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ABSTRACT 

Computer Science is concerned with the electronic manipulation of information. Continually 
/ 

increasing amounts of computer time are being expended on information that is not numeric. This is 

represented in part by modem computing requirements such as the block moves associated with 

context switching and virtual memory management, peripheral device communication, compilers, 

editors, word processors, databases, and text retrieval. This dissertation examines the traditional 

support of non-numeric information from a software, firmware, and hardware perspective and 

presents a coprocessor design to improve the performance of a set of non-numeric operations. 

Simple micro-coding of operations can provide a degree of performance improvement through 

parallel execution of instructions and control store access speeds. New special purpose parallel 

hardware algorithms can yield complexity improvements. This dissertation presents a parallel 

hardware regular expression searching algorithm which requires linear time and quadratic space 

compared to software uniprocessor algorithms which require exponential time and space. A very 

large scale integration (VLSD implementation of a version of this algorithm was designed, 

fabricated, and tested. The hardware. searching algorithm is then combined with other special 

purpose hardware to implement a set of operations. Simulation is then used to quantify the 

performance improvement of the operations when compared to software solutions. 

A coprocessor approach allows the optional addition of hardware to accelerate a set of 

operations. This is appropriate from a complex instruction set computer (CISC) perspective since 

hardware acceleration is being utilized. It is also appropriate from a reduced instruction set 

computer (RISC) perspective since the operations are distributed away from the central processing 

unit (CPU). 
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CHAPTER! 

/ 
INTRODUCTION 

In the broadest concept of computing, all computer applications can be described as the 

electronic manipulation of information. From the simplest clocks and calculators to the most 

advanced super computer simulations and process control applications, the bottom line is that 

information is used as input to an application and manipulated in some fashion. Computers and 

their applications are differentiated by the types of information they are manipulating and how that 

manipulation is accomplished. An initial dichotomy of types of information can be divided into 

numeric and non-numeric, that is to say, numbers and everything else. 

The computer industry is currently dividing central processing unit (CPU) designs into 

another dichotomy. One camp advocates the support of sophisticated data manipulations in the CPU 

hardware design and the other camp advocates a simple CPU design with most data manipulation 

performed in software. Both camps will agree that hardware acceleration can yield significant 

improvement in the execution of operations but they disagree where, when, and how that hardware 

acceleration should be accomplished. The use of a secondary processor called a coprocessor to 

augment the CPU functionality has become a common solution. Numerically oriented floating 

point coprocessors are very common in the marketplace and are utilized by both CPU design camps. 

This dissertation examines and demonstrates the viability of a coprocessor design to support a set of 

non-numeric operations. 

1.1. Non-Numeric Data 

Numeric information manipulation historically drove the designs of the first electronic 

computers (Kuck 1978), and the performances of various numeric operations are still the primary 

factors in determining the computing power of modem computer systems (Linton 1986). However, 
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as computer technology has advanced, its uses, demands, and applications have spread out into a 

variety of areas. 

The use of computers for text retrieval and large databases represents the most glaringly 

obvious requirements for large scale use of non-numeric operations. These applications are becoming 

more common as rusk storage technology improves, especially with the high densities and relatively 

low cost associated with optical medium. The American Institute of Industrial Management 

(AIIM) estimates that a quarter of a billion pages of original documents are created every day 

(Leerburger 1988) and that number jumps to 3.4 billion pages per day when copies and computer 

printouts are incorporated into the calculation. AIIM further estimates that corporate documents 

are increasing at 20% per year. While not all of this information is generated or stored 

electronically, continually increasing portions are available electronically. 

Some of the well known retrieval systems (Bayer 1978; Black 1978; Larson 1977; Mccarn 

1978; Sprowl 1976) currently provide electronic access to professional journals and databases such as 

the medical profession's MEDLINE system and the legal profession's LEXIS system, each 

representing gigabytes of information. One of the most ambitious examples in this genre is being 

implemented by the U.S. Department of Commerce, Patent and Trademark Office. It is currently in 

the process of electronically storing 40 million pages of domestic patents and over 60 million pages 

of foreign patents (Leerburger 1988). This represents more than a terabyte of information which 

will be electronically manipulated. 

When manipulating just kilobytes of information, a simple doubling in the performance of an 

operation can yield a significant improvement. A complexity improvement in the basic algorithm of 

an operation would yield tremendous results at these levels of data processing. The megabyte, 

gigabyte, and terabyte examples presented here are the extreme ends of non-numeric requirements 

but do show that such requirements exist and are real. Further justification for hardware support of 

non-numeric operations can be established by examining how deeply rooted and unavoidable non­

numeric operations have become in the general computing environment. 

The history of computing shows an on-going process to make the computer a better tool by 

making it easier for humans to use. This process has invariably been accomplished by making the 
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computer do more work. No one would believe that computers would be used in as many varied 

applications as they are today if the computer user still had to compute the binary for each machine 

instruction and use toggle switches to enter one instruction at a time. Instead, through various 

stages, we have reached a point where bit mapped displays and pointing devices, like a mouse, are 

becoming mandatory for interactive work with a computer. It even appears that speech recognition 

may be a realizable goal in the near future. The trend is to allow the human to communicate with 

the computer in the most comfortable and natural fashion possible. Advances in memory and 

storage devices have allowed vast amounts of information to remain readily available to the 

computer while assemblers, compilers, and other software tools have been developed to transform 

human convenient abstractions to the necessary binary format that the computer requires. These 

human readable formats also tend to be more portable than the machine dependent binary formats 

and therefore are often used as a means for transferring information between systems or programs. 

The computers of the past defined the environment in which the computer user worked. The 

computers of today must compete in a market that requires speed, ease of use, availability, 

reliability, and maintainability for both the hardware and software. 

A modem computer must be concerned with multi-tasking, virtual memory management, 

network and peripheral communications, and a vast variety of other processes in addition to an 

individual program being run. Each of these duties tends to require movement of information 

without concern for what the information is. Multi-tasking requires context switching, virtual 

memory requires paging, network and peripheral communications require transfers of blocks of 

information. The assemblers, compilers, and block movement requirements described so far gain 

very little from how fast two numbers can be added or multiplied. Neither do applications such as 

interactive command processors, editors, word processors, spelling checkers, electronic mail, text 

retrieval, databases, or a number of other textually oriented applications which are becoming an ever 

increasing portion of the utilization of electronic computing. 

The distinguishing attribute of numeric operations when compared to non-numeric operations 

centers on the size of the data. The numeric operations which are commonly implemented in 

hardware are generally unary or binary, and all of the operands are able to fit in fast access memory 
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locations (registers). Non-numeric operations are concerned with large and often unknown amounts 

of data which can not be held in a register. For example, something as simple as scrolling the 

information on a bit mapped display can incur considerable overhead on a system. Consider a 1024 x 

1024 pixel color screen (one megapixels) with 8-bits per pixel which needs to shift up by one raster 

line. This implieS/ the movement of a megabyte of data. Given a machine which could execute a 

million instructions per second, has an instruction that could do a memory to memory byte transfer, 

and another instruction that could decrement a counter and conditionally branch, this operation 

would take just over two seconds to accomplish, provided the entire machine was dedicated to doing 

only the scroll. Two seconds is intolerably long to accomplish the scroll in the first place, and 

consuming the entire system for that long for such a simple task would be unacceptable as well. 

The solution to this is to add special purpose hardware that can perform the scroll operation 

independently of the demands of the central processing unit (CPU) and perform it at a more 

acceptable rate of at least four times faster. 

1.2. Software versus Firmware versus Hardware 

The solution of special purpose hardware for a particular task is quite common in the 

computer industry. Disk and tape drives come with controllers; graphical displays have dedicated 

memory and dedicated hardware to manipulate that memory; virtual memory systems have hardware 

memory management units (MMUs); array processors are available to accelerate applications which 

work on large arrays of numbers; and multitudes of floating point accelerators exist. 

There is nothing accomplished by these special purpose hardware designs that could not also 

be done by the CPU, but as demonstrated by the scrolling example of the previous section, the speed 

at which it can be accomplished is an important factor. The purchaser of a modem computer must 

determine how critical the support and speed of a particular data operation is to the application. 

Extending this example to the extreme, there is nothing a multi-million dollar super computer can 

compute that an inexpensive home personal computer could not also compute. The difference is that 

the super computer computes it much faster. There is a point of diminished return between cost and 
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speed associated with the movement of an application from a slower machine to a faster machine or 

from the control of the CPU to the control of special hardware. 

The primary problem with non-numeric operations is the limitation of processing small 

amounts of the information at a time in a loop. A speed penalty is paid since both the program 

performing the operation and the data on which the operation is being performed are in memory. 

There is not much that can be done about the data being in memory, but the program can be moved 

into hardware. 

If the program can make use of the existing hardware with no additions or changes, then a 

firmware solution is possible. Some machines like the DEC VAX 11/780 (1977) have a loadable 

control store available to their users to add custom machine instructions. New CPU designs may 

also use this technique during the definition and debugging of their machine. Some of the operations 

which will be designed in this dissertation could be accomplished through simple micro­

programming of a general purpose computer architecture. Other operations will require special 

hardware that is not commonly found in CPU designs. This dissertation will attempt to provide 

insight into the gains that can be achieved by movement from a pure software implementation to a 

firmware implementation, and the complexity of any special hardware requirements. 

1.3. CISC versus RISC versus Coprocessors 

Moving more and more operations into the firmware of the CPU has been the trend in the 

computer industry for several decades. The increased functionality offered by Very Large Scale 

Integration (VLSI) technology presents a new opportunity to build special purpose hardware for 

reliable and high-performance machines. There are a variety of different approaches being taken by 

researchers and manufacturers attempting to exploit VLSI technology. One approach is to build 

increasingly complex microprocessors by taking advantage of the increased level of integration to 

implement more complex but reasonably established architectures (Intel 80386, Motorola 

MC68030, National Semiconductor NS32032, Western Electric WE32000). These are called 

complex instruction set computers (CISC). 
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A different approach advocates precisely the opposite of complex processors. Some 

researchers maintain that the speed gap between memory and the processor is no longer significant 

and that compilers are unable to effectively utilize the "exotic instructions" made available by the 

complex processors. Instead, they advocate a simplified CPU design realizing a speed improvement 

by utilizing the chip area for pipelining, caching, etc. This design philosophy, referred to as reduced 

instruction set computers (RISC), has been adopted in the Berkeley RISC processor (Fitzpatrick 

1981), the IBM 801 processor (Radin 1982), and the Stanford MIPS processor (Hennessy et al. 

1982) and has found its way into commercial processor designs such as those offered by Pyramid, 

Sun (1987), MIPS (Moussouris et al. 1986), and HP (Birnbaum and Worley 1985). 

Another approach seeks to exploit parallelism in the hardware to perform functions that are 

traditionally performed inefficiently on a uniprocessor. Research in non-vonNeumann architectures 

is quite extensive, but a good subset of algorithms investigated for VLSI as well as a list of 

references can be found in Chapter 8 of the Mead-Conway text (1980). 

This dissertation will present the design of a coprocessor which manipulates character string 

data. Utilizing a coprocessor approach to optionally provide CPU enhancements avoids increasing 

the instruction decode time of the CPU (a reduced instruction set versus complex instruction set 

consideration) but provides high speed hardware support for complex operations (a complex 

instruction set versus reduced instruction set consideration). Additionally, one of the string 

operations presents a traditionally exponential time and space problem that is shown to have a 

practical quadratic space and linear time realization utilizing a parallel processing technique in VLSI. 

1.4. Structure of the Dissertation 

Chapter 2 presents the set of non-numeric operations which will be implemented, providing 

details on the structure of the data and traditional use and implementation of these operations. One 

of the most frequent and complex operations is searching. Chapter 3 is dedicated to this one 

operation presenting a powerful and practical special purpose hardware algorithm for implementing 

a searching algorithm. Chapter 4 incorporates the searching algorithm with other hardware to 

implement the full set of operations. Chapter 5 simulates the coprocessor design to quantify the 
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gains of software to firmware to hardware. The results of this simulation and the coprocessor 

concept are then summarized in the conclusions of Chapter 6. 

/ 



CHAPTER2 

THE SELECTION OF NON-NUMERIC OPERATIONS 

Attempting to discern the requirements of all non-numeric operations and designing hardware 

implementations would be impractical. Furthermore, some non-numeric operations such as the 

device controllers, intelligent graphic displays, and memory management units (MMUs) mentioned 

in the previous chapter are already realized in hardware. Instead, we submit that character string 

operations are representative of the majority of non-numeric work performed by computers. Thus, 

examination of hardware acceleration for character string operations provides evidence of the types 

of gains that could be expected for many other non-numeric operations. All non-numeric operations 

are implemented with loops which operate on large amounts of data. In the case of character 

strings, the assumption is made that the data consists of characters, but the operations are often 

applicable to other non-numeric operations as well. For example, the page movement operation of 

an MMU and the scrolling operation of a graphic display both accomplish the same operation as the 

strcpy (string copy) operation of character strings. In fact, the MMU has an easier job since it is 

moving a fixed, known amount of data. By quantifying the improvements of string operations 

moved into hardware, a basis is established for the improvements that might be expected for similar 

operations. 

This chapter selects a set of character string operations, reviews existing string languages, 

reviews traditional hardware support of strings, and discusses how the selected operations can 

support the reviewed languages. 

8 
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2.1. Character String Operations 

The UNIX* operating system has an interesting history in that its origins were based on the 

interactive editing, documenting, and maintenance of programs that were to be submitted and 

executed on another system (Dolotta, Haight, and Mashey 1978). This orientation places 
/ 

considerable emphasis on non-numeric operations and especially on character string operations. A 

plethora of textually oriented tools and filters have grown with UNIX as it has expanded into the 

research and commercial marketplace. This makes a UNIX based system an excellent environment in 

which to examine the gains of hardware accelerated character string operations. The coprocessor 

design in this dissertation implements the set of character string operations defined by the UNIX 

operating system library of routines. However, we recognize that UNIX does not represent the 

entire world of computing and each UNIX system will have different hardware support depending 

on the CPU of the system. We therefore review a number of string oriented languages and CPU 

designs to determine general requirements for string operations and their traditional hardware 

support. To simplify this review and discuss how the coprocessor might support the languages, the 

operations are defined first and the review follows. 

2.2. MEMORY and STRING 

Appendix A includes the manual pages for a detailed description of the string operations 

which are being implemented. The operations associated with STRING are all based on the 

assumption that the strings are terminated with the null character and hence the operations know 

when to halt. The operations associated with MEMORY are supposed to be optimized for the CPU 

architecture and require a length parameter to indicate how long the strings are. There is an overlap 

in functionality in the definitions of these operations, but implementing all of them in hardware 

provides a wide base from which to support the higher level languages presented later. 

The operations can be generalized into three categories. 

(1) Copying - memccpy, memcpy, memset, strcat, strncat, strcpy, and strncpy are all operations 

which perform the task of copying a string from one place in memory to another place. 

:j: UNIX is a trademark of AT&T. 
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(2) Searching - memchr, strlen, strchr, strrchr, strpbrk, strspn, strcspn, strtok, index, and rindex 

are all associated with finding a character or one of a set of characters in a string. 

(3) Comparing - memcmp, strcmp, and strncmp are used to compare two strings 

lexicographically. 

These operations are given the memory addresses of the first characters of the string operands 

and loop through these operands performing the appropriate operation. This library is somewhat 

different from many string operations in its use of a terminator character to denote the end of a 

string. However, several operations are provided that take a length parameter, thus performing the 

operations in a more traditional fashion. 

Two terms associated with searching will be used quite often. These are scan and span. The 

scan operation searches for the first occurrence in one string of any character contained in another 

string. The span operation searches for the first position that does not contain any characters from 

the other string. These operations are useful for finding delimiters in strings and breaking out 

fields. For example, command processors could use sequences of scans and spans to parse a 

command line. The strtok operation combines scans and spans in just that fashion. 

The copying and comparing categories can be implemented fairly easily in hardware. These 

appear in a variety of forms in the CPU designs that are reviewed. Searching is not as easily 

accomplished. As such, only limited se·arching capability is presented in the larger CPU designs 

reviewed. The review of the languages shows an intensive need for powerful searching capabilities 

which are not represented in our current set of operations. Chapter 3 will be dedicated to addressing 

searching algorithms and presents a hardware algorithm that can be incorporated into the coprocessor 

design. 

2.3. String Languages Reviewed 

The term "string languages" is used to loosely describe languages or applications which are 

predominately oriented towards string operations. In each subsection, the "string language" will be 

discussed in general terms and its requirements will be related to the set of operations defined in 

Appendix A. 
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2.3.1. LISP 

LISP (Winston 1979; Winston and Horn 1981) is one of the oldest surviving, non-numeric 

programming languages. Unfortunately it is symbolic and link oriented rather than character string 

oriented. This makes it completely different from all the other non-numeric languages in this 
/ 

chapter. It is mentioned here for completeness in the review but it is inappropriate for our 

architecture. The reader is referred to Greenblatt (1980) for a hardware design which supports LISP. 

2.3.2. SNOBOL 

The original SNOBOL (Farber, Griswold, and Polansky 1964) programming language was a 

very simple language with only one data type, the string, and few pattern matching statements 

expressed in a rigid syntax (Coutant, Griswold, and Wampler 1980). Various versions of SNOBOL 

were developed leading up to SNOBOL4 (Griswold, Poage, and Polansky 1971) which introduced a 

variety of data types and the abilities to dynamically construct and manipulate patterns as data 

objects. While the first SNOBOL was dedicated to special-purpose string processing, SNOBOL4 

could be considered more general-purpose and is in wide use (Griswold 1979). 

The control structures of SNOBOL4 are based on the success or failure of pattern matching 

operations. Most of the extremely simple patterns and a majority of the functions could be built 

around the operations defined for our coprocessor with very little modification, but the searching 

operations defined for our coprocessor are entirely inadequate. This is unfortunate since the majority 

of the execution time of SNOBOL4 is spent in pattern matching. Because of the dynamics of 

building patterns on the fly and arbitrarily shifting pointers during the match, SNOBOL4 represents 

a special challenge in pattern matching (Gimpel 1973). 

Chapter 3 of this dissertation presents an algorithm that was originally intended to be used 

with a hardware SNOBOL engine (Mukhopadhyay 1979). The algorithm is greatly expanded and can 

be effectively exploited by this and other string languages. 
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2.3.3. ICON 

The ICON (Coutant, Griswold, and Wampler 1980) programming language is a direct 

descendent of the SNOBOL languages with some of the same authors. While the original SNOBOL 

was designed with the single string data type, ICON is intended to be a general-purpose 

/ 
programming language with an emphasis on string processing. ICON uses control structures and 

numeric math in a manner similar to ALGOL but augments this with string data types, character set 

data types, plus operators, functions, and type conversions which work on these new data types. If 

we were to choose a particular string language to support, rather than a general-purpose solution, 

this would be the language of choice. 

The ICON compiler was written in the C programming language under the UNIX operating 

system and hence could probably make heavy use of the string library we are implementing. 

However, the ICON language itself is a higher level abstraction and relieves the programmer from 

the concerns of memory allocation and terminator characters, and also adds the character set (cset) 

data type which is only indirectly approached in our library searching routines. 

Chapter 4 will address some special-purpose hardware which could significantly aid the cset 

operations. Furthermore, the searching operations as defined in Appendix A are once again totally 

inadequate for the searching requirements of ICON. These inadequacies will be overcome by the 

functionality added in Chapter 3. 

2.3.4. A WK and SED 

These cryptic names belong to two very powerful string languages found in the UNIX 

environment. A WK (Aho, Kernighan, and Weinberger 1978) accepts a string of input characters and 

breaks it into fields and records. Patterns are specified which are built from those fields and 

records. When the pattern is matched, a C language style routine associated with the pattern is 

executed. 

SED (Kernighan and Mcllroy 1978) is a stream editor which performs editing based on a 

series of line oriented commands. Each line of input is passed through the series of editing 

commands and manipulated appropriately. 
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Because both of these languages are associated with the UNIX environment, they consider 

strings to be null terminated and make direct use of the library routines of Appendix A. However, 

both of these languages also require the extensive use of complex searching as represented by the 

algorithms presented in Chapter 3. 

/ 

2.3.5. Macro Preprocessors 

While macro preprocessors might not be directly considered "string languages", they are 

unquestionably string oriented applications. The preprocessors reviewed are the PL/I (Hughes 

1979), IBM OS (Vickers 1971), and C (Kernighan and Ritchie 1978) language macro preprocessors. 

All of these preprocessors have the common functions of performing file inclusion, macro 

expansion, and conditional compilation, all of which are accomplished through search and replace 

string operations. These would certainly benefit from the instruction set of our coprocessor 

combined with the searching algorithm of Chapter 3. 

2.4. CPU Support of Character Strings Review 

In order to review the industrial support of character strings in hardware, the instruction 

sets of a cross section of microprocessors, a mini-computer, and a main-frame are examined. The 

microprocessors are especially interesting since they have the knowledge of past designs to build 

from and they are growing their instruction sets with each new release. 

2.4.1. 8-Bit Microprocessors 

In the general purpose computer market of 8-bit microprocessors, three CPUs seem to appear 

more than any others. These are the Zilog Z-80 (1978), Intel 8080, and the Motorola MC6809 

(1979). The instruction sets of the Intel 8080 and Motorola MC6809 have no instructions that 

could be considered more useful for character strings than numeric data. The Zilog Z-80, however, 

has a few instructions that are useful for character string manipulation. These instructions include a 

set of block moves for transferring several bytes of memory from one place to another, and a set of 

compare instructions that will search an area of memory and indicate if some memory word matched 

the contents of the accumulator. These instructions are able to move through the memory references 
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by increasing or decreasing addresses. This provides the basis of functionality for some of our copy 

and search operations, but not all of them. It also provides functionality which we do not provide, 

specifically the ability to work through the strings backwards. 

It would be fair to mention that these 8-bit microprocessors made a tremendous impact on 

the world of computing, but due to technological limitations of the time, they were limited by the 

amount of computing power that could be placed in them. Of the instruction set of these CPUs, 

only the MC6809 has a multiply, and it is for unsigned integers only. These processors are 

generally boosted in operating power by the addition of peripheral processors. Our coprocessor 

design could have provided precisely that boost for string operations. 

2.4.2. 16-Bit Microprocessors 

The 16-bit versions of the three popular 8-bit microprocessors, the Zilog Z-8000 (1979), the 

Intel 8086 (Rector and Alexy 1980), and the Motorola MC68000 (1980), are also the most popular 

on the market. Some maturing of instruction sets is evident. These include multiplies, divides, and 

most notably, extensive support for operating systems. However, character strings still do not 

seem to have been recognized as an important data type. The MC68000 contains no instructions that 

support characters as anything more than integer values. The Intel 8086 has a set of instructions 

that it calls string primitive instructions, :imt in fact these instructions only work with 8-bits or 16-

bits which can represent only one or two characters at a time. These instructions can be repeated 

until a register that is always altered by the instructions attains a certain value. The Intel 8086 

character string capabilities are roughly comparable to the 8-bit Z-80. The Z-8000 maintained the 

character string capabilities of the Z-80 and added a translation capability enabling support of some 

high level language format print and conversion statements. 

Another 16-bit microprocessor that has some degree of character string instructions is the 

National Semiconductor NS16000 (1981; Bal 1980a; Bal 1980b; O'Dowd, Kohn, and Soha 1980). 

This processor has been credited with providing clever support for the operating system 

environment. The character string instructions are similar to the Z-8000 in that there are move, 

compare, and translate commands that can traverse both directions through the string. Both 
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processors require that the length of the strings already be known by the programmer and loaded 

into specific registers. 

Another example of a processor that is made to support operating systems and high level 

languages is the Western Electric BELLMAC-32 (Berenbaum, Condry, and Lu 1982). The two 

string operations that are present are direct implementations of the strcpy and strlen operations of 

our library. This is not coincidental since the intent of the design of the WE32000 is to support 

UNIX. The string terminator concept is not usually found in a CPU design since these operations 

can get carried away if the string is not properly terminated. The string terminator is a good idea, 

though, because it relieves the programmer from the responsibility of keeping track of the string 

length. On the other hand, some overhead is induced by not knowing the string length, especially if 

we wish to work from the end of the string (e.g., concatenation or a compare starting at the end of 

string and working towards the beginning). 

2.4.3. 32-Bit Microprocessors 

The 16-bit microprocessors basically performed 32-bit operations but had a 16-bit data path 

due to various constraints. As the constraints were overcome, those processors were able to 

incorporate a full 32-bit data path and expand their addressing capabilities. An interesting growth 

path to follow is the Motorola chip as it _moved from the MC68000 to the MC68010 (1983) to the 

MC68020 (1984) to the MC68030. Among other innovations, the MC68010 incorporated the 

ability to hold a small, tight loop in a three word instruction cache, thus reducing the instruction 

fetch and instruction decode overhead. This could actually be enough to implement a small subset 

of the string instructions in our library. The MC68020 expanded this to 128 words of on-chip 

instruction cache and added a series of coprocessor interface instructions. The MC68030 incorporates 

an MMU into the CPU design adding still more non-numeric functionality to the central processor. 

2.4.4. DEC VAX 11/780 Mini-Computer 

While the microprocessors have been frugal in their acceptance of string operations, the 

larger CPUs can afford the flexibility to include some character string operations in their 
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instruction sets. The two non-VLSI CPU instruction sets that are reviewed are the DEC VAX 

11/780 and the IBM SYSTEM/370. Both have an interesting set of character string operations. 

The character string operations of the VAX (DEC 1977) instruction set include block move, 

string translation, string comparison, and operations that identify positions of interest in a character 

string. It is also not coincidental that these operations will map closely to the instruction set of 

our coprocessor since the UNIX library was influenced by the VAX instruction set and attempted 

to exploit the CPU instructions to their fullest. 

The block move is no different from that on any of the other machines. The translation 

operations are slightly different from most, though. The usual translation operation is to pass 

through a string, replacing characters with specified replacement characters. The VAX does this 

too, but the translation is done during a block move. This means the operation can be kept from 

doing a destructive translation to the source string. Furthermore, there is the option of having the 

translation stop when a specific escape character is encountered. The compare is not different from 

previously described compares, but limits the order of the comparison from the start to the end of 

the string. The real interesting operations are the positioning operations. The LOCC (LoCate 

Character) operation returns the first position in the string at which a specified character appears. 

The SKP (SKip character) operation returns the first position in the string at which a specified 

character does not appear. The SCANC (SCAN Characters) and SPANC (SPAN Characters) 

operations perform the same functions as LOCC and SKP, respectively, except a set of characters is 

compared rather than one specific character. The MATCHC (MATCH Characters) operation returns 

the first occurrence of a specified string in the object string (position of a substring). 

The LOCC, SKP, SCANC, and SPANC all have direct mappings to operations in our 

coprocessor, but we will implement them differently from the VAX. The functionality of 

MATCHC is also provided in Chapter 3, but using a different algorithm. 

2.4.5. IBM SYSTEM/370 

The 370 instruction set (Vickers 1971) includes some interesting string operations. Here the 

character is considered a data type and the instruction set allows for manipulations in registers and 
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memory, recognizes that one character string might exist across several memory words, and provides 

conversion operations between the character form of numbers and an internal format. The 

instructions can be separated into 5 categories: comparison, character movement, string movement, 

translation, and conversion. 

The comparison operations allow you to compare two strings in memory up to a length of 

256 characters (CLC), to compare a character in memory with an immediate operand (CLI), to 

compare parts of a register with words in memory (CLM), or to compare two very long strings 

(longer than 256 characters) stored in memory (CLCL). 

The Insert Character (IC) and Insert Character Under Mask (ICM) instructions will load 

characters from memory into registers. The Store Character (STC) and Store Character Under Mask 

(STCM) instructions will copy characters from registers into memory. The "Mask" instructions are 

necessary because characters only use 8 bits on IBM machines and the words and registers are all 32 

bits long. The masks are used to specify which 8-bits (byte) of the 32 bits (4 bytes) are to be 

altered. 

The string movement operations cover the movement of one character to memory, the 

movement of one string of length up to 256 to another memory location, and the movement of one 

string of length up to 16 million characters to another memory location. 

The translate command will perform the usual pass through a string, replacing characters to 

their translated value. The TRanslate and Test (TRT) is an interesting operation. In this case no 

translation is actually performed, but the position of the first character in the string that had a non­

zero entry for the translation is returned. This is a way to perform the SCANC function described 

under the DEC VAX 11nso and is in fact the SCAN pattern matching function of SNOBOL4. 

The PACK and UNPK (UN PacK) commands convert between the "packed decimal" internal 

format (compacted BCD) and the character format for numbers. Other instructions can perform 

math on the packed decimal numbers. The most complicated string operations available on the 370 

are related to this conversion and translation. These instructions are the ED (EDit) and EDMK 

(EDit and MarK). These instructions essentially perform the picture formats of COBOL and PL/I. 

The EDit operation converts a packed decimal number to character format, but it can suppress 
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leading zeros on the number by converting them to blanks. The Edit and Mark will perform the 

same function but can fill the leading insignificant zero digits with character patterns, such as 

dollar signs or asterisks. 

This machine shows the strongest recognition of character strings as a data type, but the 

manipulations primarily provide means to cope with individual bytes in a 32 bit word environment. 

The most sophisticated instructions are specifically written to support the format conversions for 

high level languages. 

2.5. Conclusions on the Selection of Operations 

The review of the string languages indicates that a much stronger searching capability needs 

to be present than is represented in the :MEMORY and STRING set of operations. The UNIX 

library includes a routine for the compilation of a form of a regular expression (regexp) which is 

used by many of the string applications such as awk and sed. The next chapter is dedicated to the 

problems of searching. It provides a design which incorporates full regular expressions and is thus 

sufficiently powerful to support any of the languages discussed here. 

Some of the CPU instruction sets discussed here added the ability to traverse strings through 

incrementing or decrementing loops. The UNIX string library would not make direct use of this 

feature since it uses the terminator chani.cter at the end of the string to determine when to halt 

execution of most operations. The single operation that comes close to needing decrementing loops 

is strrchr which looks for the first occurrence of a character from the end of the string. However, 

strrchr can be (and is) implemented through a single forward pass. Any operations that use a 

counter instead of the terminator are trivial to implement in either direction. 

In examining the performance increase of the selected set of operations, we can determine 

what types of gains can be expected through simple firmware micro-coding of the copy and compare 

operations and we can demonstrate the advantages that can be had through the use of special 

hardware for searching. 



CHAPTER3 

/ SEARCHING 

As emphasized in the previous chapter, searching and pattern matching play a major role in 

non-numeric processing. The most general definition of a searching algorithm is defined as follows: 

Let there be a pattern called P and some amount of data called D. The algorithm will find all 

occurrences of P in D. 

No assumptions are made about D. The data is not sorted, indexed, or blocked in any fashion 

known to the algorithm, nor is the type of data defined. It may consist of byte length characters, 

word length integers, double word reals, or even a complex structure of mixed data types. The 

only restriction is that each element of the data must be of uniform size. 

The power and flexibility available in specifying the pattern (P) varies from one searching 

algorithm to the next. A few algorithms (Boyer and Moore 1977; Galil and Seiferas 1983; Galil 

1984; Knuth, Morris, and Pratt 1977) restrict the pattern specification to consist exclusively of a 

sequence of data elements. Some algorithms (Aho and Corasick 1975; Bird 1979) add the ability to 

search for multiple patterns simultaneously. Other algorithms introduce wild card characters 

(Curry and Mukhopadhyay 1983; Fischer and Paterson 1974; Foster and Kung 1980; Mukhopadhyay 

1979; Roberts 1977) which are single characters representing the entire alphabet. The most 

powerful pattern specification algorithms (Floyd and Ullman 1980; Foster and Kung 1981; Haskin 

1980; Lee 1986; Thompson 1968; Trickey 1982) use regular expressions to describe the pattern. 

In addition to this wide range of pattern specifications, the algorithms differ with regard to 

other attributes as well. When attempting to decide on an appropriate algorithm, numerous factors 

come into play. These factors include the order in which the data is accessed (sequential or random 

access requirements), the time and space complexities for processing the pattern and performing the 

19 
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search, the operators allowed in the pattern specification, and the flexibility for redefining the data 

element size. 

In software searching algorithms, extremely clever techniques have been employed to produce 

linear time and linear space complexities for exact pattern matching (i.e., pattern specifications with 

no wild card charaeters or expression operators). The introduction of wild card characters into the 

pattern specification immediately moves the software algorithms into nonlinear complexity (Fischer 

and Paterson 197 4) and the use of regular expression operators in the pattern specification can result 

in exponential algorithm complexities (Aho and Corasick 1975; Floyd and Ullman 1980). Some 

hardware searching algorithms (Curry and Mukhopadhyay 1983; Foster and Kung 1980; 

Mukhopadhyay 1979) have an advantage over their software counterparts in their ability to search 

for patterns containing wild card characters while maintaining linear time and linear space 

complexity. The hardware algorithms which search with regular expression specifications vary 

from polynomial to exponential in time and space complexities. Unfortunately, the polynomial 

algorithms (Foster and Kung 1981; Floyd and Ullman 1980; Trickey 1982) have hardwired a fixed 

pattern into the design thus limiting the hardware to a one time definition of the pattern. 

This chapter introduces a hardware algorithm which: 

(1) Accesses the data (D) sequentially with no backtracking. 

(2) Supports regular expression operators· and wild card characters. 

(3) Preprocesses the pattern in linear time and polynomial (quadratic) space. 

( 4) Searches in linear time. 

(5) Is fully reprogrammable for new patterns and varying data element sizes. 

At present, this is the only algorithm able to claim all of these attributes. 

The remainder of this chapter will introduce general searching concepts and their relationship 

to formal language and set theory; define, prove, and refine variations of the algorithm for different 

pattern operations; present a VLSI implementation of one of those variations along with its 

fabrication results; examine some design alternatives; then conclude with a comparison of the 

algorithm to other software and hardware searching algorithms based on a variety of criteria. 
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3.1. Concepts in Searching 

Both language and set theory have been studied and applied to computer science for over 40 

years (Hopcroft and Ullman 1979). A searching algorithm can be directly developed out of 

traditional language theory techniques, and the notation and terminology of language theory can 
/ 

provide a common basis on which to compare different searching algorithms. This section will 

define the terminology to be used in this chapter and present a searching algorithm using language 

theory constructs. 

The previous section stated that the most powerful searching algorithms use regular 

expressions to describe the pattern (P) which is to be searched for in the data (D). We can go on to 

state that all of the less powerful algorithms have patterns that are fully contained subsets of 

regular expressions and can be defined by placing certain restrictions on the operators allowed in the 

expression. A regular expression denotes a set of strings that are built from the characters of a 

finite alphabet. The set of strings defined by a regular expression can include the three operators, 

concatenation, alternation, and closure, combined with parentheses to clarify or override precedence. 

Regular expressions are formally defined in (Barrett and Couch 1979) by: 

(1) Let :I: be a finite alphabet. 

(2) Elements of :I: are regular expressiop.s. For a E :I:, the regular expression a denotes the set 

{a}. 

(3) Concatenation is an associative, noncommutative binary operation. The token for 

concatenation is juxtaposition, e.g., if El and E2 are two regular expressions, then El E2 is 

the concatenation of the two. If El and E2 are two regular expressions denoting the sets of 

strings S 1 and S2, respectively, then ElE2 is a regular expression which denotes the set 

(4) Alternation is an associative, commutative binary operation, represented by the vertical bar 

symbol (I). If El and E2 are two regular expressions denoting the sets of strings S 1 and S2, 

then El I E2 is a regular expression denoting S1 u S2 (the union of S1 and S2). 
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(5) Closure is a unary operation represented by an asterisk (*). If E is a regular expression 

denoting some set of strings S, then E* is a regular expression called the closure of E and 

represents the set of all possible strings formed by choosing members of S and concatenating 

them. The empty string E is also a member of the set. Thus the closure of a regular 

expression E 1s a compact way of writing the infinitely large regular expression 

E I E I EE I EEE I EEEE I ••• 

(6) Parentheses may be used to override or insure precedence. The default order of precedence 

from highest to lowest is closure, concatenation, alternation. 

An example of a regular expression is: 

((2102)/(2102)/)l((FeblFebruary) (2102), )(80!1980) 

This regular expression represents sixteen different ways to specify Ground Hog Day in 

1980. Expanded, the set of patterns that would match this regular expression is: 

P = { "2/2/80", 
"02/2/80", 

"Feb 2, 80", 
"February 2, 80", 

"2/2/1980", 
"02/2/1980", 

"Feb 2, 1980", 
"February 2, 1980", 

"2/02/80", 
"02/02/80", 

"Feb 02, 80", 
"February 02, 80", 

"2/02/1980", 
"02/02/1980", 

"Feb 02, 1980", 
"February 02, 1980" } 

The equivalence of regular expressions to regular languages and the languages accepted by 

finite state automata is well known in computer science (Barrett and Couch 1979; Harrison 1978; 

Hopcroft and Ullman 1979; Salomaa 1969) and algorithms exist to convert from one form to 

another. A finite state automaton is formally defined in (Barrett and Couch 1979) by a five-tuple 

(Q, :E, 8, q0 , F), where 

(1) Q is a finite set of states. 

(2) :Eis a finite set of permissible input tokens, i.e., the alphabet of the language. 

(3) 8 is a partial function that maps a state and an input symbol to another state. 8 is called the 

state transition/unction. 

(4) % is a designated state in Q called the initial or start state of the FSA. 



23 

(5) F is a subset of Q consisting of one or more accepting states. 

The FSA is initially in the start state denoted by q0• It operates through a sequence of moves 

to other states in Q where each move is defined by the present state and the next input character (an 

element of L) as defined by o. If the FSA is left in a state contained in F when all input is 
/ 

exhausted, then the input data is accepted as a member of the language recognized by the FSA. 

Consider an example where the alphabet is defined as L = (a, c, o} and the entire language 

consists of the single word cocoa. An FSA which would determine if an input string of characters 

was in our language is defined by: 

Q = (S,A,B, C,D,E, G} 

L = (a, c, o} 

o = { o(S,c)=A, o(A,o)=B, o(B,c)=C, o(C,o)=D, o(D,a)=G, 

o(S ,a)=o(S ,o )=o(A,a)=o(A,c )=o(B ,a)=o(B ,o )=o( C,a)=o( C,c )=o(D ,c )=o(D ,o )= 

o( G ,a)=o( G ,c )=o( G ,o )=0(E,a)=o(E,c )=o(E,o )=E } 

F = ( G} 

State S is the start state, G is the accepting state, and E is a special error state. All other 

states are intermediate steps towards E or G. Once the FSA enters the error state, it never leaves 

and the input string cannot be accepted. This FSA would be called a completely specified, 

deterministic FSA. An FSA is said to be completely specified if there is a transition defined in o 

for every input character for every state (i.e. o is a function). An FSA is said to be deterministic if 

each of those state transitions is unique. An FSA is said to be non-deterministic if there exists two 

or more transitions for the same input symbol in the same state (i.e. If o is a mapping of a state and 

an input symbol into the subsets of the state set, then the FSA is called non-deterministic). 
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Two other forms of representing an FSA are popular. The first form is that of a table which 

can be easily implemented in a computer program and the second is a state diagram which provides an 

easy visual representation for humans. Our cocoa example in tabular form would be: 

/ TABLE 3.1. Tabular Form of 'cocoa' FSA 

Input Character 
Current State a C 0 

s E A E 
A E E B 
B E C E 
C E E D 
D G E E 
E E E E 
G E E E 

When a new input character is received, the column entry associated with that character in the 

row of the current state represents the new state. Similarly, the same example in a state diagram is 

shown here: 

a,c,o 

Figure 3.1. FSA for Parsing 'cocoa' 

In this diagram, the circles represent the states and the arcs represent the transitions from 

one state to the next. Each arc is labeled with the character or set of characters that causes the 

transition of states. The double circle around state F denotes that it is an accepting state. 

A recursive technique is defined in (Barrett and Couch 1979) which converts any arbitrary 

regular expression to an equivalent FSA state diagram. In this technique, state S is defined as a 

start state, state F is defined as a final state, E in a box represents an expression that still requires 
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refinement, El and E2 represent subexpressions that can be independent expressions, and e represents 

a transition that can occur without an input character (called an e-move). The following seven rules 

convert any arbitrary regular expression to an equivalent FSA state diagram. 

/ 

Rule 1 

Rule2~ 

Rule 3 

Rule 4 

Rule 5 

Rule 6 

Rule 7 

(Null) 

General 
Machine 

Empty 
Set 

Empty 
String 

Alphabet 
Symbol 

Concatenation 
E = El E2 

Alternation 
E = El I E2 

Closure 
E=E* 

Figure 3.2. Barrett and Couch Illustration for NFSA Construction 

Applying these rules to any arbitrary regular expression yields an incompletely specified 

FSA state diagram. Consider the cocoa example from earlier in this section. The following 

diagram illustrates the application of the first few rules to the regular expression cocoa and then 

shows the final result. The intermediate states are denoted as A, B, C, and D. 



26 

cocoa Rule 1 

ocoa Rule 5 

I 

~ A ocoa Rule 4 

~ Rule 5 

~A 
Rule 4 

• • • 
Final FSA 

Figure 3.3. Application of Recursive Rules to 'cocoa' 

This FSA is quite similar to the one of Figure 3.1 with one distinction, the lack of the error 

state and its associated transitions. This is trivially resolved since every transition not specified in 

the final FSA of Figure 3.3 is an error transition and can be easily specified as a transition to an 

error state. This is perhaps easier to visualize in the tabular form. 

TABLE3.2. Tabular Form of the 'cocoa' Incomplete FSA 

Input Character 
Current State a C 0 

s A 
A B 
B C 
C D 
D F 
F 

If every "-" entry of this table is replaced with a transition to a new error state, then this 

incompletely specified FSA becomes a completely specified parser FSA. In fact, it is the general 
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case that the FSA generated by the rules of Figure 3.2 will only be incomplete by the error 

transitions, and therefore a parser can always be trivially generated from the incomplete FSA. 

If instead we would prefer to make the incomplete FSA search rather than parse, a different 

change can be made. Consider the functions of a parser and a searcher. A parser is given the task to 

determine if an inpht stream of characters is a proper member of the language. As soon as 

something goes wrong, it can enter and remain in an error state (we are, of course, discussing the 

pure concept of parsing and avoiding the practical and generally necessary aspects of error recovery 

and continuation). Therefore, the addition of the error state and its transitions are all that is 

necessary to turn the incompletely defined FSA into a parser. A searcher on the other hand, is given 

the task to find members of its language in the midst of a stream of data. There is no need for an 

error state and any undefined transition that is encountered can simply be discarded since that would 

imply a failure to match the pattern. Upon reaching an accepting state, a match can be announced. 

Because each new input character could be the start of a possible match, the only change required to 

the incompletely specified FSA is a transition from the start state back to the start state for every 

character in the alphabet as shown here for the cocoa example. 

Figure 3.4. NFSA for 'cocoa' 

This is labeled as an NFSA standing for Non-deterministic Finite State Automaton. Since 

the start state has a transition both to itself and to state A on the same character, the FSA is non­

deterministic. Algorithms are known (Barrett and Couch 1979; Harrison 1978; Hopcroft and 

Ullman 1979; Salomaa 1969) to eliminate all transitions on no input (e-nwves) and convert from 

non-deterministic to deterministic. If these algorithms were applied to the NFSA of Figure 3.4, 

the resulting DFSA (deterministic FSA) would be: 



28 

Figure 3.5. DFSA for Searching 'cocoa' 

Note that this DFSA for searching is dramatically different from the DFSA for parsing 

shown in Figure 3.1 but both can be derived from the incompletely defined FSA in Figure 3.3. 

In a uniprocessor software environment, it is quite difficult to implement a non­

deterministic algorithm efficiently. Therefore the conversion to a DFSA is invariably performed. 

Unfortunately, the algorithms which transform an NFSA to a DFSA can explode the number of 

states to exponential size (i.e., if the NFSA had n states, the DFSA could have 2n states). 

If the original regular expression describing the pattern is restricted to the concatenation 

operation (i.e., containing only elements of L), then the pattern is said to be an exact or fixed 

pattern and the final DFSA can be guaranteed to have a linear number of states related to the length 

of the pattern (Knuth, Morris, and Pratt 1977). Allowing alternation but no closure or parentheses 

can still maintain linearity (Aho and Corasick 1975). Relaxing any more restrictions on the regular 

expression can no longer guarantee linearity (Fischer and Paterson 1974). 

Some hardware searching algorithms immediately realize an advantage by keeping the FSA in 

its non-deterministic form and thus avoiding the exponential expansion. This is accomplished 

through the use of multiple processors which can allow multiple states to be active 

simultaneously. Furthermore, because the goal is to search rather than parse, certain assumptions 

can be made about the original regular expression. Searching for the empty set is meaningless since 

that would be searching for nothing. Thus rule 2 of Figure 3.2 is unnecessary for a searching 

algorithm. Rule 3 is also unnecessary if E-moves are not allowed in the regular expression. This 

does not limit the power of the algorithm since it can be shown (Barrett and Couch 1979; Harrison 
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1978; Hopcroft and Ullman 1979; Saloma.a 1969) that the set of languages recognized with and 

without e-nwves is equivalent. For example, the Ground Hog Day regular expression example used 

earlier has a subexpression "(2102)" in it several times. This could also be expressed as "((0le)2)" 

stating the "2" can be preceded by a "O" or nothing. Both subexpressions are equivalent. If a new 
/ 

closure rule is introduced that does not use e-nwves, then all e-nwve preprocessing is totally 

eliminated. To that end, the following set of rules is now presented for generating an incomplete 

NFSA from an arbitrary regular expression defining a search pattern. 

Rule 
Definition 

Rule 1 
Initial Step 

Rule 2 
Alphabet Symbol 

Rule 3 

Concatenation 

Rule 4 

Alternation 

Rule 5 

Closure 

Before After 

Regular Expression ~ Pattern Specification 

---+Gr ~ 

~ 

~ 

Figure 3.6. Final Regular Expression to FSA Rules 

Not stated explicitly in the diagram for rule 5 is the additional constraint that the resulting 

state "A" in rule 5 inherits all the outputs and attributes of state "B" including changing "A" to an 

accepting state if "B" was one. Consider the example pattern P = "a(blc)*" and apply these rules. 
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Rule 1 

/ 

Rule 2 

Rule 5 

Rule 4 

Rule 2 

Figure 3.7. FSA for 'a(blc)*' 

This pattern will match the string "a" and any string that starts with an "a" which is 

followed by any number and any combination of "b"s or "c"s. When rule 5 was applied, state A 

acquired the accepting state attribute of F and would have acquired all the outputs of F if there had 

been any. 

The operators and terminology of regular expressions will now be used to specify the 

patterns of different searching algorithms. The rules of Figure 3.6 will then be applied to create an 

incomplete NFSA which will then have the transition on L, from and back to the start state, added. 

This final NFSA is then implemented in a hardware algorithm. 
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3.2. The Hardware Algorithm 

Because of the complexity of the hardware and operations, it is convenient to start with a 

simple subset and build up to the complete algorithm. To that end, the algorithm is presented in 

the following stages: 
/ 

(1) Exact pattern matching. 

(2) Simultaneous search for multiple exact patterns. 

(3) Wild card characters. 

( 4) Full regular expression searching. 

These stages also provide a convenient mapping to the various capabilities of other algorithms 

against which this algorithm will later be compared. 

3.2.1. Exact Pattern Matching 

As defined earlier, an exact or fixed pattern is one in which only elements of the alphabet (E) 

appear in the pattern. There are no alternation or closure operators and concatenation is directly 

implied by the juxtaposition of characters from :E. 

The following hardware cell is designed to implement an NFSA state and its associated 

transition. 

Match 
Latchi-l 

Data Bus 

Comparator 
Pattern 
Latch 

Match 
Latch 

Figure 3.8. Single Exact Pattern Cell 

Match 
Latchi 
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The Data Bus provides the current input character to the cell. The Pattern Latch is a latch 

which holds a single character of the pattern. Comparator logic yields a 1 if the current input 

character is the same as the contents of the Pattern Latch and yields a O otherwise. Match Latchi-l 

represents the condition of any states which are a prefix to this state and Match Latchi provides the 
/ 

condition information of this state to any suffix states. The latch labeled Match Latch serves to 

delay the passing of the state information to occur simultaneously with the next input character. 

A series of these cells interconnected is capable of searching for an exact pattern. This design 

could be considered a direct mapping to a state diagram of an NFSA as follows: 

General Definitions 
l: 

~ 

~ · ~Pattern Found 

Specific Example 

Data Bus 

1 Pattern Found 

Ce111 Cell2 Cell3 Cell4 Cell5 

Figure 3.9. Mapping of FSA to Hardware Cell 
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Each Pattern Latch of a cell holds the transition character of the NFSA and each Match 

Latchi output is the current state of the automaton. State 0, being the start state of the NFSA and 

the state which is entered for every input character, is represented by the forced high input to Cel/1. 

A 1 output from Cell5 (or in the general case, the last cell) is equivalent to a transition to the 
/ 

NFSA state 5 which is the accepting state and announces a match of the pattern in the input stream. 

Since multiple Match Late\ outputs can be high simultaneously, the non-determinism is handled 

directly by the hardware. 

To illustrate how the non-determinism is managed, consider the input stream "cococoa" 

applied to the NFSA and hardware of the specific example in Figure 3.9. 

TABLE 3.3. Trace oflnput String 'cococoa' 

Input Character NFSA States Active Match Latch. with value= 1 
1 

C 1 1 
0 2 2 
C 1,3 1,3 
0 2,4 2,4 
C 1,3 1,3 
0 2,4 2,4 
a 5 5 

There is a direct one-to-one mapping of NFSA arcs to Pattern Latch values and NFSA states 

to Match Latch values with no superfluous hardware. The concatenation operation (and 

coincidentally, exact pattern matching) is therefore proven correctly implemented through a one-to­

one mapping to an NFSA. Unfortunately, this algorithm lacks practical application because it 

requires exactly the same number of cells as the length of the pattern and is therefore somewhat 

inflexible. This problem is resolved in the next section. 

3.2.2. Multiple Exact Patterns 

If a requirement existed to search for several different patterns in the same data stream, it 

would be quite inefficient to load a single pattern, search the data, load the next pattern and search 
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the data again, etc. Instead, it is desirable to be able to search for all of the different patterns in 

one pass of the data. Linearity can still be maintained in a uniprocessor software algorithm (Aho 

and Corasick 1975) and only a minor change to the hardware algorithm is required to accomplish 

this same goal. 

/ A simple means to specify multiple exact patterns is through the use of the alternation 

operator. Note that parentheses are not yet allowed in the pattern, thus restricting the alternation 

to entire patterns. An example might be a search for both the words "cab" and "cat". Each is an 

exact pattern on its own but both could be joined through the alternation operation to be considered 

as one pattern consisting of two subpatterns. The new example pattern would then be "cablcat". 

Converting from the regular expression to an NFSA and then directly extrapolating to the hardware 

exact-pattern-algorithm would yield the following results. Note only the Pattern Latch contents 

are displayed in the hardware cells. All other hardware is identical and therefore unnecessary to the 

diagram. 

Pattern Found 

Figure 3.10. NFSA and Hardware for 'cablcat' 

While this is certainly correct, it lacks flexibility. Each subpattern is still required to have 

exactly the correct number of cells and special external connections are required to several cells. 

These restrictions can be eliminated by the addition of a small amount of hardware to the basic cell. 

The Match Latchi-l input to each cell that starts a subpattern must always be a 1. The 

Match Latchi output of each cell that ends a subpattern must be made externally available to 
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recognize that a match has been found. If each cell is provided with the knowledge of whether or 

not it is on a subpattern boundary, then all of the patterns can be arranged adjacently in a linear 

array of cells. The EOP Latch (End Of Pattern Latch) and its associated logic are added to 

accomplish this as shown in Figure 3.11. 

/ 

Match 
Latchi-l 

Data Bus 

Comparator 

Pattern 
Found 

--- Match 
Latchi 

Figure 3.11. EOP Addition to the Basic Cell 

If a O is loaded into the EOP Latch, then the logic of the cell is unchanged from the Exact 

Pattern Cell. If a 1 is placed in the EOP Latch, then the cell marks the end of one subpattern and 

the next cell can be the start of another subpattem. The and-gate logic out of the EOP Latch 

insures that only entire patterns matched provide input to the "Pattern Found" logic and the or-gate 

logic forces a continuous 1 input to the start of another subpattern. 

The "cablcat" example is shown in Figure 3.12 with only the Pattern Latch and EOP Latch 

values listed in the cells. Two extra cells are shown to illustrate that the restriction of an exact 

number of cells to pattern characters is eliminated. Furthermore, the first cell still has a 1 forced 

on its Match Latchi-l input but no other special connections are required. The "Pattern Found" logic 

can be as simple as a single signal indicating a match or as sophisticated as announcing exactly which 

cell matched the pattern and hence which subpattern. 
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1 

/ 

Figure 3.12. Hardware for 'cablcat' 

A table tracing the NFSA of Figure 3.10 and the hardware cells of Figure 3.12 on the string 

"cab" illustrates that the one-to-one mapping still holds if the 11Pattern Found" logic is considered 

equivalent to an accepting state. 

TABLE 3.4. Trace of Input String 'cab' 

Input Character NFSA States Active Match Latch. with value= 1 
1 

C 

a 
b 

1,4 
2,5 
3 

1,4 
2,5 
3 

The recursive rules defined in Figure 3.6 for converting a regular expression to an NFSA 

provide a convenient means for generating a hardware instantiation of an expression, but it is 

difficult to quantify certain attributes of the algorithm. The following algorithm can be used to 

preprocess the pattern thereby loading the hardware appropriately. From this, a quantification of 

the number of cells required and the time to process the pattern can be determined. One subroutine 

called shiftyattern_in() is used but not defined in this preprocessing algorithm. The sole purpose of 

this subroutine is to simultaneously shift the contents of all cells into their immediately adjacent 

cell to the right. The first cell will have the contents of the Pattern and EOP variables shifted into 

it. The variable Pis the regular expression (pattern). 



pat_ptr = length(P); 
alternation_flag = 1; 
while (pat_ptr > 0) do 
begin 

Pattern= EOP = O; 
switch (P[pat_ptr]) 
begin 

end; 

case T: / 
alternation_flag = 1; 
break; 

default: 
Pattern= P[pat_ptr]; 
if (alternation_flag) then do 
begin 

EOP= 1; 
alternation_flag = O; 

end; 
shift_pattern_in(); 

pat_ptr = pat_ptr - 1; 
end; 
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This algorithm starts at the end of the pattern (P) and "shifts" the appropriate values for the 

Pattern Latch and EOP Latch into the cells. The pat_ytr variable is used to move through P. If an 

alternation operator is encountered (or this is the end of the entire pattern), then the EOP Latch 

should be set to 1. If the hardware consisted of eight cleared cells and this algorithm was applied 

to the "cablcat" example, the following would occur. 
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TABLE 3.5. Trace of Preprocessing 'cablcat' Pattern 

Pattern Time Pattern Latch Values Comments 
pat_ptr EOP Latch Values 

cab I cat 9 0 0 0 0 0 0 0 0 Initially all cells empty. 
" 0 0 0 0 0 0 0 0 pat _ptr is at end of pattern 

cab I cat 1 t 0 0 0 0 0 0 0 Last char of P shifted in. 
" 1 0 0 0 0 0 0 0 At the end of a subpattern. 

cab I cat 2 a t 0 0 0 0 0 0 
" 0 1 0 0 0 0 0 0 

cab I cat 3 C a t 0 0 0 0 0 
" 0 0 1 0 0 0 0 0 

cab I cat 4 C a t 0 0 0 0 0 Alternation char does not shift in. 
" 0 0 1 0 0 0 0 0 

cab I cat 5 b C a t 0 0 0 0 
" 1 0 0 1 0 0 0 0 End of another subpattern. 

cab I cat 6 a b C a t 0 0 0 
" 0 1 0 0 1 0 0 0 

cab I cat 7 C a b C a t 0 0 
" 0 0 1 0 0 1 0 0 

This trace yields precisely the same values shown in Figure 3.12. Determining the length of 

P will require one pass through the entire pattern. Then the while-loop of the algorithm examines 

every character of the pattern exactly once and generates a cell entry for every pattern character 

except the alternation operator which shares the EOP Latch with the last character of every 

subpattern. In the "cablcat" example, the pattern was seven characters long. This resulted in seven 

iterations of the while-loop, producing six cells for the pattern. In the general case, any pattern of 

length m will require at most 2m steps to preprocess and m-number _of_alternations cells. The 

algorithm, therefore, has a linear complexity denoted as O(m). • 

While uniprocessor software algorithms may also claim linear preprocessing, the coefficient 

of m can be quite large and the hardware algorithm can still show significant improvement despite 
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common complexity levels. However, the software algorithms lose linearity with the introduction 

of wild card characters. As shown in the following section, the hardware algorithm easily 

addresses wild cards with no impact on complexity. 

3.2.3. Wild Cards 
/ 

Wild cards are not generally considered regular expression operators and are seldom 

encountered in language theory. They can, however, be defined through regular expression operators 

and are an extremely useful and common shorthand in defining a search pattern. Two types of wild 

cards are defined and designed into the hardware algorithm. They are "Fixed Length Don't Care" and 

"Variable Length Don't Care" characters. 

3.2.3.1. Fixed Length Don't Care 

The "Fixed Length Don't Care" character (fide) will be denoted by a period (.) and it will 

state that its position in the pattern can match any single element of the alphabet. For example, let 

I: = {a, b, c} and the pattern P = "a.c". Then P represents a finite set that consists of the patterns 

"aac", "abc", and "ace". Any number off/.dc characters can appear at any position in the pattern. 

This can be defined in regular expression terms as follows: 

(1) Let I: be the set representing the alphabet. 

(2) Let the number of elements in I: be represented by ILi. 

(3) Let a be a single element of :r. 

( 4) Let ai be the ith element of :r (i.e., a 1 = the first element of :r and a
1
Li = the last element of 

(5) The fide character is the equivalent to 

a I a I••• I a'C", 
1 2 1""'4 

This definition in effect says that o of the FSA five-tuple will have a transition to the next 

state for every element of :r. The hardware algorithm, as currently defined for multiple exact 
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patterns, maps 8 transitions directly to the Pattern Latch values and has not had the problem of 

multiple transitions associated with a given state. One solution might be to have II,I Pattern 

Latches and Comparators in each cell with the outputs or-ed together. This would always yield a 1 

since one of the Pattern Latches would always match whatever character was present. Instead, a 
/ 

more efficient solution will use a single latch to represent this special case as is shown in the 

following diagram. 

Match 
Latc~-l 

Data Bus 

Comparator 

Cel~ 

Pattern 
Found 

.,_ ...... __. Match 
Latchi 

Figure 3.13. FLDC Hardware Addition 

If the FLDC Latch is set to 0, then once again the logic of the cell is unchanged from the 

previous version. If it is set to 1, then the Comparator Logic is overridden and a logic 1 is 

continuously presented to the and-gate input. Because the and-gate still requires the Match Latchi-l 

input to be a 1 before it can set the Match Latch, concatenation and proper sequencing are maintained. 

The introduction of the fide character has added some new rules to the construction of a 

searcher. First, when encountered, a transition on all elements of I, is used instead of a transition 

on a single character when constructing the NFSA. Secondly, such a transition in the NFSA is 

implemented in hardware by setting the FWC Latch to 1. Figure 3.14 shows the new recursive 

rule for the NFSA construction of a regular expression that can contain an fide. Also contained in 
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Figure 3.14 is an instantiation of the hardware algorithm which alters the "cablcat" example to be 

"c.blc.t" . The Pattern Latch, EOP Latch, and FLDC Latch values are displayed respectively from 

top to bottom in each cell. 

Rule 
Definition 

Rule 6 
FLDC Char 

/ 

I 

1 

Before After 

I 
Specific Example 

Figure 3.14. Hardware for 'c.blc.t' 

If the string "ccab" was applied to these examples, then the following would occur: 

TABLE 3.6. Trace of 'ccab' 

Input Character NFSA States Active Match Latchi with value= 1 

C 

C 

a 
b 

1,4 
1,2,4,5 

2,5 
3 

1,4 
1,2,4,5 

2,5 
3 
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The preprocessing algorithm to prepare the hardware for searching fide characters requires 

setting the FLDC Latch to a 1 when an fide is encountered. The preprocessing algorithm will be 

explicitly defined once again after the Variable Length Don't Care character is discussed. 

3.2.3.2. Variable Length Don't Care 
/ 

The "Variable Length Don't Care" (vldc) will be denoted by a question mark (?) and it will 

state that its position in the pattern can match any number of elements from the alphabet. Using 

the example L = {a, b, c} and P = "a?c", then P represents an infinite set of patterns consisting of 

"aac", "abc", "ace", "aaac", "aabc", "aacc", "abac", and so on, more simply stated as any string of 

length three or greater that starts with "a" and ends with "c". As with the fide character, a vldc 

character can appear any number of times at any position in the pattern. 

Since the fide character (denoted by a period) has already been defined and implemented in the 

hardware algorithm, the vldc character could be defined through two consecutive fide characters 

with a closure operator on the second (" .. *"). This would match any single character followed by 

zero or more of any other characters. Using only traditional regular expression operators combined 

with the notation of the previous section, this is equivalent to: 

Applying the rules for NFSA construction to this subpattern (" .. *") would cause the 

sequence of steps illustrated in Figure 3.15. Defining the token question mark (?) to represent 

(" .. *") allows the new rule 7 in Figure 3.16 to be defined. 



Rule 
Definition 

Rule 7 
VLDC Char 

Initial VLDC 

Rule 3 - Concatenation 

Rule 6 - FLDC 

Rule 5 - Closure 

Rule 6 - FLDC 

Figure 3.15. ' .. *' NFSA Construction 

Before After 
L 

Figure 3.16. VLDC NFSA Construction Rule 
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This is implemented in the hardware cell by the addition of another latch and some 

combinational logic as shown in the following diagram. 



/ 

Match 
Latchi-l 

Data Bus 

Comparator 

Pattern 
Found 

>---+----+ Match 
Latchi 

Figure 3.17. VLDC Hardware Addition 
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Setting the VWC Latch to O leaves the cell unchanged from the previous definition. A 1 in 

both the FWC Latch and VLDC Latch implements the functionality of the vldc character. The 

FWC Latch set to 1 implements the L transition into the state. The feedback logic of the VWC 

Latch implements the L transition out of and back to the state. Once Match Latchi-l becomes a 1 

for the first time, Celli will become an active state providing a 1 output on Match Late\ until 

cleared for a new search. 

Modifying the "cablcat" example to be "c?blc.t" would yield the NFSA and hardware 

implementation as shown in Figure 3.18. The hardware cell now contains the Pattern Latch, EOP 

Latch, FWC Latch, and VWC Latch, the contents of which are displayed from top to bottom in 

each cell. 



/ 

1 

Figure 3.18. 'c?blc.t' NFSA/Hardware Example 

Tracing the input string "cctbb" yields some interesting results for this particular example. 

TABLE 3.7. Trace of 'cctbb' 

Input Character NFSA States Active Match Latch. with value= 1 
l 

C 1,4 1,4 
C 1,2,4,5 1,2,4,5 
t 2,3,S. 2,3,5 
b 2,3 2,3 
b 2,3 2,3 
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We note that the first three characters of the string ("cct") lead to state 3 and a match of the 

"c.t" subpattem. Those same three characters are also a prefix to matching "cctb" and "cctbb" to the 

"c?b" subpattem. Once state 2 of this example becomes active, it will remain active for the 

remainder of the search. The transition on a "b" input character non-deterministically makes both 

states 2 and 3 active simultaneously. 

The introduction of additional non-determinism to the NFSA implies additional overhead for 

the uniprocessor, software algorithms. The only impact to the hardware algorithm was some 

feedback logic internal to the cell. The preprocessing algorithm to load the hardware is now: 



pat_ptr = length(P); 
altemation_flag = 1; 
while (pat_ptr > 0) do 
begin 

Pattern= EOP = FLDC = VLDC = O; 
switch (P[pat_ptr]) 
begin 

end; 

case 'I': / 
altemation_flag = 1; 
break; 

default: 
Pattern= P[pat_ptr]; 
switch (P{pat_ptr) 
begin 

case'?': VLDC = l; 
case'.': FLDC = l; 

end; 
if (altemation_flag) then do 
begin 

EOP= l; 
altemation_flag = O; 

end; 
shift_pattem_in(); 

pat_ptr = pat_ptr - 1; 
end; 
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The only changes to the algorithm are the initialization of two more latch inputs and the 

switch statement to set the appropriate latches if a don't care character is encountered. For an 

arbitrary pattern of length m, the algorithm maintains at most 2m examinations and still requires 

only m - number _of_alternations cells. Therefore, the algorithm remains O(m) in complexity. 

3.2.4. Regular Expression Operators 

The section Concepts in Searching defined five rules for the generation of an NFSA from an 

arbitrary regular expression. Two more "searching algorithm specific" rules were introduced to 

address the frequently used don't care characters. These seven rules are shown together here. 



Rule 
Definition 

Rule 1 
Initial Step 

/ 

Rule 2 
Alphabet Symbol 

Rule 3 

Concatenation 

Rule 4 

Alternation 

Rule 5 

Closure 

Rule 6 
FLDC Char 

Rule 7 
VLDC Char 

Before After 

Regular Expression ~ Pattern Specification 

~ -4 

~ 

~ 

Figure 3.19. NFSA Construction Rules for Regular Expressions with Wild Cards 
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Up to this point, the algorithm has restricted the pattern specification from using 

parentheses and closure. With those restrictions, linearity in both preprocessing and hardware cell 

requirements has been maintained. Furthermore, the EOP Latch allowed all of the cells to be 

connected in a one-dimensional array using only adjacent cell communication. Allowing parentheses 

introduces the complications that the output of one state may be required to be the input to several 

other states, or a single state may have multiple inputs. Introducing closure complicates routing 

matters even further. 
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Consider the on-going "cablcat" example. ~ equivalent regular expression for the same 

pattern could be "ca(blt)". Likewise, consider the regular expression "a(blc)*d" utilizing both 

parentheses and closure. The state diagrams for the NFSAs that would be generated by these 

expressions are shown here. 

/ 

b 

Figure 3.20. NFSA State Diagrams for 'ca(blt)' and 'a(blc)*d' 

In the "ca(blt)" example, conversion to the hardware cell forces the problem of two different 

characters being able to cause the transition from state 2 to 3. State 1 of the "a(blc)*d" example has 

three input transitions (on an "a", "b", or "c") and three output transitions (on a "b", "c", or "d"). 

Given that the Pattern Latch of a cell can only hold one element from :E, the first step towards 

resolving this dilemma is requiring a cell for each arc of the NFSA. Our examples could then be 

laid out in hardware cells as follows . 
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1 Pattern Found 

/ 

1 Pattern Found 

Figure 3.21. Routing for 'ca(blt)' and 'a(blc)*d' 

Unfortunately, this has once again caused the algorithm to be inflexible due to the custom 

routing of inter-cell communication lines. The EOP Latch was able to resolve this problem when 

each subpattern was guaranteed to be the boundary of a search pattern and communications remained 

limited to adjacent cells. Now, each subpattern might simply be some small portion of an 

individual search pattern and may need to pass its state information to several other cells. 

The custom routing problem can be simplified by placing the cells in a horizontal array and 

then routing the cell Match Latchi-l inputs and Match Latchi outputs to specific signal lines 

arranged as a bus across the width 9f cells. If a means were made available to reprogram a cell to 

read the value of one of those signal lines or write a value to one of those signal lines, then no 

custom hardwiring would be required at all. Consider replacing the EOP Latch with two other 

latches labeled Read Latch and Write Latch. If both Read Latch and Write Latch are zero, then the 

cell would function as defined earlier. If either or both of these latches are set to 1, then the cell 

takes on an entirely new definition. Instead of holding the character of a state transition in the 

Pattern Latch, a number representing a bus signal line is placed in the Pattern Latch. A 1 in the 

Read Latch indicates to read the value on the bus signal line denoted by the contents of the Pattern 

Latch and place that value on the Match Latchi output of this cell. A 1 in the Write Latch 

indicates to write the value of the Match Latc\_1 of this cell to the bus signal line denoted by the 
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Pattern Latch. Both latches can be set to 1 allowing Match Latchi-l to pass through to Match 

Latchi as well as setting the bus line. 

The following figure talces the "a(blc)*d" example from an NFSA state diagram to a custom 

routed cell layout to a conceptual bus interconnection to an actual hardware cell instantiation with 
/ 

the Pattern Latch, Read Latch, Write Latch, FLDC Latch, and VLDC Latch displayed from top to 

bottom. 

0 
1 
0 
0 
0 

b 

1 

Communication Bus 

Pattern Found 

2 - Pattern Found 
1 
0 

Pattern Found 

2 Pattern 
0 Read 
1 Write 
0 FLDC 
0 VLDC 

Celll Cell2 Cell3 Cell4 Cell5 Cell6 Cell7 Cell8 Cell9 

Figure 3.22. Implementations of 'a(blc)*d' 
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This example serves to illustrate the cell used as both a match-cell and routing-cell. The 

even cells (2, 4, 6, and 8) use the definition already established from the previous sections (direct 

assignment of arc transitions to Pattern Latch values). The odd cells contain the communication bus 

assignments which define the input and output lines to the even cells. In this particular example, 

the state number maps directly into the Pattern Latch. 

The hardware to accomplish this new definition of the cell is shown in the following 

diagram. The logic for one of the bus lines is also shown. 

Write Bus Number Read 

ecoderO 

Data Bus-~-+----1 Comparator 

Match 
Latchi-l 

Read 
Latch 

Write 
Latch 

Bus Sense Line 

Figure 3.23. Regular Expression Hardware Cell 

Bus Match Line 0 

Match 
Latchi 
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The values of the Read Latch and Write Latch are nor-ed together to disable the normal 

Match Latch logic if the cell definition is to be used as a routing cell. Their values are also passed 

up through the bus logic to appropriately read and/or write a bus line. 

The bus logic of Figure 3.23 contains some logic that is somewhat different from normal 

combinational logic. The diagram makes use of pass transistor logic as would be found in field 

effect transistors and Metal Oxide Semiconductor (MOS) technology. The pass transistor functions 

as a switch which will only pass a signal through if its gate is a 1. Hence, if the Write Latch is set 

to 1 and Match Latchi-l is 1 and the decoder yields a 1 from the Pattern Latchi value, then a 1 is 

placed on the gate of the pass transistor connecting the Bus Match Line to ground, thus setting the 

Bus Match Line to 0. Both the Bus Sense Line and Bus Match Line are normally pulled high 

unless grounded. These lines are logically active low. 

While the same result could have been accomplished using gate logic, the pass transistor was 

chosen for several reasons. The amount of hardware and the repetitive nature of the bus and cells 

lends the algorithm quite well towards implementation in MOS technology. If combinational logic 

were used on the Bus Match Line, then a cumulative gate delay would be incurred through each cell 

connection to the bus causing an excessive critical path. Likewise, the Bus Sense Line would have an 

excessive gate delay vertically through the bus if gate logic were applied to it. Instead, both of 

these lines can be implemented as an inverted-wired-or which is active low. This allows the Bus 

Match Line to stay high normally but can be pulled low by any number of cells simultaneously. 

The Bus Sense Line will stay high unless a read is initiated and the respective Bus Match Line was 

low. The decoder can also be easily implemented in MOS using pass transistors as shown here for a 

two-bit decoder. 
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Select 3 

Select 2 

Select 1 

Select 0 

Address Bit 1 Address Bit 0 

Figure 3.24. Two-Bit Decoder Using Pass Transistors 

Each of the Select lines is nonnally pulled high by the resistor connected to Vdd. The 

address bits and their complements are amplified and broadcast vertically through the decoder. 

Gates to pass transistors are then connected to the appropriate address lines composing the address 

for selection. The selection output of the decoder can be inverted for active-high logic or left 

untouched for active-low logic. 

3.2.4.1. Converting a Full Regular Expression to Its Hardware Instantiation 

Since the purpose of this algorithm is searching, we still must address the special connections 

for the start of the pattern and a successful match. To that end, the Bus Match Line0 is now 

defined and reserved as the Pattern Found line and the Bus Match Line1 is defined and reserved for 

the start of a pattern. Bus Match Line 1 will always be active since any character can potentially be 



54 

the start of another matched pattern. The remainder of the communication bus lines only serve to 

connect cell inputs and outputs with no special meaning. 

Rather than converting the final NFSA generated by the rules in Figure 3.17 to its hardware 

equivalent, it is easier to define the conversion while the rules are being applied as shown in Figure 

3.25. / 

Some minor differences have been introduced in these rules. The variables Prefix, Suffix, and 

Next have been introduced to properly handle assignments to the communication bus. Prefix and 

Suffix define incoming and outgoing state information, respectively, and are initialized to 1 and O to 

coincide with the Bus Match Line1 and Bus Match Line0 definitions. Each hardware cell is shown 

with the Pattern Latch, Read Latch, Write Latch, FLDC Latch, and VLDC Latch shown from top 

to bottom. If Pr, Su, or Ne appears in a Pattern Latch, then the Prefix, Suffix, or Next value is 

placed there. The regular expression is stepwise refined through these rules from right to left. 

This is done so that the final preprocessing algorithm can find the unary closure operator before the 

expression on which it is operating. In constructing the NFSA state diagrams, parentheses were not 

directly considered since multiple arcs could be placed from one state to another. Each parenthesis 

token is individually addressed in these rules to explicitly define which Bus Match Line to read 

and/or write. A stack and the Next variable are employed to address nesting. As deeper levels are 

entered, the Next variable supplies an unused bus line. As levels are returning upward, the stack 

restores the prefix and suffix values for the appropriate level. 



Rule 
Definition 

Rule 1 
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Rule 2 
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Rule 3 
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Rule 4 
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Push Prefix and Suffix on Stack; 
Suffix = Next; Prefix = Next + 1; 
Next - Next + 2; 

Pop Prefix and Suffix from Stack 

Figure 3.25. Rules for Loading the Hardware Cells 
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Applying these rules to the "a(blc)*d" example would yield the following hardware 

implementation. 

1 
1 
0 
0 
0 

1 
1 
0 
0 
0 

1 
1 
0 
0 
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1 
1 
0 
0 
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1 
1 
0 
0 
0 

Cl 

0 
0 

a(blc)*d 1 
0 
0 

0 
0 
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0 
0 

C2 C3 C4 C5 C6 C7 

0 
0 
1 
0 
0 

C8 C9 ClO cu 

0 
0 

Rule 1 

Rules 3 and 2 

Rules 3 and 5 

1 Rules 8, 4, and 9 
0 
0 

0 
0 
1 Rule 2 
0 
0 

C12 

Figure 3.26. Application of Rules for Loading the Hardware Cells 

The final count of hardware cells in this figure is greater than the count of hardware cells in 

the implementation of Figure 3 .22, but this still finds the same patterns. Furthermore, the bus is 

larger as implied by the reference to Bus Match Line 4 in cells C4 and C7. Additional heuristics 

that take advantage of knowing the scope of the closure operator can reduce the cell count and bus 

size closer to their optimum values. Meanwhile, this figure illustrates that bus-routing cells can 
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be adjacent and in some cases, must be adjacent. To illustrate the routing mechanisms employed 

here, a trace of the input string "adacbd" is shown in this table. 

TABLE 3.8. Trace of 'adacbd' 

Input Character 
/ 

Active Cells Comments 

a 1,2,3,4,7,10 Initial State - Celll always active 
Celll active allows Cell2 to match input 
Cell2 activates Cell3 
Cell3 activates Cell4 and CelllO 
Cell4 activates Cell7 

d 1,11,12 Cell2 deactivates Cell3 
Cell3 deactivates Cell4 and CelllO 
Cell4 deactivates Cell7 
CelllO having been active allowed Celll 1 to activate 
Celll 1 activates Cell12 - Pattern Found 

a 1,2,3,4,7,10 

C 1,3,4,7,8,9,10 Cell8 activates Cell9 
Cell9 activates CelllO etc. 

b 1,3,4,5,6,7,10 

d 1,11,12 Pattern Found 

Because each Bus Match Line is a bus line, communication is broadcast to all cells in both 

directions. Hence, Cell2 was able to activate CelllO and vice-versa. When any particular Bus 

Match Line is written by one cell, the information is propagated to all other cells that read from 

that Bus Match Line. 

3.2.4.2. Complexity Analysis 

Having a technique to implement regular expressions with wild cards, we now must quantify 

how many cells will be required for an arbitrary expression as well as how many bus lines. An 

approximation of these quantities can be determined through examinationn of the NFSA constructed 

from an arbitrary regular expression. Floyd and Ullman (1980) prove that a maximum of 4m arcs 

and 2m states will be created. Mapping every arc of the resulting NFSA to a match cell and 
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surrounding each of those match cells with routing cells containing the prefix state and suffix stat 

information results in a hardware searcher for the regular expression. This gives an upper bound on 

the algorithm of 4m cells for the arcs plus 2(4m) cells for the states surrounding each arc plus 2m 

bus lines for those states. This implies a length of 12m cells and height of 2m bus lines for 24m2 

/ 
area. However, these complexities are not strictly accurate since simple concatenation does not 

require use of the Bus Match Lines and, as already demonstrated, heuristics can be applied to achieve 

smaller cell counts and bus sizes. A preprocessing algorithm that employs some of those heuristics 

is given in Appendix 2 written in the C (Kernighan and Ritchie 1978) programming language for any 

reader wishing to implement the program. A run of the preprocessing program on the "a(blc)*d" 

example would yield the following output. 

TABLE 3.9. Output of Preprocessing for 'a(blc)*d' 

input pattern = a(blc)*d 
pattern = 1 a 2 b 2 C 2 d 0 
read = 1 0 1 0 1 0 1 0 0 
write = 0 0 1 0 1 0 1 0 1 
fide = 0 0 0 0 0 0 0 0 0 
vldc = 0 0 0 0 0 0 0 0 0 

This is better than the result from the strict application of the recursive rules as shown in 

Figure 3.26 and equivalent to the result shown in Figure 3.22. As in previous versions of the 

preprocessing algorithm, a pointer moves from the end of the pattern to the beginning examining 

and processing each character one at a time. The heuristics are applied through the use of a variable 

called closure Jl.ag. If the closure is associated with a parenthesized subexpression, then the close 

parenthesis ")" can set the prefix and suffix to the same value and collapse the redundant adjacent 

cells. This is best illustrated by the differences in the results of Figures 3.22 and 3.26 shown again 

here. 
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Figure 3.27. Two Hardware Implementations of 'a(blc)*d' 
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Because the "(blc)" subexpression is under closure, the "b", "c", and "d" can all share the same 

prefix and the "a", "b", and "c" can all share the same suffix. If one cell is writing a suffix and the 

next cell is reading a prefix identical to the suffix written in the previous cell, then the two cells 

can collapse to one, setting both the Read Latch and Write Latch to 1. 

A bus _num function in the preprocessing algorithm uses the closure Jl.ag variable to 

determine how to set the suffix and prefix. Combined with the knowledge of the parentheses 

nesting level and the closure Jl.ag, bus _num manages the prefix and suffix variables and returns the 

appropriate value. 

The closure heuristic brings the preprocessing algorithm close to optimum cell assignment 

but fails in some cases. If unnecessary parentheses are used, the algorithm does not recognize this 

and generates unnecessary routing. A trivial example is the regular expression "(alb)". The cell 

assignment from the algorithm and the more optimal assignments are shown here. 
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TABLE 3.10. Preprocessing of Unnecessary Parentheses 

input pattern = (alb) 
pattern = 1 3 a 2 3 b 2 0 
read = 1 1 0 0 1 0 1 0 
write = 1 1 0 1 0 0 1 1 
fide = 0 0 0 0 0 0 0 0 
vldc = 0 0 0 0 0 0 0 0 

input pattern = (alb) 
pattern = 1 a 0 1 b 0 
read = 1 0 0 1 0 0 
write = 1 0 1 0 0 1 
fide = 0 0 0 0 0 0 
vldc = 0 0 0 0 0 0 

Furthermore, if parenthesized subexpressions are immediately adjacent with no intervening 

concatenation, then the suffix of the first subexpression could be used as the prefix of the next. 

The preprocessing algorithm does not catch this either as demonstrated by the pattern "(alb)(cld)". 

TABLE 3.11. Preprocessing of Adjacent Parenthesized Subexpressions 

input pattern = (alb)(cld) 
pattern = 1 5 a 4 5 b 4 3 C 2 3 d 2 0 
read = 1 1 0 0 1 0 1 1 0 0 1 0 1 0 
write = 0 1 0 1 0 0 1 1 0 1 0 0 1 1 
fide = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
vldc = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

input pattern = (alb)(cld) 
pattern = 1 a 2 1 b 2 C 0 2 d 0 
read = 1 0 0 1 0 1 0 0 1 0 0 
write = 0 0 1 0 0 1 0 1 0 0 1 
fide = 0 0 0 0 0 0 0 0 0 0 0 
vldc = 0 0 0 0 0 0 0 0 0 0 0 

Despite these suboptimal intricacies, the preprocessing algorithm can provide a quantification 

of the complexity requirements of the searching algorithm. If the original regular expression had m 

characters in it (inclusive of the operators and wild cards), then the number of cells required is 

defined as follows: 
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(1) Let m be the number of tokens in the original regular expression. 

(2) Let a be the number of alternation operators which are not within the scope of a closure. 

(3) Let b be the number of single characters in closure, i.e., b = { a* I a E l:}. 

(4) Let c be the number of close parentheses, closure pairs")*". 

/_ 

(5) The total number of cells which would be required is then defined by the equation: 

Length = m + 2 + a + b - c 

The constant 2 is the result of the immediate assignment of Bus Match Line1 and Bus Match 

Line0 for the start state and final state. Every alternation that is not in closure (a in the equation) 

gets turned into a suffix-write cell followed by a prefix-read cell and therefore adds 1 to the 

overall length. An alternation in closure becomes a cell which both reads and writes the same 

prefix/suffix value and therefore neither adds nor subtracts from the length. A single element in 

closure (b in the equation) has a prefix-read-write cell and suffix-read-write cell placed around it 

adding 1 to the overall length. A close-parenthesis, closure pair (c in the equation) maps into a 

single suffix-read-write cell and therefore reduces the overall length by 1. 

The height of the bus is defined by the following: 

( 1) Let b and c be defined as before. 

(2) Let d be the number of close parenthesis")" not adjacent to a closure operator. 

(3) The number of bus lines required is then defined by the equation: 

Height= 2 + 2 d + c + b 

Once again, the constant 2 represents the start state and final state assignments of Bus Match 

Line l and O. Every parenthesized expression which is not in closure (d in the equation), adds both 

a new prefix and a new suffix. Every subexpression which is in closure (c and b in the equation), 

adds the same prefix and suffix. 

The variables a, b, c, and d are all dependent on m. The maximum value a can obtain in a 

valid regular expression is floor(m/2) (i.e., the integer value, rounded down, of m divided by 2). 

For example, the pattern P = "alblcld" has m= 7 and a=3. The variable b has a maximum of m/2 
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since b is built from two characters. The number of close parentheses also has a maximum of m/2 

since they always must be matched with an open parenthesis. The number should be much less than 

m/2 since parentheses are unnecessary unless surrounding subexpressions. 

Some extreme examples which attempt to exercise these calculations are shown here. 

/ 

TABLE 3.12. Examples of Length and Height Calculations 

input pattern = (abcldet)(ghiljk*llmn(oplqr)*st)uv 
Length = 34 + 2 + 3 + 1 - 1 = 39 
Height = 2 + 4 + 1 + 1 = 8 
pattern = 1 7 a b c 6 7 d e f 6 3 g h i 2 3 j 5 k 5 1 2 3 m n 4 o p 4 q r 4 s t 2 u v 0 
read = 1100 0 0 100 0 11000 0 1010100 100100 1001 O O 1 O O O 
write = 0 1000 1000 0 1100 0 100 1010100 0 100 100100 1 O O 1 
fl~ =000000000000000000000000000000000000000 
vldc = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

input pattern 
Length 
Height 
pattern 
read 
write 
fide 
vldc 

= a*bc(de*flghi*lj*(kllm)*)*nop 
= 29 + 2 + 0 + 4 - 2 = 33 
= 2+0+2+4=8 
=17a7bc2d6e6f2gh5i524j43kl3m32nop0 
= 1 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 1 0 0 1 0 1 1 0 0 0 0 
= 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 1 0 0 1 0 1 1 0 0 0 1 
=000000000000000000000000000000000 
=000000000000000000000000000000000 

Note that the suboptimal nature of the ·preprocessing algorithm is demonstrated in the first 

example. The "a" and "d" could have been preceded by Bus Match Line1 rather than Bus Match 

Line1 and the "c" and "f' could have been succeeded by Bus Match Line3 eliminating Bus Match 

Line1 and Bus Match Line6 completely. However, the length and height equations correctly 

calculate their values for the algorithm as it stands. 

These two equations provide the means to determine worst case behavior in the algorithm. 

The constant 2 is unaffected by m (the length of the regular expression). The number of 

alternations not in closure adds to the length but not the height. Every close-parenthesis, closure 

pair adds to the height but subtracts from the length. The close-parenthesis not in closure adds two 

to the height but requires an open parenthesis somewhere else in the expression and the length is 

unaffected. The one common factor that adds to both length and height and requires no other 
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operators to appear in the expressions is the single element in closure (a*). If a regular expression 

of length m were composed of a series of single elements all with closure operators, then the total 

number of cells required by the algorithm and the height of the bus would be: 

/ 
Length= 2 + m + 0.5m = 2 +I.Sm 

Height= 2 + 0.5m 

The 0.5m is derived from the fact that it takes two elements from the regular expression (the 

element plus the closure operator) to add one to the length and height. A simple example is the 

pattern P = "a*b*c*". 

TABLE 3.13. Example of Worst Case Expansion 

input pattern = a*b*c* 
Length = 2 + 1.5(6) = 11 
Height = 2 + 0.5(6) = 5 
pattern = 1 4 a 4 3 b 3 2 C 2 0 
read = 1 1 0 1 1 0 1 1 0 1 0 
write = 0 1 0 1 1 0 1 1 0 1 1 
fide = 0 0 0 0 0 0 0 0 0 0 0 
vldc = 0 0 0 0 0 0 0 0 0 0 0 

We now have a quantification of the hardware requirements for the regular expression 

hardware searching algorithm. The preprocessing algorithm first determines the length of the 

expression and then processes one element at a time. This is still linear O(m) as with all the 

previous preprocessing algorithms. However, as it processed each character, the hardware 

requirements grew in two dimensions, the length and height. Each of those dimensions is linearly 

bounded as O(m) but combined together yield a polynomial (quadratic) complexity O(m2
). The 

actual worse case complexity is 

Length* Height= (2 +I.Sm)* (2 + 0.5m) = 0.75m
2 + 4m + 4 = O(m

2
) 
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Because the Bus Match Line value is held in the Pattern Latch, the maximum height the bus 

can obtain is ll:I. No bound is placed on the length although the worst case analysis suggests that 

triple the height ( ~ = 3) of the bus might be a good minimum. 
0.5 

/ 

3.2.4.3. Converting a Right-Linear Grammar to Its Hardware Instantiation 

This chapter has discussed the equivalence of the languages recognized by an FSA and a 

regular expression. Algorithms have been presented to convert either form into our hardware 

algorithm. Right-linear and left-linear grammars are additional methods of describing the same set 

of languages as those recognized by FSAs and regular expressions (Harrison 1978). A left-linear 

grammar is trivially converted to a right-linear grammar and visa versa. This section presents the 

conversion of a right-linear grammar to our hardware algorithm. 

A grammar is defined in Barrett and Couch (1979) by a four tuple (l:, N, P, S) where: 

(1) l: is a finite set representing the terminal alphabet. 

(2) N is a finite set representing the nonterminal alphabet. l: and N are disjoint. 

(3) SE N and is the designated start symbol. 

(4) P is a set of productions (rules) of the form y➔x where y and x are in (N u l:)* and y 

contains at least one element in N. 

A right-linear grammar further restricts P to be of the form A➔xB or A➔x where A and B 

are in N, and x is in l:. The 'cocoa' example from earlier in this chapter could be defined by the 

following grammar. 

l: = {a, c, o} 

N= {A, B, C, D,E} 

S= {A} 



P= 
A ➔ cB 

B ➔ oC 

C ➔ cD 
D ➔ oE 

E ➔ a 

/ 
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One nonterminal may have several productions associated with it as is shown here in a right-

linear grammar for the regular expression 'a(blc)*d'. 

L = { a, b, c, d} 

N= {A, B} 

S= {A} 

P= 
A ➔ aB 

B ➔ bB 

B ➔ cB 

B ➔ d 

Noting that a right-linear grammar contains a terminal on the right hand side of every 

production, conversion from the grammar to our hardware consists of: 

(1) Assign bus line Oto pattern found. 

(2) Assign the start symbol to bus line 1. 

(3) Assign all remaining nonterminals to unique bus lines. 

For every production of the form a ➔ po, load three cells with a as a read-cell, P as a 

match-cell, and o as a write-cell. If o = {}, then write to pattern found. 

Applying these rules to the grammar for 'a(blc)*d': 

(1) Bus line 0 = pattern found. 

(2) Bus line 1 = A. 

(3) Bus line 2 = B. 

(4) Productions: 
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pattern = 1 a 2 
read = 1 0 0 

A ➔ aB ⇒ write = 0 0 1 
fldc = 000 
vldc = 000 

/ pattern = 1 a22b2 
read = 100100 

B ➔ bB ⇒ write = 0 0 1 0 0 1 
fldc = 000000 
vldc = 000000 

pattern = 1 a22b22c2 
read = 100100100 

B ➔ cB ⇒ write = 0 0 1 0 0 1 0 0 1 
fldc = 000000000 
vldc = 000000000 

pattern = 1 a22b22c22d0 
read = 100100100100 

B ➔ d ⇒ write = 0 0 1 0 0 1 0 0 1 0 0 1 
fldc = 000000000000 
vldc = 000000000000 

A very simple heuristic can recognize that adjacent routing cells are writing and reading the 

same bus line and thus collapse the redundant cells yielding: 

pattern = 1 a2b2c2d0 
read = 101010100 
write = 0 0 1 0 1 0 1 0 1 
fldc = 000000000 
vldc = 000000000 

In order to prove that no "nasty realities" stand in the way of actually implementing these 

hardware searching algorithms, an n-MOS implementation was designed and fabricated. 

3.3. PAM - An Implementation of a Pattern Matching Chip 

Because the paper design might not foresee all of the implications of realization, a project 

was initiated (Curry et al. 1983) to fabricate an n-MOS (grounded substrate - Metal Oxide 

Semiconductor) (Mead and Conway 1980; Mukherjee 1986) implementation of the hardware 
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algorithm as defined for multiple-exact-patterns with wild cards. Indeed, the algorithm as 

implemented in this project is somewhat different from the algorithm definition in section 3.2.3.2. 

The experience gained from this implementation and, subsequently, the integration of the algorithm 

into the String Coprocessor as described in later chapters, lead to significant improvements for 

practical use of the sea;ching algorithm. This section will not only describe the details of this 

implementation, but will also augment those details with improvements for better implementations. 

At the time of this project, the algorithm was well understood for concatenation with wild 

cards, and the changes for multiple patterns (alternation with no parentheses) were conceived during 

the implementation. The extensions for parentheses and closure had not yet been derived. The 

technology of choice was n-MOS, but there is nothing related to the algorithm restricting it to any 

particular technology. Having selected n-MOS, though, leads to a preference to inverted logic and 

the first change noticeable in the basic cell replaces the and-gates and or-gates with nandlnor logic 

as shown here. 
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Figure 3.28. The Basic Match Cell with Inverted Logic 
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Two other differences are immediately evident as well. Rather than an EOP Latch, a BOP 

Latch (Beginning Of Pattern) is used to mark multiple pattern boundaries and a new latch is 

introduced labeled Case Latch. 

The BOP Latch is functionally identical to the EOP Latch already known to the reader. It 

forces a 1 input on the / Match Latchi-l input for the first character of a pattern and is used as an 

input to set the Pattern Found output. The BOP Latch was later replaced with the EOP Latch 

technique for two reasons. First, the BOP Latch is easy to determine when to set in a left-to-right 

preprocessing of the expression but the unary operators of regular expressions are on the right of 

their object, thus requiring the right-to-left preprocessing algorithm of section 3.2.3.2. In order to 

preprocess the BOP Latch technique from right-to-left, a look-ahead would be required to determine 

if the current character was on a pattern boundary or not. Second, if the pattern is left justified in 

the cells (i.e., if the total length of the pattern is less than the total number of hardware cells and 

if the pattern is loaded with the first pattern character in the first hardware cell), then an extra cell 

is required after the last character of the last pattern with the BOP Latch set in order to properly 

activate the Pattern Found logic. This is a result of having the BOP Latch information flow left 

between cells for the Pattern Found logic. The EOP Latch technique resolves all of these problems 

as do the Read Latch and Write Latch of the full regular expression algorithm. 

The Case Latch was incorporated to • facilitate searches which were case independent. For 

example, this dissertation labels figures with a capital "F" on the word "figure" but refers to these 

figures with a lower or upper case "f' depending on the sentence position. A regular expression to 

search for all occurrences of the word "figure" in this dissertation might be "(Flt)igure". Using the 

hardware of this implementation with 8 hardware cells, the pattern would be: 

TABLE 3 .14. PAM Instantiation of '(Flf)igure' 

pattern = f g u r e 0 0 

case = 1 0 0 0 0 0 0 0 
fide = 0 0 0 0 0 0 0 0 
vldc = 0 0 0 0 0 0 0 0 
BOP = 1 0 0 0 0 0 1 0 
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The Case Latch works by disabling the comparator for the bit which indicates the case of the 

character. That is bit 6 in both ASCII and EBCDIC where bit O is the least significant bit. The 

hardware can be used for any alphabet by simply fixing the Case Latch to the last bit of the 

comparator and then externally connecting the input bits appropriately so that the character set of 

the machine has the C¥e bit placed last. This algorithm allows case control on a character by 

character basis, but this entire latch was later dropped from the algorithm since most searching 

algorithms simply convert the entire data stream to lower case if case independence is requested for 

the search. Individual character case independence can be specified in the regular expression 

algorithm through a parenthesized alternation as shown in the "(Flf)igure" example. 

The diagrams of the basic cell have left the latches and the comparator as undefined boxes of 

logic. Because of the complexity of the timing associated with the data flow for loading the 

pattern and the inter-cell communication, the clocking of the data and components must be 

thoroughly defined. A simple means to accomplish the delay timing required in the latches would 

be to have two inverters in series with non-overlapping clocks gating their input. The timing of the 

Pattern Latch needs to be out of phase with the Match Latch and Data Bus in order to sequence the 

state information with the next input character. The following diagram expands the definition of 

the latches for this algorithm. 
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Alternate Clock 
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Figure 3.29. n-MOS Latch Implementation 

The design as shown in the diagram provides all of the logic necessary for an n-MOS 

implementation. The diagram on the left utilizes a notation mixing pass transistors and gate logic. 

The diagram on the right expands the gate logic to its transistor level implementation. Other 

technologies may prefer to utilize different techniques to accomplish the same logic. As long as the 

timing and combinational logic between latches remains consistent, the algorithm will remain 

correct. For consistency throughout this section, all logic will be considered to be implemented in 

n-MOS and all logic diagrams will utilize the schematic approach on the left. 

Because signals will dissipate in the latch, it must continually refresh itself. The output of 

the second inverter is fed back into the first inverter. Alternatively, a new value may be loaded into 

the latch from the Input Line to the first inverter. The Load Latch and Load Latch Bar control 

lines are complementary of each other but are both qualified with a clock phase. The clocking is 

based on a two phased, non-overlapping clock scheme. Phase one will be labeled <j>l and phase two 

<j>2. If the "load control lines" are qualified with <j>l, then the Alternate Clock is <j>2. If they are 

qualified with <j>2, then the Alternate Clock is <j>l. Since <j>l and <j>2 are non-overlapping, all logic 

has a chance to stabilize in the feedback path. The following timing diagram shows the relationship 

to the clocks for all control lines during a refresh cycle and a load cycle. 
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Figure 3.30. Latch Refresh/Load Timing 

This particular timing diagram shows the "latch load phase" synchronous with <j>l and "input 

change phase"/"alternate clock" synchronous with <j>2. Some latches will be timed this way and some 

will be timed with <j>2 and <j>l respectively. However, the logic still remains the same. One other 

point to note in this design is the fact that the latch can be loading a new value on its input while 

retaining its old value on the output during the first phase of the clock. This is the key to the 

ability to simultaneously shift the pattern through all cells during the pattern load sequences, and 

it also provides the means to perform the Match Latch delay by keeping the Match Latch and Data 

Line in phase with each other and the Pattern Latch in the alternate phase. 

A convenient modification to the latch, which was determined from the results of this 

implementation, adds one more control line and replaces the first inverter with a nand-gate. The 

control line will be used to clear the latch of its contents. The control line is active low and 

synchronized with the input phase of the clocking. A schematic and timing diagram are shown in 

the following illustration. 
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Figure 3.31. Clearable Latch Schematic and Clear/Refresh Timing 
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When Clear Latch is a logic 0, the nand-gate output is always a logic 1. If Clear Latch is a 

logic 1, then the nand-gate output is the inverse of the Latch Input. 

The implementation of the algorithm did not include the Clear Latch control line and 

therefore always had to shift in null pattern entries to flush the old pattern. This tied the 

preprocessing complexity to the number of hardware cells rather than the pattern length. Being 

able to simultaneously clear all cells with a control line is a simple resolution which places the 
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preprocessing complexity back with the pattern length. With the single exception of the Match 

Latch, all latches used in the rest of this section will be described using exactly the design and 

timing of Figure 3.31. The Optional Latch Complement outputs are potentially useful values that 

can be utilized if required. The timing of any particular control line in a diagram will be specified 

by appending "*<l>l" or J *<l>2" denoting qualification with the respective clock phase, or by providing 

an explicit timing diagram. 

Limiting the match cell to exact-pattern-matching and the alphabet size to two elements 

(i.e., I.El = 2), the following logic would be a complete instantiation of the hardware and control 

lines necessary for a two-bit pattern. 
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1 

Cell 1 

Figure 3.32. Fully Instantiated Two-Bit Pattern Hardware 

At this point in time, the <!>2 clock qualification into the Match Latch nand-gate is not 

actually necessary but helps to clarify the timing and will be necessary later when the VWC Latch 

logic is included. 

Only a small portion of the hardware is involved in loading and retaining the pattern. Just 

the Pattern Latch hardware is shown in the following diagram. 
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Figure 3.33. Pattern Latch Hardware Only 

The sequence to load a new pattern would be to clear the pattern in all cells first and then 

sequentially place the pattern on the Data Line, shifting it in one bit at a time. The timing to clear 

the cells and shift in the first two pattern bits is shown in the following diagram. 
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Figure 3.34. Clear and Load Pattern Timing 
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As shown, the Clear Pattern control line dropped to a logic O will force the latch to be 

logically holding a 0. The Clear Pattern control line is broadcast to all cells and held low through 

an entire <)>1, <)>2 cycle. This allows the "clear" to propagate through both the nand-gate and inverter 

of all of the Pattern Latches simultaneously. Coincident with the <)>2 cycle of the "clear", the data 

bit of the pattern is placed on the Data Line. 

The first <)>1 after the "clear" starts the "load" and the Data Line propagates to the nand-gate 

of Pattern Latch
1 

while the inverter output of Pattern Latch1 is propagated to the nand-gate of 
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Pattern Latch2 and so on. During <1>2 of the "load", the next pattern bit is loaded on the Data Line 

preparing for another shift to occur on the next <I> 1. This is continued until the entire pattern is 

loaded, leaving the hardware ready to begin searching. 

Once the pattern has been loaded, the search can actually begin. This is accomplished by first 

insuring that all of the match latches are set to a known state of logic O and then broadcasting each 

bit of the data to be searched to all of the cells. The Load Pattern control line will always be a 

logic O throughout the search and the Clear Pattern control line will always be a logic 1. Hence, 

the Pattern Latches will simply be refreshing themselves during the entire search. The timing for 

control lines and combinational logic is shown below. 
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Figure 3.35. Timing of a Search 
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The Clear Match line is broadcast to all cells and held low during an entire <)>2, <!>1 cycle. 

This forces zeros into all of the Match Latches simultaneously, thus insuring that no cell can 

contain any information that indicates a successful match when the search has not yet begun. Once 

the search has begun, a new data item must appear on every <)>2 cycle until the data is exhausted. 
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Note that the Match Latch inverter output does coincide with the start of the next search cycle and 

remains stable. 

The expansion of the Data Line into a Data Bus implies that the Pattern Latch must be 

expanded to hold an entire data item in it. This also implies that the exclusive-nor used as the 

comparator needs to pe expanded to hardware which properly accommodates 2b inputs (where b is 

the number of bits in the Data Bus) and still outputs the appropriate single bit result indicating if 

Dk (the /c11 data item) and Pi (the ith pattern item) are identical or not. These changes are actually 

quite simple to implement. 

By combining b separate latches together in one cell and connecting them as shown in the 

following diagram, the timing, logic, and control lines remain identical to the original cell 

implementation for the Pattern Latch. 
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Figure 3.36. Pattern Latch for a Data Bus 
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As mentioned, the control lines and their timing are unchanged. The difference is that they 

are broadcast to b*m latches instead of m latches. Each of the b latches in the column is identical in 

timing and logic to the Pattern Latch defined earlier. A column of b latches now constitutes a 

single Pattern Latch with no communication in the column. A row of m latches is identical in all 

aspects to the Pattern/ Latch hardware implementation previously defined where communication is 

limited to the immediately adjacent cell to the right. 

The notation Pattern Latch. will still be used to denote the entire Pattern Latch in Cell. and 
1 1 

the notation Pattern Latchij will now refer to an individual bit in a Pattern Latch. The variable i 

will denote which cell the Pattern Latch is in and is bounded by 1 ~ i ~ m. The variable j denotes 

which bit in the Pattern Latch of Celli is being referred to and is bounded by 1 ~j ~ b. 

A pattern load sequence: 

(1) Clears all Pattern Latches using the Clear Pattern control line as previously defined. 

(2) Places the pattern data item on the Data Bus with bit-one on Data Bit1, bit-two on Data Bit2 

and so on through bit-b on Data Bitb all simultaneously set. 

(3) Shifts the Data Bus contents into Pattern Latch1 while simultaneously Pattern Latch1 shifts 

into Pattern Late½ and so on. 

In effect, the pattern loading sequence has remained identical with the single exception that 

there are b rows of pattern latches rather than one row. Once the entire pattern is loaded, the 

contents of the Pattern Latches becomes static and searching can begin. The changes to the exclusive­

nor hardware must now be considered. 

Because of the nature of n-MOS designs, the expanded exclusive-nor implementation in that 

technology is fairly uncomplicated. The exclusive-nor is defined by the following logic: 
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Data Bit Pattern Bit 

/ 

Result 

Figure 3.37. Two-Input Exclusive-Norn-MOS Implementation 

The result line is pulled high to a logic 1 through the depletion mode transistor (resistor to 

V dd). This line can potentially be pulled down to a logic O through two paths to ground (Gnd). If 

the Data Bit and Pattern Bit values are the same, then no path to ground exists and the result line 

will remain a logic 1. If the two bits are different, then one of the paths to ground will be opened 

and the result line is pulled down to a logic 0. 

Since each bit in the Pattern Latch has an "optional inverted output" in its logic, the inverter 

for the Pattern Latch input to the exclusive-nor is redundant and unnecessary. Furthermore, since 

the Data Bit is being broadcast to all cells, it would be more efficient to broadcast its inverted 

value as well, thus requiring only one inverter rather than m inverters. To expand this logic for 2b 

inputs, more potential paths to ground are provided as shown by the following diagram. 
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Figure 3.38. 2b-Input Comparator n-MOS Implementation 
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Result 

This diagram presumes that the Data Bits, the Pattern Bits, and their respective complements 

are generated externally to the comparator. The label Dk,l refers to the first bit of the kth data 

item in the string being searched. Dk,l Bar is the complement of that bit. Pi,l is the respective bit 

in Pattern Latch. and P. 1 Bar is the optional latch complement output, second-phase from that same 
l l, 

latch. For every bit j where 1 ~ j ~ b, Dk . and P. . are compared and any differences provide a path 
J . lJ 

to ground producing a logic O on the result output. All bits are compared simultaneously and 

multiple paths to ground may occur. If there are no differences, then no path to ground is available 

and the result is left a logic 1. 

This result is not the same as a 2b-input exclusive-nor, but rather there are b exclusive-ors 

which are nor-ed together yielding a correct result for a comparator. 

Given the repetition of the Pattern Latch bits and the Comparator logic, a natural 

hierarchical cell layout definition would start by combining the Pattern Latch and Comparator into 

one cell. Such a layout is shown in the following diagram. 
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Figure 3.39. Pattern Latchij and Comparator Dk 
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The stipple patterns for the various n-MOS layers are labeled and defined down the left side 

of the figure. Any label that ends with an exclamation mark (!) is a global label that is presumed 
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to be later connected to all other similarly labeled signals. All labels are identical to those of 

Figure 3.29. The trivial clear-pattern improvement requires routing another control line 

horizontally and changing the first inverter to a nand gate. V dd and Gnd are the power lines. Phi2 

is the <j>2 clocking signal which is the alternate clock for this latch. The load_latch, load_latch_bar 

and input _line signals/ are all clocked identically to the timing diagram of Figure 3.30. 

Additionally, the data bit and its complement are passed through this cell and exclusive-nored 

directly with the Pattern Latch bits. 

In order to implement the logic associated with the Case Latch, one of the exclusive-nors 

must have three inputs to it. That special case layout is shown in the following diagram. 
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/ 

Figure 3.40. Pattern Latch and Comparator with Case Latch 
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In this implementation, the alphabet size was set to be 256 characters, thus covering both of 

the industry standard character sets ASCII and EBCDIC. Binary encoding of 256 characters implies 

8 bits (log2 256 = 8). Seven of the cells as shown in Figure 3.39 are stacked vertically on top of one 

of the cells as shown in Figure 3.40 to form a byte. A pull-up resistor (depletion mode transistor) 

is connected to the coP7-pare _result line at the top of this vertical stack and the remainder of the 

latches and their logic are connected below this stack as shown in the next diagram. The cell is 3011. 

wide (where A is a constant related to the width of lines measured in microns) by 1071A. tall for a 

ratio of 1:36. The Pattern Found logic adds another 51511. to the height making the aspect ratio 

1:53. This aspect ratio is intentional since 64 of these cells will be placed in a horizontal array, and 

Input/Output pads and signal amplification logic contribute to the overall width. All detail is lost 

when plotted at this scale, but the aspect ratio is dramatically illustrated. 
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/ 

Figure 3.41. One Complete Match Cell 
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The following schematic shows a rough floorplan of the single match cell. The 8-bit 

Pattern Latch, Comparator, and Case Latch account for two-thirds of the height of the cell. The 

remaining one-third of the height is a layout of the following logic. 

/ 

Matchi-l 

8 Pattern Latch Bits 
Embedded Comparato 

BOP 
Latch 

VLDC 
Latch 

Pattern Found Output 

Figure 3.42. Schematic of the Match Cell Implementation 

The Pattern Found logic consists of a slightly modified encoder which informs the outside 

world which of the 64 cells currently has a Pattern Found set active. For a binary encoding, 64 

cells implies 6 bits (log
2 

64 = 6) but two problems exist. One, 6-bits does give 64 combinations 
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of output, but what if no cells currently have Pattern Found set active? Second, what happens to the 

encoder logic if more than one cell has Pattern Found set high? The first problem is resolved by one 

more output bit which is used to indicate if any Pattern Found lines are active. Thus, if that bit is 

set to O, then the address bits should be ignored by the outside world. If that bit is set to 1, then 

the address bits indi7ate the right-most cell which has Pattern Found set active. The 

implementation also adds another information bit which informs the outside world if multiple 

matches occurred. The encoder solves the second problem by having any cell with an active Pattern 

Found disable all cells less than it from setting the address bits. A 2-bit encoder for four cells is 

shown here to illustrate how this priority scheme is implemented. 
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Figure 3.43. 2-Bit Right-Most Priority Encoder 
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The encoder does a straight binary mapping of the cell ordering where the first cell address is 

00 and the last cell address is 11. Because the Pattern Found output of each cell is a nand-gate, the 

line is active low. If a cell needs to ground an address line making it a 0, then the line is pulled 

low and it does not matter if any other cells also ground it. If a cell needs to set an address line 

high, then it needs to make sure no cell to its left grounds the line. Thus, the pass transistors are 

employed as seen in each location where an address line should be set high. 
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The encoder of the implementation expands this logic to 6 bits for the 64 cells. The Pattern 

Found Indicator and Multiple Match Indicator remain unchanged in the implementation at the 

bottom of the encoder. Each set of four cells has a non-inverting amplifier (super buffer) precisely 

as shown in Figure 3.43. 

The 64 cells pl9s the encoder are surrounded by Input/Output pads and control logic. The 

following plot shows an entire chip rotated ninety degrees. The stipple patterns have been replaced 

by a dithering algorithm to help enhance the visibility for this low resolution, monochrome medium. 
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Figure 3.44. Plot of Entire Pattern Matching Chip 
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The thirteen pads across the bottom of the plot from left to right constitute the eight 

pattern bit inputs; the fide, case, bop, and vldc inputs; as well as the Gnd pad. The pads across the 

top of the plot are Vdd, <)>1, load/search, <)>2, the six Pattern Found addresses, the Pattern Found 

Indicator, and the Multiple Match Indicator. The eight pattern input pads are used to load the 

pattern during preproce~sing and to broadcast the data bits during the search. The load/search pad is 

used to denote whether the chip is in the pattern load phase (preprocessing) or in search mode. It is 

qualified with <j>l and <)>2 and then broadcast appropriately as load_latch and load_latch_bar. All 

signals which are broadcast to the entire chip are amplified on the front end of 32 match cells and 

then restored again for the next 32 match cells. 

The design was fabricated and thoroughly tested for function, speed, and power 

consumption. We received several chips from two different foundries and found dramatic variance. 

The best results yielded complete functionality, the ability to search at 2.5 million characters per 

second, and drew approximately 140 milliamperes. These results were pleasing since they were 

comparable to semiconductor memory and CPU speeds of the time and were well beyond common 

disk transfer rates. The concept of a silicon subroutine for searching at memory speeds and the 

suitability of the algorithm for realization was thus proven viable. 

3.4. Design Alternatives 

As already mentioned, the experience of the implementation led to some differences in the 

final definition of the algorithm. The use of the Clear Pattern and Clear Match control lines are 

definitely recommended for any implementation of the algorithm. There are some other changes 

that might be considered depending on the use of the algorithm. 

One limiting factor is the number of match cells that can physically be placed on a single 

chip. While chip densities are continually improving, one can always imagine a scenario where more 

match cells might be required than can fit on a single chip. The algorithm does not provide for the 

situation where the preprocessed pattern length exceeds the number of physical cells. A possible 

solution would be to interconnect several of the pattern matching chips in series. For all of the 

algorithm versions except full regular expressions, multiple chip connections would only require 
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one additional input pad for the Match Latch1 input. A 1 would be forced on the Match Latch of 
1 

the first chip and the Pattern Found logic, which already has outputs from the chip, can be used to 

appropriately set the Match Latch1 input of the next chip. In the situation where only one of these 

chips is used, no speed penalty is imposed since the new input pad has a constant value connected to 

it. When multiple chips are used, a minor time penalty is paid for the inter-chip communication but 

that penalty is constant regardless of the number of chips since communication is limited to adjacent 

chips. 

The regular expression algorithm would be difficult to expand to a multiple chip version 

since the entire communication bus would have to broadcast through all chips bidirectionally. The 

design of such a pad would be difficult, the number of pads would be limiting, and the performance 

would degrade further with each additional chip. 

A change to the preprocessing algorithm can implement another common regular expression 

operator. A superscript plus mark C1 is often used to denote "one or more" of a subpattern as 

opposed to the "zero or more" represented by a closure. This is called iteration and is quite 

commonly used in language theory but seldom found in searching algorithms. While the same 

expression could be defined by having one instance of the subpattern followed by another instance in 

closure, iteration is a convenient shorthand. Additionally, unlike closure, this operator can be 

integrated into the multiple-exact-patterns-~ith-wild-cards algorithm. This is accomplished by 

setting the VWC Latch to 1 in the same cell as the iterated character. For example, the pattern 

P = "a+b" represents the infinite set of strings that start with one or more "a"s followed by a single 

"b". This would be placed in the hardware matching cells as: 

TABLE 3.15. Instantiation of 'a1D' 

input pattern = a+b 

pattern = a b 
eop = 0 1 

fldc = 0 0 
vldc = 1 0 
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The VLDC Latch serves as a feedback for Match Latchi-l but the comparator must still 

match the current character on the data bus before a match can occur in the cell. 

Iteration can also be implemented in the regular expression algorithm rather easily. Single 

character iteration can be accomplished identically to the method described above since the VWC 

Latch is still include;Sl in the regular expression algorithm. The iteration operator must 

immediately follow a close-parenthesis to have a larger scope than one character. The following 

rule can be applied to implement iteration. As before, the latches are shown as Pattern Latch, Read 

Latch, Write Latch, FLDC Latch, and VWC Latch from top to bottom and the variables Next, 

Prefzx, and Suffix have the same definition. 

Rule Before After 
Definition 

Suffix = Next; Pr Su Pr Su 

---[ia-
1 1 1 0 

Iteration Prefix = Next+l; 1 1 0 1 
0 0 0 0 

Next = Next+2; 
0 0 0 0 

Figure 3.45. Rule for Iteration 

Following are two examples of expressions utilizing iteration and their instantiations in the 

regular expression algorithm. 
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TABLE 3.16. Instantiations of 'ab+c• and 'a(blc)+d' 

input pattern = ab+c 
pattern = 1 a b C 0 
read = 1 0 0 0 0 

I write = 0 0 0 0 1 
fide = 0 0 0 0 0 
vldc = 0 0 1 0 0 

input pattern = a(blc)+ d 
pattern = 1 a 3 b 2 3 C 2 3 2 d 0 
read = 1 0 1 0 0 1 0 1 0 1 0 0 
write = 0 0 1 0 1 0 0 1 1 0 0 1 
fide = 0 0 0 0 0 0 0 0 0 0 0 0 
vldc = 0 0 0 0 0 0 0 0 0 0 0 0 

Because iteration is a shorthand for a more complex operation, the complexity of the 

algorithm must be re-examined. Recall that single characters in closure accounted for the worst 

case complexity and that iteration is a shorthand for a subpattern repeated in closure. Then the 

example pattern "a+b+ c+" would be the same as "aa*bb*cc*". It would appear that this would add 

more cells to our worst case behavior, but because the VWC Latch can be employed, the length is 

actually lessened and the height is not used at all by iteration of a single character. Subpatterns in 

parentheses that are iterated do require two inore cells than a normal parenthesized subpattern, but 

no additional height in the bus is required. The algorithm remains O(m2 ). 

Another alternative we suggest that might be potentially useful is modification of the 

comparator. Currently it produces a binary answer of equal or not-equal. For some applications, 

such as back-end text retrieval architectures (Mukhopadhyay 1981), more comparison values could 

be quite useful such as Pattern Latch greater-than or less-than the current data value. 

Different applications have different requirements and priorities for their searching 

algorithm. The next section discusses some of these requirements and compares our algorithm 

against several other published searching algorithms. 
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3.5. Comparison of Searching Algorithms 

The introductory text of this chapter defined the attributes of a searching algorithm, briefly 

mentioned the various capabilities of several algorithms, and then described certain factors to review 

when selecting a searching algorithm. This section will delve into these subjects in much greater 

detail. / 

All of the searching algorithms have the goal of finding the pattern P in the data D. The 

general assumption is that D is very large. Sizes in the gigabytes and possibly terabytes could be 

reasonable for some databases. Not all searching algorithms can find all of the occurrences of p in 

D. Not all searching algorithms assume the data to be unstructured. We will only examine 

searching algorithms that do not require the data to be sorted or indexed. We will, however, 

mention two algorithms which assume the data to be in blocked record sizes. 

This section will discuss the criteria on which the algorithms will be compared, present the 

algorithms discerning their attributes against the defined criteria, and then summarize these 

comparisons. 

3.5.1. Searching Algorithm Comparison Criteria 

The first criterion concerns the order in which the data is accessed during the search. If all of 

the data is available in random access memory (RAM), then the access order is not a real factor. If 

the data is in a memory cache, a paged virtual memory system, or streaming off of a peripheral 

storage device, then the access order does play a role. 

Paging schemes for cache and virtual memory can incur a fair amount of overhead if frequent 

accesses occur across a page boundary. If the algorithm is to be used in a back-end architecture 

directly attached to a peripheral storage device such as a disk or tape unit, then backing up in the data 

stream becomes very costly in time and efficiency. 

Another criterion is the complexity of the pattern specification and its effect on the 

complexity of the preprocessing and run-time complexities which are two more criteria for 

comparison. While some applications may only require exact pattern matching, others may require 

wild-cards or expression operators. 
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When comparing the preprocessing and run-time complexities, the order of complexity is 

certainly the first distinguishing feature. However, if two algorithms have the same order of 

complexity, then the magnitude of the coefficient should be examined. For example, if algorithm A 

has a run-time complexity of O(n
2
), algorithm B O(n), and algorithm C O(n), then it appears that 

algorithms B and C are/ both equivalent choices over algorithm A. However, if algorithm B is 

really 100n and algorithm C 10n, then algorithm C is clearly an order of magnitude faster even 

though both algorithms are O(n). All algorithms will consistently be compared with the variables 

m and n representing the lengths of the pattern specification and the data respectively. 

One other criterion that we introduced is the flexibility for redefining the data element size. 

We bring this up because of the potential ease that a software algorithm may have for making such 

changes and the relative difficulty for a hardware algorithm. 

We now present the algorithms and their relationship to the criteria just defined. 

3.5.2. Software Searching Algorithms 

Software algorithms have the distinct advantage of flexibility. Most modem computing 

environments provide a memory hierarchy that can consist of registers in the CPU, high speed cache, 

lower speed RAM, virtual memory swap space on disk, and file storage on secondary medium. All 

of these resources are conceivably accessible to a software algorithm to dynamically employ as 

required. Most of the hardware algorithms are considerably less dynamic and must make use of the 

designed internal resources. 

Further flexibility is represented by the ability to simply change and recompile a program 

for new features or changes in definition. Hardware is considerably harder to modify, especially at 

the chip level! 

The trade-off for this flexibility is speed and resource requirements. As emphasized during 

the presentation of our algorithm, the complexities of the software algorithms grow to exponential 

size wheras there are hardware algorithms that are bounded by a simple quadratic. Furthermore, the 

software algorithms require more instructions during execution, each of which is kept in memory 

along with the data. This leads to the hardware algorithms being tremendously faster. 
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The software algorithms are now presented with analysis of their various complexities. 

3.5.2.1. The "Intuitive" Algorithm 

The straightforward approach to pattern matching is, unfortunately, the least efficient. This 

algorithm basically consists of trying to match the pattern at every position in the text, halting 
/ 

each search as soon as a mismatch is found. If the prefix of the pattern appears frequently but not 

the entire pattern, then this algorithm demonstrates very bad behavior. Knuth-Morris-Pratt (1977) 

present an excellent example with the pattern aib being searched for in the text a2ib. This 

algorithm must make (i+ 1 ;2 comparisons. In general, the worst case running time is O(mn) where 

m is the length of the pattern and n is the length of the text to be searched. 

This algorithm requires total random access, can only search for exact patterns, and has no 

preprocessing but O(mn) run-time. Several clever algorithms have been derived that have much 

better execution times. 

3.5.2.2. Boyer-Moore 

The Boyer-Moore (1977) algorithm takes a vastly different approach from all the other 

algorithms. Statements about this algorithm generally center around the average running time 

rather than the worst case. In one example, . the software method could conceivably be better than 

any hardware method reviewed. Consider the pattern a 100 (one hundred a's) and the text b1000 (one 

thousand b's). The Boyer-Moore algorithm would only make 10 comparisons to determine that the 

pattern does not exist anywhere in the text. Those 10 comparisons might invoke perhaps 7 machine 

instructions and two memory references for the tables but even at 90 memory references (10*(7+2)) 

the fact that the pattern does not occur is obtained much faster than the 1000 memory references 

that the best hardware algorithms would have had to make. 

The Boyer-Moore algorithm accomplishes this by matching the pattern starting from the 

right end rather than the left as the other algorithms do. Finding a "b" in the hundrecfh position 

and knowing that a "b" does not appear anywhere in the pattern, allows the algorithm to avoid 

having to ever investigate the first 99 text characters. 
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This accounts for the algorithm at its best behavior. A worst case analysis is quite 

complicated but well documented in many publications (Boyer and Moore 1977; Galil 1979; 

Horspool 1980; Knuth, Morris, and Pratt 1977) which have analyzed and improved the algorithm. 

The worst case analysis yields a preprocessing complexity of O(m) and a run-time complexity of 

O(n) for an overall complexity of O(m+n). On an average, it is expected to take less than n 
/ 

comparisons. 

The order in which the data is accessed is quite different and thoroughly discussed with 

regard to its implications for paging situations. The preprocessing involves O(m) steps and tables 

for exact patterns only. The run-time requires O(n) steps. 

3.5.2.3. Knuth-Morris-Pratt 

While we related our algorithm back to language theory after the fact, Knuth, Morris, and 

Pratt (1977) independently derived a searching algorithm starting with language theory. Essentially 

a finite state automaton is created, but because the algorithm only searches for exact patterns, many 

assumptions can be made during the preprocessing. 

This algorithm accesses the data sequentially with no backtracking. It searches for exact 

patterns only and has an O(m) preprocessing complexity for both time and table space and O(n) run­

time. 

3.5.2.4. Aho-Corasick 

Aho and Corasick (1975) also recognized the usefulness of finite state automata for searching 

but determined a reluctance from programmers to use FSAs due to the complexity of programming 

the construction from a regular expression, especially if minimization was required. Like Knuth­

Morris-Pratt, Aho-Corasick recognized the construction could be greatly simplified for restricted 

expressions. Their algorithm also searches for exact patterns but allows subpatterns and multiple 

patterns to be searched for as well. 

The algorithm accesses the data sequentially with no backtracking, can handle multiple exact 

patterns, and has O(m) preprocessing in time and space with O(n) run-time. 
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3.5.2.5. Fischer-Paterson 

Fischer and Paterson (1974) investigated extending the Knuth-Morris-Pratt algorithm to 

include fixed length don't care wild cards. They prove that the algorithm cannot be extended 

beyond its defined capabilities. They go on to present an algorithm that can recognize patterns 

containing embedded fixed length don't care characters but at the cost of losing linear run-time. 

Their run-time is O(m•(logn;2•loglogn), which is less than the O(mn) run-time of the traditional 

software search algorithm but greater than the O(m+n) of our hardware algorithm. 

3.5.2.6. Thompson 

One of the earliest published software searching algorithms was written by Ken Thompson 

(1968). Thompson presents a method for performing a top-down, left derivation of a regular 

expression (Barrett and Couch 1979; Harrison 1978; Hopcroft and Ullman 1979; Salomaa 1969) 

driven by the data being searched. The basic concept is to create a list of all potential characters that 

can next be generated by the regular expression and then compare the next data character to this list. 

The algorithm accesses data sequentially with no backtracking and allows full regular 

expression operators in the pattern but has prohibitively large complexities in preprocessing and run­

time. The preprocessing involves three stages. First the regular expression is parsed for syntactic 

correctness and injected with an operator for concatenation. Next that regular expression is 

converted to a reverse-polish notation. Then the preprocessing generates assembly code to perform 

the regular expression derivation. The preprocessing can be accomplished in O(m) time, but the 

coefficient for these three stages is quite large. The run-time has the potential to be exponential 

since a non-deterministic transition could cause a multitude of possibilities for the next derivation. 

3.5.3. Hardware Searching Algorithms 

The early hardware searching algorithms (Bird 1979; Haskin 1980; Roberts 1977) utilized 

various memory hardware techniques to improve searching performance. This concept works well 

for exact patterns but develops problems for more complex patterns. The exponential growth of 
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the software algorithms for regular expressions occurs in these algorithms (Haskin 1980; Roberts 

1977) as well. 

The advent of Very Large Scale Integration (VLSI) (Mead and Conway 1980; Mukherjee 

1986) allowed parallel algorithms to be considered fairly practical and generated some publications 

directly associated with 1arallel searching algorithms (Curry and Mukhopadhyay 1983; Foster and 

Kung 1980; Mukhopadhyay 1979). Since finite state automata (FSA) have been traditionally useful 

in computer language compilers and computer hardware design, algorithms (Foster and Kung 1981; 

Floyd and Ullman 1980; Trickey 1982) have been developed for automatic FSA layout in VLSI 

designs. While the primary purpose is not searching, these algorithms have a direct impact on this 

chapter. 

3.5.3.1. Bird-Tu 

A system for text retrieval was built using associative memory as its method to accomplish 

pattern matching (Bird 1979). In this system, associative memory addresses are the patterns. This 

type of search is very fast and allows simultaneous multiple pattern searches but restricts the 

pattern length to the size of a single address and restricts the types of patterns to exact word 

matching. The hardware can be expanded to allow more subpatterns but not to allow longer 

subpatterns. 

The preprocessing only involves loading the patterns into the associative memory and the 

search looks for matches from the memory. It has multiple-exact-pattern capability preprocessed in 

O(m) and run-time in O(n). 

3.5.3.2. Roberts 

The Central Intelligence Agency (CIA) developed a hardware searching system based on Bird 

Indexing (Roberts 1977) to reduce memory overhead. Instead of an entire word being used for the 

state transition information, a single bit is used in conjunction with a base offset. This technique 

works quite well for exact patterns but gets complicated for more complex patterns. Roberts 

acknowledges this and provides modifications for jump transitions and retry states which are 
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necessary when wild cards are introduced. Unfortunately, these modifications complicate the timing 

of data flow since the time to process a single character is variable. Furthermore, the exponential 

explosion of the software algorithms is present for this algorithm as well if full regular 

expressions are attempted. 

3.5.3.3. Haskin / 

Haskin (1980) avoids the exponential explosion in states by keeping the regular expression 

non-deterministic. His hardware consists of having multiple modules each containing a copy of the 

NFSA. When a non-deterministic decision must be made, he has hardware to control which modules 

take which decision. While avoiding the exponential growth in the preprocessing, sufficient 

different modules must be present for all the non-deterministic decisions during the search which 

can be exponential. Furthermore, each module must have a memory that is ILi wide by m tall. 

3.5.3.4. Foster-Kung 

The first searching algorithm published by Foster and Kung (1980) is nearly identical to the 

method designed by Mukhopadhyay (1979) with the same pattern complexity. However, in their 

system, the pattern is continually cycling through the chip rather than remaining in each cell. This 

movement of the pattern requires complicated timing which leaves half of the cells inactive at any 

given moment. Furthermore, their hardware performs a hierarchical comparison from the most 

significant bit to the least, which further complicates the timing by requiring the characters to be 

fed into the chip sequentially and the comparison to be pipelined. 

This work was later expanded (Foster and Kung 1981) to compile regular languages into a 

hardware recognizer. Their technique adds two new types of cells for alternation and closure then 

hardwires a tree structure of the expression. They go on to show that the tree can be laid out in a 

structure that has length O(m) horizontal cells by O(log m) height in routing. 

3.5.3.5. Floyd-Ullman-Trickey 

Floyd and Ullman (1980) and subsequently Trickey (1982) have pursued a Programmable 

Logic Array (PLA) approach to silicon compilation of regular expressions. A PLA can implement 
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an NFSA by having outputs that feed back into the PLA as states. The combinations of the current 

input character and the current state are used to determine the next state. Since each state has its 

own line, non-determinism can be represented by multiple states active at once. They quantify the 

maximum number of states that might be produced during the generation of the NFSA as 2m and the 

maximum number of arc~ as 4m. Since the states are both outputs and inputs, the size of the PLA is 

III+ 2(2m) wide by 4m tall for O(m2) area. 

Floyd and Ullman also discuss construction of a custom routed recognizer such as our 

solution shown in Figure 3.21 and quantify its dimensions to be 0( {m) on a side. 

3.5.4. Blocked Algorithms 

A literature search of searching algorithms would certainly lead to the works of Galli, 

Seiferas, and Lee (1983; 1984; 1986). Their papers are appropriate and related but make the 

assumption that the data is blocked and the search is restricted to each block. . They then go on to 

utilize a processor per data item rather than per pattern item. This makes them O(n) and 

inappropriate for comparison to the other algorithms discussed here which assume a fairly small m 

(length of the pattern) and an extremely large n (length of the data). 

3.5.5. Curry-Mukherjee 

The regular expression searching algorithm of section 3.2.4 is capable of searching for any 

patterns that can be specified by any of the algorithms described, but can be overkill for some 

applications. The area consumed for the communication bus could be used for more cells or other 

logic in the hardware design. Therefore, we will examine the algorithm comparison criteria for 

both the multiple-patterns-with-wild-cards algorithm of section 3.2.3 and the regular-expressions­

with-wild-cards algorithm of section 3.2.4. These will be referred to as algorithm 1 and algorithm 

2 respectively. 
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3.5.5.1. Order of Data Access and Run-Time Complexity 

Both algorithms 1 and 2 access the data sequentially and require examination of each data 

item only once. As was proven with the n-MOS implementation, the algorithm can be designed to 

run fast enough to accept the data as fast as it can be read from memory. This means the run-time 

complexity is not only O(n,), but in reality 1 n. 

The Foster-Kung and Floyd-Ullman-Trickey algorithms can conceivably make the same 

claims. All other software and hardware algorithms described require considerably more "cycles" 

per data item. Keeping the overhead to less than one order of magnitude larger (]On) would be quite 

difficult. 

The Boyer-Moore algorithm is the only algorithm described which does not have to examine 

every data item at least once. Unfortunately, it requires complete random access of the data, making 

it unusable for applications which stream the data sequentially such as back-end architectures for 

text retrieval. The "intuitive" algorithm is the only other algorithm requiring random access. 

3.5.5.2. Pattern and Preprocessing Complexities 

It has been strongly emphasized throughout this chapter that any algorithms that require 

conversion from a non-deterministic representation to a deterministic one can experience exponential 

explosion in the number of states and the preprocessing effort. The intuitive, Boyer-Moore, Knuth­

Morris-Pratt, Aho-Corasick, and Bird-Tu algorithms all restrict the pattern to exact patterns in 

order to guarantee a deterministic result in linear time. The addition of wild cards is sufficient to 

force the software algorithms out of linearity and parenthesized subexpressions push the hardware 

algorithms out of linearity. 

Algorithm 1 proves that multiple patterns with wild cards can be implemented in hardware 

and preprocessed in linear time. The first Foster-Kung algorithm achieves the same result. 

Algorithm 2 incorporates all of the regular expression operators, in addition to wild cards, 

and maintains a linear preprocessing but requires quadratic space. The Foster-Kung and Floyd­

Ullman-Trickey algorithms also accept full regular expressions with linear preprocessing and also 

have polynomial space requirements. Neither addresses wild cards because they are not 
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implementing the regular expression necessarily for searching, but both could address wild cards 

with little effort. 

The Foster-Kung regular expression algorithm requires 0(m) cells and 0(log m) routing for 

0(m log m) space requirements. The Floyd-Ullman-Trickey PLA technique requires 0(m) states for 

width and 0(m) transiti<)IlS for height resulting in 0(m2) space requirements. Algorithm 2 is 

equivalent in space complexity to the Floyd-Ullman-Trickey algorithm but larger than the Foster­

Kung complexity. However, algorithm 2 has the advantage of being reprogrammable for a new 

expression and both of the other techniques are hardwired. 

Floyd and Ullman also show that a hardwired version very similar to algorithm 2 could be 

implemented with 0( -{rn) width and 0( {,n) height yielding linear space requirements. If 

reprogrammability is not a requirement, then constructs similar to those shown in Figure 3.21 can 

be used to hardwire a version of algorithm 2 in 0(m) space. 

3.5.5.3. Data Element Size 

At first glance it would seem that once algorithms 1 and 2 were implemented for a 

particular data size, it is a fixed quantity. A well structured software program might be able to 

change a character declaration to an integer declaration, recompile, and suddenly the algorithm 

searches for four-byte data items instead of one-byte items. What can be done about the hardware 

algorithms? 

It turns out that algorithms 1 and 2 can both be utilized for varying data sizes after 

implementation. Let us presume the algorithms are implemented with the Pattern Latch and 

Comparator sizes set to 8-bits (one byte). If the data elements are smaller than a byte, then 

padding the data elements with zeros to fill in a full byte is the trivial solution. If the data 

elements are larger than a byte, then the concatenation operation can be used to resolve the latch 

overflow. Consider prepending a 1 onto the most significant bit of the start of every new data item 

and prepending a O for every subsequent 7 bits of data for each data item. Then the concatenation of 

adjacent hardware cells enables the match of a single data item. If the fide and vldc are set 

appropriately in the same number of adjacent cells, then wild cards are properly implemented. The 
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routing-cell definition of algorithm 2 is not affected since its only purpose is to route state 

information to other cells. 

Therefore, one of the major obstacles to a hardware searching algorithm is resolved by the 

nature of concatenation. This same solution could conceivably be applied to all of the software and 

hardware algorithms described in this chapter since concatenation is the single operation that is 
/ 

constant throughout all searching algorithms. 

3.6. Conclusions 

Searching is one of the most prevalent string operations and the focus of considerable 

attention in the computing industry. Moreover, searching is not limited to just strings. 

Uniprocessor searching techniques suffer extremely poor time and space complexities during 

the preprocessing of complex patterns and are at least an order of magnitude slower than 

multiprocessor techniques during the run-time phase. Previous publications have demonstrated that 

linear time and polynomial space multiprocessor algorithms for regular expressions are realizable 

and have applied the solutions to silicon compilers. Our algorithm directly applies regular 

expressions to the problem of searching, and provides a fully reprogrammable solution in like time 

and space requirements. 

While searching was the primary emphasis in the presentation of the algorithm, it is 

conceivable that the technique could be applied to any problem which can be solved by a regular 

expression, finite state automaton, or regular grammar. 

The String Coprocessor discussed in the rest of the dissertation will incorporate these 

searching algorithms into several string operations. 
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THE STRING COPROCESSOR 
/ 

The hardware searching algorithm of the previous chapter requires external logic to feed it 

the patterns and the data. This is basically accomplished through two loops. As frequently 

mentioned in the early chapters, all string operations are built around loops since the size of any 

string is arbitrary. This chapter combines the regular expression hardware searching algorithm of 

Chapter 3 with additional logic to implement the character string operations defined in Chapter 2. 

4.1. The System Interface 

Most central processing unit (CPU) manufacturers and computer vendors have options for 

the addition of a floating point coprocessor. The floating point coprocessor communication is 

generally proprietary and tightly coupled to the specific CPU implementation. The String 

Coprocessor design will attempt to be generically applicable to any computer system independent 

of the CPU and the system bus design. The only assumptions are: 

(1) The coprocessor is accessible by the CPU. 

(2) The memory is addressable on single character boundaries. 

(3) The coprocessor is allowed to perform direct memory access (DMA). 

The String Coprocessor contains some registers which are loaded by the CPU in preparation 

for the operation. This preparation generally consists of loading the addresses of the strings to be 

manipulated and then loading the operation into the instruction register of the coprocessor. Once 

the instruction register of the coprocessor is set, the coprocessor enters DMA mode and performs 

the string operations directly on the data. Upon completion of the operation, a status register is set 

in the coprocessor and control is passed back to the CPU. The CPU can then read the coprocessor 

status register to set its own condition codes appropriately. 

108 
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In order for the CPU to access the coprocessor registers, an address enable input pad is 

combined with a read/write input pad, some register address input pads, and data input/output pads. 

The size of the registers depends on the addressability of the CPU. Likewise, the number of data 

input/output pads depends on the data path size of the system. These are not necessarily absolute 

values but simplify the description of the design. A worst case scenario might imagine a single data 
/ 

pad used to serially feed the data in or out a single bit at a time and the address of the string 

operands in the registers to be limited and added to a base offset. These compromises and possibly 

more could be considered but are not necessary given the already advanced levels of semiconductor 

technology. The input/output pad counts and transistor densities of current technology allow a 

complete implementation of the String Coprocessor having separate data and address pads with total 

parallel transfer. 

The chip will perform DMA by placing an address on the address pads and then requesting a 

read or write. If the operation is a read, the coprocessor will wait for a signal indicating the 

requested information is on the data pads. If the request is for a write, the coprocessor will hold 

the data on its data pads until it receives a signal indicating the write is complete. This technique 

allows external logic to perform the specific protocols of the bus handshaking while allowing the 

coprocessor to remain generic. 

4.2. The String Coprocessor Registers 

The string operations defined in Chapter 2 have at most three operands. At least three 

registers are therefore required, each of sufficient size to hold a full address. These will be called 

the String Registers and labeled S1, S2, and S3. Each of these registers can be gated to the address 

bus and to or from the data bus. Additionally, they can be cleared, incremented by one, decremented 

by one, and always provide an output indicating if the content of the register is zero or not. 

In addition to those three registers, some other registers are necessary. One is to hold the 

termination character which delimits the end of a character string (labeled TERM), another to hold 

the status of the coprocessor and its operation (labeled SR for Status Register), and another to hold 

the current operation (labeled IR for Instruction Register). The control lines for the additional 



110 

registers include clearing and incrementing the instruction register and setting the status register. 

The number of bits required for these additional three registers is quite small and, presuming a 

reasonably large address space, will likely total to less than one of the three string registers. These 

additional registers will be combined together as subregisters and be configured as a fourth string 

register. / 

The last two registers required for the String Coprocessor are used to hold the current 

characters of the strings during an operation. The contents of these two registers (labeled Cl and 

C2) are continuously compared against each other and the terminator character in TERM for the 

results of Cl = TERM, C2 = TERM, Cl = C2, and Cl > C2. These four results are always made 

available to the control section of the chip. The logic which performs this comparison is labeled 

CLU for Character Logic Unit. 

The addresses for these registers will be: 

TABLE 4.1. Coprocessor Register Addresses 

Address 

4.3. The Character Logic Unit (CLU) 

0 
1 
2 
3 . 
4 
5 
6 
7 

Register 
S1 
S2 
S3 
IR 
SR 

TERM 
Cl 
C2 

The combination of the registers, CLU, regular expression searching algorithm, and a control 

section provide all of the hardware necessary for the implementation of the String Coprocessor. The 

load/store, increment, decrement, and clear requirements of the string registers are quite common 

operations for registers and require no special attention. The requirements of the four outputs of 

the CLU, on the other hand, should be investigated to insure that no critical path is introduced in 

the String Coprocessor, making it unnecessarily slow. As was done with the searching algorithm, 
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an n_MOS implementation project was undertaken (Crystal and Hendry 1983) to make the best use 

of semiconductor technology and confirm no nasty realities exist with the paper design. As might 

be expected, pass transistors are used in addition to traditional combinational logic to reduce the 

gate delay of the critical path. The following diagram shows the floorplan of the CLU. 

/ 

Vdd C2MSB C l MSB C2LSB ClLSB 
Latch Latch ••• Latch Latch 

Cl> C2 
Compare Cl/C2 ••• Compare C l/C2 

Cl = C2 

Compare TERM ••• Compare TERM Cl = TERM 

C2 = TERM 

C2MSB Cl MSB C2LSB ClLSB 

Figure 4. 1. Character Logic Unit 

The latches used to hold the bits of each character are identical in design to the latches of 

Chapter 3. The most significant bit (MSB) is placed in the left-most latch and the least significant 

bit (LSB) in the right-most. Likewise, the simultaneous exclusive-nor logic used to compare the 

Pattern Latch against the current data element in the searching algorithm can be applied to the C2 = 

TERM and Cl = TERM lines. The C l > C2 logic is new and affects the Cl = C2 logic as shown in 

the following diagram. 
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Cl> C2 
C2 bit Cl bit 

Cl= C2 out 

Figure 4.2. Compare Cl and C2 

This logic is designed such that the C 1 > C2 line can be grounded only if all more significant 

bits were equal and C2 is a 1 and Cl is a O for this cell. All other combinations leave the Cl > C2 

line untouched. The following figure shows the compare logic as it was implemented inn-MOS. 
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Figure 4.3. n-MOS Implementation of the Compare Cell 

4.4. Searching Hardware 

The searching requirements for the operations detailed in Appendix A are extremely simple 

compared to the power of the searching algorithms presented in Chapter 3. All of the operations 

are based on movement of pointers which in turn are based on the current character's membership to 

a set of characters. 
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The trivial design of a one-bit memory with the number of words equal to the size of the 

alphabet would be sufficient to accomplish these searching operations. The preprocessing would 

clear all words to zero then assign a one to each word whose address is the ordinal value of the 

character in the search set. Reading the memory during the search will indicate membership or lack 

of membership in the s~ch set for the current character. 

The multiple-exact-pattern algorithm of Chapter 3 can also perform this search by 

considering each character of the search set an individual pattern and setting the End Of Pattern 

(EOP) bit for each character. Likewise, considering the search set to be the alternation of several 

single character patterns allows the regular expression algorithm to perform the search. 

The control unit of the coprocessor will be implemented as if the multiple-wild-card­

pattern algorithm of Chapter 3 is incorporated as the searching hardware. In doing this, we show 

how the control unit can perform both the preprocessing and run-time phases of the searching 

operations using our hardware searching algorithm. 

4.5. Component Communication 

All of the logic is now defined with the exception of the control section to implement the 

operations. The following block diagram defines the interconnections of each of the sections of 

logic previously defined. 
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Data Pads Address Pads 

/ 
String Register Sl 

String Register S2 

String Register S3 

TERMINATOR STATUS INSTRUCTION 

data_to_term SR BITS IR BITS data to ir 
Character term_to_data data_to_SR IR++ -

Logic SR_to_data clr_IR 

Unit Cl>C2 clr_SR S3 to addr 
Cl=C2 S3-to-data 
Cl=TERM data to S3 
C2=TERM clr S3 -

data to C2 S3++ 
data-to-Cl S3--
C2 to data S3==0 
CCto=data S2 to addr 

S2-to-data 

Control Section 
data to S2 
clr s2 -
S2++ 

Regular Expression 
match S2--
clr match S2=0 

clr}at 
Sl to addr 

Searching Hardware Joa- _pat SCto-data 
data to Sl 

mmmr~ 
clr Sl -

reg_addr Sl++ 
reg_addrl mmm_ack 

Sl--
reg_addrO Sl=O 
dma_ack dma_req read_write 

Control Pads 

Figure 4.4. String Coprocessor Block Diagram 

As discussed in the System Interface section, the data bus and address bus are completely 

separate and parallel structures. All of the registers are accessible to the external world and each 
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other bi-directionally through the data bus. This requires the data pads to have three states (called a 

tri-state pad). These states are: 

(1) Input - when loading the bus from the outside world. 

(2) Output - when providing data to the outside world. 

(3) High Impedance" - when no coprocessor data communication is occurring with the outside 

world. This prevents the coprocessor from affecting any other circuitry. 

The address pads are only used when the coprocessor needs to read data from memory during 

direct memory access (DMA) mode during an operation execution. These pads need to have an 

output mode when in use and a high impedance mode when not in use. 

The mmm_enable (memory mapped mode enable) input pad is used when the external world 

is accessing the coprocessor' s registers. The read_ write tri-state pad is enabled for input by the 

mmm_enable, and the three reg_addr (register address) input pads indicate which register to read or 

write. The mmm _ ack pad is used as a "memory mapped mode acknowledgment" informing the 

outside world that the coprocessor has completed the read/write. 

That same read_ write tri-state pad can be used by the coprocessor when in DMA mode. 

When the coprocessor wants to read or write to memory, it takes the following steps. 

READ 

(1) Turn on the dma _req pad indicating a memory transfer is requested and simultaneously set 

the address _yads and the read/write pad. 

(2) Wait for the dma _ack pad to be set indicating the data is on the data pads. If the dma ack is 

set, then bring in the data off of the data _pads, release the dma _req pad, and continue 

execution of the operation. If the coprocessor times out waiting for dma _ ack, then release 

the dma _req pad, set the status register, and halt execution of the operation. 

(1) 

(2) 

WRITE 

Turn on the dma _req pad, set the data pads, address pads, and read/write appropriately. 

Wait for the dma _ ack pad. If set, then release the dma _req pad and continue. If the 

coprocessor times out waiting for dma _ ack, then release the dma _req pad, set the status 

register, and halt execution of the operation. 
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The remainder of the control lines are fairly self explanatory. The abbreviation "clr" is used 

for II clear", "SR II for 
II 

status register", and "IR" for "instruction register". A "++" or " --" after a 

register name denotes increment or decrement by one respectively. All control lines can be active in 

parallel allowing such things as SJ++, S2 + +, S3--, and data _to_ Cl to occur simultaneously. 

The control sect{on then talces all of its inputs and sets the control lines appropriately for a 

given request. 

4.6. Control Section 

The Control Section can be implemented in a variety of ways. Perhaps the simplest means is 

through a finite state automaton implemented through a Programmable Logic Array (PLA). 

Another approach might be to micro-program the control section using a micro-program counter, 

micro-instruction decoder, and a micro-program control store. 

The actual design details are not as important as the control line definitions and the micro­

programs of the string operations. The control lines are listed in the previous section in the block 

diagram of the coprocessor. The micro-programs for each string operation will be given in this 

section. 

In order to simplify and significantly shorten the definition of each micro-program, a 

Register Transfer Language (RTL) definition 'is used. Furthermore, an assumption is made that some 

micro-program subroutines can be utilized and shared among all the micro-programs. 

4.6.1. MEMORY 

The operations defined by l\,1EMOR Y are all based on a length parameter rather than the 

terminator character. Each l\,1EMOR Y operation and its micro-program is presented in this section. 

4.6.1.1. MEMCCPY 

The memccpy(sl ,s2,c,n) operation copies characters from s2 to sl until the character c has 

been copied or n characters have been copied. In preparation for this operation, the CPU will load 

the address of sl and s2 into the coprocessor registers Sl and S2, respectively. The character c is 
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loaded into C2 and the length n is loaded into S3. Finally, the operation code is loaded into the 

coprocessor IR. The following micro-program is then executed. 

memccpy if (s3=0) clr_sl, goto done; else s2_to_addr, gosub read_into_cl 
sl_to_addr, gosub write_cl 
if (cl = c2) goto done; else sl ++, s2++, s3--, goto memccpy 

/ 

This operation leaves S 1 pointing to the position of the copied c character or clears S 1 if 

execution halted due to length rather than having copied c. Each line of the micro-programs 

represents one cycle of the coprocessor execution. In the first line of memccpy, a test is made to see 

if the length counter is exhausted. If so, S 1 is cleared and execution is halted. If not, then the 

address of the next character in S2 to be copied is placed on the address pads and a micro-program 

subroutine to perform DMA is called to read that character into Cl. The second line writes that 

value to the address pointed to by S 1. The last line tests if the written character was the halt 

character. If so, then halt execution. Otherwise, increment the string pointers, decrement the 

counter, and loop through again. 

4.6.1.2. MEMCHR 

The memchr(s,c,n) operation searches for the first occurrence of c in the first n characters of 

s. If c is not found, a null value is returned_. The micro-program expects s to be placed in S1, c to 

be placed in C2, and n to be placed in S 3 prior to the start of the operation. 

memchr if (s3=0) clr_sl, goto done; else sl_to_addr, gosub read_into_cl 
if (cl = c2) goto done; else sl ++, s3--, goto memchr 

4.6.1.3. MEMCMP 

The memcmp(sl,s2,n) operation lexicographically compares the first n characters of sl and 

s2. The micro-program expects sl, s2, and n to be loaded into S 1, S2, and S3, respectively. The 

result of the comparison is placed in the status register (SR). 



memcmp if (s3=0) then sr=0, load_sr, goto done; else sl_to_addr, gosub read_into_cl 
s2_to_addr, gosub read_into_c2 
if (cl>c2) then sr=l, load_sr, goto done 

else if (cl<c2) then sr=-1, load_sr, goto done 
else sl++, s2++, s3--, goto memcmp 
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If the entire length has been compared without finding a difference, then the strings are equal 
/ 

and SR is set to zero. Otherwise, a character is read from each string and compared. The last three 

lines of the micro-program are all executed simultaneously since the CLU provides all of the Cl, 

C2 comparison results to the control section. 

4.6.1.4. MEMCPY 

The memcpy( sl ,s2 ,n) operation is a block transfer of n characters from s2 to sl. Once again 

sl, s2, and n are expected to be placed in Sl, S2, and S3, respectively. 

memcpy if (s3=0) goto done; else s2_to_addr, gosub read_into_cl 
sl_to_addr, gosub write_cl 
sl++, s2++, s3--, goto memcpy 

4.6.1.5. MEMSET 

The memset(s,c,n) operation sets n characters to the value of c starting at s. The micro­

program expects s, c, and n to be in S 1, Cl, and _S3, respectively. 

memset if (s3=0) goto done; else sl_to_addr, gosub write_cl 
sl ++, s3--, goto memset 

4.6.2. STRING 

These operations differ from those associated with :MEMORY in that a terminator character 

is used to halt executions. Some operations may take a length operand but the terminator character 

always takes precedence over the length. These operations and their micro-programs are detailed in 

this section. 
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4.6.2.1. STRCAT and STRCPY 

The streat(sl ,s2) operation concatenates a copy of string2 onto the end of stringl. The 

strepy(sl ,s2) operation copies string2 into stringl. The following micro-programs implement these 

two operations. 

strcat 

strcpy 

/ 

sl_to_addr, gosub read_into_cl 
if (cl != term) sl ++, goto strcat 

s2_to_addr, gosub read_into_cl 
sl_to_addr, gosub write_cl 
if (cl= term) goto done; else sl++, s2++, goto strcpy 

The streat operation works by first finding the end of sl and then falling into the strepy 

operation. The second line examines the CLU outputs to see if we have reached the end of sl or 

not. If not, then increment S 1 and go back up to read the next character. If so, then fall into the 

strepy routine to complete the operation. The strepy operation reads each character of s2 into C2 

and writes it to sl. If the character just written to sl was the terminator, then the operation is 

done. Otherwise, increment sl and s2 and continue the loop. 

4.6.2.2. STRNCAT 

The strneat(sl ,s2,n) operation is similar to the streat operation but concatenates at most n 

characters where n is placed in S3. The same code can be used for finding the end of sl but this 

operation cannot just simply fall into strepy. Nor can it fall into the strnepy operation since 

strnepy will pad to use all of n characters rather than at most n characters. The micro-program is 

shown here. 

stmcat 

stmcatl 

sl_to_addr, gosub read_into_cl 
if (cl != term) sl++, goto stmcat 
if (s3 = 0) goto write_term; else s2_to_addr, gosub read_into_cl 
sl_to_addr, gosub write_cl 
if (cl= term) goto done; else sl++, s2++, s3--, goto stmcatl 

The first two lines are identical to strcat. The rest of the code is similar to strepy with the 

exception that the coprocessor register S3 is used as a counter to know when n characters have been 
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copied. If the value of S3 becomes zero before the end of s2 is detected, then force a terminator 

character to be written to sl and quit. Otherwise, read the next character from s2 and write it to sl. 

4.6.2.3. STRNCPY 

The strncpy( sl ,s7 ,n) operation copies exactly n characters, from s2 to sl. The sl result will 

not have a terminator written out if the length of s2 is greater than n. sl will be null padded if the 

length of s2 is less than n. The micro-program for strncpy is: 

stmcpy 

stmcpyl 

if (s3 = 0) goto done; else s2_to_addr, gosub read_into_cl 
sl_to_addr, gosub write_cl 
if (cl != term) sl++, s2++, s3--, goto stmcpy 
if (s3 != 0) term_to_data, sl_to_addr, gosub write; else goto done 
s3--, goto stmcpyl 

The fust three lines copy s2 as long as s2 has characters and n is not exhausted. The second 

loop pads the string with terminators if len( s2) < n. 

4.6.2.4. STRCMP and STRNCMP 

These operations lexically compare two strings to each other returning the difference. The 

CLU allows the SR to be set appropriately but does not provide the exact difference of two 

characters. This should be sufficient for proper execution of this operation. However, if the actual 

difference is required, then Cl and C2 hold the first characters that were different and the CPU can 

read them. The mica-program for strcmp is: 

strcmp sl_to_addr, gosub read_into_cl 
s2_to_addr, gosub read_into_c2 
if (cl= term & c2 = term) SR= EQ, load_sr, goto done; 

else if (cl= term & c2 !=term) SR=LT, load_SR, goto done; 
else if (cl != term & c2 = term) SR=GT, load_SR, goto done; 
else if (cl != term & c2 != term & cl> c2) SR=GT, load_SR, goto done; 
else if (cl != term & c2 != term & cl!= c2 & cl!> c2) SR=LT, 

load_SR, goto done; 
else sl++, s2++, goto strcmp 
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This is actually a three line micro-program but spread out for readability. The 

strncmp( sl ,s2 ,n) operation is identical except the first line becomes: 

strncmp if (s3 = 0) SR=EQ, load_sr, goto done; else sl_to_addr, gosub read_into_cl 

and the last line decrements S3 at the same time as Sl and S2 are incremented. 
/ 

4.6.2.5. STRLEN 

This operation returns the length of a string not including the tenninator. Its micro­

program is quite simple. 

strlen 
strlenl 

clear_s3 
sl_to_addr, gosub read_into_cl 
if (cl= term) goto done; else sl++, s3++, goto strlenl 

4.6.2.6. STRCHR, STRRCHR, INDEX, and RINDEX 

strchr(s,c) finds the first occurrence of the character c in the string s and strrchr finds the 

last occurrence. The old names for strchr and strrchr are index and rindex, respectively. A zero is 

returned if c does not appear ins. The address of sis placed in Sl and c in C2. 

strchr 

strrchr 
strrchrl 

sl_to_addr, gosub read_into_cl 
if (cl= c2) then goto done, if.(cl = term) clr_sl, goto done; else sl++, goto strchr 

clr_s3 
sl_to_addr, gosub read_into_cl 
if (cl=c2) s3=sl 
if (cl!=term) sl++, goto strrchl; else goto done 

strchr goes right through s looking for c. Each time strrchr encounters c, it copies the 

pointer into S3. When the terminator is encountered, S3 will be left as zero if c was never found. 

Otherwise, S3 will be pointing to the last occurrence of c. 

4.6.2.7. STRPBRK and STRCSPN 

The strpbrk(sl ,s2) and strcspn(sl ,s2) operations look for the first occurrence of a character 

from s2 in sl. This is in effect a scan operation. The two operations return different values. 

strpbrk returns a pointer to the first occurrence or zero if there is none. strcspn returns the length 
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before an occurrence was found. These operations can be accomplished by loading s2 into the 

searching logic, setting the EOP Latch for every character and then performing a search on sl. 

strpbrk 

strpbrkl 

strpbrk2 

SR=l, load_SR, clr_s3, clr_pat 
SR_to_data, data_to_c2 
s2_to_addr, gosub read_into_cl 
if (cl!=ierm) load_pat, s2++, goto strpbrkl 
clr_match 
sl_to_addr, gosub read_into_cl 
if (cl=term) then clr_sl, goto done; 

else if (match=O) sl++, s3++, goto strpbrk2; 
else if (match=l) goto done; 

The status register is the only register into which the coprocessor can place a value. It is 

used to set C2 so that the pattern will have EOP set for each character. The subsequent read or done 

subroutines will reset the SR appropriately. 

This same micro-program accomplishes both operations since S3 could be used as a counter 

during the search with no additional overhead. For strpbrk, the CPU should return the value in S 1, 

and for strcspn, the value in S3. 

4.6.2.8. STRSPN 

The previous section performed a scan and this section performs a span. The same technique 

is used except we continue the operation as long·as we match instead of until we match. 

strspn 

strspnl 

strspn2 

SR=l, load_SR, clr_s3, clr_pat 
SR_to_data, data_to_c2 
s2_to_addr, gosub read_into_cl 
if (cl!=term) load_pat, s2++, goto strspnl 
clr_match 
sl_to_addr, gosub read_into_cl 
if (cl=term I match=O) goto done; else sl++, s3++, goto strspn2 

4.6.2.9. STRTOK 

The strtok( sl ,s2) operation is fairly complex in its definition. In the first call to strtok, sl 

is pointing to the start of a string with text tokens separated by the delimiters specified in s2. The 

operation involves spanning any delimiters that may be on the front of the string and then scanning 

for the delimiters to mark off the text token. sl is left pointing to the first character of the text 
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token or set to zero if no text token was found. The first delimiter after the text token is 

converted to a terminator character. Subsequent calls to strtok set sl to zero, indicating a 

continuation from where the last strtok left off. The subsequent calls can redefine the delimiters 

each time in s2. 

This operation co111d be implemented by sequential calls to the strspn (span) and strcspn 

(scan) operations already implemented in the coprocessor. But in keeping with the concept of micro­

programming as much of each of the operations as possible, here we present a separate micro­

program to accomplish strtok. 

strtok 

strtokl 

strtok2 

strtok3 

SR=EOP, load_sr, clr_pat 
sr_to_data, data_to_c2 
s2_to_addr, gosub read_into_cl 
if (cl != term) load_pat, s2++, goto strtokl 
clr_match, sl_to_data, data_to_s3 
sl_to_addr, gosub read_into_cl 
if (cl= term) clr_sl, goto done; 

else if (match= I) sl ++, s3++, goto strtok2 
s3++, clr_match 
s3_to_addr, gosub read_into_cl 
if (cl = term) s3++, goto done; 

else if (match= I) goto write_term; 
else s3++, goto strtok3; 

This micro-program presumes each call to strtok is a first call. It copies SI into S3, spans 

the delimiters incrementing both SI and S3, leaves SI at the start of the token, scans for delimiters 

incrementing S3, and writes over the first delimiter found. The micro-program could be written to 

check if SI = 0 and copy S3 to SI assuming no other string operation has been performed since the 

last strtok, but that seems an extremely unlikely situation. Instead, we leave it up to the strtok 

calling routine to keep the new starting address for the hardware and load the registers each time as 

if this were a first call to strtok. 

4.7. Conclusions 

The hardware design of the coprocessor is capable of implementing all of the desired 

operations with fairly short and simple micro-programs. This chapter has presented that design and 

those micro-programs. However, simply having the micro-programs defined does not give any 
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quantification of the improvement that might be realized through use of the coprocessor. The next 

chapter presents a simulation of the coprocessor and compares the performance of the operations 

against software implementations. 

/ 



CHAPTERS 

/ PERFORMANCE IMPROVEMENT 

The micro-programs in the previous chapter illustrate the simplicity of implementing non­

numeric operations in the coprocessor hardware design. The VLSI implementations of the searching 

algorithm and character logic unit prove the viability of realization. This chapter quantifies the 

levels of improved performance that might be expected if the coprocessor were incorporated into a 

system. The quantification is accomplished by simulating the coprocessor in a system and applying a 

series of programs to the simulation. Each program is run once as if the coprocessor were not there 

and run again as if the coprocessor were there. The difference in the two runs quantifies the 

improvement attributable to the coprocessor. Several other UNIX filter programs may be run 

through the simulator as well in order to compare the performance of the coprocessor runs. 

Two levels of improvement will be quantified. The improvement of individual operations is 

examined first Then the operations are incorporated into a series of programs representative of the 

types of tasks string oriented languages might need to perform. Incorporating the operations into 

programs quantifies the overhead of loading the coprocessor with the operands and retrieving the 

value after completion of the operation. 

5.1. Simulation Environment 

As explained in Chapter 2, our selection of operations is based on the string operation library 

of the UNIX operating system. In recent years, a number of different computer vendors have 

utilized the Motorola MC68020 Central Processing Unit (CPU) as the processor for their UNIX 

systems. This multi-vendor acceptance of the MC68020 as a UNIX CPU combined with the 

complex instruction set computer (CISC) nature of the MC68020 architecture makes it appropriate 
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as a baseline for determining the magnitude of performance improvement that might be realized by 

augmenting a UNIX system with our string coprocessor. 

The specific computer system on which the simulations were run is a Sun Microsystems Sun-

3 system. The system has an MC68020 CPU running the SunOS 3.5 version of the UNIX operating 

system. / 

The MC68020 contains an instruction cache, and utilizes instruction prefetch and instruction 

execution overlap techniques to improve performance. These factors make exact timing calculations 

extremely difficult. Instruction timings are published in cycle counts (Motorola 1985). One cycle 

equals one tick of the system clock. For a given instruction, three cycle counts are listed. 

(1) Best Case - the time the instruction would take if it is already in the instruction cache and 

has maximum overlap with other instructions. 

(2) Cache Case - when the instruction is in cache but has no overlap. 

(3) Worst Case - when the instruction is not in cache and there is no overlap. 

The best case and cache case numbers are dependent on instruction sequences and context 

conditions and are therefore unpredictable from one run of a program to the next. Hence, the worst 

case number is the only consistent measure of cycles for a particular program run. All cycle counts 

in this chapter are based on the worst case timing and assume zero wait state memory. The 

coprocessor is assumed to have the same system clock and assumed to take equivalent time to read or 

write memory locations. 

5.2. Individual Operation Improvement 

The nature of all of the operations is to have some setup effort, followed by the loop 

performing the operation, followed by returning the result. The setup and result stages are constant 

for each operation regardless of the size of the operands. The loop (or multiple loops) of an 

operation determine the complexity. We have stated that the copying and comparing operations will 

show a linear improvement and that the searching operations will show a complexity improvement. 

The magnitude of those improvements for the looping portions of the operations is shown in the 

following table. 



TABLE 5.1. Individual Operation Improvement 

1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
2 
3 
4 
5 
6 
7 
8 
9 
0 
1 
2 
3 
4 
5 
6 
7 
8 

Operation 

mefilccpy 
memchr 
memcmp 
memcpy 
memset 
Streat 
stmcat 
strcmp 
stmcmp 
strcpy 
stmcpy 
strlen 
strchr 
strrchr 
strpbrk 
strspn 
strcspn 
strtok 

Software Coprocessor 
Cycles Cycles 

46n 7n 
28n 4n 
53n 7n 
18n 7n 
14n 4n 

19m+18n 4m+7n 
19m+18n 4m+7n 

42s 7s 
50s 7s 
18n 7n 
18n 7n 
19m 4m 
35m 4m 
35m Sm 

(37m+69)n 4m+4n 
(47m+49)n 4m+4n 
(47m+49)n 4m+4n 

(84m+118)n 8m+8n 

m = len(s) for single string operations or len(sl) for two string operations 
n = len(s2) or the length operand, whichever is shorter 
s = the shorter of len(s 1) or len(s2) 
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Improvement 

6.57 
7.00 
7.57 
2.57 
3.50 

4.75,2.57 
4.75,2.57 

6.00 
7.14 
2.57 
2.57 
4.75 
8.75 
7.00 

poly to linear 
II 

II 

II 

The linear improvements range from 2.57 to 8.75 times the performance of the software 

operations. In examining the software implementations, it was apparent that the optimizer had 

made efficient use of two powerful instructions of the MC68020. These are the Decrement-Branch­

Condition-Code (DBcc) and MOVE instructions. DBcc first checks the current condition code in the 

status register, and if the appropriate condition is true, it falls through to the next instruction. If 

the condition was false, then a counter is decremented and compared to -1. If the counter is -1, it 

falls through to the next instruction. Otherwise, the branch is taken. 

Through proper selection of the condition code and counter, DBcc can be efficiently used for 

operations which are halted through a counter or a comparison. The MOVE instruction is capable of 

performing a memory-to-memory transfer and automatically incrementing two pointer registers. A 

tight loop that is closely comparable to the coprocessor loop can be implemented by combining the 
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functionality of the DBcc and MOVE instructions. The 2.57 fold improvement therefore becomes 

representative of the improvement due to the loop being contained in the coprocessor control section 

rather than in memory. 

The larger linear improvements add more parallelism and utilize the character logic unit 

(CLU) to their advantage. The real improvement is represented in the searching operations. The 

software implementation utilizes the "intuitive" algorithm described in Chapter 3. Our coprocessor 

utilizes the exact-multiple-pattern hardware searching algorithm as described in Chapter 4. Not 

only is there a basic complexity improvement from O(mn) to O(m+n), but the coefficients are also 

quite small. 

Knowing the improvement of the individual operations does not quantify the usefulness of 

the coprocessor. U an operation is dramatically improved but only accounts for a small percentage 

of execution time, then the overall performance of the execution is not greatly affected. The 

following sections quantify the improvement that might be expected for a string language at the 

program level. 

5.3. Simulation Technique 

The task of simulating an entire system, including file input/output, is somewhat 

overwhelming. Even a microprocessor like the Motorola MC68020 has over 100 instructions, most 

of which can use 18 different addressing modes. The technique we decided to employ makes use of 

the UNIX P'IRACE function to control the normal execution of a program. 

P'IRACE allows a task to completely control a child task. This control extends to setting 

break points, reading/writing registers/memory, as well as many other features. Most importantly, 

it allows control to single step execution one machine instruction at a time. PTRACE is generally 

used by debuggers, but in our case, provides a means to have an entire program under our control. 

This is accomplished by invoking the simulator and passing the command line of the program to be 

executed as parameters. For example, the UNIX command wc provides the line, word, and byte 

count of information in a file. The simulator is called collect and gathers statistics about the 

execution of the program. The following is an invocation of the simulator on wc and its results. 



% collect we ~/. l ogin 

23 1 00 651 / us r/t im/.login 

Collect Statistics : 
CPU Cycles= 
Coprocessor Cycles= / 
Total Cycle Count= 

1 3710 5 
0 
137105 

Cycles per rou t ine sorted by time: 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
2 8 
2 9 
30 
31 
32 
33 
3 4 
35 
36 
37 

Routine 
Routine 
Routine 
Routine 
Routine 
Routine 
Routine 
Routine 
Routine 
Routine 
Routine 
Routine 
Routine 
Routine 
Routine 
Routine 
Routine 
Routine 
Routine 
Routine 
Routine 
Routine 
Routine 
Routine 
Routine 
Routine 
Routine 
Routine 
Routine 
Routine 
Routine 
Routine 
Rout i ne 
Routine 
Routine 
Rout i ne 
Routine 

main 
d oprnt 

memchr 
cfre e 

fwalk 
fclose 
-free 

malloc a t addr 
malloc 

findbu f 
-filbuf 
fflush 

wcp 
-freopen 
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-close 
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start 
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% 
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77.088363 
9.426352 
2.220196 
1.662230 
1.379964 
1. 024033 
0.917545 
0. 862113 
0.827833 
0.466066 
0.466066 
0.380001 
0.362496 
0. 323110 
0.291747 
0.275701 
0.239233 
0.234127 
0.232668 
0.174319 
0.154626 
0.137851 
0.131286 
0.099923 
0.094089 
0.077313 
0.071478 
0.062726 
0.054703 
0.045950 
0.038657 
0.038657 
0.038657 
0.038657 
0. 037198 
0.017505 
0.006564 
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The simulator forks a child task which invokes we. That child task is then single stepped and 

the simulator disassembles each machine instruction to determine how many cycles are associated 

with the current instruction. If necessary, the simulator can consult register values as well for 

conditional branches, etc. The simulator assumes zero wait state memory and the on-chip 

instruction cache is not used. This provides consistent numbers across all runs. 
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If the program still contains its symbolic information, then cycle counts per routine are also 

accumulated, sorted by usage, and printed. Any routine that starts with the characters "CP _" is 

considered a simulation of hardware and not directly counted in the CPU cycles total. Rather, each 
/ 

"CP _" routine is responsible for incrementing a global variable called CP _ cycles such that the 

overall cycle count is incremented by the simulated hardware cycles not by the instructions 

performing the simulation of that hardware. Hence, there is the CPU Cycles value, the 

Coprocessor Cycles value, and the Total Cycle Count value, which is the sum of the first two 

values. 

A selection of 8 tasks were implemented in a variety of programs, all of which were run 

through the simulator on a range of input data. The details of those tasks, the data, and the results 

are presented next. 

5.4. Task Selection 

One of the string languages discussed in Chapter 2 is awk. At the end of the awk manual 

there is a set of 8 tasks defined, and the performance of awk on those tasks is compared to a variety 

of other standard UNIX programs accomplishing the same tasks. In accomplishing these tasks, each 

of the copying, comparing, and searching string operation categories are thoroughly exercised within 

the scope of program execution. Because these tasks exercise each category and provide other 

programs to compare against, they provide a basis for determining the improvements that might be 

realized by the coprocessor. To accomplish this comparison, we wrote C programs to perform the 

same tasks and simulated them both with and without the coprocessor. In addition, we vary the 

amount of input data the tasks must work on to quantify any complexity differences which might 

appear. 

5.5. Task Definition 

The 8 tasks are fairly simple. They are enumerated here: 

(1) Count the number of lines. 

(2) Print all lines containing "root". 
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(3) Print all lines containing "root", "uucp", or "daemon". 

( 4) Print the third field of each line. 

(5) Print the third and second field of each line, in that order. 
/ 

(6) Append all lines containing "root", "uucp", and "daemon" to files "jroot", "juucp", and 

"jdaemon", respectively. 

(7) Print each line prefixed by "linenumber: ". 

(8) Sum the fourth column of a table. 

These task definitions have only been modified by the patterns which are searched for. The 

data consists of directory and file information as listed by the UNIX "ls -1" command. Each line 

has the form: 

drwxr-xr-x 2 bin 1536 Nov 10 1987 bin 

While the programs listed in the awk manual were run on 10,000 lines (452,960 bytes) of 

data, we vary the range of data from 100 to 1,000 to 10,000 bytes. 

5.6. Results 

Each task has a different set of programs to implement it and different string operation 

requirements. Task 1 counts the number of lines in a file, and eight programs were run to 

accomplish this task. The wc program is a special purpose program provided in the UNIX 

environment to count lines, words, and bytes in a file. The f grep, grep, and egrep programs are used 

for searching and have a parameter to provide a count of the number of lines which contained a string 

that matched during the search. The sed and awk string languages are described in Chapter 2. The 

remaining two programs represent our custom program linked with the system library in one case 

and linked with our simulated hardware in the other case. The custom without program is the linked 

version without the coprocessor. The results for task 1 were: 
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TABLE 5.2. Task 1 Results 

Program lO0bytes 1, OO0bytes 10,000bytes 

WC 32,947 156,868 1,392,674 
fgrep 23,007 87,842 735,170 
grep 29,911 144,862 1,293,516 
egrep 43,536 105,183 720,657 
~d 28,896 106,883 886,663 
awk 132,981 232,963 1,243,501 

custom without 20,135 70,554 574,345 
custom with 16,125 30,564 174,498 

The only string operation that comes into play on this task is memccpy which is used by the 

gets function to copy from the input buffer until an end-of-line ('\n') character is encountered. As 

might be expected for this and all of the tasks, the custom program will always be faster than the 

more general purpose tools. The simulator results quantify how much faster. Furthermore, the 

difference in the custom without and custom with is a direct quantification of the improvement due to 

the coprocessor. A plot of results for task 1 custom without and custom with is shown in the 

following figure. 
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Custom Program Without the Coprocessor 

2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 
Bytes of Data 

Figure 5.1. Plot of Program Run Times 

The nature of the tasks and data yields linear growth in all programs for all 8 tests as the 

data grows. The tasks which require searching have small exact patterns (length 4 to 6) which are 

always found in the same position of each line. This effectively renders the algorithm complexity 

difference negligible and the execution time linear as the amount of data increases. The plots of 

performance improvement for all 8 tasks would be similar to the one shown for task 1. Only the 

labels on the CPU Cycles axis and the slopes of the lines would change. Because the horizontal 

axis represents the growth of input data and the vertical axis represents the growth of execution 
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time, the slope of each line is representative of the linear coefficient for execution time. For task 1, 

the slopes are calculated by: 

slope of custom without= (y2-yl)l(x2-xl) = (574,345 - 20,135)1(10,000 -100) = 56 

slope of custom with= (174,498 -16,125)/(10,000 -100) = 16 

56/16 = 3.5 

We can therefore state that task ~ was accelerated by three and a half times through the use 

of the coprocessor. Appendix C contains the tables for all of the 8 tasks and the details of their 

results. In each case, the slope of the 100 to 1,000 bytes segment was confirmed to be the same as 

the slope of the 1,000 to 10,000 bytes segment. Both of those segment/slopes were confrrmed to be 

the same as the 10 to 10,000 bytes slope. In all tasks, linearity and consistent slope were 

confirmed. The following table summarizes the slopes of the custom without and custom with 

program runs for all 8 tasks. 

Task 

1 
2 
3 
4 
5 
6 
7 
8 

TABLE 5.3. Improvement Per Task 

Slope 
Ratio 

3.5 
2.2 
1.7 
4.9 
3.9 
1.5 
1.4 
6.0 

String 
Operations 

memccpy 
strncmp,memccpy ,strlen 
strncmp,memccpy ,strlen 
strpbrk,memccpy ,strspn,strtok 
strpbrk,memccpy ,strspn,strtok 
strncmp ,memccpy ,strlen 
memccpy 
strpbrk,strspn,memccpy,strtok 

As would be expected, the tasks which make use of the searching operations show the best 

improvement. Both the first and seventh task only make use of memccpy in the coprocessor but have 

a large difference in improvement That is due to the percentage of time spent in memccpy for the 

tasks. Task 1 does little other than read data with memccpy. Task 7 is burdened with printing 

every line. While tasks 2, 3, and 7 are searching oriented, they make use of the "intuitive" algorithm 

with strncmp being executed against every character until a match is found or the end of line is 
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encountered. Making the searching algorithm open directly to the programmer as well as the 

coprocessor would allow these tasks to show considerably better improvement. 

5.7. Conclusions 

Our simulations have shown that individual operations can achieve a range from double to 

nine-fold improvement for this CISC architecture. Additionally, the improvements at the 
/ 

programmatic level range from 50% better to 6 times better. Given the nature of the selected tasks, 

it is not unreasonable to believe that awk or some other string language might well be improved for 

this architecture by a doubling or tripling in performance. 



CHAPTER6 

CONCLUSIONS 

/ 

We have shown applications which require megabyte to terabyte scale manipulations of non-

numeric data. Hardware implementations of special operations are the traditional solution to slow 

or unacceptable performance. However, recent research in reduced instruction set computers (RISC) 

tends to indicate that the central processing unit (CPU) is the wrong place to implement the 

hardware operations. Instead, acknowledging that some complex instructions justify hardware 

implementations, a coprocessor approach is becoming popular for optionally providing hardware 

accelerated operations. The intent of this dissertation was to investigate the improvements that 

might be realized through hardware acceleration of non-numeric operations. We proposed that 

character string operations were representative of non-numeric operations, and studied the 

requirements of a set of string languages and their support in software, firmware, and hardware 

environments. 

6.1. Results 

The selected operations were identified to fit into the three basic categories of copying, 

comparing, and searching. Hardware acceleration of copying and comparing yielded a range of 

improvement from double to nearly nine fold. Searching had even better results through a basic 

complexity improvement from exponential space and exponential time requirements in a 

uniprocessor software environment to quadratic space and linear time requirements in our hardware. 

Since the study of string languages revealed intensive searching requirements, the hardware regular 

expression searching algorithm presented in Chapter 3 takes on special significance. 

The computer industry has been offering optional floating point coprocessors which yield 

around a three to five fold improvement over software floating point operations. We have 
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demonstrated that comparable results can be obtained for string operations through a fairly simple 

architecture. Furthermore, we have shown the viability of implementing a non-deterministic 

algorithm through parallel processor techniques in very large scale integration (VLSI). The value 

of regular expressions is well known in the computer industry, and our VLSI implementations of 

the searching algorithms indicate their practicality in the commercial environment. 

6.2. Extensions to This Work / 

The coprocessor was thoroughly simulated and tested for correct functionality. Statistics 

were then collected on the improvement for a set of programs. However, the simulation had one 

advantage over an actual implementation. That advantage was the fact that only one process was 

utilizing the coprocessor and it was effectively non-interruptible. There are only five registers that 

would need to be saved during an interrupt of a copy or compare operation (i.e., three string 

registers, plus the SR, IR, and TERM as one register, plus Cl and C2 as another register). 

Interrupting a search operation would be considerably more difficult due to the amount of 

information contained in all of the parallel processors (cells). 

One solution to this problem of interruptibility might be to have the searching hardware 

separate from the coprocessor as an allocated resource. In such an environment, the only special 

consideration required for the hardware searching algorithm would be another control line which 

indicates to remain idle while waiting for the next data characte~. 

Another consideration not discussed in the simulation is that of concurrency. The CPU 

might be able to handle some work for another task while the coprocessor is active, thus enabling 

further improvement in system performance. However, since the coprocessor enters DMA mode and 

becomes the bus master, interruptibility once again becomes an issue. 

Despite the minor inadequacies just discussed about the simulation tool, we believe that the 

technique we used has some potential for expansion. The concept of forking a child task could be 

extended to forking several child tasks to simulate a multi-processing environment. Instruction set 

usage and addressing mode utilization statistics could also be easily obtained. 
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In the area of searching algorithms, the next natural step is an investigation of the 

implications of extending the algorithm to recognize context free languages. Additionally, there 

are a number of related parallel algorithms for non-numeric operations. For example, this 

university has published algorithms for sorting, longest common sub-sequence (fuzzy searching), 

and data compression to name a few. 

/ 
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APPENDIX A 

MANUAL ENTRY FOR STRING OPERATIONS 

Taken from the AT&T System 5 manu4"entries for MEMORY(3) and S1RING(3) as edited by Sun 
Microsystems. 
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MEMORY(3) C LIBRARY FUNCTIONS MEMORY(3) 

NAME 

memory, memccpy, memchr, memcmp, memcpy, memset - memory operations 

SYNOPSIS 

#include <memory .h> 

char *memccpy (sl, s2, c, n) / 
char *sl, *s2; 
int c, n; 

char *memchr (s, c, n) 
char *s; 
int c, n; 

int memcmp (sl, s2, n) 
char *sl, *s2; 
int n; 

char *memcpy (sl, s2, n) 
char *sl, *s2; 
int n; 

char *memset (s, c, n) 
char *s; 
int c, n; 

DESCRIPTION 

These functions operate as efficiently as possible on memory areas (arrays of characters 
bounded by a count, not terminated by a null character). They do not check for the overflow 
of any receiving memory area. 

memccpy copies characters from memory area s2 into sl, stopping after the first occurrence 
of character c has been copied, or after n characters have been copied, whichever comes first. 
It returns a pointer to the character after the copy of c in sl, or a NULL pointer if c was not 
found in the first n characters of s2. 

memchr returns a pointer to the first occurrence of character c in the first n characters of 
memory areas, or a NULL pointer if c does not occur. 

memcmp compares its arguments, looking at the first n characters only, and returns an inte­
ger less than, equal to, or greater than 0, according as sl is lexicographically less than, 
equal to, or greater than s2. 

memcpy copies n characters from memory area s2 to sl. It returns sl. 

memset sets the first n characters in memory areas to the value of character c. It returns s. 
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For user convenience, all these functions are declared in the optional <menwry.h> header 
file. 

memcmp uses native character comparison, which is signed on some machines and unsigned 
on other machines. Thus the sign of the value returned when one of the characters has its 
high-order bit set is implementation-dependent. 

/ 
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STRING(3) C LIBRARY FUNCTIONS STRING(3) 

NAME 

string, strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr, strrchr, strpbrk, str­
spn, strcspn, strtok, index, rindex - string operations 

SYNOPSIS 

#include <String.h> 

char *strcat (s1, s2) 
char *s1, *s2; 

char *strncat (s1, s2, n) 
char *s1, *s2; 
int n; 

int strcmp (s1, s2) 
char *s1, *s2; 

int strncmp (s1, s2, n) 
char *s1, *s2; 
int n; 

char *strcpy (s1, s2) 
char *s1, *s2; 

char *strncpy (s1, s2, n) 
char *s1, *s2; 
int n; 

int strlen (s) 
char *s; 

char *strchr (s, c) 
char *s; 
int c; 

char *strrchr (s, c) 
char *s; 
int c; 

char *strpbrk (s1, s2) 
char *s1, *s2; 

/ 



int strspn (s1, s2) 
char *s1, *s2; 

int strcspn (s1, s2) 
char *s1, *s2; 

char *strtok (s1, s2) 
char *s1, *s2; 

#include <String.h> 

char *index(s, c) 
char *s, c; 

char *rindex(s, c) 
char *s, c; 

DESCRIPTION 
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These functions operate on null-terminated strings. They do not check for overflow of any 
receiving string. 

strcat appends a copy of string s2 to the end of string sl. strncat appends at most n charac­
ters. Each returns a pointer to the null-terminated result. 

strcmp compares its arguments and returns an integer greater than, equal to, or less than 0, 
according as sl is lexicographically greater than, equal to, or less than s2. strncmp makes 
the same comparison but compares at most n characters. 

strcpy copies string s2 to sl, stopping after the null character has been copied. strncpy 
copies exactly n characters, truncating or null-padding s2. The result will not be null-ter­
minated if the length of s2 is n or more. Each function returns sl. 

strlen returns the number of characters ins, not including the terminating null character. 

strchr (strrchr) returns a pointer to the first (last) occurrence of character c in string s, or 
a NULL pointer if c does not occur in the string. The null character terminating a string is 
considered to be part of the string. 

index (rindex) returns a pointer to the first (last) occurrence of character c in string s, or a 
NULL pointer if c does not occur in the string. These functions are identical to strchr (strchr) 
and merely have different names. 

strpbrk returns a pointer to the first occurrence in string sl of any character from string s2, 
or a NULL pointer if no character from s2 exists in sl. 

strspn (strcspn) returns the length of the initial segment of string sl which consists entire­
ly of characters from (not from) string s2. 

strtok considers the string sl to consist of a sequence of zero or more text tokens separated 
by spans of one or more characters from the separator string s2. The first call (with pointer 
sl specified) returns a pointer to the first character of the first token, and will have writ­
ten a null character into sl immediately following the returned token. The function keeps 
track of its position in the string between separate calls, so that subsequent calls (which 
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must be made with the first argument a NULL pointer) will work through the string sl 
immediately following that token. In this way subsequent calls will work through the 
string sl until no tokens remain. The separator string s2 may be different from call to call. 
When no token remains in sl, a NULL pointer is returned. 

For user convenience, all these functions, except for index and rindex, are declared in the 
optional <string.h> header file. All these functions, including index and rindex but exclud­
ing strchr, strrchr, strpbrk, strspn, strcspn, and strtok, are declared in the optional 
<strings.h> include file; the reason for this is also historical. 

/ 

WARNINGS 

strcmp and strncmp use native character comparison, which is signed on the Sun, but may be 
unsigned on other machines. Thus the sign of the value returned when one of the characters 
has its high-order bit set is implementation-dependent. 

On the Sun processor, as well as on many other machines, you can NOT use a NULL pointer to 
indicate a null string. A NULL pointer is an error and results in an abort of the program. If 
you wish to indicate a null string, you must have a pointer that points to an explicit null 
string. On some implementations of the C language on some machines, a NULL pointer, if 
dereferenced, would yield a null string; this highly non-portable trick was used in some 
programs. Programmers using a NULL pointer to represent an empty string should be aware 
of this portability issue; even on machines where dereferencing a NULL pointer does not cause 
an abort of the program, it does not necessarily yield a null string. 

Character movement is performed differently in different implementations. Thus overlap­
ping moves may yield surprises. 
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I* 
* Curry-Mukherjee Hardware Regular Expression Algorithm Preprocessor 
* 
* compile with: 
* 
* 

cc -o reg reg .c 

* run with: 
* reg "pattern" 
* where "pattern" can have parens "()" alternation "/" closure "*" 
* fixed length don' t care "." and variable length don't care "?" 
* BE SURE TO PUT QUOTES AROUND THE PATTERN TO PREVENT SHELL 
* INTERPRETATION OF THE SPECIAL OPERATORS! 

*I 

#include <stdio.h> 

I* 

* CELLS max number of hardware cells 

* LATCHES number of latches per cell 

* THRESH HOW- start of unprintable characters 
*I 

#define CELLS 256 

#define LATCHES 5 

#define THRESH_HOLD 127 

I* 
* The latches in each cell consist of: 
* PAT pattern latch 
* GET get bus value (read latch) 
* SET set bus value (write latch) 
* FDC fixed length don' t care 
* VDC variable length don't care 
*I 

#define PAT 0 
#define GET 1 

#define SET 2 
#define FDC 3 

#define VDC 4 

#define SUFFIX 0 
#define PREFIX 1 
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main(argc,argv) 
int argc; 
char **argv; 

I* 
* Variable Usage: 
* cell count 
* closure Jlag 
* pat_ptr 
* level 
* cell 
*I 

counter to indicate current cell being modified 
flag indicating unary closure operator status 
counter into the source expression (pattern) 
the depth of parentheses nesting 
an array containing the hardware latch values 

unsigned 
int 
char 

cell_count,closure_flag,pat_ptr,level; 
cell[LATCHES] [CELLS]; 

if (argc < 2 II argc > 2) 
{ 

I* 

fprintf(stderr,"reg: usage: reg 'regular expression'\n"); 
exit(l); 

* initialize the last cell to receive all ending patterns and initialize 
* all counters and flags. 
*I 

cell[PAT][0] = cell[GET][0] = closure_flag =level= 0; 
cell[SET] [0] = cell_count = 1; 

I* loop through the entire expression starting with the last character *I 

for (pat_ptr=strlen(argv[l])-1; pat_ptr>=0 && cell_count<CEL~S; pat_ptr--) 
{ 

switch (argv[l] [pat_ptr]) 
{ 

case'*': 
closure_flag = 1; 
break; 

case '(': 
cell[P AT] [cell_count] = bus_num(level,closure_flag,PREFIX); 
cell[SET][cell_count] = cell[GET][cell_count] = 1; 
cell_count++; 
bus_num (--level,closure _flag ,SUFFIX); 

break; 
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case ')': 
level++; 
cell[PAT][cell_count] = bus_num(level,closure_flag,SUFFIX); 
cell[SET][cell_count] = cell[GET][cell_count] = 1; 
cell_count++; 
closure_flag = 0; 
break; 

case 'I': 
cell[PAT][cell_count] = bus_num(level,closure_flag,PREFIX); 
cell[GET] [cell_count] = 1; / 
if (bus_num(level,closure_flag,SUFFIX) != cell[PAT][cell_count]) 
{ 

cell_count++; 
cell[P AT] [cell_count] = bus_num(level,closure_flag,SUFFIX); 

} 
cell[SET][cell_count++] = 1; 
break; 

default: 
if (closure_flag) 
{ 

} 

level++; 
cell[P AT] [cell_count] = bus_num(level,closure_flag,SUFFIX); 
cell[SET][cell_count] = cell[GET][cell_count] = 1; 
cell_count++; 

cell[PA T][cell_count] = argv[l][pat_ptr]+ THRESH_HOLD; 
switch (argv[l] [pat_ptr]) 
{ 

case '?': 
case '.': 

cell_count++; 
if (closure_flag) 
{ 

cell[VDC][cell_count] = 1; 
cell[FDCJ[cell_count] = 1; 

cell[P AT] [cell_count] = bus_num(level,closure_flag,PREFIX); 
cell[SET][cell_count] = cell[GET][cell_count] = 1; 
bus_num(--level,closure_flag,SUFFIX); 
closure_flag = O; 
cell_count++; 

if (cell_count >= CELLS) 
{ 

fprintf(stderr,"reg: regular expression exceeds %d cells.\n",CELLS); 
exit(l); 
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cell[P AT] [cell_count] = bus_num(level,closure_flag,PREFIX); 
cell[GET][cell_count] = 1; 

printf(11 input pattern= %s\n11 ,argv[l]); 
re g_prin tf (11pattem = 11 ,cell [PAT] ,eel I_ count); 
reg_printf( 11read = 11 ,cell[GET],cell_count); 
reg_printf("write = 11 ,cell[SET],cell_count); 
reg_printf( 11fldc = 11 ,cell[FDC],cell_count); 
reg_printf( 11vldc = 11 ,cell[VDC],cell_count); 

/ 

if (cell[PAT][cell_count] != 1) 
{ 

fprintf(stderr, 11reg: warning: expression syntax problem.\n11
); 

exit(l); 
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!* 
* Procedure: bus num 
* Purpose: management of assigning bus lines 
* Parameters: 
* 

level - the current depth of parentheses nesting 
closure Jlag - indication of scope of closure operator 
op - 0 for Suffix request, 1 for Prefix request * 

*! 

bus_num(level,closure_flag,op) 
int level,closure_flag,op; 
{ / 

static int bus_stack[CELLS] [2] ,last_level,next_available; 

!* First time through initialize Prefix and next_available *! 

if (bus_stack[O] [PREFIX] = 0) 
{ 

bus_stack[O] [PREFIX] = 1; 
next_available = 2; 

!* if nesting goes deeper, new prefix, suffix, and next *I 
!* otherwise, if nesting is shallower, pop stack*! 

if (level > last_level) 
{ 

bus_stack[level] [SUFFIX] = next_available; 
if (!closure_flag) next_available++; 
bus_stack[level] [PREFIX] = next_available++; 
last_level = level; 

else if (level < last_level) last_level = level; 

return bus_stack[level][op]; 
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I* 
* Procedure: 
* Purpose: 
* Parameters: 
* 
* 
*I 

reg_printf 
print the cell values in a readable manner 
label - text to precede the line 
array - pointer to which array is to be printed 
count - how many elements in the array 

reg_printf(label,array ,count) 

unsigned char *label,*array; 

int 

int i; 

printf(label); 
for (i=count; i>=0; i--) 
{ 

count; 
/ 

if (array[i]<THRESH_HOLD) printf("%3d",array[i]); 
else printf(" %c",array[i]-THRESH_HOLD); 

} 
putchar('\n '); 

153 



APPENDIXC 

SIMULATION RESULTS 

/ 



155 

The 8 tasks are: 

(1) Count the number of lines. 

(2) Print all lines containing "root". 

(3) Print all lines containing "root", "uucp", or "daemon". 

( 4) Print the third field of each line. 

(5) Print the third and second field of each line, in that order. 
/ 

(6) Append all lines containing "root", "uucp", and "daemon" to files "jroot", "juucp", and 

"jdaemon", respectively. 

(7) Print each line prefixed by "linenumber: ". 

(8) Sum the fourth column of a table. 

Task 1 Results 

Program lO0bytes 1,000bytes 10,000bytes 

WC 32,947 156,868 1,392,674 
fgrep 23,007 87,842 735,170 
grep 29,911 144,862 1,293,516 
egrep 43,536 105,183 720,657 
sed 28,896 106,883 886,663 
awk 132,981 232,963 1,243,501 

custom without 20,135 70,554 574,345 
custom with 16,125 30,564 174,498 

Task 2 Results 

Program lO0bytes 1,000bytes 10,000bytes 

fgrep 32,280 213,745 1,982,318 
grep 34,820 229,681 2,209,356 
egrep 111,035 268,888 1,880,414 
sed 39,505 222,469 2,132,986 
awk 250,379 525,112 3,353,036 

custom without 45,545 283,855 2,521 ,397 
custom with 31,696 142,508 1,155,558 
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Task 3 Results 

Program l00bytes 1,000bytes 10,000bytes 

egrep 502,521 656,889 2,282,485 
sed 73,096 339,196 2,900,337 
awk 618,932 926,095 4,033,836 

custom without 81,683 530,251 4,380,894 
custom with 53,323 316,667 2,589,809 

/ 

Task 4 Results 

Program lOObytes 1,000bytes 10,000bytes 

sed 67,082 353,718 3,239,913 
awk 174,103 725,003 6,514,343 

custom without 34,072 206,738 1,941,985 
custom with 17,529 52,869 407,412 

Task 5 Results 

Program l00bytes 1,000bytes 10,000bytes 

sed 71,197 379,057 3,473,716 
awk 186,802 757,060 6,739,503 

custom without 35,753 221,967 2,091,958 
custom with 18,944 65,626 533,477 

Task 6 Results 

Program l00bytes 1,000bytes 10,000bytes 

sed 66,319 319,279 2,882,537 

awk 729,549 1,211,451 5,907,195 

custom without 88,386 537,218 4,398,600 

custom with 64,610 355,338 2,855,815 
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Task 7 Results 

Program l00bytes 1,000bytes 10,000bytes 

awk 205,869 854,182 7,395,412 
custom without 26,218 140,385 1,305,923 

custom with 22,256 100,827 910,372 

/ 

Task 8 Results 

Program l00bytes 1,000bytes 10,000bytes 

awk 249,671 829,077 6,905,126 
custom without 42,829 268,477 2,532,469 

custom with 19,661 56,297 430,566 
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