uelectric,k,j =
1
2

Kee,k, jq2
e,k, j (5.108)

where the electrical stiffness term is

Kee,k, j =
∫

Vp,k, j

ε̄S
33,k, j

(zp2,k, j− zp1,k, j)2 dV (5.109)

For a rectangular patch, this volume integral simplifies to the capacitance for a parallel plate ca-

pacitor

Kee,k, j =
ε̄S

33,k, jLp,k, jbp,k, j

hp,k, j
(5.110)

The electrical energy for all of the kth patches is thus

Uelectric,k =
Ns−1

∑
j=0

Uelectric,k, j

=
1
2

Kee,k,0q2
e,k,0 + · · ·+

1
2

Kee,k,Ns−1q2
e,k,Ns−1

=
1
2

qt
e,kKee,kqe,k

(5.111)
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where

qe,k =
[
qe,k,0 · · · qe,k,Ns−1

]t (5.112)

Kee,k =


Kee,k,0 0

. . .

0 Kee,k,Ns−1

 (5.113)

Summing over all Np patches, the total electrical energy is

Uelectric,tot =
Np

∑
k=1

Uelectric,k

=
1
2

qt
e,1Kee,1qe,1 + · · ·+

1
2

qt
e,NpKee,Npqe,Np

=
1
2

qt
eKeeqe

(5.114)

where

qe =
[
qt

e,1 · · · qt
e,Np

]t (5.115)

Kee =


Kee,1 0

. . .

0 Kee,Np

 (5.116)

To obtain the matrix coupling the energy between the mechanical and electrical domains, sub-

stitute both the jth blade’s displacement and the voltage of the kth patch on the jth blade into
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Eq. 5.24 resulting in

Ucoupled,p,k, j =
1
2

q̃t
b
[
Fj

t⊗Kbe,k,j
]
qe,k, j (5.117)

where the components of the coupling stiffness vector are

Kbe,k, j,l =
∫

Vp,k, j

ē31,k, jz
zp2,k, j− zp1,k, j

(
∂ 2ψb,l

∂ r2 +
1
r

∂ψb,l

∂ r
+

1
r2

∂ 2ψb,l

∂θ 2

)
dV (5.118)

Summing the coupling energy corresponding to the kth patch over all sectors results in

Ucoupled,p,k =
Ns−1

∑
j=0

Ucoupled,p,k, j

=
1
2

q̃t
b
(
F0

t⊗Kbe,k,0
)
qe,k,0 + · · ·+

1
2

q̃t
b
(
Ft

Ns−1⊗Kbe,k,Ns−1
)
qe,k,Ns−1

=
1
2

q̃t
bK̃be,kqe,k

(5.119)

where

K̃be,k =
(
Ft⊗ I

)
Kbe,k (5.120)

Kbe,k =


Kbe,k,0 0

. . .

0 Kbe,k,Ns−1

 (5.121)
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Summing the coupling energy over all Np patches, the total coupling energy is

Ucoupled,tot =
Np

∑
k=1

Ucoupled,p,k

=
1
2

q̃t
bK̃be,1qe,1 + · · ·+

1
2

q̃t
bK̃be,Npqe,Np

=
1
2

q̃t
bK̃beqe

(5.122)

where

K̃be =
[
K̃be,1 · · · K̃be,Np

]
(5.123)

The piezoelectric patches also introduce an electrical forcing mechanism into the system. To

obtain the electrical force vector, substitute the voltage of the kth patch on the jth blade into Eq. 5.35

such that

δWe,k, j = δqe,k, jFe,k, j (5.124)

where the electrical forcing term is

Fe,k, j =
∫ zp1,k, j

zp2,k, j

fe,k, j
z− zp1,k, j

zp2,k, j− zp1,k, j
dz (5.125)

The total virtual work of the kth patches acting over all blades is thus

δWe,k =
Ns−1

∑
j=0

δWe,k, j

= δqe,k,0Fe,k,0 + · · ·+δqe,k,Ns−1Fe,k,Ns−1

= δqt
e,kFe,k

(5.126)
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where

Fe,k =
[
Fe,k,0 · · · Fe,k,Ns−1

]t (5.127)

Summing the virtual work performed by all Np patches results in the total virtual work

δWe =
Np

∑
k=1

δWe,k

= qt
e,1Fe,1 + · · ·+qt

e,NpFe,Np

= qt
eFe

(5.128)

where

Fe =
[
Fe,1

t · · · Fe,Np
]t (5.129)

5.1.7 Lagrangian Equations of Motion

Writing the total system energies as a function of the generalized coordinates

T = T ( ˙̃qd, ˙̃qb), U =U(q̃d, q̃b,qe), Wie =Wie(q̃b,qe) (5.130)
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enables application of the electromechanical version of Lagrange’s equations of motion [88]. As

applied here, these equations are

d
dt

(
∂T
∂ ˙̃qd

)
+

∂U
∂ q̃d
− ∂Wie

∂ q̃d
= Qd

d
dt

(
∂T
∂ ˙̃qb

)
+

∂U
∂ q̃b
− ∂Wie

∂ q̃b
= Qb

d
dt

(
∂T
∂ q̇e

)
+

∂U
∂qe
− ∂Wie

∂qe
= Qe

(5.131)

and the resulting system equations of motion


M̃dd 0 0

0 M̃bb 0

0 0 0





¨̃qd

¨̃qb

q̈e


+


C̃dd C̃db 0

C̃bd C̃bb 0

0 0 0





˙̃qd

˙̃qb

q̇e



+


K̃dd K̃db 0

K̃bd K̃bb −K̃be

0 K̃eb Kee




q̃d

q̃b

qe


=


F̃m,d

F̃m,b

Fe



(5.132)

For mathematical convenience, the above equations of motion include a mechanical damping ma-

trix C̃ that is proportional to the mechanical mass and stiffness matrices. As such, the solution to

the corresponding eigenvalue problem results in eigenvectors that produce normal vibration modes

and eigenvalues that are the squared natural frequencies.
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5.1.8 Spatial Fourier Transform of System Matrices

In general, there are slight variations between sectors that result in sector-dependent system matri-

ces. Consider, for example, an arbitrary system matrix Aj corresponding to the jth sector. As the

preceding section shows, the cyclic system matrix Ã is a linear combination of all sector-dependent

system matrices such that

Ã =
(
Ft

0F0
)
⊗A0 + · · ·+

(
Ft

Ns−1FNs−1
)
⊗ANs−1 (5.133)

The above expression can also be expressed as

Ã =
(
Ft⊗ I

)
A
(
F⊗ I

)
(5.134)

where

A =



A0 · · · 0 · · · 0

... . . . ...
...

0 · · · Aj · · · 0

...
... . . . ...

0 · · · 0 · · · ANs−1


(5.135)

Furthermore, each sector matrix can be expressed as the nominal matrix of the reference sector

with some variation ∆∆∆Aj such that

Aj = A0 +∆∆∆Aj (5.136)
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and

A =



A0 · · · 0 · · · 0

... . . . ...
...

0 · · · A0 · · · 0

...
... . . . ...

0 · · · 0 · · · A0


+



∆∆∆A0 · · · 0 · · · 0

... . . . ...
...

0 · · · ∆∆∆Aj · · · 0

...
... . . . ...

0 · · · 0 · · · ∆∆∆ANs−1


(5.137)

The cyclic matrix is then

Ã =
(
Ft⊗ I

)[
I⊗A0 +∆∆∆A

](
F⊗ I

)
= I⊗A0 +

(
Ft⊗ I

)
∆∆∆A
(
F⊗ I

)
= Ã0 +∆∆∆Ã

(5.138)

The first term on the right-hand-side in the above expression corresponds to the Fourier transform

of the system matrix of the reference sector. This Fourier transformation results in the block

diagonal matrix

Ã0 =



A0 · · · 0 · · · 0

... . . . ...
...

0 · · · A0 · · · 0

...
... . . . ...

0 · · · 0 · · · A0


(5.139)

where the rows and columns correspond to the cosine and sine components of the various spatial

harmonics. For the 0 and Ns/2 harmonics, no sine component exists, and the block component is
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simply

Ã(0) = Ã(Ns/2) = A0 (5.140)

All other harmonics contain both cosine and sine components such that the associated blocks are

Ã(h) =

A0 0

0 A0

 (5.141)

As the block-diagonal form of the tuned-system matrix suggests, there is no coupling between

different harmonics. In general, however, the second term on the right-hand-side of Eq. 5.138 that

corresponds to the mistuning matrix is not block diagonal. As such, the presence of mistuning

results in a coupling between the different harmonics.

5.1.9 Modal Analysis for a Bare Blisk

Consider the case of a bladed disk with no piezoelectric patches. Excluding the external forces and

the effects of damping, the equations of motion reduce to

M̃dd 0

0 M̃bb




¨̃qd

¨̃qb

+

K̃dd K̃db

K̃bd K̃bb




q̃d

q̃b

=


0

0

 (5.142)

where M̃bb and K̃bb do not contain the mass and stiffness contributions of any of the piezoelectric

patches.
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5.1.9.1 Tuned Blisk

For a tuned system, the block-diagonal form of the system matrices leads to equations of motion

that are decoupled for the different spatial harmonics. This decoupling splits the full equations of

motion into several, smaller equations, thus reducing the corresponding eigenvalue problems to


K̃(h)

dd K̃(h)
db

K̃(h)
bd K̃(h)

bb

−ω(h)2

M̃(h)
dd 0

0 M̃(h)
bb





V(h)
d

V(h)
b

=


0

0

 (5.143)

where ω(h)2
are the eigenvalues and V(h) =

[
V(h)t

d V(h)t

b

]t
are the eigenvectors corresponding to

the hth harmonic. Utilizing the eigenvectors with Eq. 5.61 recovers the tuned mode shapes as

ΦΦΦ
(h)
d =

[
F(h)⊗ΨΨΨd

]
V(h)

d

ΦΦΦ
(h)
b =

[
F(h)⊗ΨΨΨd

]
V(h)

b

(5.144)

where F(h) are the columns of F corresponding to the hth harmonic.

5.1.9.2 Mistuned Blisk

With mistuning present, the system matrices where the mistuning occurs are no longer block diago-

nal, thereby coupling the various spatial harmonics and requiring the solution to the full eigenvalue
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problem 
K̃dd K̃db

K̃bd K̃bb

−ω2

M̃dd 0

0 M̃bb





Vd

Vb

=


0

0

 (5.145)

Utilizing the mistuned eigenvectors with the full Fourier transformation matrix recovers the mis-

tuned mode shapes as

ΦΦΦd =
[
F⊗ΨΨΨd

]
Vd

ΦΦΦb =
[
F⊗ΨΨΨd

]
Vb

(5.146)

5.1.9.3 Example Modal Characteristics

An example helps demonstrate this fundamental difference between the tuned and mistuned system

analysis. Consider a tuned blisk absent any piezoelectric patches and with the parameters shown in

Table 5.1; all artificial springs are set with a spring constant of 109. Figure 5.3 shows images of the

mass and stiffness matrices with the colors corresponding to the log10 of the absolute value of the

matrix components. As Eq. 5.142 shows, the upper-left and lower-right quadrants correspond to

the disk and blade degrees-of-freedom, respectively, where there is zero coupling between different

spatial harmonics. The upper-right and lower-left quadrants show the coupling between the blade

and the disk provided by the artificial springs located at the blade-disk interface; this coupling

only arises for similar spatial harmonic content (i.e., the hND disk coordinates couple with the

hND blade coordinates). Solving the eigenvalue problem for each spatial harmonic generates

the tuned-blisk natural frequencies and corresponding mode shapes. Figure 5.4 shows the nodal
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diameter map (i.e., natural frequency vs. nodal diameter) for the tuned blisk with the stand-alone

sector mode shapes for the first six mode families. A finite-element model developed in NX 12.0

provided initial validation for the proposed modeling approach. The finite-element model utilized

10-point solid tetrahedral elements to model the blisk with the default Aluminum 6061 material

assigned to each element. Assigning a fixed constraint along the inner disk radius simulated the

clamped condition utilized in the assumed-modes model. Figure 5.4 also shows the nodal diameter

map generated from the finite-element model. Both the assumed-modes and finite-element results

show excellent agreement.

Table 5.1: Example blisk parameters.

Blisk (Aluminum)
Thickness [mm] 1.59

Hub Outer Diameter [mm] 152.40
Hub Inner Diameter [mm] 101.60

Blade Length [mm] 127.00
Blade Root Chord [mm] 50.80
Blade Tip Chord [mm] 101.60

Next, consider the case of a mistuned blisk with the mistuning arising from random variations

in each blade’s stiffness. Using Eq. 5.138, the blade stiffness matrix is

K̃bb = I⊗Kbb,0 +
(
Ft⊗ I

)
∆∆∆Kbb

(
F⊗ I

)
= I⊗Kbb,0 +

(
Ft⊗ I

)(
∆∆∆b⊗Kbb,0

)(
F⊗ I

)
=
(
I+Ft

∆∆∆bF
)
⊗Kbb,0

(5.147)
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(a) Mass matrix (b) Stiffness matrix

Figure 5.3: Images of the tuned system matrices. The upper-left and lower-right quadrants correspond
to the disk and blade degrees-of-freedom, respectively, whereas the upper-right and

lower-left quadrants correspond to the blade-disk coupling terms.

Figure 5.4: Nodal diameter map of the tuned academic blisk showing the stand-alone sector mode
shapes for the first six mode families. Shown are both the natural frequencies obtained

using the proposed assumed-modes model and a finite-element model.
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The matrix ∆∆∆b is diagonal where the components correspond to the stiffness variations of each

blade sector

∆∆∆b = diag
(
δb,0, · · · ,δb,Ns−1

)
(5.148)

The presence of the blade mistuning pollutes the block-diagonal, tuned matrix, thus resulting in

the coupling of the various spatial harmonics. Continuing with the previous example, randomly as-

signing the blade perturbations using a normal distribution with zero mean and σmis = 0.03 results

in the mistuning distribution shown in Fig. 5.5a. Figure 5.5b shows an image of the correspond-

ing mistuning stiffness matrix where there are off-diagonal components within the blade stiffness

matrix, thereby requiring the solution of the eigenvalue problem for the entire blisk.

Furthermore, although the mistuning magnitudes are relatively small, this mistuning pattern

can split the degenerate modes and induce localized vibration. Table 5.2 shows a comparison of

the natural frequencies of the 6th mode family between the tuned and mistuned blisk obtained from

both the assumed-modes and finite-element models. The tuned system contains three degenerate

mode pairs, modes 2 and 3, modes 4 and 5, and modes 6 and 7, that correspond to the 1ND, 2ND,

and 3ND modes, respectively; the mistuning splits these degenerate pairs. Furthermore, Fig. 5.6

shows an example of the 4ND mode shape for the 6th mode family where neighboring sectors

show out-of-phase motion. Figure 5.7 shows an example of a mode shape for the same mode

family, but for the mistuned blisk, that exhibits localized vibration. As this example shows, the

assumed-modes model absent any piezoelectric patches accurately captures the dynamics for both

tuned and mistuned systems. The following sections will incorporate the piezoelectric patches and

provide further validation of the proposed modeling strategy.
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(a) Mistuning distribution. (b) Mistuned stiffness matrix.

Figure 5.5: The influence of mistuning on the academic blisk. Variations in the blade stiffness breaks
the cyclic symmetry of the blisk resulting in the coupling of the spatial harmonics.

Table 5.2: Natural frequencies for the 6th mode family of the tuned and mistuned blisk.

Mode r
Tuned Natural Freqs. [kHz] Mistuned Natural Freqs [kHz]
AMM FEM Error [%] AMM FEM Error [%]

1 1.1396 1.1403 -0.0664 1.1271 1.1276 -0.0443
2 1.1438 1.1445 -0.0557 1.1349 1.1354 -0.0440
3 - - - 1.1397 1.1400 -0.0263
4 1.1580 1.1579 0.0038 1.1470 1.1468 0.0174
5 - - - 1.1553 1.1548 0.0433
6 1.1816 1.1798 0.1512 1.1717 1.1698 0.1624
7 - - - 1.1803 1.1785 0.1527
8 1.1966 1.1935 0.2623 1.1959 1.1933 0.2179
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(a) Assumed-modes model. (b) Finite-element model.

Figure 5.6: Example mode shape for the tuned academic blisk. The mode shape corresponds to the
4ND mode of the 6th mode family.

(a) Assumed-modes model. (b) Finite-element model.

Figure 5.7: Example mode shape for the mistuned academic blisk showing localized vibration. The
shape corresponds to the 8th mode of the 6th mode family.
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5.1.10 Modal Analysis for the Blisk Including the Piezoelectric Patches

Next, consider the case of a blisk that includes the blade-mounted piezoelectric patches. Excluding

the external force and the effects of damping, the equations of motion reduce to


M̃dd 0 0

0 M̃bb 0

0 0 0





¨̃qd

¨̃qb

q̈e


+


K̃dd K̃db 0

K̃bd K̃bb −K̃be

0 K̃eb Kee




q̃d

q̃b

qe


=


0

0

Fe


(5.149)

where M̃bb and K̃bb now contain the mass and stiffness contributions provided by the piezoelectric

patches.

5.1.10.1 Short-Circuit Electrical Boundary Condition

With all of the piezoelectric patches operating with a short circuit between the electrodes, there is

zero voltage developed across the piezoelectric patches (i.e., qe = 0). The resulting equations of

motion reduce to

M̃dd 0

0 M̃bb




¨̃qd

¨̃qb

+

K̃dd K̃db

K̃bd K̃bb,sc




q̃d

q̃b

=


0

0

 (5.150)
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where the short-circuit blade stiffness matrix is

K̃bb,sc = K̃bb (5.151)

Solving the eigenvalue problem for either the tuned or mistuned system in a similar manner as the

previous section results in the short-circuit natural frequencies ωsc and eigenvectors Vsc.

5.1.10.2 Open-Circuit Electrical Boundary Condition

With all of the piezoelectric patches operating with an open circuit between the electrodes and

neglecting any initial conditions, there is zero electric charge generated (i.e., Fe = 0). The resulting

piezoelectric voltage is proportional to the blade’s mechanical response

qe =−K−1
ee K̃ebq̃b (5.152)

and the mechanical equations of motion reduce to

M̃dd 0

0 M̃bb




¨̃qd

¨̃qb

+

K̃dd K̃db

K̃bd K̃bb,oc




q̃d

q̃b

=


0

0

 (5.153)

where the open-circuit blade stiffness matrix is

K̃bb,oc = K̃bb,sc +∆∆∆K̃p (5.154)
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The matrix ∆∆∆K̃p is the stiffness perturbation matrix resulting from a switch between the open- and

short-circuit stiffness states

∆∆∆K̃p = K̃beK−1
ee K̃eb (5.155)

Assuming each blade contains identical piezoelectric patches, the stiffness perturbation matrix

becomes

∆∆∆K̃p =

[
Ft⊗Kbe,1,0 · · · Ft⊗Kbe,Np,0

]


Kee,1,0I 0

. . .

0 Kee,Np,0I



−1
F⊗Keb,1,0

...

F⊗Keb,Np,0


= I⊗∆∆∆Kp,1 + · · ·+ I⊗∆∆∆Kp,Np

(5.156)

where

∆Kp,k =
1

Kee,k,0
Kbe,k,0Keb,k,0 (5.157)

The above equation shows that for identical patches on each of the blades, the stiffness perturbation

matrix induced by the voltage developed in all of the patches is block diagonal. This result signifies

that there is a uniform stiffness variation across all spatial harmonics.

Solving the eigenvalue problem for either the tuned or mistuned system results in the open-

circuit natural frequencies ωoc and eigenvectors Voc. After obtaining both the open- and short-

circuit natural frequencies for the blisk, the dynamic form of the effective coupling coefficient
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given in Eq. 2.8 and reproduced here as

k2
eff,r =

ω2
oc,r−ω2

sc,r

ω2
oc,r

(5.158)

enables a measure of the electromechanical coupling across the various modes.

5.1.10.3 Arbitrary Combinations of Open- and Short-Circuit Piezoelectric Patches

Next, consider the case where the piezoelectric patches on each blade can switch independently,

thus resulting in arbitrary combinations of the blades operating in the open- and short-circuit stiff-

ness states. As such, the voltage of the kth patch on the jth blade takes one of two values depending

on the operating state:

qe,k, j =−sk, j
1

Kee,k, j
K̃eb,k,jq̃b (5.159)

where

sk, j =


0, short-circuit state

1, open-circuit state

(5.160)

Considering all of the piezoelectric patches, the voltage vector is

qe =−SK−1
ee K̃ebq̃b (5.161)
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where S is the switching matrix that is a diagonal matrix

S =


S1 0

. . .

0 SNp

 (5.162)

and where

Sk = diag(sk,0, · · · ,sk,Ns−1) (5.163)

Each component corresponds to a distinct sector and takes the value of one or zero, depending on

the blade in that sector operating in the open- or short-circuit state. Substituting the above voltage

into Eq. 5.149 results in

M̃dd 0

0 M̃bb




¨̃qd

¨̃qb

+

K̃dd K̃db

K̃bd K̃bb,as




q̃d

q̃b

=


0

0

 (5.164)

where the updated blade stiffness matrix is

K̃bb,as = K̃bb,oc− K̃be
(
I−S

)
K−1

ee K̃eb

= K̃bb,oc−
[
K̃be,1

(
I−S1

)
K−1

ee,1K̃eb,1 + · · ·+ K̃be,Np

(
I−SNp

)
K−1

ee,Np
K̃eb,Np

] (5.165)

The subscript “as” denotes the blade stiffness when considering “Arbitrary Switches.” By again

assuming the kth patches are identical for all blades, the blade stiffness matrix reduces to

K̃bb,as = K̃bb,oc−
[(

I−FtS1F
)
⊗∆∆∆Kp,1 + · · ·+

(
I−FtSNpF

)
⊗∆∆∆Kp,Np

]
(5.166)
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As the above equation shows, if all the switches are open (i.e., Sk = I for k = 1, · · · ,Np) or closed

(i.e., Sk = 0 for k = 1, · · · ,Np), the blade stiffness matrix simplifies to the open-circuit or short-

circuit stiffness matrix, respectively; however, an arbitrary combination of switches results in

FtSkF that is not block diagonal. As such, there is no uniform variation in blade stiffness through-

out the blisk. Instead, an arbitrary distribution of switches can induce a new stiffness mistuning

pattern capable of mistuning an otherwise tuned blisk, or alter an already existing mistuning pat-

tern.

5.2 Piezoelectric Patch Optimization

Researchers have shown a wealth of interest with regards to utilizing piezoelectric materials for

turbomachinery applications. In addition to the damping applications outlined previously in Sec-

tion 2.2, there also exists potential applications as vibration actuators in test environments to ex-

cite blade vibrations [47, 48, 96, 97, 98], as well as dynamic strain sensors, due to their high

signal to noise ratio with minimal signal conditioning [99, 100]. Successful implementation of

any piezoelectric-based system requires the designer to pay special attention towards the size and

location of the piezoelectric elements that ensures the efficient energy exchange between the me-

chanical and electrical domains. When optimizing a piezoelectric-based system, several objective

measures exist depending on the application [101]. As RFD performance depends largely on the

electromechanical coupling coefficients, the objective function chosen here corresponds to maxi-

mizing this coupling coefficient for the target modes of interest. As the disk dynamics can influence
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the blades’ dynamic response, this analysis considers the entire blisk in the optimization, rather

than solely a stand-alone blade model utilized in previous patch optimization studies. [102, 103]

Furthermore, as any optimization procedure must evaluate numerous design iterations, the opti-

mization presented here will focus on the coupling coefficients for a tuned system, specifically

maximizing the coupling coefficients for the tuned-system modes with a spatial harmonic equal to

the expected engine order.

5.2.1 Evaluation of the Coupling Coefficients for a Truncated Set of Bare-Blisk Modes

Solving the eigenvalue problem for the full blisk with the piezoelectric patches in the open- and

short-circuit state generates the natural frequencies required for evaluating the coupling coeffi-

cients; however, the large number of design iterations required for an optimization procedure re-

sults in large computation times, even when only considering a single spatial harmonic. Instead,

using only a truncated set of bare-blisk modes further reduces the computational expense. To be-

gin, consider the tuned-system equations of motion and neglect the external mechanical forcing

and the effects of damping, the equations of motion for the hth harmonic are


M̃(h)

dd 0 0

0 M̃(h)
bb 0

0 0 0





¨̃q(h)
d

¨̃q(h)
b

q̈e


+


K̃(h)

dd K̃(h)
db 0

K̃(h)
bd K̃(h)

bb −K̃(h)
be

0 K̃(h)
eb Kee




q̃(h)

d

q̃(h)
b

qe


=


0

0

Fe


(5.167)
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Next, perform a transformation to the modal domain using the eigenvectors V(h)
0 obtained from

solving the bare-blisk eigenproblem


q̃(h)

d

q̃(h)
b

=


V(h)

0,d

V(h)
0,b

ηηη (5.168)

and premultiply Eq. 5.167 by V(h)t

0 to obtain the modal equations of motion

I+M̂(h)
p 0

0 0




η̈ηη

q̈e

+

ΩΩΩ
(h)
0 + K̂(h)

p −Θ̂ΘΘ
(h)t

Θ̂ΘΘ
(h) Kee




ηηη

qe

=


0

Fe

 (5.169)

where ΩΩΩ0 is a diagonal matrix containing the squared natural frequencies of the bare blisk and the

piezoelectric matrices are

M̂(h)
p = V(h)t

0,b M̃(h)
bb,pV(h)

0,b (5.170)

K̂(h)
p = V(h)t

0,b K̃(h)
bb,pV(h)

0,b (5.171)

Θ̂ΘΘ
(h)t

= V(h)t

0,b
[
F(h)t
⊗Kbe,1,0 · · ·F(h)t

⊗Kbe,Np,0
]

(5.172)

In the short-circuit state, the modal equations become

[I+M̂(h)
p ]η̈ηη +[ΩΩΩ

(h)
0 + K̂(h)

p ]ηηη = 0 (5.173)
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whereas in the open-circuit state, the piezoelectric voltage is proportional to the modal response

such that

qe =−K−1
ee Θ̂ΘΘ

(h)
ηηη (5.174)

and the modal equations become

[I+M̂(h)
p ]η̈ηη +[ΩΩΩ

(h)
0 + K̂(h)

p +∆∆∆K̂(h)
p ]ηηη = 0 (5.175)

where ∆∆∆K̂(h)
p is the switch-induced stiffness perturbation matrix

∆∆∆K̂(h)
p = Θ̂ΘΘ

(h)t

K−1
ee Θ̂ΘΘ

(h)
(5.176)

If the harmonic under consideration corresponds to h = 0,Ns/2, the piezoelectric matrices are

M̂(h)
p = V(h)t

0,b Mbb,pV(h)
0,b (5.177)

K̂(h)
p = V(h)t

0,b Kbb,pV(h)
0,b (5.178)

Θ̂ΘΘ
(h)t

=
[
F(h)t
⊗V(h)t

0,b Kbe,1,0 · · ·F(h)t
⊗V(h)t

0,b Kbe,Np,0
]

(5.179)

=
[
F(h)t
⊗ Θ̂ΘΘ

(h)t

1,0 · · ·F(h)t
⊗ Θ̂ΘΘ

(h)t

Np,0
]

(5.180)

∆∆∆K̂(h)
p =

1
Kee,1,0

Θ̂ΘΘ
(h)t
1,0 Θ̂ΘΘ

(h)
1,0 + · · ·+

1
Kee,Np,0

Θ̂ΘΘ
(h)t
Np,0Θ̂ΘΘ

(h)
Np,0 (5.181)

For the assumed-modes model under consideration here, the inclusion of V(h)
0,b in the above modal

matrices enables the generation of the piezoelectric-based matrices using the truncated set of bare-

162



blisk mode shapes of the reference sector, rather than using the full set of assumed mode shapes;

i.e., replace ΨΨΨb with ΦΦΦ
(h)
0,b = ΨΨΨbV(h)

0,b in the integrals of Eq. 5.67, Eq. 5.77, and Eq. 5.118. Specifi-

cally, the modal electromechanical coupling matrix Θ̂ΘΘ
(h)t

k,0 for the kth patch becomes

Θ̂ΘΘ
(h)t

k,0 = V(h)t

0,b Kbe,k,0

= V(h)t

0,b

∫
Vp,k, j

ē31,k,0z
zp2,k,0− zp1,k,0

(
∂ 2ΨΨΨ

t
b

∂ r2 +
1
r

∂ΨΨΨ
t
b

∂ r
+

1
r2

∂ 2ΨΨΨ
t
b

∂θ 2

)
dV

=
∫

Vp,k,0

ē31,k,0z
zp2,k,0− zp1,k,0

(
∂ 2ΦΦΦ

(h)t

0,b

∂ r2 +
1
r

∂ΦΦΦ
(h)t

0,b

∂ r
+

1
r2

∂ 2ΦΦΦ
(h)t

0,b

∂θ 2

)
dV

(5.182)

As the above equation shows, the kth patch contributes to the electromechanical coupling that

depends on the sum of the modal strains integrated over the patch area. As such, maximizing the

coupling requires sizing and locating the patch in a region of that encompasses large modal strains;

however, if the patch covers an area where the structure is in tension and compression, the modal

strains are opposite in sign. In such cases, the charge generated on the patch cancels, thereby con-

tributing minimal electromechanical coupling to the mode in question and, consequently, resulting

in a minimal variation in the modal stiffness.
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For the harmonics where h 6= 0,Ns/2, the piezoelectric modal matrices include contributions

from both cosine and sine components and are

M̂(h)
p = V(h,c)

0,b
t
Mbb,pV(h,c)

0,b +V(h,s)
0,b

t
Mbb,pV(h,s)

0,b (5.183)

K̂(h)
p = V(h,c)

0,b
t
Kbb,pV(h,c)

0,b +V(h,s)
0,b

t
Kbb,pV(h,s)

0,b (5.184)

Θ̂ΘΘ
(h)t

=
[
F(h,c)t

⊗V(h,c)t

0,b Kbe,1,0 · · ·F(h,c)t
⊗V(h,c)t

0,b Kbe,Np,0
]

+
[
F(h,s)t

⊗V(h,s)t

0,b Kbe,1,0 · · ·F(h,s)t
⊗V(h,s)t

0,b Kbe,Np,0
]

=
[
F(h,c)t

⊗ Θ̂ΘΘ
(h,c)t

1,0 · · ·F(h,c)t
⊗ Θ̂ΘΘ

(h,c)t

Np,0
]

+
[
F(h,s)t

⊗ Θ̂ΘΘ
(h,s)t

1,0 · · ·F(h,s)t
⊗ Θ̂ΘΘ

(h,s)t

Np,0
]

(5.185)

∆∆∆K̂(h)
p =

1
Kee,1,0

[
Θ̂ΘΘ

(h,c)t
1,0 Θ̂ΘΘ

(h,c)
1,0 + Θ̂ΘΘ

(h,s)t
1,0 Θ̂ΘΘ

(h,s)
1,0
]
+ · · ·

+
1

Kee,Np,0

[
Θ̂ΘΘ

(h,c)t
Np,0 Θ̂ΘΘ

(h,c)
Np,0 + Θ̂ΘΘ

(h,s)t
Np,0 Θ̂ΘΘ

(h,s)
Np,0
] (5.186)

With expressions developed for both the open- and short-circuit states of the blisk, solving the

eigenproblems generates the estimates of the natural frequencies required for calculating the elec-

tromechanical coupling coefficients for the specified harmonic.

5.2.2 Evaluation of the Coupling Coefficients Neglecting the Mechanical Influence of the

Patches

Next, consider the case where the patch thickness is much smaller than the blade thickness such that

the patches do not appreciably contribute to the blade mass and stiffness. As such, M̂(h)
p = K̂(h)

p = 0
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and the short-circuit modal equations reduce to the bare-blisk modal equations:

Iη̈ηη +ΩΩΩ
(h)
0 ηηη = 0 (5.187)

and the short-circuit natural frequencies are the same as the bare-blisk natural frequencies. Also,

the open-circuit modal equations reduce to

Iη̈ηη +[ΩΩΩ
(h)
0 +∆∆∆K̂p]ηηη = 0 (5.188)

In general, ∆∆∆K̂p is not diagonal and the open-circuit modal stiffness has off-diagonal components

that lightly couple the modes; however, the diagonal terms dominate and closely approximate the

open-circuit natural frequencies. For the h = 0,Ns/2 harmonics, this approximation yields the rth

open-circuit natural frequencies and coupling coefficients

ω
(h)2

0,oc,r ≈ ω
(h)2

0,sc,r +
Np

∑
k=1

θ̂
(h)2

k,0,r

Kee,k,0
(5.189)

k(h)
2

eff,r ≈
∑

Np
k=1

θ̂
(h)2

k,0,r
Kee,k,0

ω
(h)2

0,sc,r +∑
Np
k=1

θ̂
(h)2
k,0,r

Kee,k,0

(5.190)
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and for all other harmonics:

ω
(h)2

0,oc,r ≈ ω
(h)2

0,sc,r +
Np

∑
k=1

θ̂
(h,c)2

k,0,r + θ̂
(h,s)2

k,0,r

Kee,k,0
(5.191)

k(h)
2

eff,r ≈
∑

Np
k=1

θ̂
(h,c)2

k,0,r +θ̂
(h,s)2

k,0,r
Kee,k,0

ω
(h)2

0,sc,r +∑
Np
k=1

θ̂
(h,c)2
k,0,r +θ̂

(h,s)2
k,0,r

Kee,k,0

(5.192)

In the above equation, for either the cosine or sine mode, the opposing mode has zero electrome-

chanical coupling (i.e., when θ̂
(h,c)
k,0,r 6= 0, θ̂

(h,s)
k,0,r = 0). This analytical estimation of the electrome-

chanical coupling coefficient can be useful tool for the initial patch sizing and placement for any

piezoelectric-based system. The estimate derived here only uses the natural frequencies and mode

shapes of the tuned blisk, thus enabling a rapid means of estimating the coupling for any configu-

ration of patches.

As an example, consider the 8-sector tuned blisk discussed previously in Section 5.1.9.3, but

with rectangular piezoelectric patches arbitrarily sized and located at each blade root. Figure 5.8

shows two of the 4ND bare-blisk modes that correspond to the first bending (1B) and third torsion

(3T) mode families and with the color scheme corresponding to the modal displacement. Figure 5.9

shows the same two modes but with the color scheme corresponding to the sum of the modal strains

at each spatial location. For the 1B/4ND mode, the rectangular patch encloses an area of high

modal strain near the blade root, whereas for the 3T/4ND mode, the rectangular patch encloses

an area where the blade is in both tension and compression with modal strains that are equal in

magnitude but opposite in sign.
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Figure 5.10 shows the effect that increasing the patch thickness (normalized by the blade stiff-

ness) has on the coupling coefficients for both the 1B/4ND and 3T/4ND modes. For each mode,

this figure shows the coupling coefficients generated using the full set of assumed modes that in-

cludes 96 modes for the disk and 64 modes for the blades, the truncated set of 20 bare-blisk modes

per harmonic, and the analytical estimation from Eqs. 5.190 and 5.192. For small patch thicknesses

(< 10% blade thickness), the coupling coefficients for the 1B/4ND modes converge to the analyt-

ical estimate as the patch contributes negligible mass and stiffness to each blade. Increasing the

patch thickness causes the coupling coefficients generated from the first two methods to diverge

from the analytical estimate, thus indicating that there is an appreciable influence on the blade

mass and stiffness contributed by the patch. For all thickness values, the coefficients obtained used

the truncated set of modes show good agreement with those obtained using the full set of assumed

modes, but with a fraction of the computational cost. Increasing the number of modes included

in the truncated set can diminish the slight overestimation of the coupling coefficients, but at the

expense of an increased computation time. Furthermore, the coupling coefficients for the 3T/4ND

modes are zero for all patch thickness values. As the blades are in both tension and compression

within the area enclosed by the patches, the generated charge cancels, thus resulting in the minimal

coupling.
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(a) 1B/4ND mode shape. (b) 3T/4ND mode shape.

Figure 5.8: Example mode shapes of the blisk with the blade-mounted piezoelectric patches where the
color scheme corresponds to the modal displacements.

(a) 1B/4ND mode shape. (b) 3T/4ND mode shape.

Figure 5.9: Example mode shapes of the blisk with the blade-mounted piezoelectric patches where the
color scheme corresponds to the sum of the modal strains.
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Figure 5.10: Effect of piezoelectric thickness on the electromechanical coupling coefficients for the
1B/4ND mode (blue) and 3T/4ND (red). For each mode, the figure shows the coupling

coefficients obtained using the full set of assumed modes (solid with circles), a truncated
set of bare-blisk modes (solid with triangles), and the analytical estimation utilizing the

bare-blisk natural frequencies and mode shapes (dashed).

5.2.3 Multi-Objective Optimization

Designing a piezoelectric-based system with the piezoelectric materials functioning as actuators,

sensors, or vibration-reduction mechanisms, often requires a design that targets multiple vibration

modes. As the preceding section showed, the electromechanical coupling largely depends on the

modal strain distribution throughout the patch volume. As such, locating and sizing a network

of piezoelectric materials to generate strong electromechanical coupling in some modes can lead

to weak coupling in others, thus resulting in a trade-off between maximizing the coupling of the

various target modes. Furthermore, the design may also require minimizing the total patch volume

such that the patches do not significantly alter the dynamics of the initial system. As with any opti-

mization problem, optimizing the piezoelectric patches requires defining an appropriate objective
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function. Considering the maximization of the electromechanical coupling over multiple modes

and the simultaneous minimization of the patch volume, the objective function to minimize is

J = w1Vp−
Nr

∑
r=1

wr+1k2
eff,r (5.193)

The inclusion of multiple objectives within the objective function can lead to multiple optimal

solutions depending on the assignment of the weights. As such, this type of optimization problem

is an ideal candidates for application of a multi-objective optimization procedure. Rather than

optimizing a single objective function, multi-objective optimization considers multiple objectives

J1 =Vp, J2 =−k2
eff,1, · · · JNr+1 =−k2

eff,Nr
(5.194)

and produces so-called Pareto-optimal fronts composed of the Pareto-optimal solutions. These

Pareto-optimal fronts can visually aid the designer in choosing designs with acceptable tradeoffs

between the various objectives. A solution is weakly Pareto-optimal, or non-dominated, if there

does not exist any other solutions that improve all objectives; i.e., all other solutions degrade

at least one objective [104]. The multi-objective optimization procedure used here is the non-

dominated sorting genetic algorithm (NSGA-II). [105] This procedure has recently been applied

for a piezoelectric-based system that required the optimization of sets of patches for active vibra-

tion control of stationary and rotating cantilever beams using controllability as the performance

measure. [106] NSGA-II incorporates a rapid-sorting algorithm to sort each solution based on

their non-dominance ranking and incorporates this ranking into the solution’s fitness measure. The
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candidate solutions with a non-dominance rank of zero correspond to the Pareto-optimal front that

consists of all non-dominated solutions. A non-dominance rank of one corresponds to candidates

that, after removing the rank-zero candidates from the population pool, are non-dominated with

respect to all remaining candidates, and so on. NSGA-II also incorporates a crowding-distance

measure into the candidate’s fitness to preserve genetic diversity within the population, thereby

enabling a better spread within the Pareto-optimal front. After creating an initial population of

Npop total candidates and assigning a fitness based on the aforementioned criteria, a binary tourna-

ment selection procedure identifies two candidates for mating and performs a genetic crossover at

a probability of Pcross and a mutation at a probability Pmut. The process then inserts the generated

offspring into the parent population and sorts the updated population again by the non-dominance

ranking and retains only the Npop most fit candidates. The process then iterates over Ngen, or until

satisfying a specified threshold.

In general, the optimization procedure can optimize the piezoelectric patch’s geometric param-

eters and location/orientation on the blade; often times, however, test prototypes utilize off-the-

shelf piezoelectric patches that have fixed dimensions. This analysis simplifies the optimization

by only considering a single patch per blade with fixed dimensions. As such, the only parameters

to optimize are the patch’s location and orientation (either 0o or 90o). Furthermore, the opti-

mization procedure seeks to maximize the coupling for the 4ND modes of the blisk examined in

Section 5.1.9.3 and for the mode families associated with the blade’s 1st bending (1B) mode, 2nd

bending (2B) mode, and the mode showing a mixture of 3rd bending and 1st chord-wise bending

(3B1CB), producing a “saddle” shape. Each patch consists of a piezoceramic (PZT-5H) with the
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parameters shown in Table 5.3. The optimization begins by first generating an initial population

with parameters that confine the patches within the blade boundaries. After identifying two can-

didates for mating, performing an arithmetic crossover ensures the offspring generation includes

patches with dimensions that satisfy the system constraints. Furthermore, if the offspring under-

goes a mutation, randomly selecting the mutated value from a list of feasible values that satisfy

the system constraints will ensure the feasibility of the mutated offspring. After some experimen-

tation, the algorithm parameters Npop = 150, Ngen = 150, Pcross = 0.9, and Pmut = 0.05 showed

satisfactory performance.

Figure 5.11 shows the Pareto-optimal fronts obtained from the optimization that exhibit the

tradeoffs between the coupling coefficients for the 1B/4ND, 2B/4ND, and 3B/1CB modes. For

patch configurations that maximize coupling for the 1B mode, there is a reduced coupling for the

other two modes. Consider the patch configuration A identified with a red square in the figures.

Figure 5.12 shows the blisk mode shapes with the color scheme corresponding to the sum of the

modal strains at each spatial location. The left plots correspond to patch configuration A and show

that the patch resides near the blade root where there is maximum modal strain for the 1B/4ND

mode, thus producing k2
1B = 1.15%. For the 2B/4ND and 3B1CB/4ND modes, patch A is located

away from the region of maximum modal strain that exists near the center of the blade; however,

some strain is still present, thus producing k2
2B = 0.75% and k2

3B1CB = 0.95%. Next, consider

patch configuration B identified with a gold circle in Fig. 5.11; this configuration shows increased

coupling for the 2B/4ND and 3B1CB/4ND modes, but reduced coupling for the 1B/4ND mode.

The right plots in Fig. 5.12 correspond to patch configuration B and show that locating the patches
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near the middle of the blades increases the coupling for the 2B/4ND and 3B1CB/4ND modes to

k2
2B = 1.97% and k2

3B1CB = 3.13%, respectively. At this location, minimal strain exists for the

1B/4ND mode, thus reducing the coupling to k2
1B = 0.11%. The blisk manufactured and utilized

for the experimental analysis in Ch. 6 utilizes patch configuration B due to the large coupling that

exists for the 2B and 3B1CB modes.

Table 5.3: Piezoelectric patch parameters.

Piezoceramic (PZT-5H)
Length [mm] 44.50
Width [mm] 34.29

Thickness [mm] 0.27
% Blade Vol. 2.65

Figure 5.11: Pareto-optimal fronts (blue circles) showing the tradeoffs between the three objectives.
Also shown are the solutions for patch configuration A (red square) and patch

configuration B (gold circle).
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(a) 1B mode shape: Piezo A. (b) 1B mode shape: Piezo B.

(c) 2B mode shape: Piezo A. (d) 2B mode shape: Piezo B.

(e) 3B1CB mode shape: Piezo A. (f) 3B1CB mode shape: Piezo B.

Figure 5.12: The 4ND mode shapes targeted to optimize the electromechanical coupling with the color
scheme corresponding to the sum of the modal strains at each spatial position. The left
figures correspond to patch configuration A (red square in Fig. 5.11), whereas the right

figures correspond to patch configuration B (gold circle in Fig. 5.11).
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Finally, a finite-element model developed in NX 12.0 provides a source of validation for the

assumed-modes model that includes the influence of the blade-mounted piezoelectric patches; both

models consider patch configuration B obtained from the optimization. The finite-element model is

similar to that utilized in Section 5.1.9.3, but includes the piezoelectric pacthes. Although NX 12.0

does not explicitly contain piezoelectric elements to model these patches, defining an anisotropic

material with the material properties corresponding to PZT-5H poled through the thickness enables

the simulation of both the open- and short-circuit cases. For the short-circuit case, this requires

utilizing the stiffness matrix at a constant electric field (cE in Eq. 2.1); whereas for the open-

circuit case, this requires utilizing the stiffness matrix at a constant electric displacement (cD in

Eq. 2.3). Figure 5.13 shows the nodal-diameter map of the tuned blisk with all piezoelectric patches

operating in the short-circuit state and shows that both solutions obtained from the assumed-modes

model and the finite-element model show excellent agreement. The frequency curves show a slight

upward shift compared to the curves obtained from the bare blisk and shown in Fig. 5.4, thus

indicating that the patches slightly stiffen each blade.

Figure 5.14 shows the coupling coefficient as a function of nodal diameter for each mode

family. As the patch parameters obtained from the optimization target both the 2B and 3B1CB

mode families, these families exhibit the largest coupling, especially for the 4ND modes. These

modes also exhibit a slight increase in coupling for increasing nodal diameter. This effect indicates

that for each nodal diameter, there are slight variations in the mode shape that alter the modal

strain distribution. Although for these two mode families, the coupling remains large over all

nodal diameters, the two-stripe (2S) mode family exhibits a strong nodal-diameter dependence
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for the coupling where the coupling vanishes for the 3ND and 4ND modes. This nodal-diameter-

dependent coupling demonstrates the importance in performing the optimization for the entire

blisk, rather than for the stand-alone blades.

Figure 5.14 also shows the coupling coefficients obtained from both the assumed-modes and

finite-element models. The coupling coefficients obtained from both approaches show the same

general trends; however, the ones obtained from the assumed-modes model slightly overestimate

the ones obtained from the finite-element model. An experimental analysis undertaken by Kauff-

man for a cantilevered blade, idealized as a trapezoidal plate, showed a similar overestimation

in the coupling coefficients [80]. As the coupling largely depends on the modal strain distribu-

tion, and, hence, the mode shapes, increasing the number of modes in the model should increase

the accuracy of the coupling estimates, but showed little effect. This result may indicate that the

assumed-modes model is not fully capable of converging to the true mode shapes, or that the

model requires inclusion of a significantly larger number of assumed modes that is not compu-

tationally feasible. [107] Another source of discrepancy may arise in the thin-plate assumption

utilized by the assumed-modes model that neglects the out-of-plane stresses, whereas the finite-

element model incorporates the full three-dimensional stress field. As such, the in-plane strains

induced in the patches may be larger for the assumed-modes model, thus resulting in the larger

coupling coefficients.

176



Figure 5.13: Nodal diameter map of the tuned blisk with all piezoelectric patches operating in the
short-circuit state for the first six mode families.

Figure 5.14: Tuned-blisk coupling coefficients as a function of the nodal diameter for the first six
mode families.
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CHAPTER 6
APPLICATION TOWARDS AN ACADEMIC BLISK—PART 2:

EXPERIMENTAL ANALYSIS

This chapter provides the results from the experimental analysis used to validate the RFD concept.

This analysis incorporates the blisk and optimal piezoelectric parameters identified in Ch. 5. Sec-

tion 6.1 details the 8-blade blisk experimental setup. Section 6.2 details the modal tests performed

to experimentally characterize the blisk. It presents the modal parameters for the blisk in both

the open- and short-circuit operating states. Section 6.3 describes the development of a hybrid

numerical model that utilizes the experimental modal data; this model enables the application of

the genetic algorithm previously developed in Ch. 4 to identify the optimal triggers. This section

also presents a comparison between numerical simulations and the experimental tests for several

engine-order excitations.

6.1 Hardware Setup

The experimental setup consists of the same academic blisk described in the preceding chapter.

Figure 6.1 shows the 8-blade academic blisk machined from a single sheet of aluminum and

clamped on both sides of the central hub. The overhang between the blades and the clamped
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region of the hub facilitated the mechanical coupling between neighboring blades. This figure also

shows the piezoelectric patches (Piezo Systems, Inc. T110-H4E-602) bonded on both sides of the

blades in a collocated manner, and the accelerometers (PCB Piezotronics 352A21) mounted with

wax on each blade tip used to measure the tip response.

Figure 6.1: Academic blisk with blade-mounted piezoelectric patches used in the experimental study.

The sets of patches located on the top and bottom surfaces operated in two separate manners:

1) The patches on one surface operated as actuators to generate the traveling-wave excitation for a

user-defined engine order. A digital-to-analog converter (National Instruments 9263) connected to

these actuator patches provided a constant amplitude, sinusoidal voltage with a blade-dependent

phase governed by Eq. 3.13. 2) The patches on the opposite surface provided the stiffness-state

179



modulation by attaching each patch to a shunt circuit containing a single reed relay (Coto Tech-

nology 9007-05-00). A similar digital-to-analog converter provided a single “on/off” voltage com-

mand, amplified by a transistor, to all relays to enforce the simultaneous switching of all patches

between the open- and short-circuit states.

6.2 Modal Parameters

Identification of the optimal triggers via the genetic algorithm presented in Ch. 4 requires a model

that accurately represents the experimental blisk and includes obtaining the blisk’s modal param-

eters (i.e., natural frequencies, modal damping values, and mode shapes). As the blisk already

incorporates piezoelectric patches functioning as dedicated actuators, these same patches can also

provide the forcing mechanism to excite the blisk over a frequency spectrum containing the vibra-

tion modes of interest.

One such method to control the frequency content is to send a Gaussian-shaped pulse to one

of the patches, effectively exciting the system in a similar manner as in typical modal-hammer

tests [108]. Due to the light coupling between blades, to excite all blades sufficiently using only

a single patch required a large actuation voltage; however, this large voltage induced a nonlinear

response for the blade where the actuator patch was mounted. Instead, exciting the blisk with all

patches simultaneously distributes the actuation energy around the blisk, rather than localizing the

actuation energy on a single blade, thus preserving the operation of all blades within the linear

regime. Furthermore, as the mistuned nature of the blisk causes each mode shape to contain a
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distribution of spatial harmonic content, actuating the blades with engine-order excitation supplied

through the actuator patches will excite all modes, provided they contain some spatial-harmonic

content equal to the chosen engine order. Figure 6.2 shows that forcing the blisk with 1EO exci-

tation sufficiently excites all modes within 1050-1250 Hz frequency band that corresponds to the

3B1CB mode family. This figure shows the frequency response for both the open- (blue curves)

and short-circuit (red curves) states. It also shows the response of all blades (light, thin curves),

and the maximum blade response (dark, thick curves) at each frequency line. When operating in

either the open- or short-circuit state, there is a near identical response, but with a clear downwards

shift in resonance frequencies for the short-circuit state compared to the open-circuit state.

Figure 6.2: Experimental frequency response for all blades subjected to 1EO excitation supplied by
the piezoelectric patches. This figure shows the response for both the open-circuit (blue)

and short-circuit (red) states.

The frequency response of the system subjected to the engine-order excitation supplied by the

patches occurs in a similar form to that of an input force, thus enabling the use of typical frequency
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domain methods to extract the blisk’s modal parameters. For example, consider the equations of

motion for a blisk including piezoelectric materials, the equations of motion in matrix form are

Mẍ+Cẋ+Kx−ΘΘΘ
tVA = fm (6.1)

where VA is a vector piezoelectric actuation voltages and K is the blisk stiffness matrix in either

the open- or short-circuit states. As one set of piezoelectric patches provide the excitation rather

than an external mechanical force, these equations become

Mẍ+Cẋ+Kx = ΘΘΘ
tVA (6.2)

Using the modal transformation

x = ΦΦΦηηη (6.3)

and premultiplying the equations of motion by ΦΦΦ
t , the modal equations of motion are

M̂η̈ηη + Ĉη̇ηη + K̂ηηη = Θ̂ΘΘ
tVA (6.4)

Considering only a single mode, the modal equation is

η̈r +2ζrωrη̇r +ω
2
r ηr =

1
m̂r

Ns−1

∑
j=0

θ̂ j,rVA, j (6.5)
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For engine-order excitation supplied through the piezoelectric patches, the magnitude of the volt-

age is constant with a blade-dependent phase. In complex form, the voltage supplied by the piezo-

electric patch on the jth blade is

VA, j =VA0eiωteiγ j (6.6)

Assuming the rth modal response is also sinusoidal such that

ηr = η0,reiωt (6.7)

the frequency response of this mode with respect to the voltage supplied by the patch on the refer-

ence sector is

Hη ,r(ω) =
η0,r

VA0
=

1
m̂r

∑
Ns−1
j=0 θ̂ j,reiγ j

ω2
r −ω2 + i2ζrωrω

(6.8)

Summing over all modes and including the effects of any residual modes outside the frequency

band of interest, the frequency response of the jth blade tip is

H j(ω) =
x j

VA0
=

Nr

∑
r=1

A j,r

ω2
r −ω2 + i2ζrωrω

−
LR j

ω2 +UR j (6.9)

where A j,r is the modal amplitude that represents the contribution of the rth mode to the jth blade’s

response such that

A j,r =
1

m̂r
φ j,r

Ns−1

∑
j=0

θ̂ j,reiγ j (6.10)

The above form of the frequency response function is similar to that of the response function

corresponding to mechanical excitation [109]. As such, the utilization of typical frequency-domain
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methods enables the estimation of the blisk’s modal parameters. The method chosen here is the

polyreference least-squares complex frequency-domain method, also referred to as the PolyMAX

method [110, 111]. Of particular interest here, one of the strengths of the PolyMAX method is its

ability to estimate modal-participation factors along with the poles (natural frequencies and modal

damping ratios) when constructing the stabilization diagram. This feature enables the PolyMAX

method to more easily resolve the closely-spaced modes expected in mistuned blisks.

Table 6.1 shows the modal parameters for the 3B1CB mode family obtained from the Poly-

MAX method implemented in MATLAB. This table also shows the modal parameters for the blisk

with all blades operating in either the open- or short-circuit state. The blisk is lightly damped with

all damping values equal to or below 0.2% critical damping. The damping for each mode is also

relatively constant between the open- and short-circuit states suggesting that the switch between

stiffness states has a negligible effect.

Table 6.1: Blisk modal parameters for the 3B1CB mode family.

Mode
Freqs. [kHz] Damping [%]

k2
eff [%]OC SC OC SC

1 1.119 1.109 0.13 0.14 1.80
2 1.151 1.141 0.20 0.18 1.68
3 1.156 1.143 0.10 0.09 2.23
4 1.173 1.160 0.13 0.14 2.16
5 1.179 1.167 0.13 0.14 2.15
6 1.187 1.174 0.09 0.11 2.19
7 1.199 1.186 0.11 0.14 2.23
8 1.212 1.198 0.11 0.13 2.28

Furthermore, this mode family exhibits excellent electromechanical coupling with a coupling

coefficient of k2
eff,avg = 2.09% averaged over all modes of the family; however, the average coupling
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coefficient obtained from the tuned numerical model for the same mode family is k2
eff,avg = 2.93%.

Taking the experiment as truth, the average coupling coefficient obtained by the model overes-

timates the experimental coupling coefficient by 40.9%. These discrepancies in the measured

coupling may arise from multiple sources. A first source is the limitations of the assumed-modes

model as discussed previously in Section 5.2.3. A second source is the existence of the bond layer

between the patch and the blade surfaces. The numerical model assumed an ideal bond between the

patch and blade surface that results in the transmission of the entire strain from the the blade to the

patch. Realistically, a thin bond layer exists between these two surfaces and contributes shear-lag

losses that result in a less-efficient transmission of strain [112]. As the electromechanical coupling

for a particular mode depends largely on the modal strain, any reduction in the strain transmitted to

the patches will result in a loss of electromechanical coupling. A third source of discrepancy may

arise due to the presence of the accelerometers and associated cabling in the experimental setup.

The blisk utilized here is relatively thin such that the added mass contributed by the sensors may

not be negligible. This mass loading can not only drive down the observed natural frequencies, but

it can also alter the mode shapes and, consequently, the modal strain distribution, thus affecting the

electromechanical coupling.

Figure 6.3 shows both the the experimental mode shapes (normalized by the component of the

mode shape with the largest magnitude) for each mode of the 3B1CB mode family (left plots),

and also as the associated Fourier coefficients (right plots). This figure also shows these quantities

corresponding to the open- (blue) and short-circuit (red) states. The mistuning spreads the spatial-

harmonic content to all modes with varying degrees. Furthermore, the mode shapes between both
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the open- and short-circuit states are nearly identical indicating the stiffness increase across all

blades on the blisk is also nearly identical; however, there are some slight discrepancies, especially

distinguishable in the 2nd and 3rd modes. These discrepancies most likely arise due to the addi-

tional mistuning stemming from patch implementation. These mistuning sources may include the

manufacturing of the piezoelectric patches themselves, the mounting locations, and even the size

of the bond layer at each mounting location. This mistuning, however, is small compared to the

overall mistuning present for the blisk, thereby resulting in only small discrepancies between the

mode shapes between the two stiffness states.

Figure 6.3: Unwrapped mistuned mode shapes (left plots) where the ordinate corresponds to the blade
number. Also shown is the magnitude of the Fourier components for each mode shape

(right stem plots) where the ordinate corresponds to the spatial harmonic number (nodal
diameter). All plots include quantities corresponding to the blades operating in the

open-circuit (blue) and short-circuit (red) states.
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6.3 RFD Application

As it currently stands, application of RFD requires a model to identify the optimal sets of switch

triggers. As such, the experimental characterization of the blisk enables the generation of a hybrid

model utilizing the lumped-parameter model developed in Section 3.1 with the experimental modal

data. Furthermore, the optimal trigger identification only requires relative quantities, thereby en-

abling the use of the nondimensional form of the equations of motion. The nondimensional vari-

ables are the same as defined in Eqs. 3.15-3.21 but with time nondimensionalized by the mean

natural frequency of the mode family. Also, one set of the piezoelectric patches functions as actu-

ators that generates the traveling-wave excitation and requires the replacement of the mechanical

force in the nondimensionalization procedure by the force generated by the actuation voltage such

that fm,0 = θAVA0. The resulting nondimensional equations of motion for an 8-sector blisk are

M̄x̄′′+ C̄x̄′+ K̄x̄ = V̄A + F̄sw (6.11)

where the mass, damping, and stiffness matrices, as well as the piezoelectric forcing vector and the

switch-induced forcing vector are
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M̄ = I+∆∆∆M̄exp (6.12)

C̄ = 2ζ0I+∆∆∆C̄exp (6.13)

K̄ = K̄oc +∆∆∆K̄oc,exp− (I−S)(∆∆∆K̄p +∆∆∆K̄p,exp) (6.14)

V̄A =
[
V̄A,0 · · · V̄A,Ns−1

]t (6.15)

F̄sw = S(∆∆∆K̄p +∆∆∆K̄p,exp)x̄sw (6.16)

These modal matrices also include the variations to the lumped-parameter model introduced by the

experiment that are unknown. Furthermore, the experiment constrains all blades to switch stiffness

states simultaneously such that S = s0I. Using the measured open-circuit mode shapes enables a

transformation to the modal domain with respect to the open-circuit state such that

x̄ = ΦΦΦocηηη (6.17)

Premultiplying the nondimensional equations of motion by ΦΦΦ
t
oc results in the modal equations of

motion

M̂ηηη
′′+ Ĉηηη

′+ K̂ηηη = V̂A + F̂sw (6.18)

188



where the modal matrices and modal forcing vectors are

M̂ = ΦΦΦ
t
oc(I+∆∆∆M̄exp)ΦΦΦoc = I (6.19)

Ĉ = ΦΦΦ
t
oc(2ζ0I+∆∆∆C̄exp)ΦΦΦoc = diag(2ζ1ω̄oc,1, · · · ,2ζNsω̄oc,Ns) (6.20)

K̂ = ΦΦΦ
t
oc[K̄oc +∆∆∆K̄oc,exp− (1− s0)(∆∆∆K̄p +∆∆∆K̄p,exp)]ΦΦΦoc

= diag(ω̄2
oc,1, · · · , ω̄2

oc,Ns
)− (1− s0)∆∆∆K̂p

(6.21)

V̂A = ΦΦΦ
t
ocV̄A (6.22)

F̂sw = s0ΦΦΦ
t
oc(∆∆∆K̄p +∆∆∆K̄p,exp)ΦΦΦocηηηsw = s0∆∆∆K̂pηηηsw (6.23)

Here, ω̄oc,r is the rth open-circuit natural frequency normalized by the mean open-circuit natural

frequency of the mode family. Furthermore, the modal-parameter extraction that utilizes the data

obtained from the engine-order excitation does not yield mass-normalized mode shapes, thus re-

quiring the scaling of the mode shapes in a different manner. Distributing the terms in the modal

mass matrix results in

ΦΦΦ
t
ocΦΦΦoc +ΦΦΦ

t
oc∆∆∆M̄expΦΦΦoc = I (6.24)

Assuming that the experiment only introduces small variations to the mass matrix, the compo-

nents of ∆∆∆M̄exp are much less than one, thus resulting in the diagonal components of ΦΦΦ
t
ocΦΦΦoc

approximately equal to one. This assumption enables the scaling of each mode shape such that

φφφ
t
oc,rφφφ oc,r ≈ 1. Furthermore, as the mode shapes between the open- and short-circuit states are

nearly identical, the matrix ∆∆∆K̂p is approximately diagonal where the diagonal components are the
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differences between the open- and short-circuit squared natural frequencies

∆∆∆K̂p = diag(ω2
oc,1, · · · ,ω2

oc,Ns
)−diag(ω2

sc,1, · · · ,ω2
sc,Ns

) (6.25)

Using the above model with the solutions to transient excitation developed in Section 3.2.3 enables

the identification of the optimal switch triggers via the genetic algorithm presented in Section 4.1.2.

For the first experimental test, consider the blisk subjected to 1EO excitation sweeping through

the 1050 Hz – 1250 Hz frequency band at frate = 10 Hz/s (ωrate = 62.8 rad/s), or ω̄rate ≈ 10−6.

Figure 6.4 shows the results for RFD considering 8 optimized triggers. Each plot shows quantities

corresponding to the open-circuit case (blue), the short-circuit case (red), and the optimal case

(gold). Figure 6.4a shows the response envelopes at each time instant obtained from the numerical

simulation. As the last three modes contain the smallest amount of 1ND harmonic content, the 1EO

excitation does not excite them as strongly as the first five modes. The optimal triggers primarily

occur between the open- and short-circuit peaks, resulting in a 51.6% decrease in the maximum

blade response. Figure 6.4b shows each blade’s maximum response obtained from the simulation.

RFD shows the greatest benefit for the largest responding blades (i.e., blade 3, 7, and 8) where

there are significant decreases in the maximum blade response. Figure 6.4c shows the response

envelopes obtained from the experiment. Similar to the numerical simulation, the last three modes

are not excited as strongly as the first five modes; however, the third mode responds at a smaller

amplitude in the experiment compared to the simulation. As such, RFD reduces the maximum

blade response by 31.2%, which is smaller than the numerical prediction. This discrepancy most
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likely arises from errors in the measurement and curve-fitting process, as well as the mode-shape-

scaling process. Figure 6.4d shows each blade’s maximum response obtained from the experiment.

The experiment shows similar trends as the simulation with RFD providing the greatest benefit for

the largest responding blades.

For the second experimental test, consider the blisk subjected to 4EO excitation and again

sweeping through at frate = 10 Hz/s, or ω̄rate ≈ 10−6. Figure 6.5a shows the response envelopes

obtained from the numerical simulation. The 4EO excitation most strongly excites the 7th and 8th

modes as these modes contained the largest amount of 4ND content. One of the optimal triggers

occurs between the two largest response peaks in the open- and short-circuit states and results in

a 59.2% reduction in the maximum response. A trigger also occurs between the first two smaller

peaks that reduces the vibration further. There are also several triggers that are redundant and pro-

vide no benefit; for example, the first two triggers occur nearly simultaneously such that the system

essentially remains operating in the open-circuit state. Figure 6.5b shows each blade’s maximum

response obtained from the simulation. As the last mode shape shows vibration primarily localized

in the 1st blade, the 4EO excitation causes this same blade to respond with the largest amplitude.

Consequently, RFD provides the greatest benefit for this blade. Figure 6.5c shows the response

envelopes obtained from the experiment that closely resemble the simulation and where RFD pro-

vides a 45.3% reduction in the maximum response. Figure 6.5d shows each blade’s maximum

response obtained from the experiment where the overall trends closely resemble those observed

in the simulation.
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Although not presented here, RFD was tested for the remaining engine orders. Figure 6.6

shows two bar graphs summarizing the results for both the numerical simulations and the experi-

ments. Figure 6.6a shows the maximum amplitude of all blades for the optimal case normalized

by the maximum amplitude in the un-switched, open-circuit case. Both the simulations and the

experiments show good agreement. In all cases, there is at least a 20% reduction in the maximum

system response, except for 3EO excitation, where there is less than a 10% reduction. Figure 6.6b

shows the total area under the maximum response envelope for the optimal case normalized by

the total area under the maximum response envelope for the open-circuit baseline. RFD provides

at least a 25% decrease in total area for all engine orders, include the case of 3EO excitation. As

such, RFD still provides benefit by reducing the total strain energy generated during resonance

passages, even if there is not an ample reduction in the maximum response.
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(a) Time response obtained numerically. (b) Max blade response obtained numerically.

(c) Time response obtained experimentally. (d) Max blade response obtained experimentally.

Figure 6.4: RFD performance for the blisk subjected to 1EO excitation. Each plot shows the quantities
obtained for the open-ciruit (blue), short-circuit (red), and optimal (cases), all normalized

by the maximum response of the un-switched, open-circuit baseline.
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(a) Time response obtained numerically. (b) Max blade response obtained numerically.

(c) Time response obtained experimentally. (d) Max blade response obtained experimentally.

Figure 6.5: RFD performance for the blisk subjected to 4EO excitation. Each plot shows the quantities
obtained for the open-ciruit (blue), short-circuit (red), and optimal (cases), all normalized

by the maximum response of the un-switched, open-circuit baseline.

(a) Maximum response of the entire blade set. (b) Area under the maximum response envelope.

Figure 6.6: Numerical and experimental performance comparison for all engine orders. Each plot
shows the quantities obtained for the optimal RFD performance normalized by the
quantities obtained for the baseline, open-circuit case with no switch application.
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CHAPTER 7
CONCLUDING REMARKS AND FUTURE RESEARCH DIRECTIONS

The primary focus of this research effort is to reduce excessive vibrations of mistuned blisks un-

dergoing transient excitation. Reducing blade vibrations and increasing blade life has long been a

focus of researchers for many decades. Many of the previously investigative approaches have their

own associated advantages and drawbacks, one of which requires careful design considerations

and tight tuning of certain parameters that exhibit sensitivity to any variations induced by opera-

tional wear and damage over the lifespan of the engine. Furthermore, many of these approaches

can only effectively target a single resonance crossing without increasing the size and complexity

of the vibration reduction system, thus leading to designs that may be difficult, or physically in-

feasible, to implement due to the stringent constraints imposed by a turbomachinery environment.

As such, this research effort focused on extending the RFD approach to reduce blisk vibrations

by developing the theoretical framework required to analyze these complex systems, as well as

providing experimental validation to further prove the viability of the approach.

This research effort contributed several novel and significant aspects, the first of which included

the natural extension of RFD from systems with well-separated modes, to more complex systems

exhibiting closely-spaced modes, such as those typically encountered in mistuned blisks. The mod-

els utilized here consisted of lumped-parameter elements to qualitatively capture the complex dy-
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namics stemming from mistuned blisks with blade-mounted piezoelectric elements, thus enabling

parametric studies provided by Monte Carlo simulations to identify the key parameters that dictate

RFD performance. Performing such a large-scale statistical analysis required a computationally

efficient methodology to obtain the response to transient excitation and to identify the optimal sets

of switch triggers. To address the former, this research adapted a semi-analytical procedure to

solve for the blisk’s response to transient excitation associated with a specified engine order; to

address the latter, this research also incorporated an optimization procedure to identify the opti-

mal triggers. Another significant aspect of this work is the development of an electromechanical

assumed-modes model that accurately represents a blisk with blade-mounted piezoelectric patches.

Stemming from this model was the application of a multi-objective optimization procedure used

to optimize the piezoelectric patch parameters that maximize the electromechanical coupling for

the vibration modes of interest. The final significant aspect of this work was the experimental

validation of the RFD concept as applied to a mistuned blisk.

Although this research effort built the fundamental framework necessary for extending the RFD

concept to mistuned blisks, this concept requires further development before a successful physi-

cal implementation on real turbomachinery blades. First and foremost, significant implementation

questions remain, as outlined by Kauffman [80]. One of the key implementation limitations is

the requirement of a system model to identify the optimal sets of switch triggers; instead, the de-

velopment of a model-independent switching control law utilizing a readily measurable quantity,

such as the piezoelectric voltage, would provide the robustness and versatility required by the in-

herently random nature of mistuning. Future research should also extend the concepts developed
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in this work to more complex models. Specifically, the numerical analysis only considered the

application of RFD to lumped-parameter models, thus necessitating the extension, albeit straight-

forward, to more complex models, including both the assumed-modes model developed here, and

more industrial, finite-element models. Finally, further development and refinement of assumed-

modes model would be a fruitful endeavor as this model is a computationally cheap alternative to

finite-element models, thus enabling the utilization for identifying general trends in turbomachin-

ery blade design.

7.1 Key Research Findings

7.1.1 Resonance Frequency Detuning

Examining the viability of RFD to reduce vibrations present in mistuned blisks first requires a

fundamental model to adequately capture the underlying response dynamics. As such, this re-

search incorporated piezoelectric elements into a lumped-parameter blisk model to analyze RFD.

This model enabled the analysis of both tuned and mistuned systems and when considering the

operation of all blades in either the open- or short-circuit stiffness states. By switching all blades

simultaneously, there is a uniform increase/decrease in the stiffness around the blisk, resulting in

identical mode shapes between the two operating states, and a relatively constant electromechani-

cal coupling coefficient for all modes. Furthermore, the forced response for both operating states
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are nearly identical, but with the short-circuit response exhibiting a downward shift in all resonance

frequencies due to the softening effect provided the reduced blade stiffness.

Successful RFD application requires the identification of the optimal sets of switch triggers

to reduce vibration. When considering harmonic excitation, the sole optimal trigger for the tuned

system depends on the electromechanical coupling coefficient and the engine order; conversely, the

optimal triggers for a mistuned system with decoupled blades depend on the mistuning associated

with each of the individual blades and also the coupling coefficient. Mistuned systems that include

the interblade coupling operate within these two limiting cases, thus the complex dynamics require

a separate approach to identify the optimal triggers. This analysis applied a genetic algorithm to

identify these optimal triggers when considering both the reduction of the maximum response and

the total area under the response envelopes as the performance measures. Furthermore, RFD is a

transient approach that requires a computationally efficient means of solving for the response. This

analysis utilized a previously developed, semi-analytical approach, and adapted it to include the

effects of switching between the available stiffness states provided by the piezoelectric elements.

The inherently random nature of mistuning requires a parametric study that utilizes Monte

Carlo simulations to identify the general trends accompanying the various design parameters; such

parameters include the mistuning strength, the excitation sweep rate, the modal damping, and the

difference between the open- and short-circuit states (i.e., the electromechanical coupling). The

parametric study showed that RFD provides the greatest benefit for systems with light mistuning,

light damping, large electromechanical coupling, and subjected to slow and moderate sweep rates.

The parametric study also showed that RFD performed successfully when only considering a sin-
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gle switch between the open- and short-circuit state, whereas multiple switches showed marginal

benefit, except in highly mistuned systems.

This research effort also provided experimental validation using an academic blisk manufac-

tured from a single sheet of aluminum. One set of piezoelectric patches functioned as actuators

that simulated the engine-order excitation, while a second set provided the stiffness-state modu-

lation to reduce vibration. Identifying the optimal triggers required the application of the genetic

algorithm to a hybrid model consisting of the lumped-parameter model with the experimentally

identified modal parameters (i.e., natural frequencies, modal damping ratios, and mode shapes).

For engine-order excitation sweeping through the resonances of a single mode family, both numer-

ical simulations and experimental tests exhibited the potential of RFD to reduce vibration for all

engine orders. When considering the reduction of the peak response as the performance metric,

RFD performed better for some engine orders compared to others; however, when considering

the reduction of area under the maximum response envelope, RFD performed comparably for all

engine orders.

7.1.2 Assumed-Modes Blisk Model and Piezoelectric Optimization

As a step taken towards applying RFD to more complex systems, this research developed an elec-

tromechanical blisk model utilizing the energy-based, assumed-modes approach. Comparisons to

a finite-element model provided validation of the modeling strategy for both the tuned and mis-

tuned cases. In a similar manner to finite-element models, the developed model can also decrease
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the computational expense when analyzing a tuned blisk by only requiring the system matrices

for a single sector. Furthermore, the resulting tuned-system equations of motion only couple for

similar harmonics, thus reducing the size of the associated eigenvalue problems. When including

the piezoelectric patches, the model showed that the coupling coefficients for some mode families

largely depend on the spatial harmonic, or nodal diameter number, due to the altered distribution

of modal strains.

Designing a piezoelectric-based system requires appropriately sizing and locating the piezo-

electric patches to achieve the desired function, whether that be for actuating, sensing, reducing

vibration, or harvesting vibration energy. Often times, these piezoelectric-based systems also re-

quire performing these functions across multiple modes. As such, this research incorporated a

multi-objective optimization algorithm to optimize the patch parameters using the patch volume

and the electromechanical coupling as the performance metrics. This optimization procedure re-

quires application towards the full blisk model, rather than a stand-alone blade, due to the nodal-

diameter dependency exhibited by the coupling coefficients. As this optimization requires calcu-

lating the coupling for a large number of systems, the procedure optimizes the parameters for a

tuned blisk to exploit the computational savings. Utilizing a reduced number of bare-blisk mode

shapes to transform the system equations to the modal domain before including the influence of

the patches further reduces the computational cost. Also presented was an analytical derivation for

the coupling coefficient that largely depends on the sum of the bare-blisk modal strains integrated

over the patch area, as well as the patch material parameters. For patches that are thin compared to

the host blade, this analytical coupling coefficient provides a good indicator of the optimal patch
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location. Lastly, while this research developed these concepts for use with the assumed-modes

model, extension to finite-element models should be straightforward.

7.1.3 Experimental Testing of a Mistuned Blisk

Stemming from the experimental component of this research was the development of testing meth-

ods that benefit the turbomachinery community as a whole. Recently, researchers have utilized

piezoelectric actuators in modal tests as an alternative to produce Gaussian-shaped pulses typical

of modal-hammer tests; using the piezoelectric actuators in this manner enables more control over

the frequency content associated with the pulse [108]. When attempting to incorporate this ap-

proach to experimentally characterize the blisk used in this research, the light coupling between

blades dictated large actuation voltages supplied to the blade-mounted patch to sufficiently ex-

cite all blades on the blisk; however, these large voltages caused nonlinearities in the response of

the blade containing the actuator. As such, this research developed a separate testing procedure

for blisks that recruits the piezoelectric actuators located on all of blades to distribute the actu-

ation energy around the blisk. The form of the frequency response function when considering

engine-order excitation is similar to that of an applied point force, thus enabling the use of typical

modal-parameter estimation routines. This research also developed a hybrid model that utilized

the lumped-parameter blisk model in conjunction with the experimentally obtained modal data.

Simulations using this model closely resembled the experimental response when considering the

transient excitation provided by the specified engine order, thus enabling the application of the
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genetic algorithm to identify the optimal triggers. A similar semi-empirical blisk model exists, but

only considers harmonic excitation [96].

7.2 Recommendations for Future Research Directions

7.2.1 Model-Independent Switching Law

In this research, identification of the optimal triggers required the use of a genetic algorithm with

a blisk model. Although this method of identifying the optimal trigger sets offers invaluable in-

sight into the fundamental aspects of RFD and the expected vibration reduction performance, such

an approach may not be feasible for a physical implementation. Blisks are highly sensitive to

mistuning that causes significant distortions in the mode shapes and, consequently, the forced re-

sponse. The harsh environments experienced by these systems can constantly alter the mistuning

pattern through uneven operational wear and foreign-object damage, thus constantly requiring the

identification of updated sets of optimal triggers and the computational resources needed to do so.

As such, progression towards a successful physical implementation most likely requires a model-

independent switching law that can adapt to the changing dynamics expected in these systems.

One such strategy performs this switch based on a measurement of the piezoelectric voltage, and

its corresponding derivatives, that signal an approaching resonance; however, the analysis of this

switching law focused only on a single, well-separated mode [113]. The extension of this switching

law to mistuned blisks that contain regions of closely-spaced modes requires further investigation.
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Specifically, if there are any overlapping open- and short-circuit resonances, such as in the example

shown in Fig.4.6, updates to the switching logic may require the application of several consecutive

switches after triggering the initial switch.

Considering that the analysis provided here constrained the blades to switch simultaneously,

physically satisfying this constraint would require a means of communication between the patches

located on the various blades. One method would be to attach leads to the patches that run to the

root of the blades and onto the disk, where the patches could then be connected to a single relay.

A second method considers each of the patches as stand-alone systems connected to independent

switching circuits. As all the blades of a mistuned blisk experience resonances simultaneously, the

voltage-based switching logic should also cause the patches to switch simultaneously; however, if

the modal participation is small for some of the blades, the amplitudes of the associated resonance

peaks may also be too small to trigger a switch. In such situations, the minimal deflection expe-

rience by the blades will prohibit any strain from developing within the patches and they will not

appreciably add to the electromechanical coupling for the mode in question; therefore, switching

these patches would not be necessary for resonance avoidance.

7.2.2 Further Development of the Assumed-Modes Blisk Model

As RFD progresses, the need arises for investigations on more complex blisk models. The low-

order assumed-modes model provides an initial stepping stone towards achieving this goal. The

model developed here, however, neglects the effects of the rotation-based centrifugal forces. These
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rotation-based effects can alter the modal strain distribution of the blades and, consequently, influ-

ence the associated electromechanical coupling coefficients. [80, 114] Inclusion of these rotation-

based effects is paramount, especially when considering the optimization of the patches. Fur-

ther developments of the assumed-modes model may also include such features as the blade pre-

twist and stagger angles, both of which have been previously modeled using similar energy-based

methods [85, 86, 87]. At some point, however, further increasing the complexity will render the

assumed-modes approach inadequate, thus necessitating the progression to higher-fidelity finite-

element models.
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