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ABSTRACT

Educational Data Mining (EDM) is a research area that analyzes educational data and extracts

interesting and unique information to address education issues. EDM implements computational

methods to explore data for the purpose of studying questions related to educational achievements.

A common task in an educational environment is the grouping of students and the identification

of communities that have common features. Then, these communities of students may be studied

by a course developer to build a personalized learning system, promote effective group learning,

provide adaptive contents, etc. The objective of this thesis is to find an approach to detect student

communities and analyze students who do well academically with particular sequences of classes

in each community. Then, we compute one or more sequences of courses that a student in a

community may pursue to higher their chances of obtaining good academic performance.
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CHAPTER 1: INTRODUCTION

One definition of Data Mining (DM) is that the process of extracting interesting, interpretable,

useful and innovative information from data. It has been applied for businesses, scientists and

governments in many years, to filter through volumes of data like online shopping records, weather

data and census data [9]. EDM is the application of DM techniques to educational data, and its goal

is to analyze these kinds of data so that one can address and resolve educational research issues.

One main research area of EDM is to group students, and we can use community detection ap-

proaches to group them. One of prevalent definitions of community detection is given by Newman

and Girvan (2004): A community can be represented by a subgraph which has more edges within

the subgraph than the rest of the graph. Likewise a graph has a clustering configuration if there are

more links within any cluster than between those clusters [17].

A big amount of effort has been devote to develop community detection approaches, and there are

two widely adopted thus worth to mention. The stochastic model Psorakis et al. [18] addresses

on deriving generative models of networks. This kind of generative model uses an embedding in

a low dimensional latent space to represent a network. Using a different approach, the modularity

maximization model tries to maximize a modularity function on network frames. The Eigenvalue

Decomposition (EVD) is applied to optimize the method, which is equal to rearranging a low-rank

modularity matrix [12].

Machine learning is an emerging research area, and has applications on various fields. Some

machine learning methods, such as classification and clustering, are commonly used to group

students. Machine learning techniques can be divided into two kinds. One is supervised learning,

where you have input variables and an output variable, and an algorithm is applied to learn the

mapping function from the input to the output. The goal of supervised learning is to optimize the
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mapping function, so that you can predict the output value when you get a new input value. In

supervised learning the training data is labeled, so that the model can be optimized via reducing

deviation of the predicted result and the labeled output variable during training, until it can achieve

an satisfying accuracy of predication with new input data. Another kind of machine learning

techniques is unsupervised learning, where you only have input variables and no output variable.

The objective of unsupervised learning is to model the underlying structure in the data in order to

learn more about the data. Unlike supervised learning, unsupervised learning deals with unlabeled

data, and the algorithms learn to discover and present the interesting structure in the data.

The student data set used in this project is unlabeled, and the goal of this project is to build a model

to find potential communities, which should be an general and universal model, and could be used

also for any common university. So the unsupervised learning algorithms are preferable for this

project.

Unsupervised learning techniques can be further divided into clustering and association algorithms.

Clustering algorithms can group a set of observations in a manner that observations in the same

cluster have more similarity to each other than to those in other clusters. Association algorithms

aim to discover interesting relations between variables in large databases, to identify strong rules

discovered in databases using some measures of interestingness. Like mentioned above, the goal

of this project is to identify communities of students, so clustering algorithms are suitable for this

task. There are two common clustering algorithms: K-means and hierarchical clustering, both have

been used to experiment on a synthesis student data set.

In this work we have two steps, in Chapter 3 we have clustered students into subgroups based

on their common characteristics. In Chapter 4 we have built a generative model to learn course

sequences of high performance students in one subgroup, thereafter we can recommend new course

sequences for new students, who belong to the subgroup.
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CHAPTER 2: DATA SET

To guarantee the universality of our project’s approach, that it can be applied on various universities

and colleges, a synthesis data set with two files including undergraduate students information has

been simulated for this project. One file includes administration information of 800 graduated un-

dergraduate students with the same major: identifier number, first generation flag, transfer state(if

started university directly), degree GPA. Another file has their course information, like course code

number, title and taken term.

The administration data has been simulated based on a undergraduate student statistic of a state

university [1]. Transfer student ratio has been set up to 14:86, which means 14% students in our

data set are transferred from other institutions. First generation flag ratio has been set up to 1:4,

that means 20% students in the data set are the first generation and other are not. We assumed

a normal distribution of student’s Degree GPAs: mean value is 3.2, standard deviation is 0.4 and

range is from 0 to 4. After fixed the administration data distribution, we simulated 800 students’

data randomly. For each student, an unique ordered identifier number was created, and his/her first

generation flag, transfer state and degree GPA was generated randomly based on the pre-setting

distribution.

Once student administration data was generated, student course data could be created. There are

totally 8 courses in our data: “English Literature”, “Composition”, “Statistical Methods”, “Physics

Using Calculus I”, “Physics Using Calculus II”, “Principle Of Macro-economy”, “Chemistry” and

“Calculus”. To apply 3 Markov Models to generate course sequences for those 800 students,

we set transition and initial probabilities of those 3 models with following assumptions based on

common sense: Model I is for high performance (who’s degree GPA is higher than the average of

their group) non first generation and non transfer students. The transition probability matrix and
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initial probability vector of Model I is shown as Figure 2.1, we can see the initial probability of

course “Composition” is 0.35, higher than other courses. As we assumed that these students would

prefer to take course “Composition” than other courses firstly when they started at the university,

to build a robust foundation of university-level education. Some courses are prerequisite of other

courses, for instance, course “Calculus” is prerequisite to “Physics Using Calculus I”, and course

“Physics Using Calculus I” is prerequisite to “Physics Using Calculus II.” Those relationships

have been reflected in the matrix, for example: the transition probability from “Physics Using

Calculus I” to “Physics Using Calculus II” has been set up to 0.75, much higher than any other

courses. Model II is for the first generation high performance students (who’s degree GPA is higher

than the average of their group), the probability of taking math related fundamental courses (like

“Calculus”) at the beginning of their academic paths is higher than taking other courses such as

“English Literature” and “Composition”. Same like Model I, some courses are prerequisite of other

courses, for example, course “Calculus” is prerequisite to “Physics Using Calculus I”, and course

“Physics Using Calculus I” is prerequisite to “Physics Using Calculus II.” Transition and initial

probabilities have been set up to reflect those assumptions, for instance, the transition probability

from “Physics Using Calculus II” to “Physics Using Calculus I” is 0. The initial probability of

“Calculus” of Model II is set to 46%, so that “Calculus” has much higher chance to show at first

position of a sequence generated by Model II. Model III represents all other students who are not

in cases of Model I and Model II. Its transition and initial probabilities have been set evenly.
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Figure 2.1: Transition and initial probabilities for Model I

After set up those 3 Markov Models, we generated a course sequence for each student: chose model

based on a student’s administrative information. For instance, if the student was first generation and

his/her GPA is equal or greater than 3.2, we would use Model II; If he/she is non first generation,

non transfer and his/her GPA is equal or greater than 3.2, we would choose Model I; otherwise

Model III would be applied. When a Markov Model generated a course sequence for a student, we

also added course term code in order. Unique course number for each course has been added at

end, then all sequences have been output to a csv file.
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CHAPTER 3: CLUSTERING MODELS

Clustering is to divide population into subgroups, which are similar in the groups and different

between groups. How to define similarity and difference needs domain knowledge, to choose

related features.

Clustering method has applications in many fields, one instance is the market segmentation –

to identify subgroups of people, who are more responsive to a specific form of advertising or

who are more likely to buy a specific product [9]. Like the market segmentation, students can

be grouped by their characters and backgrounds to subgroups of people, who are more likely to

achieve academic success with particular course schedules. Different clustering algorithms have

been implemented to group students, such as: hierarchical agglomerative clustering, K-means and

Expectation-Maximization, to form heterogeneous groups based on student skills [16]. Among

those algorithms hierarchical clustering and K-means clustering are two most known approaches,

and both are based on dissimilarities inside and between groups.

Dissimilarity Matrices

Central to all clustering analyses is the definition of the similarity (or dissimilarity) degree between

the individual objects being clustered. A clustering method tries to group objects according to the

definition of similarity applied to it.

Sometimes data is expressed directly in terms of the proximity between pairs of objects. These can

be either similarities or dissimilarities [7]. Most popular algorithms use a dissimilarity matrices

as their input, and most common choice of calculating the dissimilarity between two objects i

and i′ for quantitative data is squared distance. However, the squared distance is not suitable for
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categorical data. Furthermore, it’s desirable to give each attribute different weight instead of equal

weight to all attributes.

For mixed data with continuous and categorical features, Gower’s general similarity measure is

a good choice to calculate the similarity of mixed data types. Gower’s distance can be used to

measure how different two individuals are. Two objects i and j may be compared on a feature k

then assigned a score zero when i and j are considered different; and a positive score, when they

have some degree of similarity [11]. The records may contain combinations of logical, numerical,

categorical or text data.

The first step of clustering is to calculate distances and produce a distance matrix. The second step

is to use a clustering algorithm to group students. Two kinds of algorithms: Hierarchical Clustering

and Partition Around Medoids(PAM) clustering have been used for this task.

Hierarchical Clustering

Hierarchical clustering is a common and developed algorithm in unsupervised machine learning.

Hierarchical clustering approaches begin with splitting the data set into single nodes, then unite the

nearest two data points into a new node till there is one last node left, which represents the whole

data set. Many clustering approaches have this process in common, but how they measure the

inter-cluster dissimilarity are different at each step. There are seven most common used methods:

single, complete, average, weighted, Ward, centroid and median linkage [15].

A hierarchical clustering algorithm can generate a tree as graphical display of the result, called a

dendrogram. This dendrogram illustrates the merging process and the subclusters. Similar data

points and data subsets are close in a dendrogram. Figure 3.1 shows how four points can be

merged into a single cluster [14]. Once a dendrogram is generated, we can get the wanted number
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of clusters G by cutting the dendrogram at a height based on G branches [8].

Figure 3.1: A dendrogram with four points

There are two major ways to implement a hierarchical clustering: One is agglomerative way, and

it begins with all objects as singleton clusters, then merges the most similar pair of clusters. This

demands a definition of cluster similarity. Another is divisive way, and it begins with one, all-

inclusive cluster, then splits a cluster at each step, until only singleton clusters of individual objects

remain. In this way, it requires to make decisions which cluster to split and how to split at each

step [14]. Agglomerative approaches are more popular and have been applied in this paper.

PAM Clustering

One of the most fundamental and popular clustering techniques is K-means clustering algorithm.

K-Means clustering algorithm uses a centroid to indicate a cluster. It splits a data set of n data

points into k clusters, and each data point belongs to a cluster with nearest possible centroid. This

method is interpretable and easy to implement, however it has a major disadvantage. When there

are data points with extreme values, the data would distribute unevenly, causing inappropriate
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clustering. Therefore K-Means clustering approaches are very sensitive to outliers and noise, this

reduces its performance as well. K-means performs also not so well when clusters have non-convex

shapes or very diverse sizes. So another clustering algorithm which is similar but still robust to

outliers and noise is needed. Especially outliers and noise are common in real environment [6].

Partition Around Mediods (PAM) is one such algorithm. PAM was developed by Leonard Kaufman

and Peter J. Rousseeuw, and it is very alike to K-means, as both are partitional algorithms. K-

means and PAM both split a data set into groups, and both work by minimizing the error, though

the latter uses Medoids. A medoid is a data point of a data set and represents a cluster, in which

it is included. Unlike PAM, K-means uses Centroids. A centroid is an artificially generated item,

which represents its cluster. Thus PAM is relatively robust than K-Means especially in the case of

noise or outliers.

Experiments

A dissimilarity matrix with Gower’s general similarity measure generated from the synthesis stu-

dent data set which include administration information such as gender, first generation flag, transfer

state and degree GPA, have been fed to two hierarchical clustering methods: complete links and

average links. Figure 3.2 is the tree from average links, and Figure 3.3 shows the tree from com-

plete links. There could be 2 or 4 clusters for both trees. Table 3.1 shows the comparison of labels

between those two approaches when cut both trees with 2 clusters. Table 3.2 shows the comparison

when cut both trees with 4 clusters. From the tables we can see, the two algorithms produced same

labels and clusters. The dendrogram can show how many clusters you can get when cut it at differ-

ent height, however there is no suggestion where to cut the tree and how many clusters should we

choose. The instability of hierarchical clustering models requires domain knowledge and carefully

choose parameters for good performance. A different approach is needed, which could suggest a
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average links

1 2

complete links 1 783 0

2 0 217

Table 3.1: Complete and average link 2 clusters comparison
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average links

1 2 3 4

complete links 1 666 0 0 0

2 0 181 0 0

3 0 0 36 0

4 0 0 0 117

Table 3.2: Complete and average link 4 clusters comparison

The same dissimilarity matrix with Gower’s general similarity measure has been applied for the

PAM method, and silhouette width has been used to estimate the suitable K of clusters. Silhou-

ette is a measurement of interpretation and validation of consistency within clusters of data. The

measurement gives a graphical explanation of how well every object is within its group [20]. The

silhouette value represents that how similar a data point is to its own group compared to the rest

groups. The value’s range is from -1 to +1, and a high value means, that the data point matches well

to its own group and matches poorly to the rest groups. If most data points have high values, the

clustering construct is proper. If Silhouette values of many points are low, the clustering construct

may have too many or too few clusters [3].

From the Figure 3.4 we can see, silhouette width has the highest value when K is 3, which indicate

3 could be a good choice for K. As it achieves a high silhouette width value meanwhile keeps

clustering relatively simple: not too many subgroups.
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Figure 3.4: Silhouette width vs K

Then students have been divided into 3 subgroups, and Figure 3.5 shows a summary of one sub-

group. We can see that two attributes ’First.Generation.Flag’ and ’Begin.University.Directly’ play

important roles in the clustering, as all students in this subgroup are not first generation, and started

to study in this university directly instead of transferring from other institutions. We chose this sub-

group and divided it further: created a subset of students, whose degree GPA is above average, for

our course sequence generator model. Course information of those students have been extracted,

Figure 3.6 is an example of one student’s course information, which shows what courses he/she

took, at which terms and the course grades.

Above implementation has been done with R. See Appendix.
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Figure 3.5: Student group summary

Figure 3.6: Student course information sample
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CHAPTER 4: GENERATIVE MODELS

Sequence Model Approaches

The end goal of this project is to compute one or more sequences of courses that a student in

a community may pursue to increase their chances of obtaining good academic performance. It

has some similarity with the sequence classification which is an common research task with many

applications in different domains, such as e-commerce, computer security and finance [4]. The

former aims to obtain patterns or event (course) distribution probability from training data and to

generate event (course) sequences. The latter fits models to training data and predicts the class of a

new given sequence by a discriminant or generative way; both handle event sequences. Therefore,

our sequence generation approach has been derived from sequence classification.

The sequence classification methods can be broadly classified into three large groups. Feature-

based: The methods in the first group represent each sequence as a d-dimensional feature vector,

and use traditional supervised classifiers, such as naive Bayes, decision trees, support vector ma-

chines (SVM), or random forest for performing sequence classification. The main task of these

methods is selecting suitable features that are effective for the classification task. Distance-based:

The classification methods in this group design a distance/similarity function between a pair of

sequences. Using this function, such a method partitions a set of input sequences into differ-

ent classes. Kernel-based methods also fall into this group, as a kernel function is nothing but

a similarity function between a pair of objects. Model-based: The third group consists of clas-

sification methods that are based on sequential models, such as Markov model, Hidden Markov

Model (HMM), or graphical model, such as conditional random field (CRF). It also includes non-

sequential probabilistic models, such as Naive Bayes [4].

15



Mode-based sequence classifiers match our case well, as they are generative models: A generative

model for sequence classification assumes that sequences in each class ci are being generated by

a model Mci. Mci is defined over some alphabet Σ, and for any string s ∈Σ∗, Mci specifies

the probability PMci(s|ci), which is the likelihood that the given sequence belongs to class i. A

classifier can then be constructed as below. First, using a training data set, a probabilistic model

Mci is trained for each class ci, for i from 1 to k using the sequences belonging to the class ci.

Then, to predict an unlabeled sequence (say s) we simply use Bayes rule [4]:

class(s) = argmaxk
PMCi(s|ci)·P (ci)∑k

j=1 P
MCj(s|cj)·P (cj)

In our case we have been using two classes ’Excellent’ and ’Normal’ to represent students who

have above average degree GPA and under average degree GPA. As the goal is to produce course-

sequences of the ’Excellent’ class, we only need to study the generative model of the ’Excellent’

class. There are various sequence generative models, and Markov Model is a popular one which is

applied in various fields, such as bioinformatics. Besides its generative nature, Markov Model has

been chosen for our project because it’s interpretive. This would be helpful for a course developer

to understand how a model produces course-sequences.

Markov Model

Markov Model is a classical model that generates sequences in which the probability of a symbol

depends on the previous symbol [19]. One of the most widely used models is a classical Markov

Chain because of its simplicity on the one side and great ability to model various types of phe-

nomena evolving in time on the other side. In the basic form we have a set of states and a process,

which adopts just one state at every step. The probability of adopting a state at the next step only

16



relies on the state, that the process has at that time [21]. Common matrix computations are mostly

applied to solve these problem.

Figure 4.1 is a simple Weather Markov Chain with 3 symbols (states) and arrows between states.

Every arrow is related to a probability parameter, which defines the probability of a given state

following another state. These parameters are named the transition probabilities, and we will use

ast to represent them:

ast = P (πi = t|πi−1 = s)

Figure 4.1: Markov chain example

By applying chain rule we can write the probability of a sequence for any probabilistic model of

sequences as:

P (x) = P (xL, xL−1, ..., x1) = P (xL|xL−1, ..., x1)P (xL−1|xL−2, ..., x1)...P (x1)

A very important characteristic of a Markov chain is that the probability of every state xi relies just

on the preceding state xi−1, instead of the all previous order, consequently: P (xi|xi−1, ..., x1) =

17



P (xi|xi−1) = axi−1xi
. The former equation can be transformed to:

P (x) = P (xL|xL−1)P (xL−1|, xL−2)...P (x2|x1)P (x1) = P (x1)
L∏
i=2

axi−1xi

Notice that as well as specifying the transition probabilities we must also give the probability

P (x1) of starting in a particular state. Therefore we add a letter to the alphabet, which we will call

B. By defining x0 = B, we call the probability of the first letter in a sequence initial probability:

P (x1 = s) = aBs

After formalized the notation for the Markov Model we illustrate how to calculate transition proba-

bilities and the initial probability of a Markov model given sequences generated by the model. The

probabilities are unknown, and we impose no restrictions on it meanwhile estimate it from data

[2]. With the equation P (x) = P (x1)
∏L

i=2 axi−1xi
and Maximum Likelihood Estimation, transi-

tion and initial probabilities can be calculated as below, where cst is the number of times symbol t

followed symbol s, and t′ is any symbol which followed s.

ast =
cst∑
t′ cst′

Experiments

After grouping students, the next step is to analyze the association between courses that students

took and their GPAs. We assume that, besides which courses were taken by students, the sequences

of courses taken are also important to their academic performance, because some courses are foun-

dations of other advanced courses or could prepare students better with the necessary knowledge

and skills for some interdisciplinary courses.
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Input of a sequence model is generally an alphabet of events: E1, E2, E3,... En. In our case, it

can be represented as an ordered list of vectors. For instance, a student’s course sequence can be

shown as: {(Calculus, Statistical Methods, Composition I, English Literature), (General Physics,

Computer Science foundation, Algorithm), (Discrete Math I, Operating System, Object Oriented

Programming)}. Each vector shows the courses that a student took over a semester, and those

vectors are in a time series. With those vectors we can derive all course sequences for all students,

and use them as training data to fit our Markov model.

From the high-performance students group generated from the clustering experiment, course se-

quences have been derived based on the information of course-taken terms and course codes. Tak-

ing all courses would provide much noise information to models, therefore data have been filtered.

As each student could take different courses, and they could take courses that are irrelevant to

their majors based on their personal interests, so the 8 most frequently chosen courses have been

chosen when we simulated the student course sequences. For each student, all combinations of

course sequences with longest possible length (depending on how many terms he/she took) have

been generated and stored. Figure 4.2 shows a few course sequence examples, as each line is one

course sequence with different course code numbers. Every code number represents a course and

those code numbers are in time series order.

Figure 4.2: Course sequence input sample
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With the results mentioned in the previous section, we can calculate the transition probabilities

and initial probabilities of our model. Course sequences have been fed into our Markov Model to

produce a transition probability matrix and an initial probability vector. Once we have the transition

probability matrix and the initial probability vector, we can produce a course recommendation with

our model.

Figure 4.3 is an example of a 6 - courses sequence suggestion generated by the model, for a non

first generation and non transfer student. Each number represents one course, followed its course

title. We can see course 1200 “Composition” has been suggested at the first place, and it makes

sense since the initial probability of course “Composition” is high(0.35, see Figure 2.1) when

we simulated course data for non first generation, non transfer and high performance students

with Model I. Our course recommendation model captured this feature from the course data. In

the same way, course 2000 “Physics Using Calculus I,” has been recommended ahead of 2100

“Physics Using Calculus II.” The model learned the pattern that the former is a prerequisite of the

latter, as we set this up in the transition probability matrix of Model I: the transition probability

from “Physics Using Calculus I” to “Physics Using Calculus II” has been set up to 0.75, much

higher than any other courses.

The implementation has been done with R. See Appendix.
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Figure 4.3: Course sequence suggestion sample
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CHAPTER 5: CONCLUSION

Communities detection and recommendation for students are well developed research tasks with

many effective solutions. However, what makes this paper different is that, we have applied both

tools together to reinforce student’s academic performance. We have created an approach to detect

student communities and analyze students who do especially well academically with particular

sequences of classes in each community, we then compute one or more optimal sequences of

courses that a student in a community should pursue, to increase their chance to obtain good

performance during college. We have shown how to implement this approach on a synthesis -

student data set which simulated a university undergraduate students information. This approach

can be used on universities and colleges in general.
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CHAPTER 6: FUTURE WORK

Although a lot of extensions can be considered in this project, we indicate in continuation what ar-

guably are the most interesting and influential among them. One is the Hidden Markov Model(HMM),

which is an extension from Markov model. Y.S.Chen and H.S. Wong introduce a HMM based clas-

sification method to allow an e-learning system to rank various kinds of users by their navigation

[5]. Their result demonstrates that the same method is capable of clustering student users to their

relevant categories with high accuracy. Their project has similarity with our approach, so we as-

sume HMM method has potential to develop our approach further. The HMM gets its name from

two characteristics [10]. To begin with, it supposes that the result at time t was produced by some

process whose state St is unknown for us. Furthermore, it also supposes that the state of this un-

known procedure fulfills the Markov characteristic: given the value of St−1, the current state St is

not dependent of all the states prior to t - 1. Comparing to the Markov Model, the HMM has state

properties; for example, the transition matrix of student course generate model in our project could

have two states: State1 and State2. The states could be interpreted according to the course devel-

oper’s domain knowledge; for instance, they could be interpreted as ’novice’ and ’experienced’,

showing how comfortable a student is with his or her major; or ’science’ and ’liberal arts’, which

shows the focus of a student at that state. To build a HMM from a set of sequences, the Baum-

Welch algorithm can been applied to generate transition and emission probability matrices for the

HMM. The Baum-Welch approach is a penalized maximum likelihood method, which maximizing

a posterior probability density over the model parameters [13]. Given student - course - sequence

- transition probabilities between two states and emission probabilities, which indicate a course is

chosen under a state, can be calculated, then we can produce course - sequence suggestions with

the transition and emission probabilities.

Another approach worth to mention is the K-fold Markov chain. For this, a sequence is represented
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by a graph in which every node means a sequence symbol, and every edge shows a dependency be-

tween two adjacent nodes. In other words, this model catches the dependency between the current

symbol sk+1 and its k previous symbols [sk+1...s1] in a sequence. The higher the value of k, the

more complex the model is [4]. Like any other generative model, the probability can be estimated

from data using the counts of the subsequences. Once all model parameters (probabilities) are

known, a new sequence s can be assigned to the most likely class based on the generative model

for each class.

At end we want to refer to large student data sets, collecting records in a large time range. With

bigger data sets, more student attributes can be explored and the probability matrices of our course

sequence generator can be closer to the reality.
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APPENDIX A: R SOURCE CODE
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# g e n e r a t e gower d i s t a n c e m a t r i x

l i b r a r y ( c l u s t e r )

gowerDi s t = d a i s y ( adminData , m e t r i c = ” gower ” , t y p e = l i s t ( l o g r a t i o = 3) )

# h i e r a r c h i c a l c l u s t e r i n g a l g o r i t h m w i t h c o m p l e t e l i n k a g e s

hcComplete = h c l u s t ( gowerDi s t )

p l o t ( hcComplete , l a b e l s =FALSE)

# h i e r a r c h i c a l c l u s t e r i n g a l g o r i t h m w i t h average l i n k a g e s

hcAver rage = h c l u s t ( gowerDis t , method = ’ a v e r a g e ’ )

p l o t ( hcAverrage , l a b e l s =FALSE)

# c u t t h e dendrogram t r e e s o f c o m p l e t e and average l i n k a g e s w i t h 2 c l u s t e r s

memberComp = c u t r e e ( hcComplete , 2 )

memberAver = c u t r e e ( hcAver rage , 2 )

t a b l e ( memberComp , memberAver )

# c u t t h e dendrogram t r e e s o f c o m p l e t e and average l i n k a g e s w i t h 4 c l u s t e r s

memberComp = c u t r e e ( hcComplete , 4 )

memberAver = c u t r e e ( hcAver rage , 4 )

t a b l e ( memberComp , memberAver )

#PAM a l g o r i t h m

# c a l c u l a t e s i l h o u e t t e w i d t h as a f u n c t i o n o f k u s i n g PAM

s i l W i d t h = c (NA)

f o r ( i i n 2 : 2 0 ) {

pamFi t = pam ( gowerDis t , d i s s = TRUE, k = i )

s i l W i d t h [ i ] = pamFi t $ s i l i n f o $ avg . wid th

}

# P l o t s i l h o u e t t e w i d t h ( h i g h e r i s b e t t e r )

p l o t ( 1 : 2 0 , s i l W i d t h , x l a b = ”Number o f c l u s t e r s ” , y l a b = ” S i l h o u e t t e Width ” )
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l i n e s ( 1 : 2 0 , s i l W i d t h )

# s e t k = 3 , c l u s t e r i n g i n t e r p r e t a t i o n v i a d i s c r e p t i v e s t a t i s t i c s

pamFi t = pam ( gowerDis t , d i s s = TRUE, k = 3)

# g e t s t u d e n t groups by l a b e l s

group1 = adminData [ pamFi t \$ c l u s t e r i n g ==1 , ]

group2 = adminData [ pamFi t \$ c l u s t e r i n g ==2 , ]

group3 = adminData [ pamFi t \$ c l u s t e r i n g ==3 , ]

# use group 1 t o a n a l y z e c o u r s e s e q u e n c e and s e l e c t s u b s e t w i t h GPA above

average from i t

summary ( group1 )

mean ( group1 $ Degree .GPA)

h i g h P e r f o r = group1 [ group1 $ Degree .GPA$>$mean ( group1 $ Degree .GPA) , ]

#add c o u r s e i n f o

h i g h P e r f C o u r = merge ( h i g h P e r f o r , cou r se , by=” I d e n t i f i e r ” )

# g e n e r a t e c o u r s e l i s t o f h igh per fo rmance s t u d e n t s

i d = unique ( h i g h P e r f C o u r $ I d e n t i f i e r )

h i g h P e r f C o u r = h i g h P e r f C o u r [ order ( h i g h P e r f C o u r $Term . Taken . Code ) , ]

h i g h P e r f C o u r = h i g h P e r f C o u r [ order ( h i g h P e r f C o u r $ I d e n t i f i e r ) , ]

c o u r s e L i s t = l i s t ( )

f o r ( i i n i d ) {

df = h i g h P e r f C o u r [ h i g h P e r f C o u r $ I d e n t i f i e r == i , c ( ’ Term . Taken . Code ’ , ’ Course .

Number ’ ) ]

te rm . t a k e n = as . l i s t ( unique ( as . f a c t o r ( df $Term . Taken . Code ) ) )

t e m p L i s t = l i s t ( )

f o r ( t i n te rm . t a k e n ) {

t e = as . c h a r a c t e r ( df [ which ( df $Term . Taken . Code== t ) , ’ Course . Number ’ ] )

t e m p L i s t [ l e n g t h ( t e m p L i s t ) +1] = l i s t ( t e )
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}

c o u r s e L i s t [ l e n g t h ( c o u r s e L i s t ) +1] = l i s t ( t e m p L i s t )

}

# c r e a t e t r a i n i n g s e q u e n c e s

c o u r s e S e q u e n c e <− l i s t ( )

f o r ( i i n 1 : l e n g t h ( c o u r s e L i s t ) ) {

t L i s t <− c o u r s e L i s t [ [ i ] ]

v = v e c t o r ( )

f o r ( j i n 1 : l e n g t h ( t L i s t ) ) {

v [ j ] = as . v e c t o r ( t L i s t [ j ] [ 1 ] )

}

seq = do . c a l l ( expand . grid , v )

f o r ( i i n 1 : nrow ( seq ) ) {

ch <− c h a r a c t e r ( )

f o r ( j i n seq [ i , ] ) {

ch [ l e n g t h ( ch ) +1] <− as . c h a r a c t e r ( j )

}

c o u r s e S e q u e n c e [ l e n g t h ( c o u r s e S e q u e n c e ) +1] = l i s t ( ch )

}

}

#Markov model

# g e n e r a t e t r a n s i t i o n prob m a t r i x and i n i t i a l p r o b i l i t i e s

topCourseNumber = d r o p l e v e l s ( unique ( h i g h P e r f C o u r $ Course . Number ) )

probMat = matrix ( nrow = l e n g t h ( topCourseNumber ) , nco l = l e n g t h ( topCourseNumber )

, 0 )

rownames ( probMat ) = topCourseNumber

colnames ( probMat ) = topCourseNumber

i n i t i a l P r o b = rep ( 0 , l e n g t h ( topCourseNumber ) )

names ( i n i t i a l P r o b ) = topCourseNumber

f o r ( i i n 1 : l e n g t h ( c o u r s e S e q u e n c e ) ) {
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x <− as . v e c t o r ( c o u r s e S e q u e n c e [ [ i ] ] )

i n i t i a l P r o b [ x [ 1 ] ] = i n i t i a l P r o b [ x [ 1 ] ] + 1

i f ( l e n g t h ( x ) >1)

{ f o r ( i i n 1 : ( l e n g t h ( x )−1) )

probMat [ x [ i ] , x [ i + 1 ] ] = probMat [ x [ i ] , x [ i + 1 ] ] + 1

}

}

# g e t t r a n s i t i o n p r o b a b i l i t i e s

f o r ( i i n 1 : l e n g t h ( topCourseNumber ) ) probMat [ i , ] <− probMat [ i , ] / sum (

probMat [ i , ] )

# g e n e r a t e i n i t i a l p r o b a b i l i t i e s

i n i t S u m <− sum ( i n i t i a l P r o b )

f o r ( i i n 1 : l e n g t h ( topCourseNumber ) ) i n i t i a l P r o b [ i ] <− i n i t i a l P r o b [ i ] / i n i t S u m

# b u i l d a f u n c t i o n t o g e n e r a t e a s e q u e n c e w i t h t h e m a t r i x

c o u r s e S e q G e n e r a t o r = f u n c t i o n ( c o u r s e s , seqLen , probMat , i n i t i a l P r o b ) {

newSequence = c h a r a c t e r ( )

f i r s t C o u r s e = sample ( c o u r s e s , 1 , rep=T , prob = i n i t i a l P r o b )

newSequence [ 1 ] = as . c h a r a c t e r ( f i r s t C o u r s e )

f o r ( i i n 2 : seqLen ) {

p r e C o u r s e = newSequence [ i −1]

p r o b a b i l i t i e s = probMat [ p reCourse , ]

newCourse = sample ( c o u r s e s , 1 , rep=F , prob = p r o b a b i l i t i e s )

newSequence [ i ] = as . c h a r a c t e r ( newCourse )

}

re turn ( newSequence )

}

# c a l l cour s e S e q G e n e r a t o r ( ) f u n c t i o n and c r e a t e a new 6 c o u r s e s e q u e n c e

s u g g e s t i o n
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c o u r s e S u g g e s t i o n = c o u r s e S e q G e n e r a t o r ( topCourseNumber , 6 , probMat , i n i t i a l P r o b )

f o r ( i i n c o u r s e S u g g e s t i o n ) {

p r i n t ( i )

p r i n t ( d r o p l e v e l s ( unique ( h i g h P e r f C o u r $ Course . T i t l e [ h i g h P e r f C o u r $ Course . Number

== i ] ) ) )

}
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