
University of Central Florida University of Central Florida 

STARS STARS 

Faculty Bibliography 2010s Faculty Bibliography 

1-1-2014 

ProbeAlign: incorporating high-throughput sequencing-based ProbeAlign: incorporating high-throughput sequencing-based 

structure probing information into ncRNA homology search structure probing information into ncRNA homology search 

Ping Ge 
University of Central Florida 

Cuncong Zhong 
University of Central Florida 

Shaojie Zhang 
University of Central Florida 

Find similar works at: https://stars.library.ucf.edu/facultybib2010 

University of Central Florida Libraries http://library.ucf.edu 

This Article; Proceedings Paper is brought to you for free and open access by the Faculty Bibliography at STARS. It 

has been accepted for inclusion in Faculty Bibliography 2010s by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

Recommended Citation Recommended Citation 
Ge, Ping; Zhong, Cuncong; and Zhang, Shaojie, "ProbeAlign: incorporating high-throughput sequencing-
based structure probing information into ncRNA homology search" (2014). Faculty Bibliography 2010s. 
5354. 
https://stars.library.ucf.edu/facultybib2010/5354 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/236309265?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/facultybib2010
https://stars.library.ucf.edu/facultybib
https://stars.library.ucf.edu/facultybib2010
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/facultybib2010/5354?utm_source=stars.library.ucf.edu%2Ffacultybib2010%2F5354&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


PROCEEDINGS Open Access

ProbeAlign: incorporating high-throughput
sequencing-based structure probing information
into ncRNA homology search
Ping Ge1, Cuncong Zhong1,2, Shaojie Zhang1*

From RECOMB-Seq: Fourth Annual RECOMB Satellite Workshop on Massively Parallel Sequencing
Pittsburgh, PA, USA. 31 March - 05 April 2014

Abstract

Background: Recent advances in RNA structure probing technologies, including the ones based on high-
throughput sequencing, have improved the accuracy of thermodynamic folding with quantitative nucleotide-
resolution structural information.

Results: In this paper, we present a novel approach, ProbeAlign, to incorporate the reactivities from high-
throughput RNA structure probing into ncRNA homology search for functional annotation. To reduce the overhead
of structure alignment on large-scale data, the specific pairing patterns in the query sequences are ignored. On the
other hand, the partial structural information of the target sequences embedded in probing data is retrieved to
guide the alignment. Thus the structure alignment problem is transformed into a sequence alignment problem
with additional reactivity information. The benchmark results show that the prediction accuracy of ProbeAlign
outperforms filter-based CMsearch with high computational efficiency. The application of ProbeAlign to the
FragSeq data, which is based on genome-wide structure probing, has demonstrated its capability to search ncRNAs
in a large-scale dataset from high-throughput sequencing.

Conclusions: By incorporating high-throughput sequencing-based structure probing information, ProbeAlign can
improve the accuracy and efficiency of ncRNA homology search. It is a promising tool for ncRNA functional
annotation on genome-wide datasets.

Availability: The source code of ProbeAlign is available at http://genome.ucf.edu/ProbeAlign.

Background
The non-coding RNAs (ncRNAs) play various vital roles in
the biological systems [1-3], such as gene-expression regu-
lation [4], catalysis [5], signal recognition [6], and riboso-
mal RNA modification [7]. Given the facts that most of
the human genome (approximately 62% [8] to 93% [9]) is
transcribed [10] while only a small fraction of it (about
3%) actually codes for proteins, it is tempting to hypothe-
size that the ncRNAs contribute enormously to the com-
plex and elegant regulatory networks in human and other
multicellular organisms. Therefore, fully understanding

any biological system is impossible without the thorough
research on the ncRNAs in it. However, annotating
ncRNAs is more difficult than proteins, because ncRNAs
with divergent sequences may fold into conserved second-
ary structures, and still perform similar biological func-
tions. In this sense, secondary structure conservation is
used as a better evidence for functional conservation than
sequence similarity when conducting comparative ncRNA
analysis.
Annotating the ncRNA secondary structure is a prere-

quisite for comparative ncRNA structural analysis.
However, determining ncRNA secondary structure is a
non-trivial task. The performance of the existing computa-
tional methods (such as mfold [11], RNAfold [12], and
RNAstructure [13]) for predicting secondary structure
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from a single ncRNA sequence is not satisfying, especially
for long ncRNA sequences [14]. Although the prediction
accuracy can be improved with evolutionary information
from multiple sequence alignments [15-19], such informa-
tion is not always available for every genome of interest.
On the other hand, genome-wide annotation of known
ncRNA families by homology search still appears as an
open problem for lacking efficient and accurate computa-
tional pipelines. For example, the latest release of the
widely used software CMsearch has significantly improved
the computational efficiency of its previous versions [20].
However, it still would take about 3 hours to annotate the
1 Gbp chicken genome with known Rfam [21] families on
a 100-CPU cluster even with filters and MPI applied [20].
The sensitivity of CMsearch reaches a plateau at ~87%
without filters, indicating intrinsic difficulty in detecting
ncRNAs with diverse sequences. The difficulty of ncRNA
annotation is partly due to the computational overhead of
structure alignment, and partly due to the low information
content given by the secondary structures [22].
Recent advances in massive parallel sequencing make

genome-wide probing of ncRNA secondary structures
possible. Examples of technologies in this category
include, but not limited to, PARS [23], FragSeq [24],
and SHAPE-seq [25] (SHAPE-seq has not been applied
in genome-wide study). With further improvements,
such techniques are becoming more powerful for under-
standing the in vitro [26,27], or even in vivo ncRNA
structrome [28]. The information received from a typical
genome-wide ncRNA secondary structure probing
experiment is the reactivity for each site. As the probing
reagents, such as 1M7 [25,29,30], DMS [28], or nuclease
[24], are chosen to preferentially attack the paired/
unpaired regions, the experimentally determined reactiv-
ity can be used to assess the probability of whether a
specific site is paired. The reactivities can then be trans-
formed into pseudo-energy terms [30,31], and be incor-
porated into existing RNA-folding algorithms to predict
the optimal secondary structure that is compatible with
both the RNA free energy models and the observed
reactivity pattern. When the reactivity information
derived from SHAPE technology [29] was incorporated,
the 16s rRNA structure prediction accuracy was lifted
from 47% to 97% [30]. This success implies great poten-
tial in using the structure probing information in other
comparative genome-wide ncRNA analysis approaches.
Therefore, it is possible to improve the ncRNA annota-

tion by incorporating the high-throughput RNA secondary
structure probing information. First, the computational
efficiency can be promoted by only focusing on tran-
scribed regions revealed by the read-mapping pattern as
used in standard RNA-seq experiments. In addition, the
experimentally defined structural information can be used
to reduce the search space of the alignment algorithms

and lead to the development of a more efficient one.
Meanwhile, we can also expect to improve the annotation
accuracy because the experimentally determined structural
information reflects the real RNA structures, and is much
more accurate than the in silico predictions.
Here, we present a novel ncRNA annotation algorithm

called ProbeAlign, which, to the best of our knowledge, is
the first algorithm that considers high-throughput RNA
structure probing information for the purpose of genome-
wide ncRNA annotation. To make ProbeAlign feasible for
large-scale sequencing data, the specific pairing relation-
ships between bases in the query structures are discarded
to achieve O(n2) time complexity. On the other hand, with
the usage of structure probing data, the partial structural
aspects of target sequences are introduced into the algo-
rithm. Therefore, ProbeAlign tackles the homology search
problem from another perspective with the support of
new technologies. The benchmark results show that the
prediction of ProbeAlign outperforms filter-based
CMsearch with a shorter running time. Last but not least,
the application of ProbeAlign to FragSeq data, which was
generated by high-throughput sequencing-based RNA
structure probing technology, shows its capability of ana-
lyzing genome-wide datasets.
The rest of the paper is organized as follows: in the

Methods section, we discuss the core algorithm of Pro-
beAlign and how to estimate the p-values for the align-
ment scores. In the Results section, we describe
benchmark results, parameters optimization and an
application of our algorithm to FragSeq data. In the Dis-
cussion section, we summarize our existing works, and
propose possible directions for future research.

Methods
Algorithm
ProbeAlign identifies the homologous ncRNAs in a pro-
file-based search manner. The profile is generated by
using the multiple sequence alignment of a given
ncRNA family. The aligned columns formed by a major-
ity of gap are excluded in the search profile. In addition,
the consensus structure of the family is considered as
the structural information of the profile. The targets of
search are usually the genomic or transcriptomic
sequences with experimentally determined reactivities.
In the latest implementation of ProbeAlign, higher reac-
tivity of a site indicates higher chance of being unpaired,
and vice versa.
Assume the alphabet of RNA sequences is {A, C, G, U,

X}, in which X represents all unknown nucleotides. First
we denote the query of an ncRNA family as Q = {P, S},
where P is the sequence profile of the family and S is the
pairing pattern in the corresponding consensus structure.
Let the length of the profile be n, then P = 〈p1, p2, . . . , pn〉

and S = 〈s1, s2, . . . , sn〉. Here, pi = [vAi , v
C
i , v

G
i , v

U
i , v

X
i , v

−
i ] ,
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which is a vector that contains the frequency of the
nucleotides and gap at site i. si is a boolean value indicat-
ing whether site i is paired in the consensus structure or
not (0 means i is paired and vice versa). Note that the
specific pairing relationship between sites in P is not con-
sidered in S, which is similar to the folded-BLAST [32].
For target T of length m, denote B = 〈b1, b2, . . . , bm〉 as
the genomic sequence and R = 〈r1, r2, . . . , rm〉 as the
observed reactivities. Denote Di,j, Ii,j, Mi,j as the optimal
alignment scores for deleting, inserting and matching a
column in the search profile, respectively. They can be
computed using the following recursive functions:

Di,j = max{Mi−1,j + ε0 + εe,Di−1,j + εe},
Ii,j = max{Mi,j−1 + ε0 + εe, Ii,j−1 + εe},
Mi,j = max{Di,j, Ii,j,Mi−1,j−1 + α × τ (si, rj) + β × σ (pi, bj)}.

(1)

Here, ε0 and εe are the gap open penalty and the gap
extension penalty, respectively. In our implementation, a
“semi-global alignment” setting [33] is adopted. Therefore,
these three functions are initialized with: M0,0 = 0, Mi,0 =
ε0 + i × εe, M0,j = 0, and D0,j = Ii,0= −∞. τ and s are func-
tions to assess the structural and the sequence similarities
between the queries and the targets, respectively. a and b
are weights assigned to these two types of similarities.
The sequence similarity between the query profile and

the target sequence is computed using the following for-
mula:

σ (pi, bj) =
∑

xε{A, C, G, U, X, −}
vxi × m(x, bj) (2)

where m(x, y) is the substitution score between
nucleotides x and y.
The general function to compute structural similarity

is as follows:

τ (si, rj) =
{
0 if rj is not defined,
f (si, rj) otherwise.

(3)

Given the reactivity rj, p(πj| rj ) is computed to compare
the structural aspect of bj with si. πj is a random variable
and πj ∈ {0, 1}, 0 means bj is paired and 1 means bj is not
paired. According to the Bayes’ theorem, the probability
can be computed as:

p(πj|rj) =
p(rj|πj) × p(πj)

	πj p(rj|πj) × p(πj)
. (4)

The probabilities p(r|π = 0) and p(r|π = 1) can be
inferred from the reactivities retrieved from the RNAs
with known secondary structures [34]. To simplify the
computation, we assume p(π = 0) is equal to p(π = 1) and
then define the function f as:

f (si, rj) = log p(πj = si|rj) − log p(πj �= si|rj)
= log p(rj|πj = si) − log p(rj|πj �= si).

(5)

Note that the probability p(r|π) varies among different
probing techniques. Even for one protocol, the reactivity
distributions may be different due to the distinct computa-
tional methods for transferring the chemical signals from
biological experiments. Therefore, it may be hard to apply
Equation 5 on some techniques whose statistical proper-
ties have not been studied yet. To overcome this limitation
and make the implementation of ProbeAlign easy to use, a
simplified scoring function is proposed:

f (si, rj) =
{
1 if(rj > rc and si = 1) or (rj < rc and si = 0),
−1 otherwise. (6)

In Equation 6, rc is a cutoff value which is used to anno-
tate the structural aspects of targets. Any site that has
higher reactivity than rc is deemed as unpaired, and vice
versa (rj > rc ⇒ p(πj = 1|rj ) = 1; rj <= rc ⇒ p(πj = 0|rj ) =
1). We have compared two different types of structural
similarity functions by taking SHAPE protocol as an
example. The benchmark results show that the optimal
performance of those two functions is comparable.
Therefore, the simplified scoring function is practical for
universal usage, while the protocol-specific scoring func-
tion may be a better option if the reactivity distribution is
known.
The above described dynamic programming algorithm

computes the optimal alignment between the query profile
and the target sequence with the consideration of both
structural and sequence similarity. After alignment, trace-
back is performed to check the base pairing consistency
between the query structure and the target. Bonus scores
are assigned to the possible pairing bases. Such additional
information can be used to detect potential false positive
hits that have high alignment scores but low structural
consistency with the query. For example, in Figure 1, two
alignment scores are the same. However, the target in
alignment 1 is more conserved with the query, compared
with the target in alignment 2, because the red letters can
form canonical pairs, while the green ones can not. Struc-
ture consistency scores can help us distinguish these two
targets.

P-value estimation
A robust scheme for evaluating the statistical significance
of prediction results is important for the homology search
applications. However, what statistical distribution the
ncRNA alignment scores should follow is still unclear. In
this case, we simulated the ProbeAlign scores by searching
106 Rfam families (as defined by the Infernal RMARK3
dataset [20]) against five artificial sequences, whose GC
content ranging from 30% to 70%. Each artificial sequence
was constructed by concatenating random RNA sequences
generated by GenRGenS [35] with a simple context-free
grammar [36]. The secondary structure of each random
sequence was predicted by mfold [11]. The corresponding
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reactivities of the secondary structure were simulated
based on the SHAPE technology [34].
We fitted the ProbeAlign score density for each Rfam

family with four different distributions: the normal, Gum-
bel, GEV (Generalized Extreme Value), and Gamma distri-
butions. The goodness of fitting was measured with K-S
test (Kolmogorov-Smirnov test). The fitting results on the
five artificial sequences show that the ProbeAlign scores
follow the Gamma distribution for most of Rfam families.
Take the fitting on the artificial sequence with 50% GC
content as an example. Out of 106 tested families, 103
families fit best with the Gamma distribution, and the
other three families (bicoid_3, OLE, and rne5) fit best with
the normal distribution. The score distribution fitting of
the Corona_FSE family (which follows Gamma) and the
rne5 family (which follows normal) is shown in Figure 2.
It is clear that even rne5 fits better with the normal distri-
bution, the Gamma distribution also fit the ProbeAlign
score distribution well. So the Gamma distribution was
chosen to evaluate the p-values in ProbeAlign.

Results
Benchmarks
In this section, we will compare the performance of
ProbeAlign and CMsearch using the RMARK3 benchmark

dataset. This dataset contains 106 families, and each family
has a training alignment and a test set. The training align-
ments were employed to generate queries for both tools.
The sequences in the test sets were concatenated together
and served as the target in the experiments. The corre-
sponding reactivities of the target were simulated based on
the SHAPE technology [34]. To make the comparison
between ProbeAlign and CMsearch fair, for each family,
we kept the number of predictions of these two programs
the same. A server machine with 4 Xeon i7 CPUs
(2.4 GHz) and 128 GB RAM was used for the benchmark-
ing and subsequent experiments under single core
configuration.
CMsearch adopts the covariance model to query against

the target sequences to detect RNA homologs. The recent
release of CMsearch is coupled with Hidden Markov
Model (HMM)-based filters to improve its computational
efficiency [20]. In the following experiments, CMsearch
will be invoked with default setting, which means the fil-
ters are coupled and the default parameters are used. For
ProbeAlign, the weights for the structural and sequence
similarity, a and b, were set to 0.7 and 2.6, respectively.
The simplified scoring function for structural similarity
was used as default in the benchmarks. According to the
property of the SHAPE reactivity data [30], rc was set to

Figure 1 Two alignments with different structure consistency scores. The reactivities with red color are higher than rc, while the reactivites
with blue color are less than rc. In Alignment 2, the red letters can not form canonical base pairs. The green letters in Alignment 1 can form
canonical base pairs.

Figure 2 Fitting of the alignment score distributions for Corona_FSE and rne5 families.
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0.3. A detailed discussion of parameter selection will be
presented in the following section.
The synthesized target contains 780 ncRNA sequences

(160,390 bps) from the RMARK3 dataset. It takes 2.13
minutes CPU time for ProbeAlign to finish the search
while it takes 6.85 minutes CPU time for CMsearch. Such
improvement is expected, since ProbeAlign adopts an O
(mn) algorithm, while the core algorithm of CMsearch is
from O(mn1.3) to O(mn2.4) [37], for a query with n sites
and a target with m bases. In terms of prediction accuracy,
the overall TP/FP ratio of CMsearch is 632/292, while that
of ProbeAlign is 653/271. Of the 106 ncRNA families in
RMARK3, ProbeAlign generates different prediction
results with CMsearch in 27 families. Table 1 shows the
performance difference of ProbeAlign and CMsearch on
those families.
The search results for the tRNA and RNase_MRP

families, whose ROC curves are shown in Figure 3, clearly

demonstrate the advantage of using the probing informa-
tion to detect remote homologous sequences. The
sequence identities for these two families are 46% and
47%, which make it challenging for HMM-based filters to
find the tested RNAs. Note that it would be possible for
CMsearch to predict more low sequence identity hits by
disabling the filters, but it would dramatically (by 10,000-
fold) increase the running time [20]. On the other hand,
when the probing information is considered, the high
structural similarity is able to compensate the low
sequence similarity, and lift the ranking of ncRNA
sequences that are difficult to be detected by CMsearch.
Figure 4 shows that a tRNA homolog (Accession ID:
AY632242.1/10-80) missed by CMsearch was identified by
ProbeAlign. Of 71 sites in the profile of the training set, 13
sites have frequencies less than 12.5% and 22 sites have
frequencies between 12.5% and 25%, which prevents the
HMM filters to retrieve some tRNAs.

Table 1 Summary of the results of ProbeAlign and CMsearch on the RMARK3 dataset.

Rfam ID Name Identity # Tests # Predictions CMsearch ProbeAlign

TP FP TP FP

RF00005 tRNA 44% 20 61 10 51 16 45

RF00007 U12 61% 7 8 7 1 6 2

RF00013 6S 43% 38 24 21 3 24 0

RF00017 SRP_euk_arch 46% 21 24 19 5 21 3

RF00020 U5 52% 22 23 19 4 22 1

RF00023 tmRNA 48% 59 59 58 1 57 2

RF00028 Intron_gpl 34% 20 5 4 1 5 0

RF00030 RNase_MRP 44% 28 36 16 20 22 14

RF00066 U7 62% 2 1 1 0 0 1

RF00080 yybP-ykoY 46% 13 13 13 0 10 3

RF00104 mir-10 58% 2 1 0 1 1 0

RF00114 S15 61% 8 11 8 3 7 4

RF00140 Alpha_RBS 65% 3 4 1 3 3 1

RF00165 Corona_pk3 68% 1 4 0 4 1 3

RF00177 SSU_rRNA_5 49% 13 17 12 5 13 4

RF00230 T-box 46% 48 50 46 4 47 3

RF00504 Glycine 50% 14 14 14 0 13 1

RF00515 PyrR 46% 29 38 25 13 28 10

RF00534 SgrS 48% 3 2 0 2 1 1

RF00548 U11 57% 8 11 7 4 5 6

RF00640 MIR167_1 53% 10 9 8 1 7 2

RF00645 MIR169_2 52% 21 21 21 0 20 1

RF00661 mir-31 57% 3 3 2 1 3 0

RF01052 Arthropod_7SK 65% 2 3 0 3 2 1

RF01066 6C 67% 1 2 1 1 0 2

RF01069 purD 56% 8 9 8 1 7 2

RF01296 snoU85 62% 2 6 1 5 2 4

Overall 406 459 322 137 343 116

Only the families with different results between the two programs are shown in the table.
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Optimizing the structure and sequence similarity weights
In the ProbeAlign algorithm, the parameters a and b indi-
cate the weights for the structural and sequence similarity,
and control how the two types of information are incorpo-
rated into the dynamic programming algorithm. The set-
ting of these parameters should reflect how well the
probing data would represent the actual secondary struc-
ture, as well as which information is more important in
defining a specific ncRNA family. Ideally, the setting of the
parameters should be family-specific to satisfy the struc-
ture and the sequence conservation patterns. However, it
is tedious to define a set of parameters for each search
profile, and more importantly, the overly tweaked para-
meters for the under-represented families would even bias
the search. In this case, it is expected to apply a set of uni-
versal parameters for all families.
Three experiments have been conducted to analyze the

effect of a and b on the performance of ProbeAlign by
using the RMARK3 dataset. The value of a varied from 0
to 2 with an increasing step of 0.1, while the value of b
varied from 4 to 0 with a decreasing step of -0.2. In the
first experiment, we investigated the performance of
ProbeAlign with the default setting under different combi-
nations of a and b. In the second experiment, we excluded
the structure consistency score to investigate its

contribution to the overall performance. In the third
experiment, the prediction was based upon the SHAPE-
specific scoring function for structural similarity. Figure 5
shows the performance of ProbeAlign in these three
experiments. For the first experiment (Figure 5, red line),
the optimal performance is achieved at a = 0.7 and
b = 2.6, which is then taken as the default setting for the
algorithm. For the second experiment (Figure 5, blue line),
the optimal performance is achieved at a = 0.6 and
b = 2.8. The performance of ProbeAlign is higher than
that without considering the structure consistency score.
Such improvement is more significant when the structural
weight is higher. Therefore structure consistency score is
an effective way of improving the overall performance. In
the last experiment, we adopted the SHAPE-specific scor-
ing function to evaluate the structural similarity between
the Rfam families and the target sequence. We can see
that the optimal performance for the SHAPE-specific
function (Figure 5, green line) and the default simplified
function (Figure 5, red line) is comparable: 656/268 at
a = 0.9 and b = 2.2 for the SHAPE-specific scoring func-
tion; 653/271 at a = 0.7 and b = 2.6 for original simplified
scoring function. The performance difference is increased
when raising the ratio of a/b. Therefore, the protocol-spe-
cific scoring function may be a better choice if the

Figure 3 ROC plots for the performance of CMsearch and ProbeAlign in searching tRNA and RNase_MRP. CMsearch is invoked with the
default parameters and filters. TP rate is computed by dividing the number of TP predictions by the size of the training set. FP rate is computed
by dividing the number of FP predictions by the total number of all predictions.

Figure 4 An alignment generated by ProbeAlign between the tRNA query profile and a target tRNA sequence. The accession ID of the
target RNA sequence is AY632242.1/10-80. The red color in target sequence and bars indicates the sites with low reactive scores (< rc). The blue
color indicates the sites with high reactive scores (> rc).
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underlying reactivity distribution is known. The imple-
mentation of ProbeAlign allows users to decide which
scoring function they use.

High-throughput sequencing-based RNA structure
probing data
FragSeq (fragmentation sequencing) is a genome-wide
RNA structure probing technique that has been applied to
study the mouse nuclear transcriptome [24]. The RNA
secondary structures in the KH2 undifferentiated mouse
embryonic stem cells (undiff) and neural precursors cells
(d5np) were probed. By analyzing nine snRNA families
(U1, U2, U3, U4, U5, U6, U8, U11, and U12) in the mouse
genome, the paper shows a good accordance between the
probing data and the real secondary structures. New sec-
ondary structures have also been proposed to three other
snRNA families (U15, U22, and U97), showing the ability
of FragSeq to discover novel ncRNA transcripts and their
secondary structures.
We used ProbeAlign with default setting to search the

nine snRNAs families against the FragSeq data to demon-
strate its utility on experimentally determined reactivities.
We were only interested in the genomic regions that were
transcribed, i.e. being covered by more than 4 sequenced
reads. There are 18,388 regions (32.2 Mbps) for the undiff
cell line and 17,007 regions (29.0 Mbps) for the d5np cell
line. The reactivities for these regions were computed
using FragSeq v0.0.1, a supplementary software for the
probing protocol [24]. Because FragSeq is a different tech-
nology than SHAPE, rc was adjusted to 0.5 from 0.3. All
other parameters remained the same as in the benchmark.
A universal p-value cutoff (0.01) was set for all searches.
The running time for the undiff dataset was 30.20 minutes
CPU time, and for the d5np dataset was 26.97 minutes
CPU time. During the analysis of the predicted results, we
found some reads were mapped onto repeat regions in the
genome. Those hits were removed by using Repbase data-
base [38]. The final search results are summarized in
Table 2. U11 and U12 have no record in Repbase. Only 17
and 21 U4 records in Repbase are covered by the

transcribed regions of d5np and undiff cell lines, and all of
them are top ranked in the results of ProbeAlign. The cor-
responding sequences with their locations on the genome
can be downloaded at http://genome.ucf.edu/ProbeAlign.
One interesting observation from the ProbeAlign search

results is that the transcription of U4 and U6 snRNA
families are more active in undiff cells than in d5np cells.
It is not surprising to see the potential correlation between
the U4 and U6 transcription level, as they have been
proposed to interact with each other in splicing control. In
fact, it is hypothesized that they can bind with each other
due to a long complementary sequence between them
[39]. Recent experiments show that the snRNAs in un-
proliferated stem cells have higher expression than in pro-
liferated cells [40]. The observation is explained by the
snRNAs playing an important role in ribosome biogenesis,
cellular proliferation and pre-mRNA splicing [41]. From
the ProbeAlign search results, we can further conclude
that not only the expression level of the snRNA is higher
in un-proliferated cells, there are actually more U4 and U6
snRNA genes being transcribed in un-proliferated stem
cells.

Discussion and conclusions
In this article, we have proposed a novel algorithm, Pro-
beAlign, for incorporating high-throughput sequencing-
based RNA structure probing data into ncRNA homology
search. To our knowledge, this is the first application of
structure probing information to RNA functional annota-
tion. This integration makes the accuracy of ProbeAlign
even higher than the CMsearch tool, especially for ncRNA
homologs with low sequence identity. In addition, the
time complexity of the algorithm is O(n2), which is feasible
for handling genome-wide datasets.
ProbeAlign itself can also act as a filter for more

detailed downstream alignment algorithms. Considering
both ProbeAlign and the HMM filters in CMsearch
being O(n2) time complexity algorithms, they should
have comparable time efficiency if similarly optimized. It
is clear that ProbeAlign guarantees higher sensitivity

Figure 5 Performance of ProbeAlign with different structure and sequence similarity weights. The TP/FP ratio of CMsearch, 2.164, is
represented as a dash line in the figure.
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and specificity. In this case, ProbeAlign can be coupled
with more accurate alignment algorithms such as
CMsearch itself, or other structure-sequence alignment
algorithms such as FastR [42], PFastR [43], and
RSEARCH [44]. We are also developing a new struc-
ture-sequence alignment algorithm that takes into
account the probing information, which can also be
used as the downstream detailed alignment after Pro-
beAlign screening.
In conclusion, we present here an accurate and efficient

RNA homology search algorithm, ProbeAlign, which
incorporates the high-throughput sequencing-based RNA
structure probing information. With the increasing
requirement of genome-wide ncRNA annotation, we
anticipate that more RNA transcripts, and their secondary
structures and functionalities, will be annotated by using
ProbeAlign.
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