
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2006

A Common Component-based Software Architecture For Military A Common Component-based Software Architecture For Military

And Commercial Pc-based Virtual Simulation And Commercial Pc-based Virtual Simulation

Joshua Lewis
University of Central Florida

 Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Lewis, Joshua, "A Common Component-based Software Architecture For Military And Commercial Pc-
based Virtual Simulation" (2006). Electronic Theses and Dissertations, 2004-2019. 894.
https://stars.library.ucf.edu/etd/894

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F894&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/894?utm_source=stars.library.ucf.edu%2Fetd%2F894&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

A COMMON COMPONENT-BASED SOFTWARE ARCHITECTURE
FOR MILITARY AND COMMERCIAL PC-BASED VIRTUAL SIMULATION

by

JOSHUA LEWIS
B.S.A.S. LeTourneau University, 2001

M.S.E. Embry-Riddle Aeronautical University, 2002

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the Department of Modeling and Simulation
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Summer Term
2006

Major Professor: Michael D. Proctor

ii

© 2006 Joshua Lewis

iii

ABSTRACT

Commercially available military-themed virtual simulations have been developed

and sold for entertainment since the beginning of the personal computing era. There

exists an intense interest by various branches of the military to leverage the technological

advances of the personal computing and video game industries to provide low cost

military training. By nature of the content of the commercial military-themed virtual

simulations, a large overlap has grown between the interests, resources, standards, and

technology of the computer entertainment industry and military training branches. This

research attempts to identify these commonalities with the purpose of systematically

designing and evaluating a common component-based software architecture that could be

used to implement a framework for developing content for both commercial and military

virtual simulation software applications.

iv

TABLE OF CONTENTS

LIST OF FIGURES ..viii
LIST OF TABLES.. ix
LIST OF ACRONYMS ..xi
1. INTRODUCTION ... 1

Component-Based Software Architecture ... 1
PC-Based Virtual Simulation .. 4
Research Area.. 6

2. REVIEW OF RELATED PROJECTS AND LITERATURE ... 10
Strategy for Common Use: Reuse ... 10

Microsoft Flight Simulator.. 10
Falcon 4.0 ... 11
Steel Beasts.. 12
Advantages of Reuse ... 13
Drawbacks to Reuse.. 14

Strategy for Common Use: Contracted Development ... 15
Spearhead II .. 15
Real War.. 16
Advantages of Contracted Development ... 17
Drawbacks to Contracted Development ... 17

Strategy for Common Use: Adaptation ... 18
Doom to Marine Doom ... 19
Jane’s USAF to Airbook..20
The Unreal Engine and America’s Army .. 21
Strengths of Adaptation... 23
Drawbacks to Adaptation.. 24

Research Through Collaboration at the ICT.. 25
Component-Based Modeling and Simulation.. 27
Questions Being Asked ... 28
Argument for a Common Component-Based Software Architecture.. 29

Description of a New Strategy ..29
Solution to Previous Weaknesses .. 30

v

Further Strengths / Benefits .. 31
3. METHODOLOGY .. 32

Research Concept .. 32
Phase I: Analysis ... 33

Structured Interviews .. 34
Factor Identification ... 39
Issue Generation ... 40

Phase II: Design and Documentation of the Architecture ... 41
Solution and Strategy Development ..41
Component Identification..43
Connector Identification ... 43
Component-Connector Relationships ... 44

Phase III: Implementation of Prototypes ... 45
Requirements for Prototype 1: Putt-putt ... 46
Requirements for Prototype 2: Pac-Bot Trainer... 46
Architectural Requirements for the Prototypes... 47

Phase IV: Evaluation .. 48
Step 1: Verification of the Prototypes .. 49
Step 2: Evaluation of Strategy Implementation.. 50
Step 3: Validation of the Architecture.. 51

Contribution of the Research... 52
4. RESULTS .. 54

Phase I Results: Analysis... 54
Interviews .. 54
Factors .. 55
Issues ... 57

Phase II Results: Design and Documentation of the Architecture... 58
Architecture Design: Solutions and Strategies .. 58
Architecture Documentation: Components .. 60
Architecture Documentation: Connectors.. 62

Phase III Results: Implementation Of Prototypes ... 64
Implementation Environment Details.. 65
Architecture Implementation... 66

vi

Prototype 1 Implementation .. 68
Prototype 2 Implementation .. 70

Phase IV Results: Evaluation .. 71
Step 1: Prototype Verification..71
Step 2: Strategy Implementation Verification .. 72
Step 3: Architecture Validation.. 75

5. CONCLUSION.. 77
Summary of Results .. 77
Original Contributions... 79
Limitations of the Architecture Implementation ... 79
Future Research ... 81

APPENDIX A: PHASE I RESULTS – INTERVIEWS ... 83
Group 1: Experts in software architecture and component software technologies................... 84

Interview with Didi Garfunkel, Simigon Inc. .. 84
Interview with Darren Humphrey, Disti Inc. .. 87
Interview with Robert Norton, Thoughtworks Inc... 90
Interview with Dr. Clemens Szyperski, Microsoft Inc. .. 95

Group 2: Experts in military PC-based virtual simulation .. 99
Interview with Curtis Conkey, NAVAIR .. 99
Interview with Peter Smith, NAVAIR .. 103
Interview with Dr. Roger Smith, Sparta Inc. ... 106
Interview with Dr. Michael Zyda, ISI at USC ... 109

Group 3: Experts in Virtual Simulation for Commercial Entertainment and Gaming 113
Interview with Tom Carbone, FIEA .. 113
Interview with Stephen Eckman, Disti Inc...116
Interview with Dr. Michael Gourlay, FIEA ..120
Interview with Keelan Stuart, Disti Inc. .. 124

APPENDIX B: PHASE I RESULTS – FACTORS.. 129
APPENDIX C: PHASE II RESULTS – ISSUES, SOLUTIONS AND STRATEGIES 144
APPENDIX D: PHASE II RESULTS – ARCHITECTURE DESCRIPTION............................ 154

Context .. 155
Layers.. 156
Component Classes ... 158

vii

Infrastructure Layer .. 160
Infrastructure Component Lifecycle.. 162
Component Registration Sequence.. 163
Configuration Classes ... 164
Scenario Lifecycle ... 166
Simulation Component Lifecycle... 169
Event Classes .. 171
Event Lifecycle .. 172
Event Callback Class .. 173

Event Callback Lifecycle ... 174
APPENDIX E: GLOSSARY OF ARCHITECTURE TERMS .. 175
REFERENCES .. 180

viii

LIST OF FIGURES

Figure 1: Relation of Software Architecture Task to Other Development Tasks 2
Figure 2: UML Component Model .. 43
Figure 3: UML Connector Model .. 44
Figure 4: UML Component - Connector Relationship Model ... 44
Figure 5: Screenshot of Prototype 1... 69
Figure 6: Screenshot of Prototype 2... 70
Figure 7: Context of the Component-Based Virtual Simulation.. 155
Figure 8: Component-Based Virtual Simulation Layers.. 156
Figure 9: Components Class Diagram .. 158
Figure 10: Infrastructure Layer Class Diagram ... 160
Figure 11: Infrastructure Component Lifecycle.. 162
Figure 12: Component Registration Sequence Diagram... 163
Figure 13: Configurations Class Diagram ... 164
Figure 14: Scenario Lifecycle Diagram... 166
Figure 15: Simulation Component Lifecycle Diagram.. 169
Figure 16: Event Class Diagram.. 171
Figure 17: Event Lifecycle Diagram.. 172
Figure 18: Event Callback Class Diagram... 173
Figure 19: Event Callback Lifecycle Diagram .. 174

ix

LIST OF TABLES

Table 1: Factor Recording Template ... 40
Table 2: Issue Recording Template ... 40
Table 3: Expanded Issue Recording Template .. 42
Table 4: Prototype 1 Requirements.. 46
Table 5: Requirements for Prototype 2 .. 47
Table 6: Architectural Requirements for the Prototypes ...47
Table 7: Prototype 1 Requirements Verification Template ... 49
Table 8: Prototype 2 Requirements Verification Template ... 50
Table 9: Strategy Evaluation Template..50
Table 10: Architecture Validation Template Requirement 1... 51
Table 11: Architecture Validation Template Requirement 2... 52
Table 12: Architecture Validation Template Requirement 3... 52
Table 13: Prototype 1 Verification .. 71
Table 14: Prototype 2 Verification .. 72
Table 15: Architecture Validation Requirement 1 ... 75
Table 16: Architecture Validation Requirement 2 ... 76
Table 17: Architecture Validation Requirement 3 ... 76
Table 18: Factor - Leveraging middleware.. 130
Table 19: Factor - Competitive advantage... 130
Table 20: Factor - Product line reuse ... 130
Table 21: Factor - Black box component reuse ... 131
Table 22: Factor - Confidentiality of military technology in games.. 131
Table 23: Factor - Differing gaming and military content shelf lf life ..131
Table 24: Factor - Differing gaming and military content quality... 132
Table 25: Factor - Lack of science behind military gaming technology......................................132
Table 26: Factor - Differing gaming and military content objectives.. 132
Table 27: Factor - Training objectives drive technology choices .. 133
Table 28: Factor - Differing gaming and military content fidelity ..133
Table 29: Factor - Increasingly realistic game graphics ..134
Table 30: Factor - Tie-in to learning management system .. 134
Table 31: Factor - Increasing game budgets and team sizes.. 134

x

Table 32: Factor - Component reuse difficulties: different purpose and different interface....... 135
Table 33: Factor - Component reuse difficulties: close ties to domain and context 135
Table 34: Factor - Differing gaming and military content optimization...................................... 136
Table 35: Factor - Backwards compatibility and version upgrades... 136
Table 36: Factor - Component engineering effort ... 136
Table 37: Factor - Component performance .. 137
Table 38: Factor - Component framework complexity.. 137
Table 39: Factor - Component reuse difficulties: many dependencies ..138
Table 40: Factor - Legacy code integration ... 138
Table 41: Factor - Domain model componentization .. 138
Table 42: Factor - Development in a vacuum or lab environment .. 139
Table 43: Factor - Gaming interoperability ... 139
Table 44: Factor - Built-in assumptions of a generic platform .. 140
Table 45: Factor - Military is averse to risky new technologies .. 140
Table 46: Factor - Lack of originality in serious games .. 140
Table 47: Factor - Divergence of technology .. 141
Table 48: Factor - Abstract over-engineering .. 141
Table 49: Factor - Self-driven components.. 141
Table 50: Factor - Security in the PC environment ... 142
Table 51: Factor - Component reuse difficulties: interface complexity 142
Table 52: Factor - Component protection and licensing.. 142
Table 53: Factor - Emergence of dedicated physics cards... 143
Table 54: Issue - Adoption of a component-based architecture... 145
Table 55: Issue - Market forces facing game studios... 146
Table 56: Issue - Differences between gaming and military content... 147
Table 57: Issue - Support for military training .. 148
Table 58: Issue - Component reuse.. 149
Table 59: Issue - Component architecture development.. 150
Table 60: Issue - Component framework implementation... 151
Table 61: Issue - Security and military technology ... 152
Table 62: Issue - Technology trends .. 153

xi

LIST OF ACRONYMS

AAR After Action Review

AI Artificial Intelligence

ATC Air Traffic Control

COM Component Object Model

CORBA Common Object Request Broker Architecture

COTS Components Off The Shelf

DEVS Discrete Event Specification

DOD Department of Defense

DSTA Defense Science & Technology Agency

FSC Full Spectrum Command

FSW Full Spectrum Warrior

IAF Israel Air Force

ICT Institute for Creative Technologies

IFR Instrument Flight Regulations

J2EE Java 2 platform, Enterprise Edition

LAN Local Area Network

MCMSMO Marine Corps Modeling and Simulation Management Office

MEU Marine Expeditionary Unit

MFS Microsoft Flight Simulator

MOVES MOdeling, Virtual Environments, and Simulation

PC Personal Computer

SAAM Software Architecture Analysis Method

xii

SAF Semi-Automated Forces

SAF Singapore Armed Forces

USAF United States Air Force

USC University of Southern California

VFR Visual Flight Regulations

1

1. INTRODUCTION

This chapter provides an explanation of the concepts and background information

on the technologies used in this research project. It defines what is meant by component-

based software architecture and identifies some advantages to using one. Background

information is presented on personal computer (PC)-based virtual simulation including

common uses and implementations. Finally, a description of the research area is outlined

and an initial argument is made for a component-based software architecture that could

be used to develop PC-based virtual simulations for both the military and the

entertainment industry.

Component-Based Software Architecture

Software architecture represents the fundamental, encompassing design

intelligence behind the implementation of a software system. Similar to blueprints made

for a building, software architecture provides an embodiment of decisions made to meet a

software project’s objectives. It is a structural plan that specifies how the elements of a

software system cooperate to meet a set of requirements (Hofmeister, Nord, Soni 2000).

Software architecture is also an abstraction of the design of a complex software

system. It deals with the high-level structure of a software solution (Kruchten 1995).

Software architecture is not a comprehensive decomposition of a system; it is a construct

that helps manage the complexity of design through simplification and encapsulation

(Hofmeister, Nord, Soni 2000).

Another role of the software architecture is that of a communication tool

(Clements, Kazman, Klein 2002). To management, requirements analysts, and software

2

developers the architecture provides a rationale for the set of decisions made which,

based on the prioritization of project objectives, detail a framework and direction for

implementation. As such it is a traceable link between a project’s software requirements

specification and its design.

Hofmeister, Nord, and Soni (2000) identify the relation of the software

architecture task to other development tasks:

Domain Analysis,
Requirements Analysis,

Risk Analysis

Domain Analysis,
Requirements Analysis,

Risk Analysis

Software
Architecture

Design

Software
Architecture

Design

Detailed Design,
Coding,

Integration,
Testing

Detailed Design,
Coding,

Integration,
Testing

Hardware
Architecture

Design

Hardware
Architecture

Design

requirements,
desired qualities

modifications to
requirements

modifications to
hardware
requirements

hardware
architecture

implementation
constraints

software
architecture

Domain Analysis,
Requirements Analysis,

Risk Analysis

Domain Analysis,
Requirements Analysis,

Risk Analysis

Software
Architecture

Design

Software
Architecture

Design

Detailed Design,
Coding,

Integration,
Testing

Detailed Design,
Coding,

Integration,
Testing

Hardware
Architecture

Design

Hardware
Architecture

Design

requirements,
desired qualities

modifications to
requirements

modifications to
hardware
requirements

hardware
architecture

implementation
constraints

software
architecture

Figure 1: Relation of Software Architecture Task to Other Development Tasks

Software architecture represents the first step in the design process. It follows the

definition of the problem space through domain, requirements, and risk analyses. The

software architect uses these analyses to determine the software design roadmap for the

project. The architect is responsible to ensure the solution’s capability to meet the

software requirements and provide feedback to be used in requirements modification if

shortfalls are predicted. Software architecture provides the context and direction for the

rest of the software implementation activities including detailed design, coding,

integration, and testing.

3

Component-based software architecture is a type of architecture that provides

support for the use of independent components each of which encapsulates some subset

of the required software functionality. While similar to object-oriented technology,

software components support stronger forms of modularity, lending themselves to a

greater level of composition and reuse (Barros, 2004). The functionality of a combined

set of components working together through a defined interface dictates the corporate

functionality of objects, entities, and the system as a whole.

A component in a component-based architecture is an independent module that

performs some functionality. Szyperski and Messerschmitt (2005) list the following five

characteristics of a software component: multiple-use, non-context-specific, composable

with other components, encapsulated, and independently deployable. To exhibit these

characteristics each component in an implemented component-based framework must

strictly adhere to a single interface definition. The component’s interface is what allows

it to be an independent, encapsulated set of functionality yet still have the ability to be

used and reused along side other components in the framework.

Bass et. al. (2000) list several advantages gained from using component-based

architectures. Because of the potential for reuse, component-based architectures improve

programmer productivity from 30-50%. They provide a reduced time to market because

they allow application construction through configuration and force the reduction of

application complexity. Component-based architectures also provide a basis for reuse

commerce through component distribution and marketing.

Component-based architectures are widely used in modern software applications.

The Common Object Request Broker Architecture (CORBA) is an large-scale

4

component-based architecture which allows for distributed platform-independent object

sharing and has been widely used in defense applications. COM and .NET are

Microsoft’s component based frameworks that provide the support for object reusability

on and across Windows operating systems. J2EE is Sun’s platform independent Java-

based component architecture that is based on modular components running on an

application server.

PC-Based Virtual Simulation

The personal computer is an independent computing unit that is normally

intended for use by one person at a time. PCs are widely used both in the home and as

business tools, and they do not require extensive technical expertise to operate. Typical

uses for a PC include accessing email and the internet, running word processing and

spreadsheet applications, listening to and viewing various forms of media, programming

and software development, and playing games. PCs are inexpensive enough to fit into

many home budgets and, over the last three decades, have achieved widespread

popularity. A broad range of personal computing options are available to consumers

including handheld devices, laptops, low-end and high-end desktops, multimedia centers,

and dedicated gaming consoles.

The term “personal computer” can be traced to the early 1960s to a New York

Times article reporting John W. Mauchly's speech to a group of industrial engineers

where he said, “There is no reason to suppose the average boy or girl cannot be master of

a personal computer.” ("Pocket Computer May Replace Shopping List", New York Times,

3 November 1962.) With the development of the microprocessor and its subsequent

5

exponential gains in computing power along with increases in size and speed of dynamic

and static memory, the lines have been blurred between PCs and high-end computers

such as mainframes and servers. Indeed, many a PC can be retasked to play the role of a

mainframe or server with only a change in its operating system.

Since their inception, PCs have been used to run virtual simulations of all types.

A virtual simulation is a software application that allows users to interact with a

computer-controlled virtual environment. The earliest virtual simulations were simple

2D arcade style games (Tennis for Two, Pong, Spacewar) and text-based games (Hunt the

Wumpus. Adventure) where a user would interact with the non-visual virtual environment

through keyboard input and gain a perception of the virtual world through computer

generated text outputs. With the advances of PC-based graphics, sound, and haptic

technology, virtual environments have been represented with an increasing amount of

fidelity. Current virtual simulations running on current PCs can provide the user with a

three dimensional view of an immersive virtual environment complete with realistic color

and visual effects.

PC-based virtual simulations have taken on many forms and purposes. Most have

taken the form of video games used for entertainment. Some of the genres of these video

games include puzzles, strategy, sports, racing, first and third person shooter, adventure,

and role-playing. Virtual simulations have also been used for education and training.

Because it is often easier to understand a concept through visualization, there are

simulations available that help students visualize and comprehend natural phenomena.

Simulations like this are available for subjects including electricity, optics, quantum

physics, and superconductivity to name a few. Virtual simulations also provide safe

6

mechanisms to train students how to control complex systems. They are used to train

individuals how to drive cars and trucks, pilot aircraft, navigate vessels, and operate

nuclear power plants. The simulations are useful for education and training because they

can be used to model scenarios that cannot be easily or safely executed in the real world.

Because virtual simulations can be used to model the interactions of existing and

proposed systems, they have also been used as a basis for analysis and as a tool for

communication. When hurricane Katrina blew through New Orleans, CNN used a virtual

simulation of the city’s levee system to communicate to its viewers how the city became

swamped with water. Because virtual simulations can provide an accurate logical and

visual depiction of many aspects of the real world, they can be used as a basis to analyze

parts of the real world as well as communicate those aspects to others.

Research Area

Since the beginning of the personal computing era, the military has been

interested in taking advantage of the rapid advances of PC-based virtual simulation. The

U.S. military is the world’s largest consumer of digital game-based learning (Prensky

2001) and for good reason. Due to the increasing popularity of computer games and the

consumer demand for the latest in technology, graphics, and game design at an affordable

price, the video game industry is continuing to grow. It has in some respects passed both

the movie industry and the traditional commercial computer industry as it has become a

larger consumer of high-end computer hardware and software. The most sophisticated

rendering hardware and the most responsive interactive simulation software is found in

the machines used to power computer games (Lewis, Jacobsen 2002). Cost of game-

7

based hardware and software has been driven down dramatically by technology advances

and consumer economics while quality and realism of desktop simulation technologies

has continued to improve (Morris, Tarr, 2002).

Added to the military’s interest in PC-based virtual simulation is a set of mutual

objectives shared between the entertainment industry and the military related to the PC.

At first glance it would not seem like the two have much in common. The entertainment

industry is focused on providing video games that offer a diversion from the real world

while the military’s interest in simulation is to replicate many of their real world systems

with as much fidelity as possible (Fong 2004). However, modeling and simulation

technology lies at the heart of video games while also providing a low-cost means for the

military to conduct joint training exercises, evaluate new tactics, and analyze new

weapons systems (Alexa, 2004). One common interest of both the military and

entertainment industries is the creation of low-cost, large-scale massively multiplayer

online interactive simulations (Zyda and Sheehan, 1997). Because many of today’s

computer games are designed from the outset for network play they already have much in

common with the military’s large scale distributed simulations (Lewis, Jacobsen 2002).

Another aspect of common interest stems from the fact that current and future

generations of soldiers entering the military have grown up playing computer games.

Using game-like applications for training provides a smooth transition for younger

soldiers entering the military (Macedonia, 2002). The military branches are also

interested in implementing COTS solutions, and PC technologies represent a COTS

solutions that have supplanted many custom developed simulation and control

applications (Baracos, 2001).

8

There are numerous examples of PC-based virtual simulation projects that

represent a transfer of skills, knowledge, and technology between the military and the

entertainment industry. The U.S. Navy found that students who used Microsoft Flight

Simulator were more likely to receive above average scores in real flight tests. Both the

Danish Army and the U.S. Army have used Steel Beasts to train tank commanders. An

attempt was made by Peter Bonanni to use Falcon 4.0 as a low-cost F-16 training

alternative in the Virginia Air National Guard. Spearhead II was the result of a U.S.

Marines contract to build both a commercial and military version of a PC-based tank

simulation. Real War, a strategy simulation was a similar commercial game and military

simulation project that allowed users to command joint military forces at the theater-level

in a virtual war. Marine Doom was a successful adaptation of Doom II used to train

Marines in a first-person team-based combat simulation. The commercial Unreal game

engine was used to provide the framework for content created for the U.S. Army’s

commercially successful recruiting tool, America’s Army. Simigon used the framework

behind the flight simulation games IAF and USAF to create the PC-based military

simulation platform Airbook.

The military’s interest in PC-based virtual simulation, the common simulation-

related objectives held by the military and the entertainment industry, and the history of

common simulations that have been developed and implemented on both sides makes a

strong argument for a common component-based software architecture for PC-based

virtual simulation. Such an architecture could support the common interests and

objectives listed while providing a single platform for the development of future

commercial and military simulations. It would support the creation of reusable

9

components that could be employed without little or no change across both domains and

across application contexts within each domain. It has the potential to reduce

development and implementation costs across the domain boundary and could be

structured to constantly adapt to and take advantage of the rapid advances of PC

technology. The following chapters take an in-depth look at what work and research has

been done in this area, identify work remaining, propose a process for producing and

evaluating such an architecture, detail an implementation and analysis of the architecture,

and provide conclusions on the research accomplished.

10

2. REVIEW OF RELATED PROJECTS AND LITERATURE

This chapter provides an examination of the various strategies used in the past to

repurpose PC-based virtual simulations to help achieve a military objective. It examines

the work accomplished as a product of the collaboration of the military and the

entertainment industry. Questions and remaining research areas identified by the

literature are listed. Finally an argument is made for the necessity of a common

component-based software architecture for PC-based virtual simulation, detailing the

problems it addresses and the benefits it provides.

Strategy for Common Use: Reuse

One strategy used to repurpose PC-based virtual simulations is reuse. Reuse

applies to those methods where a COTS commercial game is deployed in its original

domain but where its purpose has changed. Reuse requires no changes to the underlying

framework, structure, or content of the game other than that allowed by non-expert

consumer-oriented tools created by its developer for that purpose. Games reused for

military applications are typically highly realistic simulations of specific, complex, real-

world domains.

Microsoft Flight Simulator

Microsoft Flight Simulator (MFS) is a PC-based non-military flight simulation

software application built for use with the Windows operating system. It allows users to

pilot a wide variety of aircraft in an environment that represents the entire world in three

dimensions. The original concept for MFS came about through a series of computer

graphics papers written by Bruce Artwick in 1976. In 1979, his company, subLOGIC,

11

released FS1 Flight Simulator for the Apple II. In 1982 they licensed an IBM compatible

copy to Microsoft which was distributed as Microsoft Flight Simulator 1.01.

Because it was developed by Microsoft and because it achieved widespread

popularity, MFS has been able to stay on the cutting edge of PC and PC-based graphics

technology since its inception in 1982. Throughout its lifetime it has remained an

affordable software application ($40-$50). In 1982, its three dimensional world was

rendered to monochrome wire frames, but today its visual fidelity rivals that of the best

multi-million dollar simulators in the world.

While MFS is built and distributed as a computer game, it is widely used as a

flight training aid in both commercial and military flight schools. The Flight Safety

International Academy in Vero Beach, FL requires that students complete 27 hours of

instruction using MFS as part of their Career Pilot Program. Students practice

completing checklist procedures, observing ATC instructions, and performing basic VFR

and IFR flight maneuvers. MFS is also issued by the U.S. Navy to each of its student

pilots. (Microsoft 2005). An extensive study by the U.S. Navy found that students who

used products like MFS were 54 percent more likely to finish above average in real flight

tests than those students who had not used them. (Macedonia 2002).

Falcon 4.0

Falcon 4.0 is a PC-based commercial flight simulation game based on the military

F-16 fighter jet. It was developed and published in 1998 by Microprose, a company that

developed both strategy and simulation games. The game is widely recognized as an

extremely realistic simulation of the Block 50/52 F-16 series with accurate cockpit

interactions, flight model, and combat missions. The game comes with a 600 page

12

manual and some users consult the real “Dash 1” F-16 manual when flying the

simulation. (Lenoir 2003).

The realism of the game makes it a natural candidate for use in military training.

The latest version of the game supports multiplayer squadron-level play with dynamic

scenario generation over realistic Korean peninsula terrain rendered from satellite

imagery. Peter Bonanni, an instructor at the Virginia Air National Guard, worked with

Microprose to license the game for use in training the National Guard students. Bonanni

was impressed how Falcon 4.0 mimics the look and feel of the real aircraft, supports

team training, and provides a realistic virtual environment around the pilot (Lenoir 2003).

Unfortunately, Falcon 4.0 has had an unstable history. Its original release in 1998

contained numerous bugs, many of which were fixed in a later software patch. The

source code to the game was leaked soon after, and numerous companies took it upon

themselves to make improvements to the game’s code and release versions of their own.

The original developer, Microprose, was under the control of a company named

Spectrum Holobyte at the game’s release date. Shortly after, in 1999, Spectrum Holobyte

was acquired by Hasbro. Hasbro sold all development assets to French holding company

Infogrames, owner of Atari, in 2001. Atari then issued a cease and desist directive to all

companies creating improvements for Falcon 4.0 and licensed rights to development

company Lead Pursuit which released its own version of the Falcon line, Falcon 4.0:

Allied Force in 2005.

Steel Beasts

Steel Beasts started as a PC-based tank simulation when it was released by eSim

Games (formerly Shrapnel) in 2000. Players could operate one of two tanks as the

13

gunner or tank commander. The game has since evolved into a ground-only war game

simulation including tanks, armored personnel carriers, and infantry where players can

direct companies of tanks against computer controlled opposing tank forces. Steel Beasts

has mundane graphics compared to other modern games but concentrates instead on

providing an extremely realistic tank operation and combat experience. As such it is a

difficult game to play and appeals to a small fan base interested in realistic tank

simulations (Gamespot 2002). Released in 2005, Steel Beasts II incorporates helicopters,

advanced map and AAR features, artillery, minefields, and more realistic graphics than

the original.

Like Falcon 4.0, because of its realism, the game lends itself naturally to military

training. Unlike Falcon 4.0, Steel Beasts’ life since inception has been directed by one

owner and developer, Alexander Delaney, and is currently in use by several military

customers worldwide. Military users include the Finnish Combat School, the Dutch

Cavalry School, the Swedish Combat School, the Danish Army Combat School, and

Spain’s Ejercito del Tierra. (eSim Games 2005). It was also used for a time by West

Point Academy to train cadets (Macedonia 2002).

Advantages of Reuse

The immediately obvious and possibly most significant advantage of the reuse of

a PC-based virtual simulation is their potential for low lifecycle costs (Morris, Tarr

2002). Initial licensing costs tend to be low because it is the same software that

consumers can afford. Many professional commercial and military training organizations

already issue students PCs when they begin training. For only a few dollars more the

organizations can provide the student a COTS simulation product that provides them a

14

supplemental training aid. The COTS simulations are simple to integrate; set-up

normally consists of double-clicking an icon and choosing a few installation options.

They are also cheap to maintain as most development companies provide free patches

and upgrades to their general consumer base.

Another advantage of reuse is the low development risks associated with creating

custom content and scenarios (Fong 2004). Because the game’s use for entertainment is

often similar to the game’s repurposed application, the tools and documentation created

for the average consumer can be used to customize the game to suit its new environment.

For example, Microsoft Flight Simulator comes with software that allows players to

create and modify their own aircraft and scenarios as well as view playbacks.

Organizations using MFS for pilot training could use the same tools to create appropriate

aircraft and the required training scenarios with the capability for after action review.

Since the tools were created for consumers, it does not normally require much expertise,

other than domain knowledge, to adapt the simulations for training or other purposes.

Drawbacks to Reuse

While the risks for implementation and customization are low, the risks for

continued support of a COTS PC-based virtual simulation are high. Companies like eSim

Games which create highly realistic, specialized simulations may be small companies

with a small commercial fan base. They may not have the resources available to provide

support for a large military training installation. Small companies, like Microprose, are

also more subject to buyout or financial trouble and may not be able to continue to

support the product or may cease to exist altogether.

15

Another drawback to reuse is the lack of control over the reused COTS simulation

product line. A certain amount of trust in the validity of the simulation models must exist

before they can be used for purposes such as training or mission rehearsal. Paul and

Taylor (2002) state that the process for the development of trust in a COTS simulation

product may be expensive enough to outweigh advantages of its use.

Strategy for Common Use: Contracted Development

Another strategy used to provide PC-based virtual simulations for military is

through contracted development. Contracted development refers to those situations

where a military body subcontracts a software development company to create a PC-

based virtual simulation from scratch or from a base application that must be drastically

modified to meet the contract’s requirements. These contracts might specify or allow the

development of both a commercial and military version of the software.

Spearhead II

Spearhead II is a PC-based tactical trainer that simulates a real-time tank battle.

Players are required to develop battle plans and then implement them in the game’s

synthetic environment. Exercises can be conducted in single-player mode or multi-player

mode on a LAN or over the Internet. Users can communicate with other live players or

direct the operations of automated forces. Exercises end with an after-action review,

detailing successes and failures of the battle plan’s implementation. The game was

designed to train tank commanders in battle planning, decision making, and situational

awareness, but it was also released commercially to allow civilian users to experience the

combat expertise required of the professional soldiers that make up the Army’s tank

16

crews. The military version incorporated more realistic weapons and tactics and was

more difficult to play than the commercial version.

Spearhead II was developed by Mäk Technologies and published by Interactive

Magic in 1998. The game was developed under a military contract for Marine

Expeditionary Unit 2000 (MEU 2000), an HLA compliant multiplayer PC-based tactical

decision making game that was to be concurrently released as a commercial game. The

contract was rewritten to specify a PC-based tank simulation game that resulted in

Spearhead II (Lenoir 2003). While the game never achieved widespread commercial

success, it was used by the U.S. Army Armor School at Fort Knox for tank crew and

commander training and by the Army’s Mounted Maneuver Battle Lab for experiments

and analysis.

Real War

Real War is a PC-based real-time strategy game that allows player to control air,

land, and sea forces of the United States or the fictitious adversary forces of the

Independent Liberation Army. Players manipulate forces in the game by making theater-

level decisions that affect their military campaigns, planning and executing joint forces

coordinated attacks as well as building up and protecting supply lines. The game gives

players control over traditional military arsenals such as infantry, tanks, aircraft, and

weaponry, but also allows them to use specialized combat tactics including

reconnaissance aircraft, electronic warfare, psychological warfare, and nuclear weapons.

Real War is a real-time strategy game developed by Virginia-based defense

contractor OCI and video game developer Rival Interactive. The game was originally

built under contract from the Joint Chiefs of Staff as a PC-based computer game taught

17

joint doctrine, offering guidance on coordinated war operations across all branches of the

military. The military version of the game was titled Joint Force Employment and is used

for training in military colleges including the U.S. Joint Forces Staff College, Joint

Special Operations University, and Air University.

Advantages of Contracted Development

One of the reasons that contracted development of a PC-based virtual simulation

is attractive is that it requires little in-house expertise and can potentially result in a

computer game that can be sold commercially as well as meet military needs. It does not

require the contracting agency to hire artists, programmers or computer technologists

because all that expertise is outsourced. It requires only the technical expertise needed to

write and evaluate the requirements for the product and the ability to evaluate the product

itself to ensure requirements are met.

Contracting, unlike reuse or adaptation, can also result in a PC-based simulation

that is built from the ground up to meet military needs. Spearhead II was built by Mäk as

an HLA-compliant application to meet the training needs of tank commanders (Erwin

2000) while Real War was constructed to provide joint forces training (Cornerstone

2005). Neither was constrained by the limits imposed from reuse or adaptation of an

existing product.

Drawbacks to Contracted Development

One of the drawbacks to contracted development is the expense incurred.

Development costs for a modern, viable PC-based game are $2.1 million per year for the

first 2-4 years (Prensky 2001). Because contracted solutions are custom-made and may

be built from scratch, costs associated with the end product may be much greater than

18

costs associated with reusing an existing product. Reuse often occurs on a platform that

is a commercial success, implying widespread use and low licensing costs. Contracted

development assumes all the risk and cost of a startup operation.

Even though the risk and expense of contracted development may be high, the end

product may not be a commercially viable simulation. Because the simulation was built

with the end goals of the contracting agency, it may not be attractive to civilian gamers.

For example, Real War earned a Poor rating (3.7 out of 10) from CNET and 3 out of 10

from Gamespot for, ironically, not being realistic. While the reviewers admitted that the

game enforced the use and coordination of all military branches (the intention of the

military version used for training), they complained of poor graphics and effects, poor AI,

and a poor user interface (CNET 2001, Gamespot 2001). Real War met the objectives of

its military contract but failed commercially because it did not offer a viable alternative to

the other military strategy games of the day.

Strategy for Common Use: Adaptation

Adaptation of a virtual simulation involves modifying a commercially available

product to suit an objective other than the simulation’s original purpose. Because of the

large cost associated with fronting a computer game, game engines are currently designed

in such a way to separate functionality from content so that they can support a family of

games (Lewis, Jacobsen, 2002). Development companies often release toolkits

concurrently with or soon after the release of the game, giving end users a method to

create new types of content (characters, vehicles, weapons, or scenarios) which can be

run on the game’s framework. This method can be used repurpose a game’s content

19

while maintaining the use of its underlying engine. Another method of adaptation

involves employing a game’s developer, often under strict licensing agreements, to

expand a game’s content to apply to other objectives (Fong 2004). A third method of

adaptation involves modifying a commercial game’s underlying framework so that it can

be used to develop content that serves a different purpose.

Doom to Marine Doom

One of the first 3D simulation games to be adapted to military training was the

fantasy game Doom (Macedonia 2002). In 1995, the U.S. Marine Corps Modeling and

Simulation Management Office (MCMSMO) created a new version of the game called

Marine Doom which was retasked to build the effectiveness of 4-soldier fire teams (Fong

2004). The demons and firepower of Doom were replaced by enemy soldiers and

Marine-issued firearms, and new scenarios were created to teach basic combat skills like

conserving ammunition and observing the chain of command (Macedonia 2002). The

scenarios also emphasized team coordination, communication, and decision making

under pressure (Riddell 1997).

In 1997, Marine Corps Commandant General Krulak released Marine Corps

Order 1500.55, a directive that encouraged the adaptation of specific commercial PC-

based war games which could be used to develop military thinking and decision making.

It identified the MCMSMO and their list of suitable customized commercial computer

war games as resources to be used for such development. Gen. Krulak noted that PC-

based war games provide a potential for Marines to develop decision making skills

especially when live training opportunities are limited, and he authorized the use of

government computers for approved PC-based war games. It assigned “responsibility for

20

the development, exploitation, and approval of PC-based war games to the Marine

Combat Development Command” (MCO 1500.55 1997), emphasizing Gen. Krulak’s

position on the importance of commercial game adaptation.

Jane’s USAF to Airbook

In 1998, Electronic Arts (EA) released a military-themed flight simulation game

developed by Pixel Multimedia called Jane’s USAF. The game includes variations of

eight modern fighter aircraft to fly, four air campaigns to play, and an editor to quickly

create standalone missions. Like Falcon 4.0, Jane’s USAF introduces some amount of

dynamic scenario generation within scripted missions to create a unique combat

environment for each flight. USAF was deemed good enough to be ranked by Gamespy

(2004) as one of the top PC-based flight simulations ever created.

In the same year the game was released, Pixel Multimedia spun off a new

company named Simigon that was to repurpose and market the game for use in military

training. The company’s vision is to provide a “see it, do it” approach that allows pilots

to train in the same environment, albeit a virtual one, in which they fly (Simigon 2005).

Their management consists of a number of ex-military pilots that realized the potential of

a PC-based virtual simulation solution to provide a viable source of low-cost flight

training.

Shaul Samara, vice president of development and former A-4 pilot, relates some

of the issues the company had repurposing Jane’s USAF for military flight training. The

original game had been highly optimized to provide the best graphics and fastest game

play possible on the PC. Decisions had been made to develop the game as a streamlined,

monolithic entity that used minimal processor and memory overhead. As such, the game

21

was extremely difficult to adapt to a training environment. There was no feasible way to

integrate a learning management system, create new types of content or scenarios, or

support required military standards such as the Shareable Content Object Reference

Model (SCORM) or the High Level Architecture (HLA). Samara said the development

team had to completely rewrite the underlying framework to support an extensible

architecture (Samara 2005).

The new architecture, Knowbook, is oriented to support the content, tools, and

environment required for all types of PC-based training. Simigon’s flagship training

application, Airbook, is a simulation-based tool created to track a military pilot’s progress

through initial flight training, weapons systems training, mission rehearsal and readiness,

after action review, and recurrency training. While the aircraft graphics, cockpit

interiors, visual effects, and terrain can trace their heritage to Jane’s USAF, the

underlying structure of Airbook is completely different than the game’s. Airbook, unlike

Jane’s USAF, is flexible and extensible, supporting component-based simulation, diverse

content types, learning management, HLA, SCORM, virtual instruction, and distributed

mission training.

The Unreal Engine and America’s Army

On July 4, 2002, the U.S. Army released America’s Army, a free PC-based virtual

simulation that was developed primarily as a recruiting tool. The game was built as part

of $2.2 billion worth of funding allocated by the U.S. Congress to increase recruiting

numbers in the armed forces (Sourcewatch 2005). It was the brainchild of Col. Casey

Wardynski and was meant to provide a more accurate representation of combat than the

traditional military games that were commercially available (Roth 2003). The game was

22

originally designed and built by the MOdeling, Virtual Environments, and Simulation

(MOVES) Institute, part of the Naval Postgraduate School in Monterey, California. The

MOVES Institute was founded under the direction of Dr. Michael Zyda with $45 million

of U.S. Army funding after a 1997 report by the National Research Council that called

attention to the fact that Department of Defense (DoD) simulations were lagging behind

commercially available games and advised collaboration with the entertainment industry

(Sourcewatch 2005).

The original version of America’s Army was built on the framework of Epic

Games’ Unreal gaming engine. The game was built to reflect core U.S. Army values and

open the door to reveal the world of the U.S. Army soldier to the public. Players can

virtually experience many aspects of the lives of real American soldiers including boot

camp, Ranger and Airborne training, Special Forces operations, rules of engagement,

lifesaving, rules of war, and medical skills (America’s Army 2005). The game is noted

for its unusually realistic content including visuals, sounds, weapons modeling, and

combat scenarios which are attributed to a combination of the strength of the Unreal

engine and the influence of Army experts that worked with the game’s developers

(Gamespot 2002).

In 2004, the U.S. Army contracted Ubisoft, a French commercial video game

company, to publish future versions of America’s Army for console gaming platforms

including Xbox and Playstation. The first game, America’s Army: Rise of a Soldier was

developed by San Francisco based Secret Level and released in 2005. Rise of a Soldier is

a role-based virtual simulation that follows the player’s character through the career of a

U.S. Army soldier from a new recruit training at Fort Benning through the ranks to,

23

ultimately, lead of an elite Special Forces unit. The game was built to impart core U.S.

Army values emphasizing teamwork and real infantry tactics. To succeed a player must

learn how to make best use of firing posture, situational awareness, fire suppression, and

teamwork (Secret Level 2005).

Strengths of Adaptation

Adaptation of commercial simulations to alternative uses has several advantages.

Because of the market demand for PC technology, the low cost of games, and the

ubiquity and low cost of PCs, adaptation of a PC game can be a cost-effective solution to

complex problems ranging from system familiarization to training to mission rehearsal.

The Marine Corps cost for each license of Marine Doom was $49.95 (Riddell, 1997).

This represents a small initial material investment to produce prototype modifications and

provide a basis for feasibility studies. It also represents a small outlay for materials

required for deployment of the solution.

Another advantage of adaptation is the potential cost savings due to low

development time and low implementation complexity. The Marine Corps development

team, for example, stood up the initial release of Marine Doom in three months (Riddell,

1997). Game development toolkits provided by commercial game developers can be

used to create custom content and scenarios with a short turn around time (Fong 2004).

Because the tools and framework are not touched, there is often no need for code

recompilation, integration, and testing. The content that is created often resides in text or

resource files and can be used “as is” on the game engine. This greatly shortens

development time and complexity and relieves the need for the expertise required for

traditional application development.

24

Adaptation provides a vehicle for a military organization to enforce its ideology

or doctrine in a simulation application in a setting that may be familiar to its users. An

example of this is found in America’s Army where success in game play is based around

accepting and practicing the U.S. Army’s proclaimed core values. The game only

presents a controlled, one-sided, positive spin on U.S. military operations and avoids

other issues such as the morality of war, collateral damage, and politics. As such it is the

first overt example of the use computer gaming to espouse political aims (Sourcewatch,

2005). Based on the game’s popularity and widespread use, it probably will not be the

last.

Drawbacks to Adaptation

There are several drawbacks to adaptation of commercial simulations for

alternative uses. One disadvantage is that the simulation is being altered to suit an

objective for which it was not designed. Because the original commercial products were

developed with specific objectives, they inherently contain built-in limitations that

adaptation must overcome. Marine Doom, for example, had to replace the demonic

enemy forces of Doom with human enemy soldiers and the other-worldly weapons with

Marine-issued ones. Simigon found they had to rewrite the underlying structure of

Jane’s USAF to support the requirements of military training. While some adaptations

may be possible, others may not be. It would be hard to adapt a flight simulation for

complex ground-based interactions and probably impossible to turn it into something like

an underwater submarine simulation.

Another drawback to adaptation is the lack of control over fundamental aspects of

the simulation. The development tools that come with video games only allow

25

modification to a certain degree, and there is likely no possible access to the game

engine’s source code. The tools are often purposely designed with a decreased level of

functionality so that users may not reproduce content and scenarios to the complexity and

fidelity of the original designers. The tools may enforce limitations to the degree that the

application and content can be modified and may not allow, for example, adaptation to

provide implementation of a critical mission planning or after-action review phase (Fong

2004). In order for adaptation to provide a viable solution, the planned development

work should not exceed the capabilities of the adaptation tools provided.

Research Through Collaboration at the ICT

The Institute for Creative Technologies (ICT) is a research center affiliated with

the University of Southern California (USC) that fosters joint collaboration of the

military and entertainment industry on developing new modeling and simulation

technologies. ICT’s mission is to achieve verisimilitude in synthetic experiences through

a participant’s physical, intellectual, and emotional immersion in a virtual three

dimensional environment (Macedonia, 2001). To achieve this it provides a research

environment where entertainment industry experts collaborate with military and

academic researchers to leverage the strengths and skills of both domains (Lindheim,

Swartout 2001).

ICT was initially funded by a grant from the U.S. Army given to USC in 1999 to

create a research center focused on developing advanced military simulations. The

contract was prompted by the 1997 National Research Council study that identified the

benefits that could be obtained by military and entertainment industry collaboration

26

(Korris, 2004). One such benefit was the potential realism that could be obtained through

the addition of emotion to the traditionally sterile military simulations through the

addition of a compelling story line, a feature used in all movies and many computer

games (Lenoir 2003).

Full Spectrum Command is a PC-based company command training simulation

that resulted from a research project completed by ICT in 2003. Military students play

the role of commander of a U.S. Army light infantry company who must comprehend the

assigned mission, plan and organize the mission, and coordinate the execution of the

mission with over 100 virtual soldiers. The missions were meant to develop cognitive

skills such as tactical decision-making, resource management, and adaptive thinking (ICT

2005).

Another of ICT’s research projects, Full Spectrum Warrior (FSW), became the

first military training application developed for a commercial game console. Based on

Microsoft’s Xbox console FSW is a cognitive tactical trainer for the Army’s smallest

Light Infantry maneuver unit, the nine soldier squad. The application places players in a

first-person role as a weaponless squad leader who must direct the movements of squad

members through dismounted urban battle drills. Exercises are meant to hone the

decision-making skills of infantry soldiers and increase their situational awareness in

combat (Korris, 2004).

The ICT has also performed research for an architecture that will support PC-

based military and commercial entertainment interests. The project, called the

Integrating Architecture, leverages the strengths of game engines and military

simulations to provide an infrastructure for research efforts in the areas of artificial

27

intelligence, graphics, sound, animation, and immersive display technologies. The

Integrating Architecture centers on combining the Unreal commercial game engine with

the OneSAF Objective System military simulation environment with the objective of

providing a platform that allows researchers to facilitate the transition of new

technologies into immersive training systems (ICT 2005). Michael van Lent (2004), the

project lead, identifies the core design principles of the architecture as: supporting low-

cost research in the latest simulation, animation, and game technologies, providing a

pipeline from research to development, and providing a technological foundation for ICT

that is custom-built to meet simulation researchers’ needs.

Component-Based Modeling and Simulation

Some research has been done in the area of component-based modeling and

simulation. Bunus and Fritzen (2004) propose a methodology to analyze static aspects of

component-based equations used for mathematical modeling in the language Modelica.

Delinchant et. al. (2004) describe a component-based approach and tools used for

designing and composing subsystems used in electrical systems simulations.

Samantarray et. al. (2004) present an ontology for classifying and connecting thermofluid

process components. Hoffman (2004) specifies criteria for decomposing systems into

components for use in modeling and simulation. Shibuya (2004) discusses a component-

oriented grid-based framework that supports models representing humans, social

situations, and spatial settings. Yilmaz (2004) identifies compositional consistency

problems with DEVS components and submits an algorithm to verify their interaction

policies.

28

Questions Being Asked

While a number of projects have successfully demonstrated military and

entertainment industry collaboration and research concerning component-based

simulation continues, much remains to be done. Specifically, the following needs have

been identified:

• Barracos (2001) states that real-time simulation should be affordable, simulation

architecture should be scalable, and simulation should be able to benefit from the

market-driven advances in commercial technology, incorporating the latest

technologies as soon as they appear.

• Pace et. al. (2001) suggest that it is increasingly important to find ways to make

simulation frameworks adaptable because it allows them to cope with the continuous

evolution of software and evolve to accommodate variations of a problem without

much rework in previously developed components.

• Morris and Tarr (2002) state that there is a need for a strategic means to analyze and

extract components of COTS synthetic environments for customized application

capability.

• Zyda et. al. (2003), looking at the future of creating military-based massively

multiplayer games, posited that one possibility was for the government to procure or

develop a game engine capable of full-spectrum combat modeling and large-scale

interoperability integration with a programming interface for modeling human

behaviors and creating stories. They state that such a solution should also incorporate

29

a rapid prototyping interface that would allow missions to be created nearly

overnight.

• Barros and Sarjoughian (2004) state that further research is needed to develop new

methodologies that fully support component-based modeling and simulation aimed at

representing a wider variety of systems.

• Fong (2004) states that one of the most difficult challenges to surmount is the ability

to adapt COTS games for the military because of the lack of access to underlying

source code which presents limitations to the degree that the game can be modified.

She is seeking other ways that COTS computer games may crossover to meet the

needs of military simulation.

Argument for a Common Component-Based Software Architecture

A number of drawbacks have been identified relating to strategies used in the past

to create or repurpose commercial PC-based virtual simulations to meet military

objectives. A number of areas of need identified by the literature related to cross-domain

use and component-based simulation have been listed. This section makes an argument

for the use of a common component-based architecture for PC-based virtual simulation

by describing its ability to provide solutions for those drawbacks and areas of need.

Description of a New Strategy

A common component-based software architecture represents a new strategy for

cross-domain development and reuse for PC-based virtual simulation. Implementation of

such an architecture would require creating a framework from the ground up that would

have the ability to meet the goals and constraints of both the military and the

30

entertainment industry simultaneously. The framework would provide a generic,

common platform for the development of application-specific virtual simulation

solutions.

Specifically, a common component-based software architecture for PC-based

virtual simulation will:

• provide a common platform to create entertainment and military solutions,

• support reusable software components across varying simulations and

domains,

• and allow for interchangeable simulation software components.

Solution to Previous Weaknesses

A common component-based software architecture for PC-based virtual

simulation would address many of the drawbacks to previous strategies. It has the

potential to allow full product line control as there would not be a heavy dependency on a

third party product. While there would be an initial implementation cost, the component-

based simulation framework would have a low lifetime cost because of the savings

gained from a single development platform that could support multiple solution and

savings gained from reusable components built to support multiple domains. Because the

architecture will have been created to address the goals and priorities of both the

entertainment industry and the military, it could be used to produce simulations that

support both military contracts and viable commercial applications. This could be done

without the re-engineering effort currently required to adapt a simulation from one

domain to the other.

31

Further Strengths / Benefits

Such an architecture would also provide further benefits. Because it provides a

solution built from independent components, it would be inherently scalable and quickly

adaptable to a changing problem domain, changing requirements, and technology

advances. It would have the ability to model a wide variety of systems through different

applications of a core set of reusable components. Due to component independence,

source code would not be required to adapt components to new uses. The resulting

framework could provide both a programming and non-programming interface for

application development and system composition. Because of its reliance on

composability, the framework would also provide an environment for rapid prototyping

and implementation.

32

3. METHODOLOGY

This chapter presents a methodology for the research that will be accomplished.

It first summarizes the research concept and research goals and then outlines a four phase

approach for creating and testing the software architecture. Phase I is an analysis phase

that uses stakeholder input to identify risks and issues that the architecture will have to

account for. Phase II presents a process for the design and documentation of the

architecture. In Phase III, an implementation of the architecture will be completed

through the development of two prototype applications. An evaluation of the prototypes

will be carried out in Phase IV to verify that the architecture exhibits the traits and

characteristics required to meet its objectives. Finally a summary of the original

contributions made by this research will be given.

Research Concept

This research attempts to systematically create, document, and evaluate a

common component-based software architecture for use in the design, development, and

sustainment of a family of PC-based military and commercial virtual simulations. This

research will be scoped by its focus on a single product line, or family, of small-scale

virtual simulations used for military training and commercial entertainment. Principles

discovered in this research, if proven valid, should be able to be generalized to other

larger-scale virtual simulation architectures and product lines. The research will

prioritize breadth over depth, meaning it will attempt to address the structures required to

support a wide variety of virtual simulations implemented for entertainment or military

use, but it will not provide a full decomposition of every structure. The research will

33

emphasize the development of design decisions over the specification of design details.

It will not attempt to fully describe every component, specification, and protocol, but it

will note where future work is required and provide direction for that work.

Several goals have been set for this research. It will attempt to identify the

priorities and goals of many of the military and entertainment industry stakeholders

involved in PC-based virtual simulation. It will identify the principal technical

challenges faced in developing a common component-based software architecture for

these stakeholders. It will develop and document architectural principles and design

strategies used in the creation of the architecture. Finally the research will provide a

basis for future work in the areas of component-based architecture, common military and

commercial software, and PC-based virtual simulation.

Phase I: Analysis

An analysis phase prior to the development of a software architecture is important

because it provides a solid basis from which to make architectural decisions. These

decisions should not be made on the basis of an architectural style, design patterns, or in a

vacuum; they should be made on the basis of a direction provided by the limitations of a

set of important, driving architectural issues. The analysis phase will provide a

documented, traceable link from stakeholder requirements through the underlying

problems the architecture must address to the architecture’s development,

implementation, and evaluation.

Hofmeister, Nord, and Soni (2000) present a process for architectural analysis

based on a risk-driven approach which will be adapted for use in this research. They

34

outline an analysis phase that analyzes the risks, or factors, that could influence the

software architecture. In this research a set of structured interviews will be used to

identify those factors. Factors will be analyzed in order to generate a set of underlying

issues that the architecture must address.

Structured Interviews

A set of interviews will be conducted with domain experts. Twelve experts from

one of the following three categories will be interviewed: military PC-based virtual

simulation (4), PC-based virtual simulation for commercial entertainment and gaming(4),

and software architecture and software component technologies (4). Their responses will

be used to identify the major risks facing the proposed architecture.

Questions will be formulated to bring to light the most significant issues facing

the architecture in its various domains. They will be aimed at identifying the largest

challenges and risks to the architecture based on the opinions of the experts. Interviews

will be conducted face-to-face or over the phone and, if needed, questions will be adapted

on-the-fly to suit the information received from the expert. Responses will be hand-

recorded, or if possible, machine-recorded for later review.

The following questions will be used for the experts from each of the respective

categories:

Military PC-based virtual simulation:

1. How many years of experience have you had working with PC technologies

and PC-based simulation in the military?

2. What types of PC-based simulation projects have you led or worked on?

35

3. What major issues or drawbacks have you encountered using PC-based

technologies in the military?

4. What do you consider to be the most significant risks to using PC simulation

to achieve military objectives?

5. What major strengths and advantages have you encountered using PC-based

technologies in the military?

6. What advice and recommendations do you have for someone using PC

simulation for military objectives (training, education, communication,

analysis, etc)?

7. Are you familiar with the concept of a common software architecture for PC-

based simulation?

8. How would you define a common software architecture for PC-based

simulation?

9. Are you familiar with any common software architectures for PC-based

simulation?

10. Have you attempted to develop PC-based simulation that might be considered

a basis for a common software architecture?

11. Have you built PC-based simulations that used major components from

previous simulations that you have constructed? If so, what were those

components?

12. Are those components the most easy to reuse?

13. Are there components that are more difficult to reuse? If so, what are those

components?

36

14. What do you consider to be the most significant risks to using a common

software architecture for PC simulation to achieve military objectives?

15. What are the types of things that you see in the PC gaming / entertainment

world that you believe would be useful for the military?

PC-based virtual simulation for commercial entertainment and gaming:

1. How many years of experience have you had working with PC technologies

and PC-based simulation in the gaming industry?

2. What types of PC-based simulation projects have you led or worked on?

What type of development environment? What type of software architecture?

3. What are the largest challenges facing game developers and game

development companies today?

4. Have you used any component technologies in PC game development

projects? If so, explain.

5. Are you familiar with the concept of a common software architecture for PC-

based simulation?

6. How would you define a common software architecture for PC-based

simulation?

7. Are you familiar with any common software architectures for PC-based

simulation?

8. Have you attempted to develop PC-based simulation that might be considered

a basis for a common software architecture?

37

9. Have you built PC-based simulations that used major components from

previous simulations that you have constructed? If so, what were those

components?

10. Are those components the most easy to reuse?

11. Are there components that are more difficult to reuse? If so, what are those

components?

12. What experience have you had using military technologies for gaming? What

are the most significant business and technical risks involved in doing this?

13. What types of military technologies would you like to see in a PC simulation

game?

14. What do you see as the greatest business and technical risks for using PC

simulation and gaming technology in the military?

15. What advice and recommendations do you have for someone creating a single

framework for PC gaming and military simulation

16. What are the types of things that you see in the PC gaming / entertainment

world that you believe would be useful for the military?

Software architecture and component software technologies:

1. How many years of experience have you had working with component-based

software engineering (CBSE) and component based software architectures

(CBSA)?

2. What types of CBSE and CBSA projects have you led or worked on? Have

you worked on any gaming or military CBSE projects?

3. What major issues or drawbacks have you encountered using CBSE?

38

4. What do you consider to be the most significant risks to using CBSE?

5. What major strengths and advantages have you encountered using CBSE?

6. Are you familiar with the concept of a common software architecture for PC-

based simulation?

7. How would you define a common software architecture for PC-based

simulation?

8. Are you familiar with any common software architectures for PC-based

simulation?

9. Have you attempted to develop PC-based simulation that might be considered

a basis for a common software architecture?

10. Have you built PC-based simulations that used major components from

previous simulations that you have constructed? If so, what were those

components?

11. Are those components the most easy to reuse?

12. Are there components that are more difficult to reuse? If so, what are those

components?

13. What do you consider to be the most significant risks to using a common

component-based platform for PC simulations in both gaming and the

military?

14. What advice and recommendations do you have for someone creating a

common component based architecture for gaming and for military simulation

needs?

39

Factor Identification

Once the interviews have been completed, the experts’ answers will be analyzed

to produce the main factors they think will affect the architecture. There are three steps

involved in discovering and analyzing the factors:

1. Identify and describe the factors: Document those factors that have a driving

global influence on the architecture, those that could change during

development, and those that are difficult to accomplish.

2. Categorize the factors: Factors will fall into one of three categories:

• Organizational factors: Organizational factors are hose factors relating to

the development and customer organizations that might include schedule,

budget, attitudes, culture, software process, required standards, or business

development direction.

• Technological factors: Technological factors are those factors relating to

the hardware, software, deployment environment, tools, or other

technologies available for use.

• Product factors: Product factors are those factors relating to the

functional (what it will do) and non-functional (performance,

maintainability, dependability, etc) requirements of the delivered system

that have been identified or assumed.

3. Characterize factor flexibility: Identify how likely the factor is to change over

the course of development and how much the factor can be influenced to

change by the architect.

40

4. Analyze each factor’s impact: Identify those parts of the architecture that are

affected by the factor or changes to the factor.

Each factor will be recorded in the following format:

Table 1: Factor Recording Template

<No.> Name: <Factor Name>
 Type: <Organizational, Technological,

Product>
 Description: <Factor Description>

 Flexibility: <What aspects of the factor are
flexible and changeable?>

 Impact: <Components affected by the factor or
changes to it>

Issue Generation

Once the set of influencing factors has been identified, a set of issues derived

from those factors will be generated. An issue is a single problem that arises based on a

factor or set of factors and must be explicitly addressed by the architecture.

Issues will be recorded in the following format:

Table 2: Issue Recording Template

<No.> Name: <Issue Name>
 Description: <Issue Description>

 Influencing
factors:

<List of factors that affect this design issue>

This table will be expanded in the design phase to include specific design

solutions and architectural strategies that will address each issue.

41

Phase II: Design and Documentation of the Architecture

The software architecture development effort is typically documented in a number

of artifacts that represent the architectural description. Kruchten (1995) introduces

Rational’s popular “4+1” views of software architecture which include the use case,

logical, process, development, and physical views. Other architectural views include the

data, execution, module, code, functional, structural, and deployment views. While many

possible views and corresponding notations exist for the description of architectural

concepts, there are currently no architectural description standards, notations, or

languages that have been widely accepted (Clements, Kazman, Klein 2002; Clements

2005).

The architectural view that will be used in this research is one developed by

Hofmeister et. al. (2000) called the conceptual view. The conceptual view is an ideal one

for describing a component-based architecture because it is documented solely through

the use of components and connectors. While the terms component and connector are

broadly used in the context of software architecture, they are defined narrowly in the

conceptual view. Components and connectors will be created and joined based on

strategies developed from issues identified in the analysis phase.

Solution and Strategy Development

For every issue identified in the analysis phase, a corresponding strategy will be

developed to account for the influence and impact of the documented factors. There are

three steps involved in developing strategies.

1. Develop design solutions: A solution represents the decision to use a general

design pattern, approach, or technique to resolve a particular issue.

42

2. Develop architectural strategies: A strategy is the specific architectural

implementation of a solution that addresses an issue and mitigates or localizes

the impact of the set of related factors.

3. Identify related strategies: Related strategies are those strategies that may be

similar to, affect, or are affected by the strategy at hand.

Each issue table will be expanded to include its corresponding design solution and

architectural strategy as follows:

Table 3: Expanded Issue Recording Template

<No.> Name: <Issue Name>
 Description: <Issue Description>

 Influencing
factors:

<List of factors that affect this design issue>

 Design
solution:

<Discussion of the general solution to the design
issue>

 Architectural
strategy:

<Explanation of the strategy>

 Related
strategies:

<References to related strategies and a description of
how they are related>

Every strategy will drive decisions on the selection of component types,

component contents, and the level of component decomposition. These strategy-based

decisions are an important part of the architectural development process because they will

provide a documented link between the problem space and the design solution. Because

each component’s contents and logical boundaries will be determined by a documented

strategy, each will help resolve at lease one identified issue.

43

Component Identification

A component is an independently executing bundle of functionality that has a peer

relationship with other components. Components are independently executing in that

they have no dependencies on other components in the architecture in order to operate.

They encapsulate all aspects of the effort required to perform some function. Each

component has one or more ports that define its interface to the rest of the architecture.

The UML meta model describing a component is given as:

Component

*

0..1

Port

0..1

*

Component

*

0..1

Port

0..1

*

Figure 2: UML Component Model

Components will be identified using several methods. The easiest way to identify

components in the context of virtual simulation is to identify required domain-specific

functionality. Components will also be identified by decomposing broadly-functioning

components into those that encapsulate a specific subset of that functionality. They will

also be chosen based on their capability to be reused across multiple applications.

Connector Identification

A component’s communication path to other components and the rest of the

architecture is defined through connectors. Components (unlike objects in object-

oriented design) do not exhibit a “provides” or “uses” relationship with each other; they

44

exhibit an independent peer-to-peer relationship. Connectors encapsulate the data,

events, and control information passed in and out of a component to make it function and

deliver its results. Connectors provide the controlling influence on the functionality

provided by components. Like a component’s port, a connector’s role defines its

interface to the rest of the architecture

The UML meta model describing a connector is given as:

Connector

*

0..1

Role

0..1

*

Connector

*

0..1

Role

0..1

*

Figure 3: UML Connector Model

Component-Connector Relationships

The UML meta model describing the relationship between components and

connectors is given as:

Component

*

0..1

Port

0..1

*

Connector

*

0..1

Role

0..1

*

Protocol

11
< obeysobeys >

Component

*

0..1

Port

0..1

*

Component

*

0..1

Port

0..1

*

Connector

*

0..1

Role

0..1

*

Connector

*

0..1

Role

0..1

*

Protocol

11
< obeysobeys >

Figure 4: UML Component - Connector Relationship Model

45

Component ports and connector roles define the communication bridge between a

component and connector. Ports and roles are created to meet some specification or

protocol. As long as the protocol is shared, a given component port and given connector

role have the ability communicate.

This research aims to describe a common component-based architecture for

military and commercial PC-based virtual simulation through the conceptual architectural

view. The majority of the architectural description will consist of a number of

arrangements of components and connectors, their associated ports and roles, and the

related protocols. Accompanying the depictions of the conceptual view will be

explanations detailing how the architectural decisions made in the global analysis phase

have been implemented.

Phase III: Implementation of Prototypes

The intent of the implementation phase is to provide a basis for an evaluation of

the component-based architecture. To verify the characteristics and traits of the software

architecture, two prototype software applications will be implemented that will conform

to the architecture designed and documented during the previous phase. The prototypes

will be built to test the hypothesis, presented in Chapter 2, that a common component-

based software architecture for PC-based virtual simulation will:

• provide a common platform to create entertainment and military solutions,

• support reusable software components across varying simulations and

domains,

• and allow for interchangeable simulation software components.

46

Following is a description and list of requirements for each of the prototypes:

Requirements for Prototype 1: Putt-putt

Putt-putt is a game that simulates a larger-than-life-size miniature golf course.

Each hole in the course will consist of items and a layout similar to a real miniature golf

course hole (e.g. tee, sidewalls, slopes, obstacles, greens, hole). Instead of using a golf

club and golf ball, players will control a vehicle which must be used to direct a large

beach ball into the hole. Instead of a par based on a number of shots, par for each hole

will be based on the time required to get the beach ball from the tee to the hole.

Table 4: Prototype 1 Requirements

No. Requirement
1 Putt-putt will incorporate a vehicle with a physics model similar to a

dune-buggy.
2 Putt-putt will use a beach ball with a realistic beach ball physics model.
3 Putt-putt will use the following obstacles: barriers and trees.
4 The Putt-putt prototype will implement 1 hole which will start with the

beach ball on a tee and end when the player has directed the ball to the
hole with his vehicle.

5 Putt-putt will display the current time that the player has spent on the
hole.

6 Putt-putt will display the par time for the hole.
7 Putt-putt will provide the user with a 3rd person 3D view that follows

behind the vehicle.

Requirements for Prototype 2: Pac-Bot Trainer

Pac-Bot Trainer (PBT) is a military training simulation for IRobot, a robotics

company that supplies robots for the U.S. military. These robots are used for remotely

controlled exploration, audio and video capture, and improvised explosive device (IED)

detonation. They have been used extensively in Afghanistan and Iraq. The training

simulation will allow a user to simulate controlling one of these robots remotely.

47

Table 5: Requirements for Prototype 2

No. Requirement
1 PBT will incorporate a vehicle with a track-based physics model, an

on-board video camera, and an appendage to manipulate objects.
2 PBT will incorporate a user control station with robot motion controls

(forward, back, left, right), appendage controls (grasp, let go), and
robot video camera display.

2 PBT will use the following obstacles: buildings and trees.
3 The PBT prototype will implement 1 session that will require a user to

(1) drive the robot to a remote object and pick it up, (2) remove the
remote object, and (3) return to the robot’s starting position.

4 Each PBT session will start by listing the session’s training objectives
for the user and end when the user has completed the training
objectives.

5 PBT will display the current training objective and instructions on how
to achieve the objective.

6 At the end of the session, PBT will display the time required to achieve
each training objective.

7 PBT will provide the user with a 1st person 3D view that simulates the
display, position, and orientation of the robot’s video camera

Architectural Requirements for the Prototypes

The prototypes have been chosen to prove the architecture’s characteristics and

push its limits. To that end, an additional set of requirements will be imposed on the

prototypes that will be used in the Evaluation phase to ensure that the architecture has

met its goals.

Table 6: Architectural Requirements for the Prototypes

No. Architecture Goal Requirement
1 The architecture will

provide a common
platform to create
entertainment and
military solutions.

Both Putt-putt and PBT will be documented
to conform to the software architecture
description and specification created in
Phase II

48

No. Architecture Goal Requirement
2 The architecture will

support reusable
software components
across varying
simulations and
domains.

Putt-putt and PBT will share at least the
following software components:
camera motion component
camera display component
course description component
static obstacle behavior component
physics component

3 The architecture will
allow for
interchangeable
simulation software
components.

Putt-putt and PBT will both incorporate the
following interchangeable software
components:
low-fidelity turf component
high-fidelity grass component

The prototypes’ implementations of these requirements will be analyzed in the

next phase to ensure that they have been met and the architecture has achieved its goals.

Phase IV: Evaluation

An earnest evaluation of the software architecture is important because it

determines whether the architectural effort has met its goals. The evaluation verifies that

the architecture has addressed the risks or factors imposed on it. The evaluation also

validates the design decisions behind the architecture, ensuring the appropriate quality

attributes are supported and good design practices are observed.

The evaluation phase will consist of three steps. Each step will evaluate the

prototypes developed in the previous phase against a successively higher order of

objectives. In the first step the prototypes will be verified against their original

requirements. The second step will ensure that each of the strategies developed in the

Analysis phase had a direct or indirect impact on the design and implementation of the

prototypes. Finally, and most importantly, the prototypes (and thus the architecture) will

49

be validated against the original research objectives to ensure those objectives have been

met.

Step 1: Verification of the Prototypes

In order to verify that Prototype 1 was built to specifications, a new column will

be added to its requirements table that documents whether each of its requirements has

been met. Once the prototype has been completed, the prototype will be verified against

each requirement as follows:

Table 7: Prototype 1 Requirements Verification Template

No. Requirement Met? (Y/N)
1 Putt-putt will incorporate a vehicle with a physics model

similar to a dune-buggy.

2 Putt-putt will use a beach ball with a realistic beach ball
physics model.

3 Putt-putt will use the following obstacles: barriers and
trees.

4 The Putt-putt prototype will implement 1 hole which
will start with the beach ball on a tee and end when the
player has directed the ball to the hole with his vehicle.

5 Putt-putt will display the current time that the player has
spent on the hole.

6 Putt-putt will display the par time for the hole.
7 Putt-putt will provide the user with a 3rd person 3D view

that follows behind the vehicle.

In order to verify that Prototype 2 was built to specifications, a new column will

be added to its requirements table that documents whether each of its requirements has

been met. Once the prototype has been completed, the prototype will be verified against

each requirement as follows:

50

Table 8: Prototype 2 Requirements Verification Template

No. Requirement Met? (Y/N)
1 PBT will incorporate a vehicle with a track-based

physics model, an on-board video camera, and an
appendage to manipulate objects.

2 PBT will incorporate a user control station with robot
motion controls (forward, back, left, right), appendage
controls (grasp, let go), and robot video camera display.

2 PBT will use the following obstacles: buildings and
trees.

3 The PBT prototype will implement 1 session that will
require a user to (1) drive the robot to a remote object
and pick it up, (2) remove the remote object, and (3)
return to the robot’s starting position.

4 Each PBT session will start by listing the session’s
training objectives for the user and end when the user
has completed the training objectives.

5 PBT will display the current training objective and
instructions on how to achieve the objective.

6 At the end of the session, PBT will display the time
required to achieve each training objective.

7 PBT will provide the user with a 1st person 3D view that
simulates the display, position, and orientation of the
robot’s video camera

Step 2: Evaluation of Strategy Implementation

Because the architecture was built based on a set of strategies developed from

stakeholder input, it is important that the implementation of the strategies be verified.

Each strategy was documented in the Analysis phase, and each will be verified by

documenting its impact on the two prototypes. The original strategies table will be

expanded as follows:

Table 9: Strategy Evaluation Template

<No.> Name: <Issue Name>
 Description: <Issue Description>

51

<No.> Name: <Issue Name>
 Influencing

factors:
<List of factors that affect this design issue>

 Design
solution:

<Discussion of the general solution to the design
issue>

 Architectural
strategy:

<Explanation of the strategy>

 Related
strategies:

<References to related strategies and a description of
how they are related>

 Effect: <How the implementation of this strategy directly
affected the implementation of Putt-putt and PBT>

Step 3: Validation of the Architecture

In order to ensure that the architecture has met the original research objectives, it

is necessary to show how each of the prototypes has met those objectives. This will be

done by ensuring that the prototypes have met the architectural requirements specified in

Phase III in the following tables:

Table 10: Architecture Validation Template Requirement 1

No. Architecture Goal Requirement Met?
(Y/N)

1 The architecture will
provide a common
platform to create
entertainment and
military solutions.

Both Putt-putt and PBT will be
documented to conform to the
software architecture description
and specification created in Phase
II

<Description>

52

Table 11: Architecture Validation Template Requirement 2

No. Architecture Goal Requirement Met?
(Y/N)

2 The architecture will
support reusable
software components
across varying
simulations and
domains.

Putt-putt and PBT will share at
least the following software
components:
camera motion component
camera display component
course description component
static obstacle behavior component
physics component

<Description>

Table 12: Architecture Validation Template Requirement 3

No. Architecture Goal Requirement Met?
(Y/N)

3 The architecture will
allow for
interchangeable
simulation software
components.

Putt-putt and PBT will both
incorporate the following
interchangeable software
components:
low-fidelity turf component
high-fidelity grass component

<Description>

Contribution of the Research

This research represents the implementation of a new strategy for creating PC-

based virtual simulations for military and commercial use. It is based on the analysis of

the priorities and goals of entertainment and military industry stakeholders. This strategy

for common use provides a solution for the drawbacks encountered through other

common-use strategies like reuse, contracted development, and adaptation.

A new component-based software architecture will be developed that, when

implemented, will provide a generic platform from which application-specific virtual

53

simulation solutions can be created. It will be created systematically and documented

through notation presented in the literature.

A new framework will be created that could be used as the basis for future work.

It will be capable of supporting future virtual simulations of many types and will be

capable of incorporating new simulation-related technologies. It will provide opportunity

and direction for future research in component-based military and commercial virtual

simulation.

54

4. RESULTS

This chapter presents the results gathered and documented from executing the

process outlined in the previous chapter. Phase I Results includes the write-ups from

interviews with twelve experts, and it documents the risks and issues they identified that

the architecture must address. The design decisions and architecture description

diagrams are documented in Phase II Results. Phase III Results describes the architecture

implementation and prototype development. The evaluation of the prototypes is

presented in Phase IV Results as a verification that the implemented architecture exhibits

the characteristics required to meet its original objectives.

Phase I Results: Analysis

In the Analysis Phase twelve interviews were conducted with experts in the fields

of military virtual simulation, gaming, and component-based software architecture.

Analysis of the interview results produced a list of factors that would affect the type of

architecture created in this project. The factors were grouped together to produce a set of

fundamental issues that the architecture would need to address.

Interviews

The following twelve experts were interviewed:

Group 1: Experts in Software Architecture and Component Software Technologies

• Didi Garfunkel, Simigon Inc.

• Darren Humphrey, Disti Inc.

• Robert Norton, Thoughtworks Inc.

• Dr. Clemens Szyperski, Microsoft Inc.

55

Group 2: Experts in Military PC-Based Virtual Simulation

• Curtis Conkey, NAVAIR

• Peter Smith, NAVAIR

• Dr. Roger Smith, Sparta Inc.

• Dr. Michael Zyda, ISI at USC

Group 3: Experts in Virtual Simulation for Commercial Entertainment and Gaming

• Tom Carbone, FIEA

• Stephen Eckman, Disti Inc.

• Dr. Michael Gourlay, FIEA

• Keelan Stuart, Disti Inc.

The full write-ups for each of the interviews can be found in Appendix A.

Factors

An analysis of the interviews produced the following list of factors that the

experts believed would provide risk to the architecture or would affect its design.

1. Leveraging middleware

2. Competitive advantage

3. Product line reuse

4. Black box component use

5. Confidentiality of military technology in games

6. Differing gaming and military content shelf life

7. Differing gaming and military content quality

8. Lack of science behind military gaming technology

9. Differing gaming and military content objectives

56

10. Training objectives drive technology choices

11. Differing gaming and military content fidelity

12. Increasingly realistic gaming graphics

13. Tie-in to learning management system

14. Increasing game budgets and team sizes

15. Component reuse difficulties: different purpose and different interface

16. Component reuse difficulties: close ties to domain and context

17. Differing gaming and military content optimization

18. Backwards compatibility and version upgrades

19. Component engineering effort

20. Component performance

21. Component framework complexity

22. Component reuse difficulties: many dependencies

23. Legacy code integration

24. Domain model componentization

25. Development in a vacuum or lab environment

26. Gaming interoperability

27. Built-in assumptions of a generic platform

28. Military is averse to risky new technologies

29. Lack of originality in serious games

30. Divergence of technology

31. Abstract over-engineering

32. Self-driven components

57

33. Security in the PC environment

34. Component reuse difficulties: interface complexity

35. Component protection and licensing

36. Emergence of dedicated physics cards

The full description of each factor including categorization, characterization, and

analysis of impact can be found in Appendix B.

Issues

Similar factors were grouped together to help identify the fundamental issues that

the architecture must address. Following is the list of issues that were identified:

1. Adoption of a component-based architecture

2. Market forces facing game studios

3. Differences between gaming and military content

4. Support for military training

5. Component reuse

6. Component architecture development

7. Component framework implementation

8. Security and military technology

9. Technology trends

A full description of each issue and its associated influencing factors can be found

in Appendix C.

58

Phase II Results: Design and Documentation of the Architecture

The design and documentation of the architecture presents the results of the effort

to create a resolution to the issues identified in Phase I. Solutions and design strategies

are identified and the architecture’s components and connectors are defined.

Architecture Design: Solutions and Strategies

For each issue identified in the analysis phase, a general architectural solution was

identified that would be used to resolve the issue or mitigate its impact. For each

solution, one or more specific design strategies was developed that would help define the

structure of the architecture.

The proposed solutions to each of the numbered issues along with associated

design strategies are as follows:

1. Adoption of a component-based architecture

Solution: Make integration with the framework simple and encourage

componentization, but do not enforce it. Provide a dedicated infrastructure for

the use of non-componentized libraries.

Strategy: Use one or more framework components dedicated to interfacing

with non-componentized code.

2. Market forces facing game studios

Solution: The architecture will support customization of infrastructure and

3rd party components to help resolve scalability issues and allow companies to

maintain distinction of content.

Strategy: Use configuration-based component customization.

Strategy: Use a replaceable event manager.

59

Strategy: Use tailored events.

3. Differences between gaming and military content

Solution: Allow for the difference between gaming and military content, but

minimize the impact of replacing content and minimize content dependencies.

Strategy: Separate content components from framework components.

4. Support for military training

Solution: Use an infrastructure that supports the requirements for logging,

playback, and learning management system tie-in required by military training

systems. Encapsulate risky technology in separate components.

Strategy: Use persistent events.

5. Component reuse

Solution: Create a component interface that is simple, flexible and

negotiable.

Strategy: Use an event-based component interface.

Strategy: Use configurable event data.

6. Component architecture development

Solution: Handle protection, licensing, and versioning together. Support

individual component licenses. Ensure only one version of a component is

active at a time but allow version negotiation and replacement.

Strategy: Use registration and licensing managers.

7. Component framework implementation

Solution: Ensure that the architecture supports the major virtual simulation

domain models currently in use.

60

Strategy: Componentized virtual simulation domain models.

8. Security and military technology

Solution: Implement basic security policies to help counteract malicious use

of the infrastructure.

Strategy: Implement component interface constraints.

9. Technology trends

Solution: Encapsulate new and diverging technology to help mitigate the

risks of using it.

Strategy: Wrap risky technologies in components.

A full description of each solution, each solution’s design strategies, and related

strategies can be found in Appendix C.

Architecture Documentation: Components

This section provides a brief description of the components designed for the

architecture based on the strategies developed in this phase.

Component Types and Responsibilities

Three types of components were designed for the architecture: infrastructure

components, framework components, and content components. Their assigned

responsibilities are listed below.

• Infrastructure: These components provide the underlying core functionality

of the simulation. They are responsible for component licensing, registration,

and configuration as well as simulation, event, and time management.

• Framework: These components provide non-entity-based behaviors during

the simulation. Each framework component is run as a singleton per scenario.

61

Examples of framework components include the physics engine, graphics

engine, collision detection, environment control, camera views, terrain engine,

simulation tools, and instructional design tools.

• Content: These components provide entity-based behaviors during the

simulation. Each entity is an aggregation of content components. Examples

of content components include the entity motion model, lifecycle model,

damage model, instrument displays, external displays, and subsystem models.

Component Lifecycles

Each type of component has a distinct lifecycle. The description of each

component type’s lifecycle is listed below.

• Infrastructure: Infrastructure components are loaded and instantiated at the

beginning of execution and are destroyed and unloaded at the end of

execution.

• Framework: Framework components are loaded and instantiated before the

beginning of a scenario and are destroyed and unloaded after the end of a

scenario.

• Content: Content components are loaded at the beginning of a scenario and

are instantiated at entity creation. They are destroyed and unloaded after the

end of a scenario.

Component Administration

A number of administration procedures must be performed on each component

before it can be used. Following is the list of those procedures:

62

• Licensing: Since each component is licensed individually, a licensing

mechanism must be in place to ensure that a valid license exists before the

component is used. This functionality is provided by the LicenseMgmt

infrastructure component.

• Registration: Each component must be registered to ensure each component’s

interface is compliant with the simulation and allow the enforcement of

component interface constraints. This functionality is provided by the

RegistrationMgmt infrastructure component.

• Configuration: The configuration mechanism provides initial states for all

components and is used to define entity and scenario characteristics. This

functionality is provided by the ConfigurationMgmt infrastructure component.

A full description of each type of component and its lifecycle including class and

sequence diagrams can be found in Appendix D. A full definition of each type of

component can be found in Appendix E.

Architecture Documentation: Connectors

This section provides a brief description of the connectors designed for the

architecture based on the strategies developed in this phase.

Connector Types and Responsibilities

Two types of components were designed for the architecture: infrastructure

component reference and events. Their assigned responsibilities are listed below.

• Infrastructure Component Reference: This connector is used for

infrastructure component peer-to-peer communication. Each infrastructure

component communicates through an interface that conforms to a

63

predetermined interface contract for that component. Each infrastructure

component can interface to every other infrastructure component based on

knowledge of its contract.

• Persistent Events: This connector is used for framework and content

component peer-to-peer communication. These components communicate

through publishing and subscribing to events that conform to a predetermined

event contract. Each content and framework component can interface to every

other content and framework component based on the agreement of an event’s

name and data structure.

Connector Lifecycles

Each type of connector has a distinct lifecycle. The description of each

connector’s lifecycle is listed below.

• Infrastructure Component Reference: The infrastructure component reference

connector is established by the execution layer and passed to each

infrastructure component at the beginning of execution. It is destroyed at the

end of execution.

• Persistent Events: Each event or associated callback is instantiated when its

owner component is instantiated. When an event is published each of its

associated callbacks is run and the event and its data is time-stamped and

stored for access by any of its subscribing components. The event and its data

is persistent until superseded by a newer event of the same name. Events are

destroyed after the end of a scenario.

64

Simulation Administration

 A number of administration procedures must be performed by the simulation to

ensure that the components can communicate through the connectors. Following is the

list of those procedures:

• Event Management: The event management mechanism controls the event

communication process for all simulation components. It matches registered

event publishers to registered event subscribers. This functionality is

provided by the EventMgmt infrastructure component.

• Time Management: The time management mechanism maintains current

simulation time. This functionality is provided by the TimeMgmt

infrastructure component.

• Simulation Management: Initializes, runs, and terminates each scenario

through the instantiation and destruction of all simulation components and the

control of the EventMgmt and TimeMgmt infrastructure components. This

functionality is provided by the SimulationMgmt infrastructure component.

A full description of each type of connector and its lifecycle including class and

sequence diagrams can be found in Appendix D. A full definition of each type of

connector can be found in Appendix E.

Phase III Results: Implementation Of Prototypes

This section provides details on the development and run-time environment of the

implemented prototypes. It provides concrete specifications relating to how the

implementation of the architecture directly mapped to the architecture description.

65

Finally it gives a brief description of the components that were developed and how they

were used in Prototypes 1 and 2.

Implementation Environment Details

The implementation environment for the architecture and prototypes was chosen

based on its ability to allow extensive work on architectural implementation details while

requiring minimal work to meet the requirements of the prototypes.

• Torque Game Engine: The Torque Game Engine (TGE) v1.4 by Garage

Games provides a software development kit targeted at low budget games.

All of the C++ source code is provided for the game engine allowing

modifications as required. TGE also ships with a set of basic content and

scenarios that can be modified and reused as needed. TGE uses its own

scripting language called TorqueScript that can be used to define content and

scenario behaviors. Torsion is a free program that was used to modify and

debug those scripts.

• Windows XP: The Windows operating system was chosen as a platform for

the implementation because many PC-based games and virtual simulations are

currently built for Windows and TGE runs natively on Windows.

• Visual Studio .NET 2003: Visual Studio .NET 2003 was used as the

development environment for the implementation. It was used to manipulate

and build TGE, implement the architecture, and create all the components for

the prototypes.

66

• Hardware: The hardware used to create and test the implementation was a

Dell XPS with a Pentium IV 3.4 GHz processor, 1 GB RAM, and an ATI

RADEON 9700 video card with 128 MB video RAM.

Architecture Implementation

The component-based architecture was implemented according to the architecture

description, specifications, and modeling diagrams provided in Phase II.

• Execution Layer: The runtime environment for the component-based virtual

simulation was provided by TGE. TGE-based TorqueScript was used to

initialize, execute, and terminate the simulation.

• Infrastructure Layer: The six infrastructure components specified in the

architecture description were implemented and named CS_EventManagement,

CS_LicenseManagement, CS_RegistrationManagement,

CS_TimeManagement CS_ConfigurationManagement, and

CS_SimulationManagement. Each infrastructure component was

implemented as a Windows DLL (dynamic loading library) and loaded at run-

time by the execution layer.

• Framework Layer: Five framework components were created for use by the

prototypes, implemented as Windows DLLs, and loaded at run-time by the

infrastructure component CS_SimulationManagement:

o FC_MissionDataLoader: Framework component responsible for loading

Torque mission data for the scenario (name, description, object locations,

scenario layout, terrain file, etc).

67

o FC_ODEComponent: Framework component that encapsulates the Open

Dynamics Engine physics engine that can be used for adding physics-

based behavior to objects.

o FC_FoliageLowFid: Framework component that provides data for

representing low fidelity foliage. It is interchangeable with

FC_FoliageHighFid.

o FC_FoliageHighFid: Framework component that provides data for

representing high fidelity foliage. It is interchangeable with

FC_FoliageLowFid.

o FC_Torque_Component: Framework component that provided the

interface between the component-based simulation and Torque. It is

responsible for turning Torque-based function calls into publishable events

and turning event subscription callbacks into data accessible by Torque.

• Content Layer: Three content components were created for use by the

prototypes, implemented as Windows DLLs, and loaded at run-time by the

infrastructure component CS_SimulationManagement:

o CC_StaticBehavior: Content component that provides static behavior to

each entity that is attached. Responsible for broadcasting position and

object boundaries.

o CC_CameraMotionCtrl: Content component that provides camera motion

control to each camera entity to which it is attached by receiving keyboard

inputs and camera mode events and sending events to change the camera’s

perspective.

68

o CC_CameraDisplayCtrl: Content component that provides camera

display data for each camera entity to which it is attached that is used for

rendering the camera perspective for the player or trainee in the virtual

simulation.

Prototype 1 Implementation

Putt-putt is a game that simulates a larger-than-life-size miniature golf course.

Each hole in the course consists of items and a layout similar to a real miniature golf

course hole (e.g. tee, sidewalls, slopes, obstacles, greens, hole). Instead of using a golf

club and golf ball, players control a vehicle which must be used to direct a large beach

ball into the hole. Instead of a par based on a number of shots, par for each hole is based

on the time required to get the beach ball from the tee to the hole.

69

A screenshot of Prototype 1 is shown below:

Figure 5: Screenshot of Prototype 1

Prototype 1 makes use of the following components:

• FC_MissionDataLoader: loads data required to run scenarios

• FC_ODEComponent: provides the physics model for the beach ball

• FC_FoliageLowFid: provides low fidelity static turf

• FC_FoliageHighFid: provides high fidelity swaying grass

• FC_Torque_Component: interfaces with Torque

• CC_StaticBehavior: controls position of obstacles

• CC_CameraMotionCtrl: controls motion of the main camera

• CC_CameraDisplayCtrl: controls display of the main camera

70

Prototype 2 Implementation

Pac-Bot Trainer (PBT) is a military training simulation for IRobot, a robotics

company that supplies robots for the U.S. military. These robots are used for remotely

controlled exploration, audio and video capture, and improvised explosive device (IED)

detonation. They have been used extensively in Afghanistan and Iraq. The training

simulation allows a user to simulate controlling one of these robots remotely.

A screenshot of Prototype 2 is shown below:

Figure 6: Screenshot of Prototype 2

Prototype 2 makes use of the following components:

• FC_MissionDataLoader: loads data required to run scenarios

71

• FC_ODEComponent: provides the physics model for the crates and barrels

• FC_FoliageLowFid: provides low fidelity static turf

• FC_FoliageHighFid: provides high fidelity swaying grass

• FC_Torque_Component: interfaces with Torque

• CC_StaticBehavior: controls position of trees and buildings

• CC_CameraMotionCtrl: controls motion of main and robot cameras

• CC_CameraDisplayCtrl: controls display of main and robot cameras

Phase IV Results: Evaluation

The Evaluation phase documents whether the original research objectives have

been realized. The prototypes are first verified against their original requirements, and

then the design strategies developed in Phase II are evaluated for impact on the

architecture and the prototypes. Finally the research is validated by assessing the

implementation details of the prototypes against the original objectives for the

architecture.

Step 1: Prototype Verification

Prototype 1 can be verified against each of its requirement as follows:

Table 13: Prototype 1 Verification

No. Requirement Met? (Y/N)
1 Putt-putt will incorporate a vehicle with a physics model

similar to a dune-buggy.
Y

2 Putt-putt will use a beach ball with a realistic beach ball
physics model.

Y

3 Putt-putt will use the following obstacles: barriers and
trees.

Y

4 The Putt-putt prototype will implement 1 hole which
will start with the beach ball on a tee and end when the
player has directed the ball to the hole with his vehicle.

Y

72

No. Requirement Met? (Y/N)
5 Putt-putt will display the current time that the player has

spent on the hole.
Y

6 Putt-putt will display the par time for the hole. Y
7 Putt-putt will provide the user with a 3rd person 3D view

that follows behind the vehicle.
Y

Prototype 2 can be verified against each of its requirement as follows:

Table 14: Prototype 2 Verification

No. Requirement Met? (Y/N)
1 PBT will incorporate a vehicle with a track-based

physics model, an on-board video camera, and an
appendage to manipulate objects.

Y

2 PBT will incorporate a user control station with robot
motion controls (forward, back, left, right), appendage
controls (grasp, let go), and robot video camera display.

Y

2 PBT will use the following obstacles: buildings and
trees.

Y

3 The PBT prototype will implement 1 session that will
require a user to (1) drive the robot to a remote object
and pick it up, (2) remove the remote object, and (3)
return to the robot’s starting position.

Y

4 Each PBT session will start by listing the session’s
training objectives for the user and end when the user
has completed the training objectives.

Y

5 PBT will display the current training objective and
instructions on how to achieve the objective.

Y

6 At the end of the session, PBT will display the time
required to achieve each training objective.

Y

7 PBT will provide the user with a 1st person 3D view that
simulates the display, position, and orientation of the
robot’s video camera

Y

Step 2: Strategy Implementation Verification

Because the architecture was built based on a set of strategies developed from

stakeholder input, it is important that the implementation of the strategies be verified.

73

Each strategy documented in Phase II can be verified by documenting its impact on the

implementation of the architecture and each of the prototypes.

• Strategy: Use one or more framework components dedicated to interfacing

with non-componentized code.

Impact: Created component FC_Torque_Component that was responsible for

interfacing the component-based simulation with the non-componentized

Torque environment.

• Strategy: Use configuration-based component customization.

Impact: CS_ConfigurationManagement was created as an infrastructure

component that allows simulation component customization through the

storage and retrieval of a set of initial component configuration events.

• Strategy: Use a replaceable event manager.

Impact: CS_EventManagement was created as an infrastructure component

that is fully replaceable.

• Strategy: Use tailored events.

Impact: ISimEvent does not specify any data type or size restrictions for

events. As long as event data can be serialized and deserialized, events can

contain any amount of any type of data.

• Strategy: Separate content components from framework components.

Impact: Framework and content components both inherit

SimulationComponent but they are treated differently. Framework

components are configured per scenario and span the lifecycle of the scenario,

74

while content components are configured per entity and span the lifecycle of

each entity.

• Strategy: Use persistent events.

Impact: Once an event has been published the event and its is data available

for continuous access through the registered event callback function

GetLastEvent().

• Strategy: Use an event-based component interface.

Impact: Simulation components only communicate through events. The

event mechanism represents a simulation component’s interface to the rest of

the component-based simulation.

• Strategy: Use configurable event data.

Impact: Since ISimEvent does not specify any data type or size restrictions,

events can be configurable at compile time, pre-run-time, and run-time.

• Strategy: Use registration and licensing managers.

Impact: CS_RegistrationManagement and CS_LicenseManagement are

infrastructure components that are responsible for simulation component

registration and licensing respectively.

• Strategy: Componentized virtual simulation domain models.

Impact: The core functionality of the virtual simulation domain models is

divided among the infrastructure components and is specifically represented

by CS_TimeManagement, CS_SimulationManagement,

CS_EventManagement, and CS_ConfigurationManagement.

• Strategy: Implement component interface constraints.

75

Impact: The published and subscribed events that make up a component’s

interface are strictly controlled by the event and registration managers. Every

event published and subscribed to by a simulation component is verified by

registration management to ensure that the component has permissions to

publish or subscribe to that event.

• Strategy: Wrap risky technologies in components.

Impact: Simulation components can be used to wrap any risky technologies

that are used in the simulation. Examples would include components that

wrap a physics engine, a graphics engine, and network technology.

Step 3: Architecture Validation

In order to ensure that the architecture has met the original research objectives, it

is necessary to show how each of the prototypes has met those objectives. This is

accomplished by ensuring that the prototypes have met the architectural requirements

specified in Phase III.

Table 15: Architecture Validation Requirement 1

No. Architecture Goal Requirement Met?
(Y/N)

1 The architecture will
provide a common
platform to create
entertainment and
military solutions.

Both Putt-putt and PBT will be
documented to conform to the
software architecture description
and specification created in Phase
II

Y

Description
Both prototypes have been documented in the Phase III Results to conform to
the architecture described and documented in Phase II Results.

76

Table 16: Architecture Validation Requirement 2

No. Architecture Goal Requirement Met?
(Y/N)

2 The architecture will
support reusable
software components
across varying
simulations and
domains.

Putt-putt and PBT will share at
least the following software
components:
camera motion component
camera display component
course description component
static obstacle behavior component
physics component

Y

Description
Both prototypes make use of the following components:
CC_CameraMotionCtrl (camera motion component)
CC_CameraDisplayCtrl (camera display component)
FC_MissionDataLoader (course description component)
CC_StaticBehavior (static obstacle behavior component)
FC_ODEComponent (physics component)

Table 17: Architecture Validation Requirement 3

No. Architecture Goal Requirement Met?
(Y/N)

3 The architecture will
allow for
interchangeable
simulation software
components.

Putt-putt and PBT will both
incorporate the following
interchangeable software
components:
low-fidelity turf component
high-fidelity grass component

Y

Description
Both prototypes make use of the following components:
FC_FoliageLowFid (low-fidelity turf component)
FC_FoliageHighFid (high-fidelity grass component)

77

5. CONCLUSION

This chapter draws to conclusion the research work and documented results of the

previous chapters. A summary of the results of the completed research and its original

contributions are presented. A set of limitations of the architecture as implemented in

this research are presented and discussed. Finally a number of topics are identified for

future research efforts in the component-based virtual simulation domain.

Summary of Results

This section provides a summary of the results obtained in each phase of the

research and documents that the research objectives have been attained.

Phase I represented an analysis of the problem space relating to military and

commercial use of component-based virtual simulation. Twelve experts were

interviewed in the domains of software architecture and component software

technologies, military PC-based virtual simulation, and virtual simulation for commercial

entertainment and gaming. From these interviews a list of thirty-six factors were

extracted which represented the set of highest risk items that would face a common PC-

based software architecture for component-based virtual simulation. The isolated factors

were categorized into nine major issues that the software architecture needed to address.

Phase II involved the design and documentation of the software architecture for

the component-based virtual simulation. For each issue identified in Phase I a

corresponding solution was developed whose purpose was to resolve the issue and help

mitigate its associated factors. Each solution was supported by one or more specific

design strategies that directly impacted the design and implementation of the software

78

architecture. Finally the software architecture was developed and then documented with

UML diagrams and supporting text.

In Phase III the software architecture was implemented on a PC-based Windows

platform in the run-time environment provided by the Torque Game Engine. Two

prototype component-based virtual simulations, a simple game and a simple military

training aid, were created based on the design strategies and architecture developed in

Phase II. The prototypes shared a number of different types of components and also

supported interchangeable components.

An evaluation of the implemented architecture and prototypes was conducted in

Phase IV to ensure the original objectives of the research had been achieved. First, the

prototypes were verified against their original requirements. Second, the implementation

of each design strategy was analyzed to ensure each had a direct effect on the

implemented architecture and prototypes. Third, the architecture was validated by

comparing the results achieved with the prototypes against the original tenets of the

thesis. Specifically, it was demonstrated that a common component-based software

architecture for PC-based virtual simulation:

• provides a common platform to create entertainment and military solutions,

• supports reusable software components across varying simulations and

domains,

• and allows for interchangeable simulation software components.

79

Original Contributions

A number of original contributions have been made by the research. This

research represents the design and implementation of a new component-based software

architecture for creating PC-based virtual simulations for military and commercial use. It

is based on a new consolidated analysis of the priorities and goals of entertainment and

military industry stakeholders. A new set of solutions and design strategies have been

created and tested to meet these priorities and goals. Finally, a new framework has been

implemented that is capable of supporting virtual simulations of many types and flexible

enough to support incorporation of new simulation-related technologies.

Limitations of the Architecture Implementation

While the architecture has demonstrated that it is capable of meeting the

objectives of this research, a number of topics have been identified that the architecture

does not explicitly address, and a number of limitations are known that constrain this

implementation. These topics have been identified both by the author and by other

architecture experts that have reviewed the design documentation, and they are briefly

discussed here:

• Proof of concept only: While architectural design decisions were made based

on input from experienced gaming and military personnel, no attempt has

been made to test the prototypes in their respective domains. Until the

architecture has proven itself in the field it remains a proof of concept.

• Immaturity of the infrastructure components: A minimalist approach was

taken in designing the infrastructure components with the intention of

80

developing only what was absolutely required for the component-based

simulation to execute. Specifically a significant amount of work is needed on

the registration management and license management components to support

full component registration and licensing.

• Inefficiencies: The architecture currently demands component registration

and license verification at every scenario execution on component

initialization. While this would work, it unnecessarily extends scenario load

times. The event manager currently allows the propagation of all events to all

simulation components. It would be more efficient to scope event propagation

as required.

• Multiple simulation instances: The current implementation does not support

multiple instances of the component-based simulation running concurrently on

a single personal computer.

• Support for a continuous world: There is currently no explicit support for the

concept of a continuous world. This is an increasingly popular concept,

especially in massively multiplayer games, that allows users to enter and leave

a persistent virtual world which is simulated for an indefinite amount of time.

• Scalability and aggregate models: Advanced military training scenarios

sometimes require thousands of entities with the ability to aggregate and de-

aggregate them into platoons, companies, battalions, etc. and display different

behavior patterns accordingly. No documentation was provided in the

architecture description that would support this scale and class of simulation.

81

• Architecture evolution: Szyperski (1998) states that a component architecture

must not only be defined but maintained to suit the evolution of its

components. At this time no methodology has been identified to support the

evolution and maturation of the architecture or its adaptation to different

projects and development processes.

• Tools: While considerable thought was given to how the architecture would

support simulation-oriented development tools, no attempt was made to

develop tools that would aid in developing and integrating components or

building a simulation-based application. Examples of such tools could

include a component licensing tool, a component registration and interface

negotiation tool, a scenario generation tool, and SCORM compliant

courseware wrapping tools to name a few.

• Deployment: Little effort has been given to designing a deployment

environment for the component-based virtual simulation. Significant effort

would be required to create a commercially deployable framework with

independently marketable components. Ideally deployment and installation

would be simple for the end user and linked to a commercially viable business

and marketing effort.

Future Research

There are several areas of interest in which future research could be conducted.

The architecture should be tested in both a real commercial gaming and military training

environment. While this research proved the concept of a common implementation for

82

component-based virtual simulation for a PC platform, it did not demand performance

from the architecture as a real-world implementation would.

In a related area, the architecture, and specifically the event mechanism, should be

stressed to analyze the types of loads it has the ability to handle. Currently it has proven

it can support the simplest of games and training aids. However it would be interesting to

see if it can support the behavior of hundreds or thousands of entities with complex

interactions and behavior patterns.

Finally, with the recent prevalence of integrated online solutions, it would be

beneficial to research the possibility of implementing a full client-server implementation

of the architecture. Component-based virtual simulation has the potential to allow

disparate components of a single application to be hosted on separate servers in different

parts of the world while clients would be presented with a seamless virtual environment.

It would be worthwhile to test out this distributed-component- based virtual simulation

concept as it has the potential to alleviate many of the problems associated with software

piracy, copyrighting, and licensing.

83

APPENDIX A: PHASE I RESULTS – INTERVIEWS

84

Group 1: Experts in software architecture and component software technologies

Interview with Didi Garfunkel, Simigon Inc.

1. How many years of experience have you had working with component-based

software engineering (CBSE) and component based software architectures

(CBSA)?

7 years for Simigon and Pixel, before that doing network management.

2. What types of CBSE and CBSA projects have you led or worked on? Have

you worked on any gaming or military CBSE projects?

At Pixel we were working on a component-based civilian flight simulator, but

that was never released. After that I led the architecture and software

engineering effort for Simigon’s Airbook. We developed component-based

sims for the Israeli Air Force F-16 and F-15. We did an integration with the

F-4 platform and also worked with Rafael doing a ship bridge simulation.

3. What major issues or drawbacks have you encountered using CBSE?

Backward compatibility is a huge issue. When you create a framework with

interfaces so that customers can build their own components, those interfaces

have to be sustained through multiple versions of the product to maintain

backward compatibility. Regarding that same issue, our product has some

dependencies on 3rd party tools and libraries. When those tools go through

upgrade cycles we have to adapt our components and help our customers

adapt their components for the new toolset. CBSE requires significantly more

effort than creating something monolithic. It’s almost always easier to build

one big block than to split it up into components and spend all that effort on

85

interfacing. There are also performance issues – loading potentially hundreds

of components at run-time is not ideal, but it’s something that is required for

large complex simulations. Finally there are licensing issues. When you use

an open architecture in a component-based software framework you are

supporting components written by many people. All that content must be

protected and licensed properly.

4. What do you consider to be the most significant risks to using CBSE?

Complexity. CBSE by nature can add a lot of complication to a simulation.

This is a risk especially when dealing with new developers and new

customers.

5. What major strengths and advantages have you encountered using CBSE?

Every software word with an “-ility”. Reusability – you can take one software

component and reuse it in many different environments. Maintainability –

because components are created with a limited scope it’s possible to maintain

each component individually without affecting the whole framework and

without changing interfaces. CBSE provides a flexible long-term solution –

new pieces of functionality can always be added without re-designing the

whole system. Also it allows 3rd parties like customers and subcontractors to

work from a single platform and simulation environment that you developed.

And it can allow for both classified and unclassified work in the same

framework often using the same components.

6. Are you familiar with the concept of a common software architecture for PC-

based simulation?

86

Simigon’s Airbook is the only one out there for military PC-based simulation.

I’m not aware of one out there for gaming or entertainment. There are a lot of

open architectures and gaming engines but they are not component-based.

7. How would you define a common software architecture for PC-based

simulation?

Not asked as this question was poorly worded and confusing to the experts.

8. Are you familiar with any common software architectures for PC-based

simulation?

CAE has an open architecture for PC-based simulation.

9. Have you attempted to develop PC-based simulation that might be considered

a basis for a common software architecture?

Yes – Airbook.

10. Have you built PC-based simulations that used major components from

previous simulations that you have constructed? If so, what were those

components?

Yes, in the past we’ve taken gaming technologies and built them into

components. We took software built for automated red air and build them into

component-based flight models and behaviors.

11. Are those components the most easy to reuse?

Components that have the least number of dependencies are the easiest to

reuse.

12. Are there components that are more difficult to reuse? If so, what are those

components?

87

Components that can affect lots of other components are less easy to reuse.

One of the main reasons for this is that they require more complicated

interfaces.

13. What do you consider to be the most significant risks to using a common

component-based platform for PC simulations in both gaming and the

military?

Real-life training is very different from playing a game – there are different

issues and different priorities. Games have to be fun. Training simulations

should be the highest fidelity possible. If the fidelity isn’t high enough you

can get negative training. This would never be a problem for a game.

14. What advice and recommendations do you have for someone creating a

common component based architecture for gaming and for military simulation

needs?

Anyone creating this type of platform needs to have very good domain

knowledge and extensive experience in both gaming and military simulation.

Also, keep the architecture as simple as possible – many simulations have

unnecessary complication.

Interview with Darren Humphrey, Disti Inc.

1. How many years of experience have you had working with component-based

software engineering (CBSE) and component based software architectures

(CBSA)?

10 years.

88

2. What types of CBSE and CBSA projects have you led or worked on? Have

you worked on any gaming or military CBSE projects?

I’ve worked on GLStudio at Disti and a product called ModIOS for Motorola

before that.

3. What major issues or drawbacks have you encountered using CBSE?

The organization you are doing it for might not necessarily be set up to do

CBSE. On the Lockheed Martin MEADS program – in the simulation based

acquisition part of the project – we tried fitting in legacy non-componentized

systems into a component architecture. This was difficult.

4. What do you consider to be the most significant risks to using CBSE?

Where you partition your data or domain model is a big risk. When you

partition it into components you make assumptions that may or may not be

true in the future. You’re architecture must be explicitly designed around the

domain you are working in, and you have to do a lot more analysis and

engineering work up front to make it work.

5. What major strengths and advantages have you encountered using CBSE?

CBSE gives you all the things object-oriented technologies were supposed to

give you – encapsulation, modularity.

6. Are you familiar with any common software architectures for PC-based

simulation?

Yes, Zedasoft uses an architecture they call Container Based Architecture.

There is also an architecture called the Common Simulation Framework. It

89

was originally designed for solving differential equations to facilitate missile

path modeling and simulations, so it’s very domain specific.

7. Have you attempted to develop PC-based simulation that might be considered

a basis for a common software architecture?

At Disti we have a product called GLStudio that is component-based and is

used in both the commercial and military simulation worlds.

8. Have you built PC-based simulations that used major components from

previous simulations that you have constructed? If so, what were those

components?

Yes, we use GLStudio to develop reusable components for aircraft cockpit

instruments.

9. Are those components the most easy to reuse?

Types of components that are easiest to reuse are ones that are more context

free and have well-defined interfaces – things like physics and math models.

However you have to be careful about the fidelity differences required by

different uses of the same components.

10. Are there components that are more difficult to reuse? If so, what are those

components?

Components that are harder to reuse are ones that interface with real world I/O

connections – like grips and hardware connectors. These are so domain

specific that you can’t really use them in a different context.

90

11. What do you consider to be the most significant risks to using a common

component-based platform for PC simulations in both gaming and the

military?

Getting someone to adopt it and use it. There are going to be a lot of

incompatible components across different architectures. Getting them all to

work with a specific framework will be difficult. You also have to look at the

lack of robustness and fidelity in gaming technology – a lot of that code is

optimized and pre-computed because much of the environment doesn’t

change. In a military simulation on the other hand, everything in the

environment can change in real-time. Also, games are built for their

entertainment value and do not meet many of the scientific metrics the

military requires like display fidelity and refresh rate.

12. What advice and recommendations do you have for someone creating a

common component based architecture for gaming and for military simulation

needs?

Look at existing architectures out there that can be adapted or reused. Don’t

create something from scratch if you don’t have to because a lot of work has

already been done.

Interview with Robert Norton, Thoughtworks Inc.

1. How many years of experience have you had working with component-based

software engineering (CBSE) and component based software architectures

(CBSA)?

5 years

91

2. What types of CBSE and CBSA projects have you led or worked on? Have

you worked on any gaming or military CBSE projects?

.NET, J2EE. Shuttle Engineering Simulator 3 at NASA; F-16 Block 60 Pilot

Trainer at LM Aero.

3. What major issues or drawbacks have you encountered using CBSE?

Software reuse is the underlying motivation for CBSE. Will Tracz identifies 3

“Con’s” of software reuse, Concept, Content, and Context. The last of these 3

often thwarts reuse efforts: A component taken out of it’s initial conceptual,

operational, and implementation context if often hard to get working in a

different context without significant effort – effort that may exceed what it

would have taken to develop the required functionality from scratch. So while

it may seem theoretically plausible to reuse, for example, a landing gear

model from one simulator in another, in practice the implementation context

(required inputs; output format; functional requirements, etc) may be different

enough to make reuse impossible.

4. What do you consider to be the most significant risks to using CBSE?

Any component to which the original source code is not available presents

significant risks to a project. Using a black box component could introduce

errors, security holes, or a performance bottleneck, and these problems will be

difficult to correct without the ability for the integrator to review the

component’s source code.

5. What major strengths and advantages have you encountered using CBSE?

92

Reuse, despite its elusiveness, is still the biggest motivator and advantage to

CBSE. When a component has been thoroughly tested and documented and its

operation is well understood and clearly defined, the component will not have

to be developed from scratch, thus avoiding problems such as inserting faults.

Frameworks such those found in .NET and J2EE are perhaps the best example

of widespread component reuse.

6. Are you familiar with the concept of a common software architecture for PC-

based simulation?

Yes, in relation to constructive simulations of aircraft.

7. How would you define a common software architecture for PC-based

simulation?

I will shape this answer in relation the constructive flight simulations I’ve

seen. An executive component handles frame sequencing, event handling, and

synchronizing. The executive gets input events from sensor components and

provides input to model components, such as aero, thermo, guidance,

weapons, and landing gear. These models handle physics and data generation

for their area of responsibility. A common simulation architecture would

define standard interfaces and contracts for executive, sensor, and model

components, along with a standard means of input and output. This would

probably extend within a certain domain of simulation, i.e. aircraft simulation

or four-wheeled vehicle simulation.

8. Are you familiar with any common software architectures for PC-based

simulation?

93

The one I used at NASA was known as Trick. In the SES3 project at NASA,

Trick provided a run-time executive that supported real time and faster then

real time HIL simulations. I’ll also provide an introduction to Bill Othon at

the engineering directorate of JSC via email this week: He can give you

extensive knowledge of Trick. Also look up Brian Hoelscher in the LM

directory and send me his email address, and I’ll do the same intro. He’s a

Staff Aero Eng at LM Space Operations who’s been developing space sims

for the past 15 years – he can get down to more specifics than I can.

9. Have you attempted to develop PC-based simulation that might be considered

a basis for a common software architecture?

No.

10. Have you built PC-based simulations that used major components from

previous simulations that you have constructed? If so, what were those

components?

Trick has been used on several other systems and was an established executive

component.

11. Are those components the most easy to reuse?

Trick was relatively straightforward to reuse, since it had been used on 5-10

different projects of which I’m aware. Some models used in SES3 were also

reused from other shuttle simulators, since they are developed at great expense

and undergo significant validation.

12. Are there components that are more difficult to reuse? If so, what are those

components?

94

Components that manipulate hardware are difficult to reuse, since each

hardware interface is likely to be different from one simulator to the next. For

example, I remember additional work having to be done to integrate the SES3

simulator with a new type of joystick. In general, any component that is

highly coupled to many other components is also difficult to reuse, since all its

dependencies would have to be reused as well.

13. What do you consider to be the most significant risks to using a common

component-based platform for PC simulations in both gaming and the

military?

The most significant risk in any planned reuse effort is that the solution is

developed in a lab without consultation with actual production projects. The

lab solution is then forced upon production projects to justify the expense and

chase after ROI. The production projects then fall behind as they struggle to

learn the platform, fix aspects of it that are broken, and add new functionality

where needed. A better solution is offered below, in which candidate projects

are identified early in the platform’s development cycle.

14. What advice and recommendations do you have for someone creating a

common component based architecture for gaming and for military simulation

needs?

Understand the mantra that something built for reuse will typically follow the

rule of 3’s: It will take 3 times as long to develop, will cost 3 times as much,

and must be used in 3 different systems before it can be dubbed reusable.

Someone creating a common component based simulation architecture would

95

have to have these three initial system identified so that the generality of the

architecture could be validated. These initial systems provide functional and

nonfunctional requirements that may not have been obvious from initial

analysis. Another aspect of this on which to focus are the underlying

architectural patterns behind simulation. Reuse is happening more

successfully at the design level than the component/implementation level in

the software industry as evinced by the rise in adoption and identification of

design patterns since the 90’s. If you can identify simulation architecture

patterns (as Fowler has done for enterprise architecture in Patterns of

Enterprise Application Architecture), then you’ll have made an enduring

contribution that won’t just sit on the shelf as another proof-of-concept

prototype.

Interview with Dr. Clemens Szyperski, Microsoft Inc.

1. How many years of experience have you had working with component-based

software engineering (CBSE) and component based software architectures

(CBSA)?

17 years.

2. What types of CBSE and CBSA projects have you led or worked on? Have

you worked on any gaming or military CBSE projects?

Prior to joining Microsoft I worked in the area in the research context on both

real-time and non-real-time component-based systems. I am currently

working on a project at the incubation level at Mircrosoft that involves a

component-based platform – but the details of that project are still under

96

wraps. I haven’t done anything in gaming or for the military. I have done

some COM related projects and some .NET projects.

3. What major issues or drawbacks have you encountered using CBSE?

CBSE really requires extensive up-front analysis, more so than other software

engineering disciplines. The up-front analysis and early component-based

engineering effort provides a set of cones to work between. If you start

deviating from the path marked by the cones as the project progress, the things

get very difficult. For that reason, CBSE is good for relatively mature fields –

where the domain is clearly understood

4. What do you consider to be the most significant risks to using CBSE?

One major risk of CBSE is that you can fall into the trap of doing a lot of

abstract over-engineering that has little to do with real solutions to real

problems – the effort in the end may not allow you to deliver anything

concrete. The trick is to develop a set of end-to-end prototypes that mature as

the engineering effort progresses.

5. What major strengths and advantages have you encountered using CBSE?

If you get the design and execution right, the result is a much more solid

engineering effort than typical. This is true because CBSE goes hand in hand

with process and end-product maturity – the constraints imposed by CBSE

cause engineers and developers to think much more carefully about what they

are doing.

6. Are you familiar with the concept of a common software architecture for PC-

based simulation?

97

Yes, but I haven’t worked on anything like that. I am familiar with at least

one project of this type.

7. How would you define a common software architecture for PC-based

simulation?

Not asked as this question was poorly worded and confusing to the experts.

8. Are you familiar with any common software architectures for PC-based

simulation?

There was a project called CSRIO – an R&D project done by the Australian

ministry of defense. It was a component-based architecture on the PC used

for visualization.

9. Have you attempted to develop PC-based simulation that might be considered

a basis for a common software architecture?

Back when I was doing research at the university level I worked on a real-time

component-based project relating to distributed time warp. Basically it was a

time-bound simulation that used queuing policies on a set of registered

components.

10. Have you built PC-based simulations that used major components from

previous simulations that you have constructed? If so, what were those

components?

No, not really.

11. Are those components the most easy to reuse?

Reuse is really an inappropriate term when talking about component-based

architectures. Reuse implies adaptation to a new environment. Components

98

should be built for a certain purpose – if they are used for that purpose in two

different environments then that is part of their “use”, not reuse.

12. Are there components that are more difficult to reuse? If so, what are those

components?

When doing the upfront work for any component-based project, a good

analysis of the domain is necessary. For a domain-specific platform, each

component will have its place under the natural taxonomy of the domain.

Components that fit this taxonomy will be easy to use. Components that try to

break the boundaries will not.

13. What do you consider to be the most significant risks to using a common

component-based platform for PC simulations in both gaming and the

military?

The biggest risk will be not doing a good job at domain analysis along with

deep prototyping to ensure concrete solutions for both industries. There is

also a risk from the project management side of not thinking over the

complete timeline of the CBSE project.

14. What advice and recommendations do you have for someone creating a

common component based architecture for gaming and for military simulation

needs?

Give some thought to building a component framework. Components by

nature cannot be domain-independent. Also you will lose control of the

deployed environment if you use self-driven components – those components

99

that dynamically try to interface with other components at run-time. Insist on

defining component configurations before run-time, not during run-time.

Group 2: Experts in military PC-based virtual simulation

Interview with Curtis Conkey, NAVAIR

1. How many years of experience have you had working with PC technologies

and PC-based simulation in the military?

I have worked in gaming and virtual simulation research for the military from

2002 to the present. But I worked for 20 years for Bell Labs before that in the

field of PC-based communications network simulations.

2. What types of PC-based simulation projects have you led or worked on?

We worked on a on-board team-based training simulation for the U.S.S.

Virginia, a Navy submarine. Recently I’ve been working on research and

experimentation projects with the open-source Delta3D game engine

developed at the Naval Postgraduate School.

3. What major issues or drawbacks have you encountered using PC-based

technologies in the military?

There is a lack of science behind it right now. Because there hasn’t been

much scientific examination and experimentation in the field, we don’t know

if and when PC-based technologies will be useful for military applications.

There are no guidelines found through a scientific process that tells anyone

when the technology can be applied and which training objectives it can be

used for. There are also no return-on-investment numbers out there to let the

100

military do any sort of trade-off analysis between PC gaming technologies and

alternative solutions.

4. What do you consider to be the most significant risks to using PC simulation

to achieve military objectives?

Current commercial games and simulations on the market are not designed

with the ISD process or objectives in mind – they are designed for

entertainment only. The current thought in a lot of military circles is that if

the game as a war theme, it can be used as a trainer. That’s simply not true in

many circumstances.

5. What major strengths and advantages have you encountered using PC-based

technologies in the military?

The immediate advantage that comes to mind is the military’s ability to

leverage the huge amount of research and development money and effort the

entertainment industry as used to develop today’s games. We have the

opportunity to get it all for free. The other strength we get is the emphasis on

the importance of the story – something that greatly aids immersion in the

virtual world but is not used extensively in military training simulations.

6. What advice and recommendations do you have for someone using PC

simulation for military objectives (training, education, communication,

analysis, etc)?

Definitely understand what you are attempting to train for before you try

anything. It is important to have the training objectives laid out before any

work is done.

101

7. Are you familiar with the concept of a common software architecture for PC-

based simulation?

Yes.

8. How would you define a common software architecture for PC-based

simulation?

It is one that is used to create both entertainment and training material.

9. Are you familiar with any common software architectures for PC-based

simulation?

Sure. The Unreal engine, Delta3D and Gamebryo all come to mind. They are

engines that have all been used to provide entertainment and have been used

in training as well. In fact the guys writing Delta3D are looking at making it a

modular architecture – allowing you to swap its physics engine with another

one. They have used it recently as a firefighter trainer.

10. Have you attempted to develop PC-based simulation that might be considered

a basis for a common software architecture?

No, not personally, but America’s Army is a good example of this. Many of

the tools used to create content for entertainment and being converted to

create training content for the military. It’s being used as a platform to do

both.

11. Have you built PC-based simulations that used major components from

previous simulations that you have constructed? If so, what were those

components?

102

No, but there are fundamental difference between similar products used for

gaming and training. For example, the difficulty level in military training

scenarios will be higher - more realistic. It wouldn’t be as fun to play at this

level for entertainment.

12. Are those components the most easy to reuse?

Not applicable.

13. Are there components that are more difficult to reuse? If so, what are those

components?

Not applicable.

14. What do you consider to be the most significant risks to using a common

software architecture for PC simulation to achieve military objectives?

There are different underlying motivations when you are doing entertainment

versus when you are doing training. The objectives are different. Also, there

will probably be fidelity issues – what you can get by with for gaming may

not be satisfactory for training.

15. What are the types of things that you see in the PC gaming / entertainment

world that you believe would be useful for the military?

The gaming world is coming out with increasingly realistic graphics effects –

sometimes even building scenarios around them to show them off. They add a

lot to the realism of the scene and the military needs to look at incorporating

these technologies. From the hardware side, gaming is increasingly going to

multi-core parallel processors. Also we need to look at ways to tie what is

103

happening in scenarios back to a learning management system for tracking –

aiding in training and remediation.

Interview with Peter Smith, NAVAIR

1. How many years of experience have you had working with PC technologies

and PC-based simulation in the military?

2 years.

2. What types of PC-based simulation projects have you led or worked on?

Most recently I’ve worked on the Delta3D project. Before that I worked for

SAIC doing database development for CCTT and other PC sim projects.

3. What major issues or drawbacks have you encountered using PC-based

technologies in the military?

Interestingly there’s no real resistance to using PC technologies in the

military. It used to be the older generations were opposed to it but that’s not

true anymore. One of the assumptions we’ve made in the past is that the

younger generations will adapt to game-based training easily – which overall

seems to be true for the U.S. But in the U.K. we’ve found that many recruits

are not gamers and don’t adapt as easily.

4. What do you consider to be the most significant risks to using PC simulation

to achieve military objectives?

Sometimes in training fidelity really does matter. If you tried to do certain

tasks in PC-based sims without the required fidelity, you would produce

negative training.

104

5. What major strengths and advantages have you encountered using PC-based

technologies in the military?

PC-based gaming, especially recently, has really encouraged emotional

involvement. If we apply this to military training, we can make trainers that

are compelling for recruits to use – they would sit and want to train

themselves – especially if there is a competition element involved.

6. What advice and recommendations do you have for someone using PC

simulation for military objectives (training, education, communication,

analysis, etc)?

Just because it’s a simulation doesn’t mean it’s a game. It’s important to have

compelling content and scenarios – to bring the aspect of game play into

simulations.

7. Are you familiar with the concept of a common software architecture for PC-

based simulation?

Sure, the Torque engine is an example of one.

8. How would you define a common software architecture for PC-based

simulation?

Not asked as this question was poorly worded and confusing to the experts.

9. Are you familiar with any common software architectures for PC-based

simulation?

Recently from the handheld personal computing side, there is the GP2X

platform, the Zodiak, and mobile learning platforms.

105

10. Have you attempted to develop PC-based simulation that might be considered

a basis for a common software architecture?

No, but I’ve used both Full Spectrum Warrior and Full Spectrum Commander.

These are platforms that have been purposely built to provide both

entertainment and training.

11. Have you built PC-based simulations that used major components from

previous simulations that you have constructed? If so, what were those

components?

Referring back to Full Spectrum Warrior – there is actually very little

difference between the training side and the entertainment side. But there are

some important differences – things that are more realistic in the training

version. Enemies won’t give themselves away like they do in the game – you

won’t get a second chance to turn a corner when there is an enemy on the

other side.

12. Are those components the most easy to reuse?

Not applicable.

13. Are there components that are more difficult to reuse? If so, what are those

components?

Not applicable.

14. What do you consider to be the most significant risks to using a common

software architecture for PC simulation to achieve military objectives?

You will want to make sure that you don’t pass around components to people

you don’t want to have them – there would be a security risk of people reusing

106

components who are not authorized to reuse them. Also the entertainment

industry and the military have very different concerns and objectives when it

comes to how their products are built and deployed.

15. What are the types of things that you see in the PC gaming / entertainment

world that you believe would be useful for the military?

Shader languages and graphics acceleration hardware is the most immediate

thing coming down the pipe from the gaming world. A lot of advances are

being made in that area that the military could benefit from.

Interview with Dr. Roger Smith, Sparta Inc.

1. How many years of experience have you had working with PC technologies

and PC-based simulation in the military?

20.

2. What types of PC-based simulation projects have you led or worked on?

I haven’t worked on any gaming projects.

3. What major issues or drawbacks have you encountered using PC-based

technologies in the military?

I think the industry is still figuring that out. With the serious games out now

there’s no real originality. Basically they all are training soldiers how to use

equipment – this was started with Marine Doom and hasn’t changed since.

Also, the military creates requirements that define what they want in a training

solution – they will accept games now, but unless it’s written as a requirement

they don’t want it.

107

4. What do you consider to be the most significant risks to using PC simulation

to achieve military objectives?

More originality is needed. We need more serious games that concentrate on

team training or training to interact with other cultures – a big need area right

now.

5. What major strengths and advantages have you encountered using PC-based

technologies in the military?

It can provide small low-budget training aids and devices that wouldn’t be

there otherwise. For example I saw a small training simulation where they

used the America’s Army platform to train mobile robot operators to destroy

IEDs. This wouldn’t have been developed on a typical large-scale military

contract, but PC-based gaming technologies allowed it to be achieved at a low

cost.

6. What advice and recommendations do you have for someone using PC

simulation for military objectives (training, education, communication,

analysis, etc)?

The military is convinced to use something a little at a time. Marine Doom

came about not through the acquisition environment but because a couple of

Marines who knew how to use the tools created something from a game to

train themselves. It’s risky to try to be the first one to do something for

military training – the military tends to use things that have proven themselves

out already. However, people with gaming experience are now moving into

108

positions of responsibility in the military so gaming solutions continue to gain

more and more widespread acceptance as viable training solutions.

7. Are you familiar with the concept of a common software architecture for PC-

based simulation?

Refused to answer.

8. How would you define a common software architecture for PC-based

simulation?

Refused to answer.

9. Are you familiar with any common software architectures for PC-based

simulation?

Refused to answer.

10. Have you attempted to develop PC-based simulation that might be considered

a basis for a common software architecture?

Refused to answer.

11. Have you built PC-based simulations that used major components from

previous simulations that you have constructed? If so, what were those

components?

Refused to answer.

12. Are those components the most easy to reuse?

Refused to answer.

13. Are there components that are more difficult to reuse? If so, what are those

components?

Refused to answer.

109

14. What do you consider to be the most significant risks to using a common

software architecture for PC simulation to achieve military objectives?

From the gaming side, there is no motivation for interoperability. Companies

that make games don’t want to have there games talk to each other. Games

are meant to be entertaining, while training is meant to transfer knowledge. A

serious risk you may face when building a generic platform like this is that

you start making assumptions early on that might get built into the software –

assumptions relating to scale, size, fidelity, etc.

15. What are the types of things that you see in the PC gaming / entertainment

world that you believe would be useful for the military?

Distributed multi-player games are played on the open internet and are

accessible from just about anywhere now thanks to wireless technologies.

There are no limits on connectivity. While there are security issues still to be

addressed this type of connectivity will be useful for military training. There

are also some really nice scenario development tools on the market for games

right now that could be used to create training scenarios.

Interview with Dr. Michael Zyda, ISI at USC

1. How many years of experience have you had working with PC technologies

and PC-based simulation in the military?

20 years – from 1986.

2. What types of PC-based simulation projects have you led or worked on?

I was director of the America’s Army project. I also worked on the NPSNET

visual simulation system at the Naval Postgraduate School

110

3. What major issues or drawbacks have you encountered using PC-based

technologies in the military?

PCs cannot at this time provide good solutions for simulations with multiple

visual streams. While the military has been interested for a long time to use

gaming technology, there is not a huge commercial market to support PC-

based military simulations.

4. What do you consider to be the most significant risks to using PC simulation

to achieve military objectives?

For any simulation running on Microsoft’s Windows operating system, there

is no guarantee of security. Simulations are susceptible to local and network-

based viruses and other security flaws that continue to be found in the

operating system.

5. What major strengths and advantages have you encountered using PC-based

technologies in the military?

PC-based technologies can be very portable. Solutions can be fielded on

laptops and used in any military theater.

6. What advice and recommendations do you have for someone using PC

simulation for military objectives (training, education, communication,

analysis, etc)?

Watch out for engineers with a lot of experience in visual simulations systems

that call themselves game developers. There is a lot of misrepresentation on

the military side, and the reality is that not many defense contractors or

military branches have much experience developing gaming technologies. At

111

this point the government doesn’t want to pay the real cost or invest time in

developing real gaming solutions for the military.

7. Are you familiar with the concept of a common software architecture for PC-

based simulation?

Yes. HLA was originally intended for both military and commercial

entertainment use. But it was too heavy weight for gaming companies to

incorporate. It also required the use of black box systems and software and it

had relatively poor performance. New objects were statically, not

dynamically defined, so incorporating them required access to the source code

and a rebuild from all parties.

8. How would you define a common software architecture for PC-based

simulation?

Not asked as this question was poorly worded and confusing to the experts.

9. Are you familiar with any common software architectures for PC-based

simulation?

Darwars was developing something along those lines. Unfortunately it only

amounted to some good demos – nothing substantial came out of the project.

I also crafted the original operating plan for ICT who are now working on a

project called the Integrating architecture.

10. Have you attempted to develop PC-based simulation that might be considered

a basis for a common software architecture?

No. But the Unreal 3 engine has been used on both sides to develop solutions

for both gaming and training. Also, back at the Naval Postgraduate School, a

112

Ph.D. student named Ken Watsen was working on something of this sort, but

he never finished.

11. Have you built PC-based simulations that used major components from

previous simulations that you have constructed? If so, what were those

components?

No, but CBSA is important. We need simulations that are dynamically

extensible and syntactically interoperable.

12. Are those components the most easy to reuse?

Not applicable.

13. Are there components that are more difficult to reuse? If so, what are those

components?

Not applicable.

14. What do you consider to be the most significant risks to using a common

software architecture for PC simulation to achieve military objectives?

If you are planning to use CBSA then verifying security is an important issue.

Because CBSA relies on black box components there needs to be a way to

ensure that security of the resulting simulations will not be compromised. It

could potentially be a breeding ground for malicious viruses. You need to use

trusted certificates or some alternate technology to ensure only safe code is

running.

15. What are the types of things that you see in the PC gaming / entertainment

world that you believe would be useful for the military?

113

Gaming technology is starting to use sensors of human emotional state. This

could be used to huge advantage in military training. Specifically you could

measure training affect. Right now the gaming industry is spending much

more R&D money than the military is in these areas. They will continue to

drive the industry.

Group 3: Experts in Virtual Simulation for Commercial Entertainment and
Gaming

Interview with Tom Carbone, FIEA

1. How many years of experience have you had working with PC technologies

and PC-based simulation in the gaming industry?

15 years in the gaming industry.

2. What types of PC-based simulation projects have you led or worked on?

What type of development environment? What type of software architecture?

I worked on Madden 05 and 06, Space Jam, and the NHL series at EA

Tiburon. They were actually all console games so we developed on the

console platform tools that were provided to us from the manufacturer.

3. What are the largest challenges facing game developers and game

development companies today?

It’s getting harder for them to find qualified people to build next generation

gaming content. Team sizes are huge, budgets are huge, and managing all that

has become difficult. From a technical standpoint it is difficult to leverage

middle ware that’s on the market without causing disruptions in the game

development cycle. It’s also challenging for them to make games that stand

114

out from the rest of the market and continue to reuse as much as possible from

other product lines.

4. Have you used any component technologies in PC game development

projects? If so, explain.

Havok is a middleware physics engine that they were using on Madden. But

it was pretty hard to use because you didn’t know what was going on behind

the scenes. It was hard to optimize what your code because you didn’t have

full control of the environment.

5. Are you familiar with any common software architectures for PC-based

simulation?

America’s Army immediately comes to mind.

6. Have you attempted to develop PC-based simulation that might be considered

a basis for a common software architecture?

No.

7. Have you built PC-based simulations that used major components from

previous simulations that you have constructed? If so, what were those

components?

No.

8. Are those components the most easy to reuse?

Not applicable.

9. Are there components that are more difficult to reuse? If so, what are those

components?

Not applicable.

115

10. What experience have you had using military technologies for gaming? What

are the most significant business and technical risks involved in doing this?

I haven’t had any experience developing games with military technologies.

We just started working with Lockheed to develop a PC game for the F-35

and we’re using some code from their cockpit simulation. One of the issues

with using military technologies in the gaming world is confidentiality –

obviously military secrets need to be protected but games get distributed all

over the world and can be reverse engineered. On the other hand gamers that

buy military games want to know that they what they are using is exactly like

in the real military. Bridging that gap is difficult – you don’t want to lie to the

consumers and say the game is realistic when it’s not, but you don’t want to

give away military secrets either.

11. What types of military technologies would you like to see in a PC simulation

game?

It would be good to see some more realistic flight sims out there. I’d also like

to see commercial war games be based on real battles that actually happened

with real data collected from the battle. Companies like Lockheed shouldn’t

try to compete head to head with established gaming companies like EA, but

should try to offer something that EA can’t offer.

12. What do you see as the greatest business and technical risks for using PC

simulation and gaming technology in the military?

Games are not thoroughly tested or documented and they are not meant to be

maintained because their shelf life is so short. The military on the other hand

116

has a huge approval process all products must go through before they are

used. While gamers can live with bugs here and there, the military can’t

afford to put gaming software straight into use.

13. What advice and recommendations do you have for someone creating a single

framework for PC gaming and military simulation?

Make sure to find people that know the games industry well – that can help

develop the philosophies and ideas required to make it successful on the

commercial gaming side. The technical challenges really aren’t the most

important in a project like this. You’re also going to have to deal with the

limitations of data and content provided by the military. The gaming industry

relies a lot on customization – everything is tailored and optimized to achieve

their objective – entertainment. By nature this goes against principles of

reusability.

Interview with Stephen Eckman, Disti Inc.

1. How many years of experience have you had working with PC technologies

and PC-based simulation in the gaming industry?

I worked 3 years in the games industry for EA and about 1 year hear at Disti.

2. What types of PC-based simulation projects have you led or worked on?

What type of development environment? What type of software architecture?

I worked on Madden 03 and Madden 04. I also worked with my brother on a

massively-multiplayer online game. We wrote it from scratch using Cold

Fusion as a platform.

117

3. What are the largest challenges facing game developers and game

development companies today?

For game developers it’s become increasingly hard to create independent

games – the budgets are so large these days. Interestingly, because games are

so expensive it’s also unlikely that an established game studio will try

something brand new because it’s so risky. You don’t want to spend millions

of dollars trying something new when you already have a product line that

you know will sell.

4. Have you used any component technologies in PC game development

projects? If so, explain.

We built our own network library that we reused a lot in our online game, but

it was a compile-time reuse. We didn’t really have it set up to use

components.

5. Are you familiar with any common software architectures for PC-based

simulation?

There’s a company called Pandemic that released Full Spectrum Command

and Full Spectrum Warrior – those were used for both gaming and military

use. Also America’s Army did it. But as far as I know, there’s no single

development platform out there that was built to create content for both.

6. Have you attempted to develop PC-based simulation that might be considered

a basis for a common software architecture?

No, I haven’t.

118

7. Have you built PC-based simulations that used major components from

previous simulations that you have constructed? If so, what were those

components?

We do that with our GLStudio product – our components are called RSOs –

reusable simulation objects. I’ve worked on a couple of military contracts

here where we reused RSOs from previous projects. We did an F-15 and a T-

45 cockpit that reused some instruments that we had previously built for other

projects.

8. Are those components the most easy to reuse?

In my experience with those projects just mentioned it was easiest to reuse the

components when the new project required the exact same pieces as the old

project. The ADI and the VSI in the T-45 were exactly the same instruments

that we had already built for another aircraft which meant they required the

exact same interface so we just dropped them in and they worked.

9. Are there components that are more difficult to reuse? If so, what are those

components?

Components that are tied too closely to a particular simulation or domain are

hard to reuse. We have a menu scripting component that was built for one

simulation but it was built in a way that tied it to the platform in which it was

used – so reusing it was difficult.

10. What experience have you had using military technologies for gaming? What

are the most significant business and technical risks involved in doing this?

119

I haven’t had much experience developing things for the military. I do know

that a lot of code built for the military is not built efficiently – it’s not

optimized like most gaming content is. There’s also a different level of

fidelity involved.

11. What types of military technologies would you like to see in a PC simulation

game?

I’d like to see the scale of the large distributed military simulation come over

to the gaming side – games with like 3000+ entities in them that can all be

controlled by different people. In Battlefield 2 you can play with 64 different

players and that’s a big deal to the gaming industry – we’re not even close to

the military in that aspect of distributed virtual simulation. Also the AI in

games isn’t really human – the fidelity just isn’t there like the require for

military simulations.

12. What do you see as the greatest business and technical risks for using PC

simulation and gaming technology in the military?

The gaming industry doesn’t have nearly the fidelity required for military

simulations. They do a minimal amount of testing and a minimal amount of

QA on their products. It’s still acceptable for a game to be released with bugs

as long as the gamers know that patches will be released eventually – this is

not ok for military simulations.

13. What advice and recommendations do you have for someone creating a single

framework for PC gaming and military simulation?

120

Come up with a standard definition for different objects in the simulation –

similar to what they did with HLA. This would probably be a lot harder to

implement than the traditional approach – and it might still be easier for

someone to create the same object from scratch and not conform to your

definition.

14. What are the types of things that you see in the PC gaming / entertainment

world that you believe would be useful for the military?

I think a good look should be taken at the gaming hardware interfaces that are

out there. We have a whole generation of kids out there that know how to

interact effectively with game controllers from the PS2 and Xbox – the

military should look at taking advantage of that knowledge.

Interview with Dr. Michael Gourlay, FIEA

1. How many years of experience have you had working with PC technologies

and PC-based simulation in the gaming industry?

I’ve spent 4 years in the gaming industry working for EA and now teach

gaming classes at FIEA.

2. What types of PC-based simulation projects have you led or worked on?

What type of development environment? What type of software architecture?

In my Ph.D. program I worked on computational fluid dynamics – basically it

was a simulation and visualization application of physics algorithms. I was

also the network architect for EA’s Nascar and worked on AI and physics as

well. On EA’s Madden I was the lead for the graphics engine team.

121

3. What are the largest challenges facing game developers and game

development companies today?

It’s hard to find experienced programmers that can write console games.

Most of the programmers that come out of school are inexperienced and have

done no project work in embedded systems or consoles. The academic world

is leaning towards teaching programming in Java, not C – the language used

for most games. And the students have no experience optimizing code for

performance or a consistent frame rate.

4. Have you used any component technologies in PC game development

projects? If so, explain.

EA doesn’t use any component technologies because it’s too much of a risk.

Technology is changing so fast and console hardware has about a 5 year shelf

life before it’s replaced, so it’s not practical to spend the effort required to

develop reusable components when they also have a small shelf life. The

gaming industry is not yet mature enough to use component technologies.

Also, components don’t work well across platforms, especially in gaming

where each piece of software needs to be optimized for the particular platform

it is running on. EA however has a standard set of libraries that they use in

many of their games. In my research I used IRIS Explorer which is a

component based visualization tool and framework. VTK – Visualization

Toolkit, another framework for making visualization applications is

component-based.

122

5. Are you familiar with any common software architectures for PC-based

simulation?

Criterion used to make Renderware, now owned by EA. That was a widely

used middleware package for games that could be used by the military as well.

There is also the Havok physics engine for games that could be used for both.

6. Have you attempted to develop PC-based simulation that might be considered

a basis for a common software architecture?

No, I haven’t developed anything that could be used for the military.

7. Have you built PC-based simulations that used major components from

previous simulations that you have constructed? If so, what were those

components?

The Madden network group reused the network architecture that we

developed for Nascar. The visual software and graphics engine we built for

Madden was intended to be reused in other games. It got reused by some

games and is still in used, but not everyone knew enough about it to use it.

8. Are those components the most easy to reuse?

I think that generic context free components would be the most easy to reuse –

those things dealing with math or file I/O. It’s possible you could make a

reusable physics engine component but things like this have strong

dependencies on the platform they are developed for so reuse is limited.

9. Are there components that are more difficult to reuse? If so, what are those

components?

123

I don’t think something like a rendering engine could be used as a component.

It is tied closely to the hardware and platform so you couldn’t use it across

platforms. It’s also domain specific – a rendering engine built for rendering

cars may not be suitable for rendering football players. However a component

like this could be used across a particular product line.

10. What experience have you had using military technologies for gaming? What

are the most significant business and technical risks involved in doing this?

Gaming has gotten some good ideas and technology from the military’s DIS

networking protocol. However things like this that are built for the military

deal with a lot of complexity, and games try to avoid complexity as much as

possible.

11. What types of military technologies would you like to see in a PC simulation

game?

Since I don’t have experience with military technologies I’m not sure what’s

out there. From the hardware side it would be nice to see some full motion

high fidelity simulators at someplace like Dave and Buster’s or in a high end

arcade. However, a direct use of a military simulation would always be a

problem for gaming – it’s not entertaining.

12. What do you see as the greatest business and technical risks for using PC

simulation and gaming technology in the military?

From the military’s standpoint there aren’t too many risks other then possibly

quality and robustness. But if they are only using the technology for training

and not mission critical applications, even quality and robustness might not

124

matter much. Because gaming technology is cheap the military can always

write it off if the project goes wrong. From the perspective of a gaming

company that wants to start using gaming technology on military contracts

there is a big risk of failure and the loss of a lot of money – especially if it’s a

small company. Gaming companies aren’t used to collecting specific

requirements that must be met – they typically don’t go through that kind of a

structured process and aren’t used to working that way.

13. What advice and recommendations do you have for someone creating a single

framework for PC gaming and military simulation?

Make sure that you know how to do architecture. Software architecture is

only an issue for very large projects with large teams and lots of code. I don’t

think the gaming industry is mature enough to create and use solid software

architectures.

14. What are the types of things that you see in the PC gaming / entertainment

world that you believe would be useful for the military?

One of the things that’s just starting to emerge for PC gaming is a dedicated

physics card. Like a graphics card, the physics card uses hardware and a

dedicated processing unit to calculate physics models and equations in a game

or simulation. This could be used to add a lot of realism to scenarios.

Interview with Keelan Stuart, Disti Inc.

1. How many years of experience have you had working with PC technologies

and PC-based simulation in the gaming industry?

About 10 years.

125

2. What types of PC-based simulation projects have you led or worked on?

What type of development environment? What type of software architecture?

I worked on Nuclear Strike and Madden 99 for EA, a game called Revenant

for Cinematix. Worked for a couple years on a game called Legend of 5 Suns

for Whispering Tree Studios – it was originally a PC-based RTS game but

morphed into an Xbox RPG game – but in the end it was never released. I

also worked on a MMP game for Artifact called Horizons.

3. What are the largest challenges facing game developers and game

development companies today?

This really depends on the size and budget of the game studio. Overall

though, they are always trying to determine what makes a hit, what types of

games will sell and what types will not. They are also struggling to make sure

that they meet gamers’ expectations of what the games will look and play like.

There has also been a divergence of technology from things like hardware,

shader languages, and the graphics technologies based around OpenGL and

DirectX. Competing tools, languages, and products are starting to look more

and more different which by nature make games less compatible across

different systems.

4. Have you used any component technologies in PC game development

projects? If so, explain.

They started to do something like that at Cinematix when I worked for them

but I’m not sure how far that project got. I’ve built and currently maintain my

own game engine which is somewhat component-based. I created a plug-in

126

system where each plug-in uses a predefined set of macros to communicate

with the game engine. The game engine can then auto-register the plug-ins

and use them directly at run-time – they don’t need to be compiled in.

5. Are you familiar with any common software architectures for PC-based

simulation?

I believe America’s Army does something similar – it’s used for both gaming

and for military uses. They based that project on the Unreal engine. Recently

at I/ITSEC I also saw a naval combat project that was used both as a game for

entertainment and for military training – but I don’t remember the name of it.

6. Have you attempted to develop PC-based simulation that might be considered

a basis for a common software architecture?

No, I haven’t done much military work at all.

7. Have you built PC-based simulations that used major components from

previous simulations that you have constructed? If so, what were those

components?

Sure, I built plug-ins for my engine for particle systems and for weather.

Theoretically you could use the same mechanism to create plug-ins for

characters and game structures.

8. Are those components the most easy to reuse?

I’ve found that components that are context-free and non-domain specific to

be the most easy to reuse. Things like I mentioned before – particle systems,

weather, and potentially terrain would all be things that would have a standard

set of interfaces that could be reused easily.

127

9. Are there components that are more difficult to reuse? If so, what are those

components?

Things that are specific to a particular game or objective would be harder to

reuse. For example a boat object I built for a boat-racing game only got used

for that one game – it wasn’t something that got used a lot.

10. What experience have you had using military technologies for gaming? What

are the most significant business and technical risks involved in doing this?

I haven’t really had much experience with military technologies at all.

11. What types of military technologies would you like to see in a PC simulation

game?

It would be nice to see some really large scale games like the large scale

military simulations. They could use real world satellite data and have

connectivity like they do with HLA. Unfortunately I don’t think this kind of

connectivity, especially between games, is going to happen any time soon.

Each game is so customized, and unlike the military, there is a lot of fierce

competition and concerns about intellectual property protection.

12. What do you see as the greatest business and technical risks for using PC

simulation and gaming technology in the military?

I think the majority of the risk is business risk and not technical risk.

Compared to the gaming world there is a lot of resistance to change and new

technology in the military. I imagine it would be difficult to convince the

military of the benefits of all the new technologies coming out in the short

amount of time involved.

128

13. What advice and recommendations do you have for someone creating a single

framework for PC gaming and military simulation?

Definitely make it modular – plug-ins for everything. Also, make it data

driven – meaning load the data dynamically at run-time – don’t use static

resources. Make some of it script-based too – that way there’s less need for

recompiling.

14. What are the types of things that you see in the PC gaming / entertainment

world that you believe would be useful for the military?

I think the military could learn a lot from what the gaming community is

doing with user interfaces. I was at I/ITSEC this year and I thought

everything was so utilitarian and much of what I was seeing was based on

technology that was 10 years old.

129

APPENDIX B: PHASE I RESULTS – FACTORS

130

Table 18: Factor - Leveraging middleware

1 Name: Leveraging middleware
 Type: Organizational
 Description: Game companies are finding it difficult to leverage

middleware without causing disruptions in the
development lifecycle.

 Reference: Carbone interview, q. 3.
 Flexibility: As time progresses, as the industry matures, and as

more middleware tools become available, this factor
will become more and more important.

 Impact: Impacts interfaces to 3rd party products and
processes, organization’s own development and
integration processes.

Table 19: Factor - Competitive advantage

2 Name: Competitive advantage
 Type: Product
 Description: Game companies must continue to maintain their

competitive advantage. They must customize their
content to be able to stand out in the market, and by
nature this goes against the principles of reusability.

 Reference: Carbone interview, q. 3.
Carbone interview, q. 13.
Stuart interview, q. 11.

 Flexibility: In a competitive marketplace, maintaining
competitive advantage will always be a big factor

 Impact: Large impact on types of games produced and game
company’s willingness to use tools and components
everyone else is using.

Table 20: Factor - Product line reuse

3 Name: Product line reuse
 Type: Organizational
 Description: To operate efficiently, game companies need to

continue to reuse as much as possible within and
across their own product lines

 Reference: Carbone interview, q. 3.
 Flexibility: There will always be cost savings associated with

reusing at least some previously developed in house
content. However it will be offset by the ease with
which technology allows new products can be created
from scratch.

131

 Impact: Moderate impact on products and development
processes, but presents a case for a single
architecture’s ability to sustain product lines.

Table 21: Factor - Black box component reuse

4 Name: Black box component use
 Type: Organizational
 Description: There will be some resistance to black box use

because developers won’t know what’s going on
behind the scenes, won’t necessarily know how to
optimize their code, and may not be able to debug
into the black box component.

 Reference: Carbone interview, q. 4.
Norton interview, q. 4.

 Flexibility: Black box suspicion will always be a factor. Ability
of 3rd party black box creator to instill trust will
alleviate this factor.

 Impact: Moderate impact on development processes.

Table 22: Factor - Confidentiality of military technology in games

5 Name: Confidentiality of military technology in games
 Type: Product
 Description: Confidentiality of military technology in games

needs to be maintained but commercial games always
have the potential to be reverse engineered.

 Reference: Carbone interview, q. 10.
 Flexibility: Unlikely to change. Technology may prevent reverse

engineering in the future.
 Impact: Any military component used and distributed in a

commercial context will be affected strongly by this
factor.

Table 23: Factor - Differing gaming and military content shelf lf life

6 Name: Differing gaming and military content shelf life
 Type: Product
 Description: Sharing content is difficult because gaming content

shelf life is very short and military content shelf life
is very long.

 Reference: Carbone interview, q. 12.
Gourlay interview, q. 4

132

 Flexibility: Game shelf life may increase as technology advance
rate slows. Military content shelf life will probably
not change.

 Impact: Components with the highest reuse rate are forced to
stabilize with increased shelf life.

Table 24: Factor - Differing gaming and military content quality

7 Name: Differing gaming and military content quality
 Type: Product
 Description: Sharing content is difficult because gaming content

has not been through extensive testing or quality
assurance like military content has.

 Reference: Carbone interview, q. 12.
Eckman interview, q. 12.
Humphrey interview, q. 11.
Gourlay interview, q. 12.

 Flexibility: While game shelf life is low, game content quality
will remain low. If game shelf life increases, quality
of content will increase.

 Impact: Large impact on the ability of the military to use
content developed for games.

Table 25: Factor - Lack of science behind military gaming technology

8 Name: Lack of science behind military gaming technology
 Type: Technological
 Description: There is a lack of science behind the military’s use of

gaming technology. There are no guidelines based
on a scientific process directing when and how to use
the technology. There are also no return on
investment numbers to determine if the technology is
worth using.

 Reference: Conkey interview, q. 3.
 Flexibility: This is already changing
 Impact: Will determine if and when gaming components can

be used for military purposes.

Table 26: Factor - Differing gaming and military content objectives

9 Name: Differing gaming and military content objectives
 Type: Organizational

133

 Description: Games are designed for entertainment while the
military uses games for other objectives like analysis
or training. Different objectives implies different
underlying assumptions, designs, and end products.

 Reference: Conkey interview, q. 4.
Conkey interview, q. 14.
Garfunkel interview, q. 13.
Humphrey interview, q. 11.
Smith, Peter interview, q. 14.
Smith, Roger interview, q. 14.

 Flexibility: Probably fundamentally unchangeable
 Impact: Moderate impact on content type, large impact on

architecture and design direction.

Table 27: Factor - Training objectives drive technology choices

10 Name: Training objectives drive technology choices
 Type: Technological
 Description: In the context of military training, the training

objectives should drive what technology is used and
how it is implemented.

 Reference: Conkey interview, q. 6.
 Flexibility: May or may not be a factor depending on what the

results of the ISD process determine about the
technology.

 Impact: Small impact on architecture and design, large impact
on content type.

Table 28: Factor - Differing gaming and military content fidelity

11 Name: Differing gaming and military content fidelity
 Type: Product
 Description: Difficulty level and fidelity required by military

training usually would not result in entertaining game
play.

 Reference: Conkey interview, q. 11.
Conkey interview, q. 14.
Eckman interview, q. 10.
Eckman interview, q. 12.
Garfunkel interview, q. 13.
Humphrey interview, q. 9.
Humphrey interview, q. 11.
Smith, Peter interview, q. 4.
Smith, Peter interview, q. 11.

134

 Flexibility: Games continue to increase in fidelity while
maintaining entertaining game play. Many games
now have the ability to scale the level of fidelity
during game play. May not be a problem in the
future.

 Impact: Minor impact – components can be built to support
different levels of fidelity.

Table 29: Factor - Increasingly realistic game graphics

12 Name: Increasingly realistic gaming graphics
 Type: Technological
 Description: The military should take advantage of the

increasingly realistic graphics technologies, shader
effects, and video hardware available in the gaming
world.

 Reference: Conkey interview, q. 15.
Smith, Peter, interview q. 15.

 Flexibility: Will continue to be a factor until technological
advances slow.

 Impact: Any components related to the graphics pipeline will
be affected and will need to continue to adapt with
the technology or risk becoming outdated.

Table 30: Factor - Tie-in to learning management system

13 Name: Tie-in to learning management system
 Type: Product
 Description: What takes place in military training scenarios must

be tied back in to a learning management system to
drive follow-up analysis and remedial training.

 Reference: Conkey interview, q. 15.
 Flexibility: Will become increasingly important as LMSs become

widespread in military training.
 Impact: Large impact on all components and much of the

architecture. The architecture must support the
ability to track and record scenario play for later
playback and analysis.

Table 31: Factor - Increasing game budgets and team sizes

14 Name: Increasing game budgets and team sizes
 Type: Organizational

135

 Description: Because of increasingly large budgets and team sizes
required to create a game that will sell, it is hard to
create independent games. It is also unlikely that
established gaming studios will risk trying something
new and different, so game content becomes stale.

 Reference: Eckman interview, q. 3.
 Flexibility: Unchangeable for the foreseeable future.
 Impact: Minor impact on architecture and design. Major

impact on the pressure for reuse because huge teams
and budgets means much content can be created from
scratch.

Table 32: Factor - Component reuse difficulties: different purpose and different interface

15 Name: Component reuse difficulties: different purpose and
different interface

 Type: Product
 Description: Component reuse is easiest when the component is

reused for the exact same purpose and requires the
exact same interface as the original use. Components
that interface to specific hardware devices are
especially difficult to reuse.

 Reference: Eckman interview, q. 8.
Humphrey interview, q. 9.
Norton interview, q. 12.
Stuart interview, q. 8.

 Flexibility: Not likely to change especially in regards to re-
purposing. Tools may be developed to automate
interfacing.

 Impact: Minor impact on component design, major impact on
component interface.

Table 33: Factor - Component reuse difficulties: close ties to domain and context

16 Name: Component reuse difficulties: close ties to domain
and context

 Type: Product
 Description: Component tied too closely to a particular simulation

or domain are hard to reuse.

136

 Reference: Eckman interview, q. 9.
Humphrey interview, q. 9.
Humphrey interview, q. 10.
Norton interview, q. 3.
Stuart interview, q. 8.
Stuart interview, q. 9.
Gourlay interview, q. 9.

 Flexibility: Will change as developers become more educated
how to design components and the simulation domain
becomes more rigidly partitioned.

 Impact: Major impact to component design and simulation
domain partitioning or componentizing.

Table 34: Factor - Differing gaming and military content optimization

17 Name: Differing gaming and military content optimization
 Type: Product
 Description: Code built for the military is not built as efficiently as

gaming content is – it is not optimized for the
deployment environment like gaming content is.

 Reference: Eckman interview, q. 10.
Humphrey interview, q. 11.

 Flexibility: Unlikely to change
 Impact: Major impact on the gaming industry’s willingness to

use military components.

Table 35: Factor - Backwards compatibility and version upgrades

18 Name: Backwards compatibility and version upgrades
 Type: Product
 Description: In a component framework, interfaces have to be

sustained through multiple versions of your product
and 3rd party products so that clients of the
framework can continue to use components without
having to change them.

 Reference: Garfunkel interview, q. 3.
 Flexibility: Unlikely to change unless technology advances slow.
 Impact: Major impact on all component designs and

interfaces and the design of the architecture.

Table 36: Factor - Component engineering effort

19 Name: Component engineering effort
 Type: Technological

137

 Description: It’s almost always easier to build something in one
monolithic block than split up into components and
spend all that effort on interfacing. CBSE really
requires extensive up-front analysis, more so than
other software engineering disciplines.

 Reference: Garfunkel interview, q. 3.
Humphrey interview, q. 4.
Szyperski interview, q. 3.

 Flexibility: Unchangeable – component based software
engineering requires extensive analysis of the
domain.

 Impact: Large impact on the ability of the architecture to meet
the needs and demands of the virtual simulation
domain.

Table 37: Factor - Component performance

20 Name: Component performance
 Type: Product
 Description: Loading potentially hundreds of components at run-

time is not ideal, but it’s something that is required
for large complex simulations. There is also no good
way to guarantee performance within a component.

 Reference: Garfunkel interview, q. 3.
Norton interview, q. 4.

 Flexibility: Will become less of a factor as technology advances
and as component performance measures become
standardized.

 Impact: Moderate impact on initialization and component
loading processes. May impact component
manufacturers to create quality of service and
performance contracts.

Table 38: Factor - Component framework complexity

21 Name: Component framework complexity
 Type: Product
 Description: Component based software engineering by nature can

add a lot of complication to a simulation. This is a
risk especially when dealing with new developers and
new customers.

 Reference: Garfunkel interview, q. 4.
Garfunkel interview, q. 14.

138

 Flexibility: From the standpoint of the framework it is
unchangeable. From the standpoint of new
developers and customers, it can be mitigated if their
interaction with the component framework is made as
simple and straightforward as possible.

 Impact: Major impact on the component simulation
framework. Moderate impact on the environment
presented to developers.

Table 39: Factor - Component reuse difficulties: many dependencies

22 Name: Component reuse difficulties: many dependencies
 Type: Product
 Description: Components that have the least number of

dependencies are the easiest to reuse while
components that can affect lots of other components
are less easy to reuse.

 Reference: Garfunkel interview, q. 11.
Garfunkel interview, q. 12.
Norton interview, q. 12.
Gourlay interview, q. 8.

 Flexibility: May be changeable by reducing component
dependencies or partitioning components with many
dependencies.

 Impact: Moderate impact on components with many
dependencies and content that depends on those
components.

Table 40: Factor - Legacy code integration

23 Name: Legacy code integration
 Type: Organizational
 Description: An organization using the component-based

framework may want to incorporate legacy non-
componentized systems.

 Reference: Humphrey interview, q. 3.
Humphrey interview, q. 11.

 Flexibility: May be changeable if it is easy to recreate
functionality of the legacy systems.

 Impact: Moderate impact on the framework architecture and
design if it is to support non-componentized systems.

Table 41: Factor - Domain model componentization

24 Name: Domain model componentization

139

 Type: Product
 Description: The architecture must be explicitly designed around

the domain, but where you partition your data and
domain model into components is a big risk. When
you partition into components you make assumptions
that may not be true in the future.

 Reference: Humphrey interview, q. 4.
Szyperski interview, q. 12.

 Flexibility: Unchangeable – component based software
engineering requires extensive analysis of the
domain.

 Impact: Large impact on the ability of the architecture to meet
the needs and demands of the virtual simulation
domain.

Table 42: Factor - Development in a vacuum or lab environment

25 Name: Development in a vacuum or lab environment
 Type: Product
 Description: The architecture should not be developed in a

vacuum. Use or adapt architectures that are already
in use and test the platform out on production
projects, not just in the lab. Otherwise the end result
may have to be significantly altered to be of use.

 Reference: Humphrey interview, q. 12.
Norton, q. 13.

 Flexibility: Unlikely to change – the framework should be tested
on real world problems.

 Impact: Moderate impact on framework and design decisions.

Table 43: Factor - Gaming interoperability

26 Name: Gaming interoperability
 Type: Organizational
 Description: Gaming companies have no motivation for

interoperability – they don’t want to have their games
talk to each other.

 Reference: Smith, Roger interview, q. 14.
 Flexibility: May change if consumers demand it or if market

forces promote interoperability.
 Impact: Moderate impact on components dealing with

interoperability issues.

140

Table 44: Factor - Built-in assumptions of a generic platform

27 Name: Built-in assumptions of a generic platform
 Type: Product
 Description: A serious risk you may face when building a generic

platform like this is that you start making
assumptions early on that might get built into the
software – assumptions relating to scale, size,
fidelity, etc.

 Reference: Smith, Roger interview, q. 14.
 Flexibility: Unlikely to change – the framework should be tested

on real world problems.
 Impact: Moderate impact on framework and design decisions.

Table 45: Factor - Military is averse to risky new technologies

28 Name: Military is averse to risky new technologies
 Type: Organizational
 Description: It’s risky to try to be the first one to do something for

military training – the military tends to use things that
have proven themselves out already. Compared to
the gaming world there is a lot of resistance to
change and new technology in the military.

 Reference: Smith, Roger interview, q. 6.
Stuart interview, q. 12.

 Flexibility: Unlikely to change
 Impact: Moderate impact on types of components built for

military use.

Table 46: Factor - Lack of originality in serious games

29 Name: Lack of originality in serious games
 Type: Product
 Description: With the serious games out now there’s no real

originality - they all are training soldiers how to use
equipment. We need more serious games that
concentrate on team training or training to interact
with other cultures – a big need area right now.

 Reference: Smith, Roger interview, q. 3.
Smith, Roger interview, q. 4.

 Flexibility: May change as gaming companies lead the way in
these areas.

 Impact: Minor impact on content.

141

Table 47: Factor - Divergence of technology

30 Name: Divergence of technology
 Type: Technological
 Description: There has been a divergence of technology from

things like hardware, shader languages, and the
graphics technologies based around OpenGL and
DirectX. Competing tools, languages, and products
are starting to look more and more different which by
nature make games less compatible across different
systems.

 Reference: Stuart interview, q. 3.
 Flexibility: Difficult to know if this trend will continue and to

what extent it will affect the industry. Will probably
change as game studio demand the ability to release
similar content on multiple platforms.

 Impact: Large impact on the framework’s capability to
support multiple platforms and large impact on limits
of component reusability.

Table 48: Factor - Abstract over-engineering

31 Name: Abstract over-engineering
 Type: Product
 Description: One major risk of CBSE is that you can fall into the

trap of doing a lot of abstract over-engineering that
has little to do with real solutions to real problems –
the effort in the end may not allow you to deliver
anything concrete

 Reference: Szyperski interview, q. 4.
Szyperski interview, q. 13.

 Flexibility: Unlikely to change – the framework should be tested
on real world problems.

 Impact: Moderate impact on framework and design decisions.

Table 49: Factor - Self-driven components

32 Name: Self-driven components
 Type: Product
 Description: You will lose control of the deployed environment if

you use self-driven components – those components
that dynamically try to interface with other
components at run-time.

 Reference: Szyperski interview, q. 14.
 Flexibility: Inflexible – this will likely always be the case.

142

 Impact: Moderate impact to architecture decisions and
component design.

Table 50: Factor - Security in the PC environment

33 Name: Security in the PC environment
 Type: Technological
 Description: There is no guarantee of security on a PC.

Simulations are susceptible to local and network-
based viruses and other security flaws that continue
to be found in the operating system. Verifying
security is an important issue. Within the component
framework you need to ensure only safe code is run.

 Reference: Zyda interview, q. 4.
Zyda interview, q. 14.

 Flexibility: As technology advances this factor will ideally be
mitigated, but if history is a guide this will always be
an issue.

 Impact: Large impact on architecture and design decisions
relating to component security and deployed run-time
environment security.

Table 51: Factor - Component reuse difficulties: interface complexity

34 Name: Component reuse difficulties: interface complexity
 Type: Product
 Description: Components that have more complicated interfaces

are more difficult to reuse. Keep things as simple as
possible.

 Reference: Garfunkel interview, q. 11.
Garfunkel interview, q. 12.

 Flexibility: May be changeable by reducing component interface
complexity

 Impact: Moderate impact on components with complex
interfaces and other components with those interface
dependencies.

Table 52: Factor - Component protection and licensing

35 Name: Component protection and licensing
 Type: Product
 Description: When you use an open architecture in a component-

based software framework you are supporting
components written by many people. All that content
must be protected and licensed properly.

143

 Reference: Garfunkel interview, q. 3.
Smith, Peter interview, q. 14.

 Flexibility: Unchangeable – this is a fundamental factor that a
component architecture must address

 Impact: Large impact – affects all components.

Table 53: Factor - Emergence of dedicated physics cards

36 Name: Emergence of dedicated physics cards
 Type: Product
 Description: One of the things that’s just starting to emerge for PC

gaming is a dedicated physics card. Like a graphics
card, the physics card uses hardware and a dedicated
processing unit to calculate physics models and
equations in a game or simulation

 Reference: Gourlay interview, q. 14
 Flexibility: Physics cards may or may not be a success – it is too

early to tell
 Impact: Large impact on how the framework and other

components use physics.

144

APPENDIX C: PHASE II RESULTS – ISSUES, SOLUTIONS AND
STRATEGIES

145

Table 54: Issue - Adoption of a component-based architecture

1 Name: Adoption of a component-based architecture
 Description: For an organization to be able to adopt the processes

and invest the effort required to re-engineer existing
and future product lines around a component-based
architecture, a number of concerns will have to be
addressed. Specifically it must be shown that the
CBSA allows product line reuse, mitigates the risks
of black box component use, allows the organization
to effectively leverage existing and future
middleware, and supports the structure and
environment required to interface with legacy
systems and use legacy code.
No. Name
23 Legacy code integration
4 Black box component use
3 Product line reuse

 Influencing
factors:

1 Leveraging middleware
 Design

Solution:
Make integration with the framework simple and
encourage componentization, but do not enforce it.
Provide a dedicated infrastructure for the use of non-
componentized libraries.

 Architectural
Strategies:

Framework component dedicated to interfacing
with non-componentized code: Create a single
framework component that will be tailored to
providing interaction between the component-based
simulation and non-component, legacy software.
This component will present an API that will allow
non-component code to call into and receive events
from the component-based infrastructure.

 Related
Strategies:

-Separate content components from framework
components

146

Table 55: Issue - Market forces facing game studios

2 Name: Market forces facing game studios
 Description: In a time of increasing game budgets and

corresponding team sizes, game studios face
difficulties managing increasingly large projects, a
lack of talented developers and artists, and a problem
maintaining content originality, technological
competitive advantage, and distinction in an
expanding marketplace.
No. Name
2 Competitive advantage
14 Increasing game budgets and team sizes

 Influencing
factors:

26 Gaming interoperability
 Design

Solution:
The architecture will support customization of
infrastructure and 3rd party components to help
resolve scalability issues and allow companies to
maintain distinction of content.

 Architectural
Strategies:

Configuration-based component customization:
Each component will be configurable, allowing each
user of the component to customize how the
component is initialized and run.

Replaceable event manager: The event manager
will be implemented as a replaceable component.
This will allow scalability and flexibility in the core
simulation communication infrastructure.

Tailored events: The data structure corresponding to
each simulation event can be changed and updated to
reflect the priorities of each implementation of the
simulation.

 Related
Strategies:

-Event-based component interface
-Configurable event data

147

Table 56: Issue - Differences between gaming and military content

3 Name: Differences between gaming and military content
 Description: Fundamental differences exist between gaming and

military content in terms of its objectives, shelf life,
quality, optimization, and fidelity. A common
architecture used as a platform to develop content for
both industries must explicitly address and support
these differences.
No. Name
9 Differing gaming and military content

objectives
6 Differing gaming and military content shelf

life
7 Differing gaming and military content

quality
17 Differing gaming and military content

optimization

 Influencing
factors:

11 Differing gaming and military content
fidelity

 Design
Solution:

Allow for the difference between gaming and
military content, but minimize the impact of
replacing content and minimize content
dependencies.

 Architectural
Strategies:

Separate content components from framework
components: Framework components are singletons
in the simulation that provide core services: graphics
engine, physics engine, network communication,
event management. Content components are non-
singletons that pertain to the function and state of
entities in the simulation: flight models, systems
models, graphical displays, graphical entity
representations. Framework components are those
that may be developed once and reused across many
simulations in a particular domain. Content
components may be replaced as often as needed to
suit the needs of a particular simulation
implementation.

 Related
Strategies:

-Wrap risky technologies in components

148

Table 57: Issue - Support for military training

4 Name: Support for military training
 Description: In order for a virtual simulation platform supporting

game technology to be used for military training, a
number of concerns need to be addressed. The
architecture should support future decisions made
regarding the scientific study of the application of
gaming technology to military training objectives. It
should support creation of content driven by training
objectives as well as analysis of student progress
through scenarios.
No. Name
13 Tie-in to learning management system
8 Lack of science behind military gaming

technology
10 Training objectives drive technology choices

 Influencing
factors:

29 Lack of originality in serious games
 Design

Solution:
Use an infrastructure that supports the requirements
for logging, playback, and learning management
system tie-in required by military training systems.
Encapsulate risky technology in separate
components.

 Architectural
Strategies:

Persistent events: Each event will incorporate data
that represents component state. Data corresponding
to the event will be persistent and accessible until a
new instance of the event replaces the data.

 Related
Strategies:

-Event-based component interface

149

Table 58: Issue - Component reuse

5 Name: Component reuse
 Description: A number of challenges face the reuse of components

within virtual simulations. These challenges may
also face component design in general. The
architecture should, however, explicitly address how
this issue will be mitigated in the virtual simulation
domain.
No. Name
16 Component reuse difficulties: close ties to

domain and context.
15 Component reuse difficulties: different

purpose and different interface.
22 Component reuse difficulties: many

dependencies

 Influencing
factors:

34 Component reuse difficulties: interface
complexity

 Design
Solution:

Create a component interface that is simple, flexible
and negotiable.

 Architectural
Strategies:

Event-based component interface: All components
will communicate to each other and the rest of the
infrastructure through events. Events will be
uniquely identified and incorporate data that
represents component state.

Configurable event data: Components will notify
the infrastructure of required events and event data
when the component is registered. Specific events
and event data that will actually run in the
implementation of the simulation will be determined
at configuration-time.

 Related
Strategies:

-Tailored events
-Configuration-based component customization

150

Table 59: Issue - Component architecture development

6 Name: Component architecture development
 Description: A number of challenges face the use of a component

architecture for virtual simulations. These challenges
may also face the discipline of component
architecture in general. The architecture should,
however, explicitly address how these problems will
be addressed in the virtual simulation domain.
No. Name
35 Component protection and licensing
18 Backwards compatibility and version

upgrades
19 Component engineering effort
20 Component performance

 Influencing
factors:

21 Component framework complexity
 Design

Solution:
Handle protection, licensing, and versioning together.
Support individual component licenses. Ensure only
one version of a component is active at a time but
allow version negotiation and replacement.

 Architectural
Strategies:

Registration and licensing managers: Registration
and licensing managers will be used to handle
component licensing, versioning, and interface
specification. When a component registers with the
infrastructure it will identify its run-time licensing
requirements, its version, and its interface
requirements.

 Related
Strategies:

-Implement component interface constraints

151

Table 60: Issue - Component framework implementation

7 Name: Component framework implementation
 Description: A number of challenges face the implementation of a

component framework for virtual simulations. These
challenges may also face the implementation of a
generic component framework. The architecture
should, however, explicitly address how these
problems will be addressed in the virtual simulation
domain.
No. Name
24 Domain model componentization
27 Built-in assumptions of a generic platform
31 Abstract over-engineering

 Influencing
factors:

25 Development in a vacuum or lab
environment

 Design
Solution:

Ensure that the architecture supports the major virtual
simulation domain models currently in use.

 Architectural
Strategies:

Componentized virtual simulation domain models:
Break the major gaming and military virtual
simulation genres into components to ensure the
architecture offers the potential to support them:
action, role-player, real-world, strategy, and
distributed.

 Related
Strategies:

-Separate content components from framework
components.

152

Table 61: Issue - Security and military technology

8 Name: Security and military technology
 Description: While the military is interested in the benefits gained

from using gaming technology, it is equally or more
concerned with protecting its own technology from
being abused, indiscriminately distributed, and
potentially misused to compromise national secrets.
No. Name
28 Military is averse to risky new technologies
33 Security in the PC environment
5 Confidentiality of military technology in

games

 Influencing
factors:

32 Self-driven components
 Design

Solution:
Implement basic security policies to help counteract
malicious use of the infrastructure.

 Architectural
Strategies:

Implement component interface constraints: Do not
allow run-time component and event registration,
subscription, or publication. Allow run-time event
subscription activation and deactivation only.

 Related
Strategies:

-Event-based component interface
-Registration layer
-Wrap risky technologies in components

153

Table 62: Issue - Technology trends

9 Name: Technology trends
 Description: It is important that the architecture consider current

technology trends in virtual simulation and gaming
related to graphics, physics, distributed
environments, as well as trends in other related fields.
No. Name
30 Divergence of technology
12 Increasingly realistic gaming graphics

 Influencing
factors:

36 Emergence of dedicated physics cards
 Design

Solution:
Encapsulate new and diverging technology to help
mitigate the risks of using it.

 Architectural
Strategies:

Wrap risky technologies in components: Ensure
those parts of the simulation that represent the use of
technology that is likely to change are wrapped
within a single component: physics engine
component, OpenGL graphics engine component,
DirectX graphics engine component

 Related
Strategies:

-Separate content components from framework
components

154

APPENDIX D: PHASE II RESULTS – ARCHITECTURE
DESCRIPTION

155

This appendix provides the full description of the software architecture.

Context

Figure 7: Context of the Component-Based Virtual Simulation

In the interest of providing context and perspective, the deployed component-

based virtual simulation is designed to run on a PC-based operating system, but it is not

meant to be strongly tied to that environment. It supports deployment as a stand alone

application or as a set of libraries run in the context of a larger application.

156

Layers

Figure 8: Component-Based Virtual Simulation Layers

The architecture consists of four layers whose responsibilities are as follows:

• Execution Layer: The execution layer establishes the run-time environment

for the component-based simulation. It is responsible for initialization,

window and rendering context setup, execution context and environment, and

termination.

• Infrastructure Layer: The infrastructure layer consists of core components

which handle simulation component loading, registration, licensing,

configuration, and execution, as well as management of the simulation

lifecycle.

157

• Framework Layer: The framework layer consists of singleton simulation

components whose lifetimes span the lifecycle of each simulation scenario. It

is responsible for defining behavior of the simulation’s virtual environment

and tools.

• Content Layer: The content layer consists of simulation components whose

lifetimes span the lifecycles of entities within the simulation. It is responsible

for defining entity behaviors.

158

Component Classes

Figure 9: Components Class Diagram

A component is a uniquely identified and versioned, independently deployable,

licensed subset of simulation functionality. Components must conform to interface

159

IComponent for purposes of identification, version resolution, registration, and license

negotiation. There are two types of components:

• Infrastructure components: There are six infrastructure components that

reside in the infrastructure layer which provide the underlying core

functionality of the simulation. Each infrastructure component conforms to a

contract that defines its interface to its peers. These components are loaded

and initialized by the execution layer which provides each with a reference to

a list of all loaded infrastructure components. The six infrastructure

components are RegistrationMgmt, ConfigurationMgmt, SimulationMgmt,

EventMgmt, TimeMgmt, and LicenseMgmt.

• Simulation components: There are an undefined number of simulation

components that reside in the framework and content layers which define the

overall behavior of the simulation. Simulation components communicate to

their peers solely through the use of events. The two types of simulation

components, framework and content components, reside in their respective

layers.

• Framework components: Framework components are configured and run as

singletons per scenario, and their lifecycle length is the same as that of the

scenario.

• Content components: Content components are configured and run per entity

in each scenario. Each entity in a scenario is an aggregate of the functionality

of all of its content components. A content component’s lifecycle corresponds

to that of the entity to which it is attached.

160

Infrastructure Layer

Figure 10: Infrastructure Layer Class Diagram

161

The following list provides a description of the six infrastructure components that

make up the infrastructure layer:

• RegistrationMgmt: Responsible for registering each component, maintaining

and updating that information, and providing component registration

information to other infrastructure components. Information gathered by

RegistrationMgmt can be used to resolve component identification,

communication, and security issues.

• LicenseMgmt: Responsible to ensure each component that will run has a valid

license.

• ConfigurationMgmt: Responsible for providing initial states for all

components and maintaining entity and scenario configurations.

• SimulationMgmt: Responsible for initializing, running, and terminating each

scenario through the instantiation and destruction of all simulation

components and the control of the TimeMgmt and EventMgmt infrastructure

components.

• TimeMgmt: Responsible for maintaining current simulation time.

• EventMgmt: Responsible for providing the event communication mechanism

for all simulation components. EventMgmt uses persistent overwritten events

with a one-to-many event-to-callback relationship. Events are persistent in

that once an event is published it is not destroyed until the end of the scenario.

The most recent event of a given event name, along with its data, is retained

as the current event, overwriting the previously published event of the same

162

name. Multiple simulation components can subscribe to a given event name

and register callback functions to the event.

Infrastructure Component Lifecycle

Figure 11: Infrastructure Component Lifecycle

The six infrastructure components are located, loaded, and instantiated by the

execution layer. Once loaded, each infrastructure component is initialized with a list of

references to the other infrastructure components to allow peer-to-peer communication.

The interfaces for this communication are governed by an interface contract for each of

the components.

163

Component Registration Sequence

Figure 12: Component Registration Sequence Diagram

In order for a component to be configured and run in a scenario, it must be

registered with RegistrationMgmt. RegistrationMgmt gets the component’s id, name,

version, and a list of requested publishable and subscribable events. This information is

used for configuring entities and scenarios, enforcing simulation component event

164

communication paths and security, and resolving component id, version, and naming

conflicts.

Configuration Classes

Figure 13: Configurations Class Diagram

There are three types of configurations:

• Simulation Component Configuration: contains a reference to a simulation

component’s registration information and specifies an initial event list for the

component.

• Entity Configuration: contains an entity id, a list of simulation content

component configurations that specifies content components that make up the

entity, and an initial event list for the entity.

165

• Scenario Configuration: contains a scenario id, a list of entity configurations

that make up the scenario, a list of simulation framework component

configurations that specifies framework components that will run in the

scenario, and an initial event list for the scenario.

166

Scenario Lifecycle

Figure 14: Scenario Lifecycle Diagram

167

Following is a summary of the scenario lifecycle:

• Initialization: The execution layer chooses a scenario to run and tells

SimulationMgmt to run that scenario. SimulationMgmt starts the thread for

that scenario, gets the scenario configuration information from

ConfigurationMgmt, and ensures all the simulation components specified by

the scenario configuration are properly registered and licensed. It then starts

the simulation clock and tells EventMgmt to fire initial events on the given list

of simulation components. EventMgmt pulls the registration information for

each component, records which events simulation components may publish

and which they may subscribe to, then fires initial events for each simulation

component.

• Main Simulation Loop: After EventMgmt completes initialization,

SimulationMgmt enters the main simulation loop. On each cycle it updates

the simulation clock and then tells EventMgmt to update all events in the

given list of simulation components. EventMgmt finds all published events

from each component, checks each against the component’s registered

publishable events, then updates each component with the new events, again

checking against the component’s registered subscribable events. Once the

event update is complete, EventMgmt returns control to SimulationMgmt.

• Destruction: When SimulationMgmt gets a call to end the scenario from the

execution layer, it halts the main simulation loop and tells EventMgmt to fire

end events on the given list of simulation components. Once EventMgmt

168

returns, SimulationMgmt ends the scenario thread and returns control to the

execution layer.

169

Simulation Component Lifecycle

Figure 15: Simulation Component Lifecycle Diagram

170

The following describes a simulation component’s lifecycle:

• Creation: Simulation components are instantiated by SimMgmt based on the

components required by the current scenario.

• Initialization: Each component’s state is initialized by EventMgmt through a

set of events defined during registration and configuration.

• Simulation Loop: During the main simulation loop EventMgmt gets events

published by each component and ensures the events are publishable by the

component based on each component’s registration. EventMgmt then

provides callback service for all events published to which the component has

subscribed.

• End: Each component’s state is finalized by EventMgmt through a set of

events defined during registration and configuration.

• Destruction: Simulation components are destroyed by SimMgmt at the end of

the scenario.

171

Event Classes

Figure 16: Event Class Diagram

Every event used in the simulation must subclass SimEvent and therefore must

implement the interfaces ISerializable and ISimEvent. When created a SimEvent must at

a minimum contain its identifying event name. The creator may also add any data

desired to the sub-classed event. The EventMgmt infrastructure component will add the

frame and timestamp when the event is published. Every event is serializable so the

172

infrastructure (and possibly other simulation components) can use the event without

knowledge of the data types or data contained in the event.

Event Lifecycle

Figure 17: Event Lifecycle Diagram

173

When a simulation component chooses to publish an event, it creates the event

with the appropriate event name and adds the appropriate data to its event subclass. It

returns the list of published events to EventMgmt which copies, stores, and timestamps

the event. EventMgmt then fires the associated event callbacks of the event subscribers.

The simulation component can then destroy the event on the next frame. EventMgmt

retains its copy of the event until the end of the scenario.

Event Callback Class

Figure 18: Event Callback Class Diagram

Every event callback is of type SimEventCallback which implements the

ISimEventCallback interface. The EventMgmt infrastructure component associates each

event with a series of registered callbacks contained in simulation components and

maintains the association through the use of the event’s name.

174

Event Callback Lifecycle

Figure 19: Event Callback Lifecycle Diagram

The event callback is created for each event a simulation component would like to

listen to. During callback creation, the simulation component identifies its own instance,

the name of the event to listen for, and the pointer to the function that will receive the

callback. The list of callbacks for each simulation component is passed back to

EventMgmt which associates the callback with a particular event through the event name.

When the event is published EventMgmt makes a call to the appropriate callback

function.

175

APPENDIX E: GLOSSARY OF ARCHITECTURE TERMS

176

The following terms are used in the documentation of the architecture and are

defined here.

• Component - A component is a uniquely identified and versioned,

independently deployable, licensed subset of simulation functionality.

• Configuration – A configuration is a list that references a set of simulation

component registrations and a set of initial and end events.

• Configuration Management – Configuration management represents an

infrastructure component that is responsible for providing initial states for all

components and maintaining entity and scenario configurations.

• Connector – A connector is a mechanism that allows components to

communicate with each other.

• Content Component – A content component is a simulation component that

is configured and run per entity in a scenario and whose lifecycle corresponds

to the entity to which it is attached.

• Content Layer – The content layer consists of all of the simulation’s content

components. It is responsible for defining entity behaviors.

• Entity – An entity is a configuration that represents an aggregation of the

behavior and functionality of a set of content components.

• Event – See persistent event.

• Event Callback – An event callback represents a simulation component’s

subscription to an event. It specifies a function that is called when that event

is published.

177

• Event Management – Event management represents an infrastructure

component that is responsible for controlling the persistent event connector

that provides a communication mechanism for all simulation components.

• Execution Layer – The execution layer establishes the run-time environment

for the component-based simulation. It is responsible for initialization,

window and rendering context setup, execution context and environment, and

termination. It has a dependency on the infrastructure layer.

• Framework Component – A framework component is a simulation

component that is configured and run as singleton in a scenario and whose

lifecycle is the same as that of the scenario.

• Framework Layer – The framework layer consists of all of the simulation’s

framework components. It is responsible for defining behavior of the

simulation’s virtual environment and tools. It has a dependency on the

content layer.

• Infrastructure Component – An infrastructure component is a component

that provides core, underlying functionality to the simulation. There are six

infrastructure components that are responsible for component licensing,

component registration, component configuration, event management, time

management, and simulation management.

• Infrastructure Component Reference – An infrastructure component

reference represents a connector that allows peer-to-peer infrastructure

component communication.

178

• Infrastructure Layer – The infrastructure layer consists of infrastructure

components which handle simulation component loading, registration,

licensing, configuration, and execution, as well as management of the

simulation lifecycle. It has a dependency on the framework and content

layers.

• License Management – License management represents an infrastructure

component that is responsible to ensure each component that will run has a

valid license.

• Persistent Event – A persistent event is a connector that allows peer-to-peer

simulation component communication. It is persistent because its data is

maintained persistently until superseded by a newer persistent event of the

same name.

• Registration – A registration is a set of information about a component that

includes its name, location, and its set of publishable and subscribable events.

• Registration Management – Registration management represents an

infrastructure component that is responsible for registering each component,

maintaining and updating that information, and providing component

registration information to other infrastructure components. Information

gathered by registration management can be used to resolve component

identification, communication, and security issues.

• Scenario – A scenario is a configuration that represents an aggregation of the

behavior and functionality of a set of framework components and a set of

entities.

179

• Simulation Component – A simulation component is a component that

provides simulation-driven functionality or behavior. The two types of

simulation components are framework components and content components.

• Simulation Management – Simulation management represents an

infrastructure component that is responsible for initializing, running, and

terminating each scenario through the instantiation and destruction of all

simulation components and the control of the time management and event

management infrastructure components.

• Time Management – Time management represents an infrastructure

component that is responsible for maintaining current simulation time.

180

REFERENCES

Aksit, Mehmet. Software Architectures and Component Technologies. Kluwer Academic
Publishers, 2002.

Alexa, Stefan. America’s Army Game: Its (Virtual) Reality Representation and Cocaine.

2004 International Conference on Cyberworlds. IEEE, 2004.

Baracos, P. et. al. Enabling PC-Based HIL Simulation for Automotive Applications.

IEEE, 2001.

Batista, H., Costa, V., Pereira, J. Games of War and Peace: Large Scale Simulation Over

the Internet. Proceedings of the 7th International Conference on Virtual Systems and
Multimedia. IEEE, 2001.

Clements, P. Comparing the SEI’s Views and Beyond Approach for Documenting

Software Architectures with ANSI-IEEE 1471-2000, Software Architecture
Technology Initiative, 2005.

Clements, Paul; Kazman, Rick; Klein, Mark. Evaluating Software Architectures:

Methods and Case Studies. Addison-Wesley, 2002.

Computer Science and Telecommunications Board, National Research Council.

Modeling and Simulation: Linking Entertainment and Defense. National Academic
Press, 1997.

Erwin, S. Video Games Gaining Clout as Military Training Tools, National Defense

Magazine, Nov. 2000.

Fong, Gwenda. Adapting COTS Games for Military Simulation. Association for

Computing Machinery, 2004.

Gamespy. Take Off and Stay High, October 2004. Retrieved August 6, 2005 from

http://www.gamespy.com/articles/556/556463p1.html.

Gomaa, H. Designing Concurrent, Distributed, and Real-Time Applications with UML.

Addison-Wesley, 2000.

Hamilton, John A., Pooch Udo W. An Open Simulation Architecture for Force XXI.

Proceedings of the 1995 Winter Simulation Conference, 1296-1303. IEEE, 1995.

Hofmeister, C., Nord, R., Soni, D. Applied Software Architecture. Addison-Wesley,

2000.

http://www.gamespy.com/articles/556/556463p1.html

181

Korris, James H. Full Spectrum Warrior: How the Institute for Creative Technologies
Built a Cognitive Training Tool for the Xbox. 24th Army Science Conference, 2004.

Lewis, M., Jacobsen, J. Game Engines in Scientific Research. Communications of the

ACM, Vol. 45, No. 1, January 2002.

Lindheim, R., Swartout, W. Forging a New Simulation Technology at the ICT. IEEE

Computer, 2001.

Macedonia, Michael. Entertainment Technology and Virtual Environments for Military

Training and Education. Forum Futures 2001, Forum for the Future of Higher
Education, 2001.

Macedonia, Michael. Games Soldiers Play. IEEE Spectrum. March 2002.

Morris, C., Tarr, R. Templates for Selecting PC-Based Synthetic Environments for

Application to Human Performance Enhancement and Training. Proceedings of the
IEEE Virtual Reality 2002.

Pace, J. et. al. Accomplishing Adaptability in Simulation Frameworks: the Bubble

Approach. IEEE, 2001.

Prensky, M., True Believers: Digital Game-Based Learing in the Military, Digital Game-

Based Learning, McGraw-Hill, 2001.

Samara, Shaul. Interview with Shaul Samara, VP of Development for Simigon, on

September 9, 2005.

Simigon, Inc. Company vision and product descriptions of Knowbook and Airbook.

Retrieved August 20, 2005 from www.simigon.com.

Szyperski, C. Component Software: Beyond Object-Oriented Programming. ACM Press,

1998.

Szyperski, C., Messerschmitt, D. Software Ecosystem: Understanding an Indispensable

Technology and Industry. MIT Press, 2005.

Van Lent, M. Integrating Architecture. Presentation for the SOAR Workshop, 2004.

Zyda, M. et. al. Entertainment R&D for Defense. IEEE Computer Graphics and

Applications. January/February 2003.

http://www.simigon.com/

	A Common Component-based Software Architecture For Military And Commercial Pc-based Virtual Simulation
	STARS Citation

	 ABSTRACT
	 TABLE OF CONTENTS
	 LIST OF FIGURES
	 LIST OF TABLES
	 LIST OF ACRONYMS
	 1. INTRODUCTION
	Component-Based Software Architecture
	PC-Based Virtual Simulation
	Research Area

	 2. REVIEW OF RELATED PROJECTS AND LITERATURE
	Strategy for Common Use: Reuse
	Microsoft Flight Simulator
	Falcon 4.0
	Steel Beasts
	Advantages of Reuse
	Drawbacks to Reuse

	Strategy for Common Use: Contracted Development
	Spearhead II
	Real War
	Advantages of Contracted Development
	Drawbacks to Contracted Development

	Strategy for Common Use: Adaptation
	Doom to Marine Doom
	Jane’s USAF to Airbook
	The Unreal Engine and America’s Army
	Strengths of Adaptation
	Drawbacks to Adaptation

	Research Through Collaboration at the ICT
	Component-Based Modeling and Simulation
	Questions Being Asked
	Argument for a Common Component-Based Software Architecture
	Description of a New Strategy
	Solution to Previous Weaknesses
	Further Strengths / Benefits

	 3. METHODOLOGY
	Research Concept
	Phase I: Analysis
	Structured Interviews
	Military PC-based virtual simulation:
	PC-based virtual simulation for commercial entertainment and gaming:
	Software architecture and component software technologies:

	Factor Identification
	Issue Generation

	Phase II: Design and Documentation of the Architecture
	Solution and Strategy Development
	Component Identification
	Connector Identification
	Component-Connector Relationships

	Phase III: Implementation of Prototypes
	Requirements for Prototype 1: Putt-putt
	Requirements for Prototype 2: Pac-Bot Trainer
	Architectural Requirements for the Prototypes

	Phase IV: Evaluation
	Step 1: Verification of the Prototypes
	Step 2: Evaluation of Strategy Implementation
	Step 3: Validation of the Architecture

	Contribution of the Research

	 4. RESULTS
	Phase I Results: Analysis
	Interviews
	Group 1: Experts in Software Architecture and Component Software Technologies
	Group 2: Experts in Military PC-Based Virtual Simulation
	Group 3: Experts in Virtual Simulation for Commercial Entertainment and Gaming

	Factors
	Issues

	Phase II Results: Design and Documentation of the Architecture
	Architecture Design: Solutions and Strategies
	Architecture Documentation: Components
	Component Types and Responsibilities
	Component Lifecycles
	Component Administration

	Architecture Documentation: Connectors
	Connector Types and Responsibilities
	Connector Lifecycles
	Simulation Administration

	Phase III Results: Implementation Of Prototypes
	Implementation Environment Details
	Architecture Implementation
	Prototype 1 Implementation
	Prototype 2 Implementation

	Phase IV Results: Evaluation
	Step 1: Prototype Verification
	Step 2: Strategy Implementation Verification
	Step 3: Architecture Validation

	 5. CONCLUSION
	Summary of Results
	Original Contributions
	Limitations of the Architecture Implementation
	Future Research

	 APPENDIX A: PHASE I RESULTS – INTERVIEWS
	 Group 1: Experts in software architecture and component software technologies
	Interview with Didi Garfunkel, Simigon Inc.
	Interview with Darren Humphrey, Disti Inc.
	Interview with Robert Norton, Thoughtworks Inc.
	Interview with Dr. Clemens Szyperski, Microsoft Inc.

	Group 2: Experts in military PC-based virtual simulation
	Interview with Curtis Conkey, NAVAIR
	Interview with Peter Smith, NAVAIR
	Interview with Dr. Roger Smith, Sparta Inc.
	Interview with Dr. Michael Zyda, ISI at USC

	Group 3: Experts in Virtual Simulation for Commercial Entertainment and Gaming
	Interview with Tom Carbone, FIEA
	Interview with Stephen Eckman, Disti Inc.
	Interview with Dr. Michael Gourlay, FIEA
	Interview with Keelan Stuart, Disti Inc.

	 APPENDIX B: PHASE I RESULTS – FACTORS
	 APPENDIX C: PHASE II RESULTS – ISSUES, SOLUTIONS AND STRATEGIES
	 APPENDIX D: PHASE II RESULTS – ARCHITECTURE DESCRIPTION
	Context
	Layers
	Component Classes
	Infrastructure Layer
	Infrastructure Component Lifecycle
	Component Registration Sequence
	Configuration Classes
	Scenario Lifecycle
	Simulation Component Lifecycle
	Event Classes
	Event Lifecycle
	Event Callback Class
	Event Callback Lifecycle

	 APPENDIX E: GLOSSARY OF ARCHITECTURE TERMS
	 REFERENCES

