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A Review of Mixed-Criticality System Schemes 
 

Alex Jenkel 
I. Inspiration 

Mixed-criticality systems are a largely-growing area of interest in the real time systems community, as the 
area of study can help solve many implementation issues. Mixed-criticality is essentially the use of multiple 
schemes within a scheduling algorithm, and can vary from altering the processor speed of a system, mapping the 
resources of the system more effectively,  

II. Paper 1: RTSS 2013 [1] 
Summary 
 The goal of the 2013 RTSS paper is to determine whether or not it is possible to model a system in which a 
processor can lower its rate when exceptions arise so that all critical jobs’ deadlines will be met. The strategy here 
will be to create a second task schedule for the degraded mode that does not involve the lower priority jobs. This 
will create free space that will allow the higher priority schedules to execute with the lower rate, which in turn 
brings up the question as to what the lowest rate is that a processor can run at and still guarantee correctness.  

Setting up the model, several constraints are defined that will outline the calculations used for the rest of 
the model. Firstly, jobs are indexed from 1 to n, with nh lying in that range and separates higher priority jobs 1,…,nh 
from the lower priority jobs nh+1,nh+2,…,n. Similarly, a time vector is set up that denotes the release times and 
deadlines of each job, labelled t1,t2,…,tk+1; there are 2n t values in the vector. Once these parameters are 
established, several constraints are put in place so that accurate analysis may be conducted. One such constraint is 
that there has to be sufficient time allocated to each job so that it doesn’t miss its deadline. Another constraint is 
that the time allocated to a job’s execution must fall between two successive time intervals—i.e. tj and tj+1. The 
final constraint is that since at any point the processor may enter degraded mode, the sum of execution times of a 
High-Criticality task whose deadline doesn’t exceed the range being observed (called tm) must be less than s(the 
degraded execution speed which is less than one)•(tm-tL) where tL is the point of time where the processor enters 
degraded speed. In other words, since the processor operates at less than one unit of execution per unit of time, it 
must have enough time under degradation to execute the higher criticality jobs.  

Another aspect of the model is the scheduling policy that will be used. Two cases are considered: 
preemptive scheduling and nonpreemptive scheduling. A custom approach will be used while the processor runs in 
normal mode where a portion of each high-criticality job will run (but not the entire job) and then will alternate 
with a low-criticality job. This will assure that both A) jobs of both criticalities will execute under normal conditions 
and meet all deadlines, and also B) if the processor goes into degradation mode and the lower-criticality jobs are 
dropped, there will be gaps in which the higher-criticality jobs can execute with the degraded speed on the 
processor. While the processor is degraded the high-criticality jobs will execute according to preemptive EDF.  

Nonpreemptive schemes are considered but are ultimately discarded as it is NP-hard to determine if a 
consistent model exists for what is desired. To this end only preemptive schemes will be considered. 
Interpretation 

After conducting numerous simulations, it was discovered that the degradation speed closely resembles 
the load of the higher-criticality jobs. Assuming that the jobs are preemptable (otherwise lower priority jobs could 
block degraded higher criticality jobs when the processor jumps to degradation mode) simulations provided 
analysis that showed the bounds put in place were only exceeded by at most 0.8, which gives evidence to the 
model’s credibility. While this model is very generalized and fairly simplified, it still provides an excellent 
foundation in the study of mixed criticality jobs.  
Further Exploration 

A few options that any future works can expound upon include the use of multiple levels of criticality, 
resource sharing, multiple execution speeds, as well as considering that it is possible for the processor to return to 
normal mode after degrading.  

In regard to multiple criticality levels, possibilities exist where—especially in safety-critical situations—a 
certain few jobs are given the highest priority, some jobs are given slightly lower levels of criticality and then most 
jobs are given the lowest level of criticality. By doing this, more exact schemes can be plotted, and better priority 
definitions can be described. This could also be combined with the possibility of having multiple processor speeds, 
which could be allocated to different criticality levels so that the correctness of higher-criticality jobs will be 
guaranteed. 



III. Paper 2: ETH 2013 [2] 
Summary 

The idea behind the ETH paper is to create a model for a series of tasks that could contend for resources 
(here defined as either processors or memory) such that proper resource usage is allocated in both normal and 
degraded modes. The paper describes an acceptable outcome as one in which all tasks can be scheduled for all 
criticality levels. Proving this lies more in tune with using many simulations to determine whether or not a pattern 
exists. 

As opposed to the RTSS 2013 paper, this paper puts many more variables into the analysis of each job’s 
execution. Jobs in this model are referred to by their criticality level, two functions of criticality level  that detail 
the execution time allotted to the respective job in both normal and degraded mode, and period. An example of a 
task set was included in the paper, shown below: 

 
The model takes after cyclic executive in the sense that scheduling tables are created that separate jobs 

into frames, and then further into subframes. Barriers are created using special functions that identify where the 
worst-case execution time would be in the frame. These barriers are calculated using special interference analysis 
and are also used in the calculation of whether or not a system can change states, which vary based off of cost. A 
simulation was set up that would check on three criteria after setting up all of the constraints. A total of H/Wi jobs 
are scheduled for every jobi, all iterations of the same task are scheduled on the same processor, and all jobs 
honor their predecessor constraints. The simulator is designed so that if any of those three conditions, then the 
simulator will stop searching with the given tasks.  

One detail that is then considered is that preemption should not be allowed as it would be practically 
impossible to accurately predict and simulate—as well as to implement. The idea here is that if a job is preempted 
and then shifted towards the end of the execution frame, it would then block other lower criticality jobs from 
running. Instead of blocking preemption altogether, a happy medium is utilized so that jobs can preempt other 
jobs at certain points in the schedule. This will allow both accurate analysis and description of the task-set and will 
also allow flexible run-time adjustment in the schedules.  

Once all of the different constraints are accounted for, many simulations are run. Firstly, three different 
schemes of the scheduling algorithm are considered and plotted on many different cores in the system. Three 
variations include: Time-Triggered and Synchronized (TTS) subframes that are dynamically initialized and with core 
interference (purple), TTS subframes that are dynamically initialized with core interference (tan), and finally TTS 
subframes are dynamically initialized and core interference is not accounted for (blue). The following chart shows 
the results of the simulation that results in schedulable tasks with each scheme on 1, 2, 4, and 8 cores: 



 
It can be seen that not considering the core interference among tasks results in a much higher 

schedulability percentage but does not necessarily represent the most accurate model (or would either require 
more complex programming to achieve). After this, the next comparison is used with resource sharing, and how 
much time should be spent doing calculations versus accessing memory. A ratio is used to model if a task would 
only access memory (ATR = 1), would only do calculations (ATR = 0), or anywhere in between. The following graph 
shows the results from this comparison.  

 
This comparison shows a general trend of decreasing schedulability with increasing memory access time. 

Finally, different combinations of EDF-VD, preemption, and the TTS scheduling were compared against system 
utilization to see which scheme would be more viable. While in some cases EDF was comparable to TTS, in the 
scheme with no preemption allowed, TTS was acutely more schedulable at higher utilizations. The paper concludes 
by implementing the scheme into a real-world industrial application and determining if it is a practical method for 
scheduling tasks outside of a computer simulation. 
Interpretation 

This paper dives deep into the concept of resource sharing and planning on how to share the processor 
and memory so that all jobs can execute fully, even if all of the resources are already allocated. Many different 
comparisons were made that showcased the efficiency and versatility of the scheduling algorithm, as well as 
showed that there are certain points in which the model could not be helpful with (i.e. after a certain quantity of 
cores on certain applications there is no benefit in adding more). The scheme provided is comparable, if not better 
than EDF in just about all of the calculations given, showing that it is an extremely useful tool. 
Further Exploration 

While this paper did a very thorough job at researching resource allocation, there were a few details that I 
believe were neglected. Firstly, only two levels of criticality were ever used to simulate the different tests, and so it 
could be that for two levels of criticality the TTS scheduling is paramount but could fail many tests or needs more 
constraints once more criticality levels are added. Secondly, this paper doesn’t consider multiple processor speeds, 
as mentioned in the RTSS 2013 paper, and assumes that the processor speed will be practically constant. Finally, it 
was not explicitly stated as to how aperiodic tasks would be handled. While the a priori tables do allow time for 
the aperiodic jobs to execute, it is unclear about how they would be handled, and whether or not they could 
contend for resources and slow down the other jobs running. 



 
IV. Conclusion 

Throughout the course of my investigation, I explored multiple ideas on how to tackle mixed criticality 
scheduling and the barriers associated with that. In the first paper I encountered, the object of the research was to 
inquire about scheduling based off of variable processor speeds. The matter in question revolves around how the 
processor may run into interrupts or exceptions that would cause it to slow down, and so certain, higher-priority 
jobs would need to have the guarantee of finishing at both speeds. This was accomplished by dropping lower 
criticality jobs so that the slower execution speed would have more time to execute the higher-level jobs. While 
this paper does an excellent job of finding a correlation between the slowest speed that can guarantee 
correctness, it does not take into account resource sharing and multicore scheduling. The next paper picked up 
where the other one left off, in a manner of speaking.  

The second paper addresses the complexities of resource sharing and multicore scheduling. Many models, 
calculations, estimations and checks were done in order to calculate the schedulability of jobs that were randomly 
generated. Its findings were that the time-triggered and synchronized scheduling that followed a cyclic executive 
frame-oriented approach was actually quite useful and accurate with scheduling various tasks. Compared to EDF 
and plotted against a plethora of variables the paper tracked its productivity and found that the method had few 
shortfalls. The issue with this idea is that it assumes a variable processor speed, and also takes advantage of not 
having aperiodic tasks, which will not always be the case. 

I am curious if there is a way to combine these two schemes. The first method employs a unique 
scheduling plan for the normal speed and then goes to EDF when it is in degraded mode. I speculate that if the TTS 
frame scheduling was adapted to mirror, or even pseudo-mirror the normal speed schedules, and then go into the 
full TTS schedule when the processor goes into degraded mode, the combinatorial scheme could accommodate 
both processor speed constraints as well as multicore scheduling and resource distribution problems.  
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