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ABSTRACT 

Deep learning coupled with existing sensors based multiresolution traffic data and future 

connected technologies has immense potential to improve traffic operation and management. But 

to deal with complex transportation problems, we need efficient modeling frameworks for deep 

learning models. In this study, we propose two different modeling frameworks using Deep Long 

Short-Term Memory Neural Network (LSTM NN) model to predict future traffic state (speed and 

signal queue length).     

In our first problem, we present a modeling framework using deep LSTM NN model to predict 

traffic speeds in freeways during regular traffic condition as well as under extreme traffic demand, 

such as a hurricane evacuation. The approach is tested using real-world traffic data collected during 

hurricane Irma’s evacuation for the interstate 75 (I-75), a major evacuation route in Florida. We 

perform several experiments for predicting speeds for 5 min, 10 min, and 15 min ahead of current 

time. The results are compared against other traditional prediction models such as K-Nearest 

Neighbor, Analytic Neural Network (ANN), Auto-Regressive Integrated Moving Average 

(ARIMA). We find that LSTM-NN performs better than these parametric and non-parametric 

models. Apart from the improvement in traffic operation, the proposed method can be integrated 

with evacuation traffic management systems for a better evacuation operation.  

In our second problem, we develop a data-driven real-time queue length prediction technique using 

deep LSTM NN model. We consider a connected corridor where information from vehicle 

detectors (located at the intersection) will be shared to consecutive intersections. We assume that 

the queue length of an intersection in the next cycle will depend on the queue length of the target 

and two upstream intersections in the current cycle. We use InSync Adaptive Traffic Control 
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System (ATCS) data to train a Long Short-Term Memory Neural Network model capturing time-

dependent patterns of a queue of a signal. To select the best combination of hyperparameters, we 

use sequential model-based optimization (SMBO) technique. Our experiment results show that the 

proposed modeling framework performs very well to predict the queue length. Although we run 

our experiments predicting the queue length for a single movement, the proposed method can be 

applied for other movements as well. Queue length prediction is a crucial part of an ATCS to 

optimize control parameters and this method can improve the existing signal optimization 

technique for ATCS.   

Keywords: Deep-learning, Long short-term memory, Data-driven, Traffic state, Real-time queue 

length, Adaptive Traffic Control System. 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction 

Traffic congestion is a serious problem in most of the urban areas. In 2011, it caused urban 

Americans to spend 6.9 billion hours more in traveling and cost them an extra 3.1 billion gallons 

of fuel, for a congestion cost of $160 billion (Schrank. et al., 2015). Inability to estimate future 

traffic state for proactive decision making, inefficiencies in traffic management and control, for 

example, poor inaccurate queue estimation for traffic signal timing, and lack of coordination 

between adjacent intersections are a few major causes of congestion problem (Smith et al., 2013). 

Ability to provide accurate information about current and future traffic state will help to overcome 

these challenges. Moreover, accurate traffic state prediction can enhance traffic management 

systems (TMS) by giving opportunities to the transportation agencies to react proactively to 

overcome recurrent and non-recurrent congestion and changes in traffic conditions. 

Predicting traffic states in real-time needs traffic data from various sources. Many 

transportation agencies have deployed various traffic sensors such as Loop Detectors, Bluetooth, 

Magnetic Vehicle Detection System (MVDS), Video-Based detection, etc. in their transportation 

systems. These sensors allow us to collect multi-resolution traffic data in real-time and recognize 

patterns for estimating traffic states.  

  Moreover, in recent years, advances in wireless communication systems have created a 

new horizon in traffic operations and management. Advanced wireless communication 

technologies such as Wi-fi, WiMAX, LTE, and DSRC create an opportunity to develop a 

connected environment where vehicles are connected with each other (V2V) and with the 
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infrastructures (V2I). This system will generate a large amount of data regarding traffic states, 

vehicle positions, delays, etc.  

Therefore, the future of transportation will largely depend on data-driven solution for 

different problems such as traffic state prediction for highways and arterials, data-driven 

performance measures and control parameters optimization for signal timing, etc. But to deal with 

these problems, we need reliable models that can capture traffic flow patterns with better accuracy.   

Recent trends in transportation research show that researchers are exploring sensor-based 

data-driven approaches to solve different transportation-related problems since these approaches 

are easy to deploy in a real-time context. A few commonly used data-driven approaches include 

support vector machine (SVM), k-nearest neighbor (KNN), analytic neural network (ANN), 

ARIMA, etc. These models perform reasonably well for predicting traffic states (speed, travel 

time, traffic flow, etc.) (Billings and Jiann-Shiou, 2006; Deshpande and Bajaj, 2016; Lee, 2009; 

C. H. Wu et al., 2004; Yu et al., 2016).  

Deep learning is one of the most recent innovations in machine learning. It can capture the 

sharp discontinuities in traffic flows using multilayered non-linear functions (tanh, sigmoid etc.) 

(Polson and Sokolov, 2017). Applications of deep learning models in transportation will allow us 

to deal with more complex problems and big data (Rahman and Hasan, 2019, 2018).   

1.2 Thesis Contribution  

This study has made several contributions towards traffic operation and management by improving 

the existing short-term traffic prediction methods. It also investigates the irregular pattern in traffic 

flow behavior in an extreme traffic demand condition such as hurricane evacuation. Unlike the 

existing time series prediction problem, we develop a modeling framework to capture the complex 
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dynamics in traffic flow considering both spatial and temporal dependency of the traffic flow 

behavior. This method can predict the traffic speed at different time horizon with better accuracy, 

which can largely improve traffic management, especially during evacuation by allowing proactive 

decision making. 

Another part of the thesis presents a new approach for real-time signal queue length 

prediction considering future connectivity (V2V and V2I communication). We develop a data-

driven method using deep LSTN NN model for signal queue length prediction. This method will 

reduce the dependency of the ATCS on multiple detectors (loop detectors, video camera-based 

detection, etc.) for queue length estimation, hence reducing the overall maintenance cost to operate 

a system. The approach has been tested using inSync adaptive signal data and can also be used to 

develop data-driven optimization technique for adaptive traffic control. 

1.3 Objectives of the Thesis 

The focus of this study is to evaluate the performance of deep learning model while dealing with 

complex traffic operation problems. We consider two different problems related to traffic state 

prediction. The main objectives of this study are: 

• To develop a framework to predict the traffic state (speed, queue length) considering spatial 

and temporal dependency of the traffic pattern 

• To evaluate the performance of deep learning model in traffic prediction and compare it 

with traditional machine learning models. 

• To check the reliability of the model in heavy demand condition such as hurricane 

evacuation. 
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1.4 Thesis Organization 

The rest of the thesis is organized as follows: Chapter 2 provides a brief discussion on deep neural 

networks models. Chapter 3 provides the data description, analysis, methodology and result for 

short term traffic speed prediction. Chapter 4 describes the data description, methodology, and 

result for traffic signal queue length prediction. Chapter 5 presents the summary and conclusions 

of the thesis. 
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CHAPTER 2:  DEEP NEURAL NETWORK MODELS 

2.1 Introduction 

Deep-learning is a part of broader family of machine learning methods. The basic difference is 

between deep learning and machine learning is that machine learning methods are task-specific 

while deep learning methods are based on learning data representations (Lecun et al., 2015).    Deep 

learning methods consist of non-linear modules that transform the raw data representation at one 

level (starting with the raw input) into representation at a higher, slightly more abstract level. 

Which allows very complex functions to be learned. Therefore, Deep learning has created a unique 

opportunity to deal with more complex problems. Deep learning is a recent innovation in machine 

learning research which emerged as a powerful tool due to a tremendous increase in computational 

power and data availability. In this chapter, we briefly discussed three different deep learning 

models.  

2.2 Feed Forward Neural Network 

The core architecture for modern deep learning methods is based on classical artificial neural 

networks (ANNs). Though the design of ANNs was inspired by the structure of a real brain, the 

processing elements and the architecture used in ANN have gone far from their biological 

inspiration (Svozil et al., 1997). ANNs are versatile, powerful, and scalable which makes them 

ideal to tackle large and highly complex machine learning tasks. 

Feed Forward Neural Network (FFNN) composed of one input layer, one or more hidden 

layers and one final output layer (Figure 2.2). The hidden and output layers consist of linear 

threshold units. Every layer except the output layer includes a bias neuron and is fully connected 
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to the next layer. When an ANN has two or more hidden layers, it is called a deep neural network 

(DNN). 

 

Figure 2.1: Single Hidden Neuron with Nonlinear Activation Function 
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Figure 2.2: Feed Forward Neural Network Structure for Prediction 

Each training instance of a FFNN can be divided into three steps, forward pass, reverse pass and 

gradient descent (Geron, 2017). In forward pass step, the backpropagation algorithm makes a 

prediction and measures the output error (difference between desire and actual output) how much 

each neuron in the last hidden layer contributed to each output neuron’s error. In reverse pass step, 

it goes through each layer in reverse direction to measure the error contribution from each neuron 

in the previous hidden layers until the algorithm reaches the input layer. In the gradient descent 

step, the backpropagation algorithm readjusts the connection weights to reduce the error. The key 

change in the classical architecture was changing the step function with logistic activation function 

𝑓 = ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
𝑤ℎ𝑖

= 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑜𝑑𝑒𝑠 
𝑔 = 𝑜𝑢𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑙𝑖𝑛𝑒𝑎𝑟 𝑜𝑟 𝑠𝑜𝑓𝑡𝑚𝑎𝑥) 
𝑤𝑜𝑛

= weights from output node 
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(f), 
1

1+𝑒𝑥𝑝(−𝑧)
 (Figure 2.1). Logistic function has a well-defined nonzero derivative which allows 

gradient descent to make progress during propagation over the layers. However, the 

backpropagation algorithm can be implemented using other activation functions such as hyperbolic 

tangent, Rectified linear Unit (ReLU) etc.  

2.3 Recurrent Neural Network  

The basic concept of Recurrent Neural Network (RNN) is that it stores relevant parts of the input 

variables and use this information to predict output in the future. RNNs repetitively perform the 

same computational operation on every element of a sequence and each output is calculated based 

on the previous computations (Figure 2.2). An RNN can process sequential data very well (Xu et 

al., 2017). 

As shown in Figure 2.2, an RNN can be considered as a chain of repeating modules. In 

standard RNNs, this repeating module will have a very simple structure, such as a single tanh layer. 

Hidden state or memory cell of this structure preserves information from the previous input 

variables. At time step 𝑡, the memory cell’s current state (ℎ𝑡) is a function of input state vectors at 

that current time step (𝑋𝑡) and hidden state at the previous time step (ℎ𝑡−1), so h(t) = f(ℎ𝑡−1, 𝑋𝑡). 

Its output at time step 𝑡, denoted by (𝑦𝑡), is also a function of the previous state and the current 

input (Figure 2.2). For basic cells, the output (𝑦𝑡) and the hidden state (ℎ𝑡) at a given time step 

are same. 
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Figure 2.3: A Recurrent Neuron Network Unrolled through Time  

Although RNNs can better capture nonlinearity in time series problems, they are weak on learning 

long-term dependencies due to vanishing of gradient during the backpropagation process (Gers 

and Cummins, 1999, Hochreiter and Urgen Schmidhuber, 1997). Moreover, traditional RNNs 

learn a time series sequence based on a predetermined time lag, but it is difficult to find an optimal 

time window size in an automatic way (Gers and Cummins, 1999), Ma et al., 2015). 

2.4 Long Short-Term Memory Neural Networks 

To overcome the disadvantages of RNNs, Hochreiter and Schmidhuber proposed the architecture 

of Long Short-Term Memory Neural Network (LSTM-NN) and an appropriate gradient-based 

algorithm to solve it (Hochreiter and Urgen Schmidhuber, 1997). The primary objectives of 
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LSTM-NN are to capture long-term dependencies and determine the optimal time lag for time 

series problems.     

  In an LSTM, the cell state (hidden State) is divided into two states: short-term state (ℎ𝑡) 

(similar to an RNN) and long-term state (𝑐𝑡). The long-term state (𝑐𝑡) stores the information to 

capture the long-term dependencies among current hidden state and previous hidden states over 

time. Traversing from the left to the right, the long-term state passes through a forget gate and 

drops some memories and then adds some new memories via an addition operation (Figure 2.4 

and 2.5). 

 

Figure 2.4: Long Short-Term Memory Neural Network Unrolled Over Time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LSTM LSTM LSTM LSTM 

Xt-(n+1) 

Yt 

 

Xt 

 

Xt-1 

 

Xt-(n) 

 

Yt-(n+1) 

 

Yt-(n) 

 

Yt+1 

 
Short Term 

State, h(t) 

 

Long Term 

State, C(t-1) 

 

Current State 

Predicted State 

 



11 

 

 

Figure 2.5: Complete Structure of LSTM Cell 

  As shown in Figure 2.5, a fully connected LSTM cell contains four layers (sigma and tanh) 

and the input vector  (𝑋𝑡) and the previous short-term state  (ℎ𝑡−1) are fed into these layers. The 

main layer uses tanh activation functions which outputs  (𝑔(𝑡)). The output from this layer is 

partially stored in long-the term state (𝑐(𝑡)). The other three layers are gate controller user logistic 

activation function and their output ranges from 0 to 1. The forget state f(t) control which parts of 

the long-term state should be erased while input gate i(t) decide which parts of the input should be 

added. The output gate o(t), finally controls which parts of the long-term state should be read and 

output at this time step y(t) (=h(t)). The equations for these operations can be written as follows, 

Input gate:   

               i(t) = σ(W𝑥𝑖
𝑇 . x(t) + Wℎ𝑖

𝑇 . ℎ(𝑡 − 1) + 𝑏𝑖)                                                                      (1)  
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Forget gate: 

              f(t) = σ(W𝑥𝑓
𝑇 . x(t) + Wℎ𝑓

𝑇 . ℎ(𝑡 − 1) + 𝑏𝑓)                                                                     (2)                                            

Output gate:  

              o(t) = σ(W𝑥𝑜
𝑇 . x(t) + Wℎ𝑜

𝑇 . ℎ(𝑡 − 1) + 𝑏𝑜)                                                                    (3) 

Cell input:  

              g(t) = tanh(W𝑥𝑔
𝑇 . x(t) + Wℎ𝑔

𝑇 . ℎ(𝑡 − 1) + 𝑏𝑔)                                                              (4) 

Where, 𝑊𝑥𝑖 , 𝑊𝑥𝑓 , 𝑊𝑥𝑜, 𝑊𝑥𝑔 are the weight matrices of the each of the four layers for their 

connection to the input vector 𝑋𝑡, 𝑊ℎ𝑖 , 𝑊ℎ𝑓 , 𝑊ℎ𝑜 , 𝑊ℎ𝑔  are the weight matrices of the each of the 

four layers for their connection to the short-term state (ℎ𝑡−1) and 𝑏𝑖, 𝑏𝑓 , 𝑏𝑜, 𝑏𝑐  are the bias terms 

for each of the four layers, 𝜎 represents the sigmoid function 
1

1+𝑒𝑥𝑝(−𝑥)
 and tanh represents the 

hyperbolic tangent function 
𝑒𝑥𝑝(𝑥)−𝑒𝑥𝑝(−𝑥)

𝑒𝑥𝑝(𝑥)+𝑒𝑥𝑝(−𝑥)
. Finally, the long-term and short-term state are 

calculated using following equations, 

Long-term state: 

             𝑐(𝑡) = 𝑓(𝑡)⨂ 𝑐(𝑡−1) + 𝑖(𝑡)⨂𝑔(𝑡)                                                                                         (5)  

Short-term state: 

             𝑦(𝑡) = ℎ(𝑡) = o(t)⨂ 𝑡𝑎𝑛ℎ(𝑐(𝑡))                                                                                       (6) 
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CHAPTER 3: SHORT TERM TRAFFIC SPEED PREDICTION FOR 

FREEWAYS 

3.1 Introduction and motivation 

Short term traffic state prediction concerns the prediction of traffic state from a few seconds to 

possibly a few hours into the future (Vlahogianni et al., 2014a). As an integral part, most of the 

intelligent transportation systems short term traffic state prediction is very crucial in traffic 

operation for proactive decision making. Especially in a scenario when we have to deal with a 

heavy traffic demand such as hurricane evacuation. Hurricane causes severe traffic disruption and 

loss in human mobility (Roy, 2018; Roy and Hasan, 2018).  A successful evacuation highly 

depends on real-time evacuation route guidance and traffic management (Pel et al., 2012). These 

activities rely on how accurately we can estimate and predict traffic states in real-time. Thus, 

reliable predictions of travel time will allow people to make an informed decision on whether to 

evacuate or not. Moreover, this will allow emergency management authorities to decide whether 

to order an evacuation or not. For instance, during hurricane Harvey, evacuation orders were not 

widely issued due to the fear of massive traffic congestion, potentially causing loss of lives during 

evacuation (Dave, 2017). In addition, reliable predictions of future traffic will enable 

transportation agencies to react proactively during a hurricane evacuation.  

Several data-driven methods have already been used in classification and prediction related 

problems. One of the major benefits of data-driven methods is easy to deploy in a real-time context. 

Few commonly used data-driven approaches are Support Vector machine, K-nearest neighbor, 

Analytic Neural Network, ARIMA, etc. These models performed reasonably well for predicting 

traffic states under regular traffic demand (Billings and Jiann-Shiou, 2006; Lee, 2009; Myung et 

al., 2011). But under irregular traffic demand, we have to deal sharp non-linearities in traffic flow 
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patterns over time. Therefore, traditional prediction models may not work well in such conditions. 

To overcome this challenge, deep learning techniques can be a viable solution. It is a machine 

learning technique that uses non-linear functions (tanh, logistic etc.) to capture the sharp 

discontinuities in traffic flow (Polson and Sokolov, 2017).  

In this study, we present a method to predict the time mean speed of freeways. We adopt a 

deep learning technique known as Long-Short Term Neural Network and assess its performance 

against the existing data-driven approaches. We have compared the performance of the LSTM-

NN model with Auto-Regressive Integrated Moving Average (ARIMA), K-Nearest Neighbor 

Regressor and Analytic Neural Network. For this study, we have collected traffic data from I-75 

which was a major evacuation route for Hurricane Irma.  

3.2 Existing Works 

With the advancement of sensor technologies, short-term traffic forecasting has become a critical 

component for Intelligent Transportation Systems. It predicts traffic states for few seconds to few 

hours ahead of current time (Vlahogianni et al., 2014b). Previous studies focused on methods to 

model traffic characteristics such as volume, density, and speed or travel time. These approaches 

can be broadly classified into three categories: model-driven, data-driven, and streaming data-

driven (hybrid) (Seo et al., 2017). Model-driven approaches can be further classified into two 

levels macroscopic and microscopic. Macroscopic models rely on the fundamental relationship 

among different parameters (flow, density, speed) of traffic flow rather than individual vehicles. 

While Microscopic models focus on a single vehicle or intersection (or a small number of 

intersections). For traffic state estimation, microscopic models rely on data available from signal 

timing, vehicle counts or high penetration rate travel time measurements (Ban et al., 2010). 
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Sometimes it is tedious to gather detailed parameters required for a model-driven approach; hence 

recent studies are exploring alternative data-driven approaches. 

A data-driven approach relies on historical traffic patterns to estimate future traffic states. 

It does not consider the influence of traffic flow mechanism on traffic dynamics (Oh et al., 2017). 

Several data-driven parametric and non-parametric approaches have been used for short-term 

traffic state prediction. Among the parametric models, ARIMA (Billings and Jiann-Shiou, 2006) 

has performed better than other parametric time series prediction models. Researchers have also 

explored non-parametric models for improving prediction accuracy including  Kalman Filter (Chu 

et al., 2005), Support Vector Machine (Ahn, 2016; C. Wu et al., 2004), K-Nearest Neighbor (Cai 

et al., 2016; Habtemichael and Cetin, 2016; Meng et al., 2015; Myung et al., 2011; Qiao et al., 

2013; Yu et al., 2016), and Artificial Neural Network (Innamaa, 2005; Lee, 2009; Park et al., 1999; 

Yu et al., 2008) . 

 Hybrid models combine data-driven and model-driven approaches. For instance, 

Hofleitner et al. (Hofleitner et al., 2012) implemented a hybrid model integrating hydrodynamic 

theory of traffic flow with a Bayesian network approach. They derived an analytical probability 

distribution of travel times between arbitrary locations using kinematic wave theory.  

Recent developments in computational techniques allow us to overcome different 

challenges in developing an effective prediction system. Vlahogianni et al. (Vlahogianni et al., 

2014b) discussed several challenges, such as a system’s characteristics which integrate prediction 

models, choosing appropriate variables while forecasting, modeling issues related to developing 

effective prediction algorithms, role of artificial intelligence models and how they will be 

integrated with prediction schemes.   
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One of the major challenges for predicting traffic state is the presence of sharp non-

linearities due to transitions among free flow, breakdown, recovery, and congestion (Polson and 

Sokolov, 2016). Recently, deep learning techniques have been used to capture such nonlinearities. 

Duan et al. (Yanjie Duan et al., 2016) applied a deep learning model, LSTM neural network which 

is an advanced version of Recurrent Neural Network for travel time prediction. They have 

constructed 66 series prediction LSTM neural networks for the 66 links in the dataset. Ma et al. 

(Ma et al., 2015) also used LSTM neural networks to predict speed using only two microwave 

detectors data (speed and volume). In both studies, they did not consider the influence of temporal 

(time of the day, the day of the week) variation on prediction accuracy. Another important 

consideration is that the traffic state (speed, volume, etc.) of a particular roadway link depends on 

the upstream and downstream link traffic state but they have not considered this influence as well. 

Moreover, they have not tested the performance of these models under irregular traffic conditions 

(such as hurricane evacuation period or any other events). Although Cui et al. (Cui and Wang, 

2017) have proposed a deep stacked bidirectional and unidirectional LSTM-NN, which considers 

both backward and forward dependencies of time series data, to capture spatial and temporal 

dependencies from the historical data; but they have not evaluated their model performance during 

irregular traffic demand.  

In our study, we consider temporal variations and spatial relationships among the upstream, 

target, and downstream links. We evaluate our model’s performance under an extreme traffic 

condition. Our model performs better than other state-of-the-art approaches which indicate the 

potential of LSTM-NN model in time series prediction. A critical issue for adopting a data-driven 

approach is the required computation time. We adopt the tensor flow library (Abadi et al., 2016); 

it allows us to break the training process into several chunks and run them in parallel across 
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multiple CPUs or GPUS within a reasonable amount of time. This makes it possible to train a 

network with millions of parameters on a training set composed of billions of instances (Geron, 

2017).  

3.3 Framework for Speed Prediction  

In this study, we assume that for a particular link, the average spot speed at a given time step (t) 

will depend on the average spot speed of the upstream and downstream links adjacent to this link. 

So, to formulate the modeling framework we have added the upstream (X(t)=Sm-1(t)), Downstream 

(X(t)=Sm+1 (t) and Target link traffic state (X (t)=Sm) as input vectors to predict the target link 

speed after 5min, 10 min, and 15 min time interval (Figure 3.1).  

Moreover, to capture this temporal influence we added the time of the day and day of the 

week as independent variables. In a regular traffic scenario, we can observe that the daily variation 

of speed and volume follows a recurrent pattern for example, at the morning and evening peak 

hour traffic volume is higher, which means the overall speed at this time period is lower. Similarly, 

traffic flow patterns are different on both weekdays and weekends. In case of weekdays, traffic 

volume is quite higher than the weekends. So, overall speed of the vehicles is lower. In our case, 

we are considering an irregular traffic demand (hurricane evacuation) scenario where traffic 

pattern is non-recurrent. Hence, we cannot apply the same assumption for both regular and 

irregular scenario. But we have to maintain uniform modeling framework for both regular and 

irregular traffic demand. Hence, we need an approach which will be able to capture the regular 

behavior as well as irregular behavior by learning long-term and short-term dependencies among 

different traffic states over time. This framework is developed to check whether LSTM NN model 

can serve this purpose.     
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Figure 3.1: The Layout of the Variables for Prediction 

3.4 Case Study 

3.4.1 Study Location 

One of the primary objectives of this study is to evaluate the performance of the LSTM-NN model 

in case of irregular traffic demand, such as during a hurricane evacuation. To do so, we collected 

the data for 11.4 km long segment of the I-75 from September 3, 2017, to September 17, 2017. 

This time span covers the evacuation period of hurricane Irma. To select the study location, we 

observed previous evacuations to understand major evacuation routes . Observing the evacuation 

pattern from historical data, we found that a large portion of residents living in Florida evacuates 

to Georgia or adjacent States (Roy and Hasan, 2019). Hence, we have chosen a location between 

Ocala to Gainesville, a road segment which had to serve a major portion of the evacuation traffic 

during Irma. We have collected data from six MVDS detectors (Figure 3.2); each detector provides 
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real-time speed and volume. For this study, we have used an average of the time mean speed over 

a five-minute interval.  

 

Figure 3.2: Study Location I-75 (Google Map,2018) 

To compare the prediction accuracy of LSTM NN model for regular and irregular demand scenario 

we also collected the traffic data for the same location for non-evacuation period from November 

03, 2017 to November 17, 2017.   

3.4.2 Data Exploration 

We analyzed both regular and evacuation traffic data, from our analysis we observe a regular traffic 

pattern during normal traffic condition.   We analyzed the northbound traffic of I-75, hence we can 

observe morning peak in between 8 to 10 am (Figure 3.3 (a)). But during the evacuation period, 
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there is no regular pattern (distinctive evening peak) over time (Figure 3.3(b)). Moreover, there is 

a heavy volume of traffic especially in the period from September 06, 2017 to September 09, 2017 

(close to the landfall day). Hence overall flow was quite higher than the regular. 

Hurricane Irma made its landfall at the Florida Keys on September 10, 2017, at category 4 

intensity; then it passed over several regions of Florida in between September 10, 2017, to 

September 12, 2017, and caused a power outage at several locations. It took about a week to restore 

the overall system.  That is why we were unable to collect data between September 11, 2017, to 

September 16, 2017.  

Figure 3.4 (a) shows an irregular variation of speed over time. This is because of the high 

volume of traffic, particularly on September 7th to onwards due to the evacuation of a large number 

of people from Florida to other locations. So, travel time at this period was quite higher than the 

regular time. 
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(a) 

 

(b) 

Figure 3.3: Variation of Flow with Time of Day (a) Normal day (Nov. 03, 2017 -Nov. 13, 2017) 

(b) Evacuation Period of Hurricane Irma (Sept 03, 2017 - Sept 13, 2017) 
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(a) 

 

(b) 

Figure 3.4: Variation of Speed With Time of the day (a) Normal day (Nov. 03, 2017 -Nov. 13, 

2017) (b) Evacuation Period of Hurricane Irma (Sept 03, 2017 - Sept 13, 2017) 
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3.4.3 Model Training  

The flexibility in deep neural networks has created a major challenge to select the combination of 

hyperparameters that will work best for a certain task. To solve this issue several methods have 

been developed such as grid search, random search, Bayesian optimization or sequential model-

based optimization (SMBO) (Bergstra et al., 2013, 2011; Hutter et al., 2011). In this study, we 

applied SMBO with tree-structured parzen estimator (TPE) algorithm to obtain the best 

combination of hyperparameters. SMBO methods sequentially construct models to approximate 

the performance of hyperparameters based on historical measurements, and then subsequently 

choose new hyperparameters to test based on this model. SMBO methods work best for scalar-

valued functions which are costly to evaluate compared to conjugate gradient descent methods and 

model-based optimization algorithms. 

We implemented the SMBO optimization method using hyperopt library(Bergstra et al., 

2013). The hyperopt library gives the ability to define a prior distribution for each parameter. Table 

3.1 shows the information regarding the parameters that we are going to tune. To evaluate the best 

performing model, we use mean squared error as a loss function. 
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Table 3.1: Prior Distribution of Each Parameter for Speed Prediction 

Parameter Name Distribution Values 

Number of Hidden Layers Categorical 𝑥 ∈ {1,2} 

Activation Function in each layer Categorical 𝑥 ∈ {𝑟𝑒𝑙𝑢, 𝑠𝑖𝑔𝑚𝑜𝑖𝑑, 𝑡𝑎𝑛ℎ} 

Number of Units in First Layer Categorical 𝑥 ∈ {64,128,256} 

Number of Units in Second Layer Categorical 𝑥 ∈ {64,128,256} 

Dropout in each layer Uniform 𝑥 ∈ [0,1] 

Optimizer Categorical 𝑥 ∈ {𝑎𝑑𝑎𝑚, 𝑠𝑔𝑑, 𝑎𝑑𝑎𝑔𝑟𝑎𝑑, 𝑟𝑚𝑠𝑝𝑟𝑜𝑝} 

Batch Size Categorical 𝑥 ∈ {12,24,48,72,96,144} 

 

To predict future traffic speed, we have divided the dataset into a training and a test set. Data from 

the first 5 days (Nov. 3, 2017 – Nov. 7, 2017) is used for training the model and the rest 2 days 

(Nov. 8, 2017- Nov. 9, 2017) data is used for validation.  We ran the SMBO algorithm on different 

datasets corresponding to different roadway segments (four target links) and different prediction 

horizon (5 min, 10 min, 15 min), finally, we obtain the optimal combination of hyperparameters 

which works best for each dataset.   

While training the LSTM NN model we do not pass entire dataset rather we divide the 

dataset into small batches. Hence, at each iteration, the model learns the entire dataset in small 

batches and then move into the next iteration and do the same. As shown in Table 3.1 we choose 

categorical distribution of batch size over {12,24,48,72,96,144}. From the SMBO algorithm, we 

found that the model works best for a batch size of 72. Table 3.2 shows the optimal parameters for 

the final LSTM-NN model.  
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Figure 3.5: Variation of Training Loss per Iteration for Different Optimizer (Batch Size =72) 

 

Figure 3.6: Variation of Training Loss per Iteration for Different Activation Function (Batch 

Size =72, Optimizer = adam) 
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From the optimization result, we found that adaptive moment estimation (adam) optimizer works 

better than root mean square propagation (rmsprop), adaptive gradient (adagrad) and stochastic 

gradient descent (sgd) optimizer (Figure 3.5). At the same time, it converges faster than the others 

and takes less time to train the model. Figure 3.6 shows the training loss for different activation 

function. Both relu and tanh activation function work better, but if we choose sigmoid function the 

model starts overfitting at certain points before converging to the validation loss. Hence, we need 

to add large dropout at each layer to control the training process and it takes a long time to 

converge.  

The dropouts are added to control overfitting of the training set. But for our case the 

dropout value is so small if we ignore these values (dropout =0), it does not affect the model 

performance. We also applied the early stopping criteria to avoid overfitting. The model stops 

training when training loss is less than the validation loss. Figure 3.7 shows the training and 

validation loss for the best model. We can see that the model converges after 15 iterations (epoch).  

 

Figure 3.7: Training and Validation Loss for the Optimized model 
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Table 3.2:  Hyperparameters for best Performing Model for Speed Prediction (Normal Day) 

Number of 

Hidden Layers 

Number of 

Hidden Units 

Dropout Activation 

Function 

Optimizer 

First 128 0.002 relu Adam 

Second 64 0.001 relu 

 

Table 3.3: Hyperparameters for best Performing Model for Speed Prediction (Evacuation Period) 

Number of 

Hidden Layers 

Number of 

Hidden Units 

Dropout Activation 

Function 

Optimizer 

First 128 0.1 tanh Adam 

Second 64 0.05 tanh 

 

We did the same experiment with the hurricane evacuation traffic data. we train the LSTM NN 

model to learn the patter of the data during a hurricane evacuation. We use the data from Sept. 3, 

2017 – Sept. 7, 2017, for training the model and the rest 2 days (Sept. 8, 2017- Sept. 9, 2017) data 

is used for validation. Table 3.3 shows the selected hyperparameter for the trained model for the 

evacuation traffic data. 
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3.4.4 Experimental Results 

 We have calculated Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean 

Absolute Percentage Error (MAPE) as performance measures to check the accuracy of the 

implemented model. Performance metrics are defined as,  

                       𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑡−𝑦̂𝑡)2𝑛

𝑡=1

𝑛
                                  (7) 

                       MAE =
∑ |𝑦𝑡−𝑦̂𝑡|

𝑛
𝑡=1

𝑛
                                         (8) 

                     MAPE = ∑
|𝑦𝑡−𝑦̂𝑡|

𝑦𝑡

𝑛
𝑡=1 × 100%                        (9) 

 

Figure 3.8: Actual and Predicted Speed and their difference (the x-axis is divided into 6-hour 

intervals; 11-08 04 means Nov. 08, 4 AM) 
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Figure 3.9: Variation of Performance Metrics with Prediction Horizon 

 

Figure 3.10: Actual and Predicted Speed and their difference (the x-axis is divided into 6-hour 

intervals; 09-08 02 means Sept. 08, 2 AM) 
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Figure 3.9 shows the variation of actual and predicted speed for the second link under normal 

traffic condition.  The difference between actual and predicted speed is quite low. As shown in 

figure 3.9 the RMSE and MAE values varies in between 1 to 2 for different links and prediction 

horizon. The maximum MAPE value is 3.2, which means the least accuracy of the model in around 

97%.   

Figure 3.10 shows the difference between actual and predicted speed for evacuation traffic data. 

Surprisingly, the difference between actual and predicted speed is quite low even though the traffic 

flow variation is irregular during this time period. Which indicates that LSTM-NN has captured 

the nonlinearities well. Moreover, the RMSE value for the target links varies between 2 and 4 

(Figure 3.11) while the MAE values vary between 2 and 3. Thus, LSTM-NN model performs better 

even in the case of irregular traffic demand, indicating its effectiveness in capturing nonlinearities. 

We also compare the LSTM-NN model with the most popular time series model ARIMA 

and two other commonly used data-driven models KNN and ANN over multiple performance 

metrics. Figure 3.11 shows that the accuracy level (based on MAPE) for LSTM varies between 96 

and 97%   except in case of Link 4 where RMSE value is found 5.11 while predicting 15 min ahead 

of current time (Figure 3.11). For ANN, KNN, and ARIMA accuracy levels vary as 94-96%, 93-

94%, and 88-93%, respectively. Moreover, the MAE and RMSE values for LSTM-NN are quite 

low compared to other models. From the result, we can conclude that the neural network models 

(LSTM-NN, ANN) can learn the sequential time series data better than others. However, 

considering each matrices LSTM-NN performs better.  
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Figure 3.11: Comparison of LSTM Model based on performance Indexes 

3.5 Discussion 

This study focuses on predicting time mean speed of freeways using LSTM NN model considering 

temporal and spatial dependency of the traffic data. We developed a modeling framework 
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considering the fact that, the future speed of a particular link depends on its upstream and 

downstream link speed as well. We did the experiment for both regular and irregular traffic demand 

condition. In both cases, the model performed reasonably well.  This indicates the effectiveness of 

LSTM-NN model in capturing nonlinear relationships among traffic variables. We have compared 

the performance of LSTM NN model with other traditional models and found that it outperforms 

both parametric and non-parametric models. However, each of the model (KNN, ANN, LSTM) 

performed reasonably well, which means our modeling framework can capture the spatial and 

temporal relationships among traffic variables with better accuracy.   
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CHAPTER 4: TRAFFIC SIGNAL QUEUE LENGTH PREDICTION 

4.1 Introduction 

Inefficiencies in traffic signal timing due to poor green time allocation, inability to respond quickly 

to real-time conditions, and lack of coordination between adjacent intersections are a few major 

causes of congestion problem (Smith et al., 2013). Researchers from multiple fields are testing 

innovative traffic control systems that can effectively manage traffic in a signal based on real-time 

traffic flows. Adaptive Traffic Control System (ATCS) is a state-of-art-traffic control system and 

a major component of the intelligent transportation system (ITS) which can efficiently manage and 

distribute traffic in real-time. 

ATCS technologies gather information regarding current traffic demand and use it to 

optimize different parameters of a traffic controller (e.g., cycle length, split, offset, and phase 

sequence depending on the system) (FDOT, 2016). One of the main performance measures of the 

ATCS is queue length, which also plays a crucial role in signal optimization. Current adaptive 

signals mostly rely on infrastructure-based sensors or video-based loop detectors to estimate the 

queue length. Using these detectors have several limitations: they only provide instantaneous 

position of a vehicle rather than direct measurement of traffic (speed, location) states; the 

installation and maintenance cost of the detection system is considerably high (Feng et al., 2015); 

and they estimate queues that are shorter than the distance between vehicle detector and 

intersection stop line (Liu et al., 2009). Moreover, if one or more loop detectors start 

malfunctioning, the performance of the adaptive signal control system worsens significantly.   
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In this study, we consider a corridor of intersections where consecutive intersections will 

share information with each other and gather information of upcoming vehicles. We develop a 

data-driven approach to predict the lane-based queue length for an intersection. We anticipate that 

with emerging connected vehicles technologies and road environments, information (traffic state, 

queue length etc.) from one intersection will be easily available to another intersection. For our 

experiments, we used InSync Adaptive signal data which provides queue lengths and wait times 

(time required for the first vehicle to clear the intersection) for different vehicular movements. We 

trained a Long-Short Term Memory Neural Network (LSTM-NN) model to predict the queue 

length for the next cycle based on queue length and wait time of three consecutive intersections at 

the current cycle. We run the experiments to predict queue lengths for north through traffic. The 

same methodology can be applied to predict queen lengths for other movements as well. 

4.2 Existing Works 

Vehicular queue length estimation is crucial in optimal signal planning (Chang and Lin, 2000; 

Mirchandani and Zou, 2007; Newell, 1965) as well as measuring signal performance for a 

signalized intersection (Balke et al., 2005). Especially for ATCS technologies, the signal control 

logic is based on real-time estimated queue lengths. So far, a vast amount of works has been done 

in this field and researchers have already developed several methods to estimate queue lengths for 

traffic signals using loop detector data and signal timing information. These studies can be 

classified into two categories. The first one is  based on the analysis of cumulative input-output to 

a signal link which was proposed by Webster in 1958 (Webster, 1957), later improved by several 

researchers (May, 1975; Newell, 1965; Robertson, 1969; Sharma et al., 2007; Vigos et al., 2008). 

In this method, the queue length is derived from cumulative arrivals and departures of an 

intersection. However, this model is effective in describing the queue length formation process or 
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effective queue size, but not sufficient to obtain the spatial distribution of queue length for a given 

time (Stephanopoulos et al., 1979). Moreover, the application of this approach is limited, since 

cumulative input-output methods can be applied only when the queue length does not exceed the 

vehicle detector location (Liu et al., 2009). The second category is based on shockwave analysis: 

how queue forms and dissipates at an intersection. Lighthill, Whitham (Lighthill and Whitham, 

1955) and Richards (Richards, 1956) first demonstrated this theory for uninterrupted flow. 

Stephanopolos and Michalopoulos (Stephanopoulos et al., 1979) expanded it for signalized 

intersections.  

  With the advancement in vehicle detection and sensing technologies, it has become easier 

to collect multi-resolution traffic data. Consequently, real-time queue length estimation such as 

cycle by cycle queue length has gained more attention. Several studies have been conducted using 

event-based signal and high-resolution loop detector data (An et al., 2017; Balke et al., 2005; Liu 

et al., 2009; Smaglik et al., 2007) for real-time queue estimation. Moreover, mobile traffic sensors, 

such as GPS equipped probe vehicles, cellular phones, connected vehicles, and other tracking 

devices, provide a supplement or alternative to fixed-location sensors for real-time queue 

estimation. GPS equipped probe vehicle data have shown great potential for real-time queue length 

estimation (Comert, 2013; Hao and Ban, 2015; Jeff Ban et al., 2011). Connected vehicle 

technologies have created new opportunities for queue length estimation, Tiaprasert et al. 

(Tiaprasert et al., 2015) presented a mathematical  model for real-time queue estimation using 

connected vehicle technology for adaptive signal control. 

Even though high-tech sensing devices and connected vehicle technologies creating great 

opportunities to get multiresolution traffic data, but data-driven queue length estimation techniques 
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are less common. Chang and Su (Chang and Su, 1995) were the first to explore the data-driven 

neural network model for predicting queue length at a short time step (3s). They used extensive 

data from simulation experiments and created multiple scenarios to experiment with the model. 

The prediction accuracy of the model was more than 90% at 3-time steps. However, in this study, 

we have used a different approach by applying a deep LSTM-NN model to capture the long-term 

dependencies of the traffic flow pattern. Moreover, we have considered a connected corridor with 

multiple intersections rather than a single intersection. 

4.3 LSTM-NN Architecture for Queue Length Prediction 

In this study, we assume that for a given intersection, the queue length for a specific movement 

will depend on that intersection and upstream intersections. For example, north through (NT) for 

the next cycle (t+1) will depend on the queue length and vehicle wait time of that intersection and 

the adjacent upstream intersections at current cycle (t). As input vectors, we have added the 

upstream intersections and target intersection queue length and wait time (X(t)=[qi-2(t), qi-1(t), qi(t) 

wi-2(t), wi-1(t), wi(t)]) (Figure 4.1).   
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Figure 4.1: The layout of the Variables for Prediction 

Moreover, to capture this temporal influence we added the time of the and day of the week as 

independent variables. In a regular traffic scenario, we can observe that the daily variation of traffic 

flow follows a recurrent pattern. For example, in the morning and evening peak hour traffic volume 

is higher, which means the overall speed at this time period is lower. Similarly, traffic flow patterns 

are different on both weekdays and weekends. In case of weekdays, traffic volume is quite higher 

than the weekends. 

4.4 Case Study 

4.4.1 Data Description 

For this study, we collected adaptive traffic signal data from InSync between December 18, 2017, 

and February 14, 2018. We collected the data for the corridor of Alafaya Trail (SR-434) located 
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in East Orlando, FL, from its Waterford lake intersection to McCulloch road intersection including 

11 intersections in total (Figure 4.2). InSync database provides mainly two types of data: (i) 

Turning Movement Counts (TMC) - vehicle counts per phase and lane for every 15 minutes; (ii) 

History data which provide the details of each movement with the time, duration, queue and wait 

time (refers to the wait time in seconds of the first car that was detected on the phase at the time 

logged) for each phase. In general, the history data contains information regarding eight distinct 

movements North Left (NL), North Through (NT), South Left (SL), South Through (ST), East 

Left (EL), East Through (ET), West Left (WL) and West Through WT). Movements of 

pedestrians, bicycles or any non-motorized vehicle are considered as a separate phase.  
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Figure 4.2: Study Location (Google Map, 2018) 

4.4.2 Data Preparation 

In this study, we mainly focused on north through movements. We separated the data containing 

queue lengths (see Figure 4.3 (a)) and wait times for the north through movement. The data 

collected from the phase history log contain multiple queue lengths for a given direction (north 

through) for a single cycle period which means that the same queue (north through direction) was 

cleared multiple times within a single cycle period. For our study corridor, the cycle period usually 

varies in between 120sec to185sec.  

 1 
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In general, the raw data collected from traffic sensors are subjected to errors. Several 

factors such as detector’s malfunctioning, false encoding during storing into the server, bad 

weather conditions etc. can cause errors. To understand the quality of the data we plotted the queue 

length with respect to time. Figure 4.3 (a) shows that few data points drastically deviated from the 

regular trends indicating that the collected data contains a few outliers which might cause poor 

fitting of the model. Hence, we need to apply some data cleaning techniques to remove these 

outliers.  

For cleaning the data, we applied two approaches. First, we considered the maximum 

possible queue length detection by the detectors. InSync Adaptive traffic controller depends on the 

mounted video cameras to detect the number of vehicles and how long the vehicles have been 

waiting. In some cases, the detection system is fused with loop detectors to assist the queue 

detection. The detectors are placed at a certain distance from the stop line at the upstream of the 

intersection. The distance varies between 285 feet and 484 feet (Traffic and Manual, 2016). Hence, 

maximum possible queue length detection by the detectors should be less than 35 (average vehicle 

length 14.5 feet). Considering this issue, we discarded the queue lengths greater than 40 from our 

analysis. 

Then we used interquartile range to remove the outliers.  We chose a boundary in between 

1.5 times the interquartile range and remove the queue lengths which fall outside this boundary.  

For prediction purpose, we chose the cycle length as 120 sec and aggregated all the small queue 

lengths within a single cycle period. The objective is to predict the queue length for the next cycle 

(after 120 sec).  Finally, we applied a rolling average method over a window size of 5 to reduce 

the noise. Figure 4.3(b) demonstrate the trends in queue length over time after cleaning. 
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(a) Queue length with outliers 

 

(b) Queue length without outliers 

Figure 4.3: Queue Length Variation over time for Alafaya Mcculloch Intersection 
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4.4.3 Experiment Results 

To predict the queue lengths for the next cycle time, we trained the LSTM model with InSync data. 

We divided the data into two sets, first 80% of the data was used for testing and the next 20% of 

the data was used for validation. Finally, we trained the model to learn the pattern. For selecting 

the hyperparameter for the deep LSTM NN model we ran the SMBO algorithm with a predefined 

prior distribution of each parameter (Table 4.1) on different datasets corresponding to different 

intersections (1 to 9). Finally, we obtain the optimal combination of hyperparameters which works 

best for each dataset (Table 4.2).  

Table 4.1: Prior Distribution of Each Parameter for Queue Length Prediction 

Parameter Name Distribution Values 

Number of Hidden Layers Categorical 𝑥 ∈ {1,2} 

Activation Function in each layer Categorical 𝑥 ∈ {𝑟𝑒𝑙𝑢, 𝑡𝑎𝑛ℎ, 𝑠𝑖𝑔𝑚𝑜𝑖𝑑} 

Number of Units in First Layer Categorical 𝑥 ∈ {64,128,256,512} 

Number of Units in Second Layer Categorical 𝑥 ∈ {64,128,256,512} 

Dropout in each layer Uniform 𝑥 ∈ [0,1] 

Optimizer Categorical 𝑥 ∈ {𝑎𝑑𝑎𝑚, 𝑠𝑔𝑑, 𝑎𝑑𝑎𝑔𝑟𝑎𝑑, 𝑟𝑚𝑠𝑝𝑟𝑜𝑝} 

Batch Size Categorical 𝑥 ∈ {360,720,1440} 
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Figure 4.4: Variation of Training Loss per Iteration for Different Optimizer (Batch Size 

=1440) 

 

Figure 4.5: Variation of Training Loss per Iteration for Different Activation Function (Batch 

Size =1440) 
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From the optimization result we found that adam optimizer works better than rmsprop, adagrad 

and sgd optimizer. However as shown in figure 4.4, adam, rmsprop and adagrad have similar 

efficiency but adam optimizer converge faster than others. Hence, it takes less time to train the 

model. Figure 4.5 shows the training loss for different activation function. Both relu and tanh 

activation function work better, but if we choose sigmoid function the model starts overfitting at 

certain points before converging to the validation loss.  Figure 4.6 shows the training and validation 

loss for the best model. We can see that the model converges after 70 iterations (epoch).  

Table 4.2: Hyperparameters for best Performing Model for Queue Prediction 

Number of 

Hidden Layers 

Number of 

Hidden Units 

Dropout Activation 

Function 

Optimizer 

First 256 0.01655 relu Adam 

Second 128 0.00377 relu 
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Figure 4.6: Training and Validation Loss for the Optimized Model 

 

Figure 4.7: Actual and Predicted Queue Length for Alafaya and McCullouch Road Intersection 

(February 03, 2018) 
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 As shown in Figure 4.7, the trained LSTM NN model performs very well to capture the variations 

of queue length over time. The difference between actual and predicted queue length is quite low. 

From Figure 4.8, we can observe that in maximum cases the difference between the actual and 

predicted value for different intersection varies from 0.3 to 1.2. We have calculated Root Mean 

Square Error (RMSE) and Mean Absolute Error (MAE) as performance measures to check the 

accuracy of the implemented model. Performance metrics are defined as,  

                       𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑡−𝑦̂𝑡)2𝑛

𝑡=1

𝑛
                                  (7) 

                       MAE =
∑ |𝑦𝑡−𝑦̂𝑡|

𝑛
𝑡=1

𝑛
                                         (8) 

Figure 4.9 shows that in most cases the RMSE values are less than 1. The maximum RMSE value 

was found for Alafaya Trail and Corporate Blvd intersection. While for each intersection, the MAE 

value is less than 1 as well.   
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Figure 4.8: Distribution of the Difference between Actual and Predicted Queue Length 

 

 

Figure 4.9: Variation of Performance Metrics for Different Intersections 

9 

Performance Metrics 

9 
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4.5 Discussion 

Queue length is one of the major performance measures to evaluate the performance of a traffic 

signal. In Advanced Traffic Control Systems, queue lengths have been used to optimize signal 

control parameters. In this study, we have developed a data-driven method to predict queue lengths 

in the next cycle from real-time traffic data. Assuming a connected corridor, we have implemented 

a deep LSTM-NN model to predict the queue length for the next cycle. Our deep learning method 

can capture the time-dependent patterns of traffic signal queues very well.   

 One of the major benefits of the proposed deep learning model is that it can be implemented 

in real time and can be updated based on real-time signal data. Moreover, it will reduce the 

dependency of the ATCS technologies on multiple detectors (e.g. loop detectors), hence reducing 

the overall maintenance cost to operate a system.  
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

5.1 Summary 

With the availability of multiresolution traffic data, deep leaning has created a unique opportunity 

to solve more complex traffic prediction problems. In this study, we developed data-driven 

solution to deal with two different problems using Deep LSTM NN model. But both problems 

have a similar goal, to predict traffic state (speed, signal queue length). 

In the first problem, we develop a framework to predict the traffic speed for Interstate 75 (I-

75) considering spatial and temporal dependency of the traffic state. We consider a connected 

corridor where the future traffic speed of the target link will depend on the current traffic state of 

the upstream, target and downstream link. To test the reliability of the model, we applied it to 

predict the traffic state during hurricane evacuation when traffic flow pattern shows irregular 

behavior. Our experiment result shows that our proposed modeling framework worked better in 

both regular and irregular traffic demand condition. Though LSTM NN model performed better 

than the traditional models, the accuracy of those models was reasonably good. Which means 

temporal and spatial dependency is critical in traffic state prediction and our proposed framework 

can capture this relation. 

In our second problem, we consider a connected corridor of intersections where consecutive 

intersections will share information with each other and gather information of upcoming vehicles. 

We develop a data-driven approach to predict the lane-based queue length for an intersection. We 

anticipate that with emerging connected vehicles technologies and road environments, information 

(traffic state, queue length etc.) from one intersection will be easily available to another 

intersection. For our experiments, we use InSync Adaptive Signal data which provides queue 
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lengths and wait times (time required for the first vehicle to clear the intersection) for different 

vehicular movements. We trained the LSTM-NN model to predict the queue length for the next 

cycle based on queue length and wait time of three consecutive intersections at the current cycle. 

Though we run this experiment to predict queue lengths for north through traffic, the Same 

methodology can be applied to predict queen lengths for other movements as well. Based on the 

accuracy metrics obtained from the experiment result we can conclude that LSTM NN performed 

well to predict the lane-based signal queue length.  

  One of the major benefits of data-driven solution method is that it can be applied in real 

time and can be updated using real-time data. However, the most critical issue with this data-driven 

method is the prediction accuracy. Since the traffic flow pattern follows a complex dynamic, it is 

difficult to capture those nonlinear patterns using traditional models. But deep leaning with layered 

nonlinear functions has the ability to capture high dimensional data representation which made it 

easier for us to deal with these complex problems.   Hence, in the future with the introduction of 

connectivity (vehicle to vehicle and vehicle to infrastructure) these methods can be utilized to get 

the insights on future traffic. Especially during an emergency situation such as hurricane 

evacuation. Accurate traffic state prediction can largely improve the evacuation management 

system through proactive decision making. The findings of this study give evidence on the 

feasibility of this deep learning method to deal with traffic operation related problems. 

5.2 Limitations and Future Research Direction 

In our first problem, we developed a framework using LSTM NN model to predict the traffic 

speed. we choose only for four links of I-75, it should be tested using more links at a network level 

including other highways and arterial roads. More features traffic volume, delay, weather 
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condition, etc. can be added from multiple data source using data fusion techniques to check 

whether such variables improve the performance of the model. The developed methodology can 

be implemented for predicting other traffic states such as travel time and traffic flow.  

In our second problem, We develop a data-driven approach to predict the queue length for 

an intersection. we predicted the signal queue length only for through movements using historical 

queue length and wait time for through movements as input features, we can add more features 

related to vehicular traffic states (traffic flow, average travel time or speed) merging data from 

multiple sources to provide a more complete picture of signal states for better prediction. In our 

future study, we will do an experiment for a complete intersection considering the queue length 

for each lane. We will develop a data-driven optimization technique for the adaptive traffic control 

system based on the predicted queue lengths. Although we used a fixed cycle time but to 

implement the model in a practical field, we have to make the model more flexible so that it can 

predict the queue length for variable cycle time. Furthermore, we have to incorporate an algorithm 

that can update the next cycle time based on current traffic state and delay.  
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