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Ecological Applications, 21(6), 2011, pp. 2313–2323
� 2011 by the Ecological Society of America

The accuracy of climate models’ simulated season lengths
and the effectiveness of grid scale correction factors

WADE E. WINTERHALTER
1

University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816-2368 USA

Abstract. Global climate change is expected to impact biological populations through a
variety of mechanisms including increases in the length of their growing season. Climate
models are useful tools for predicting how season length might change in the future. However,
the accuracy of these models tends to be rather low at regional geographic scales. Here, I
determined the ability of several atmosphere and ocean general circulating models (AOGCMs)
to accurately simulate historical season lengths for a temperate ectotherm across the
continental United States. I also evaluated the effectiveness of regional-scale correction factors
to improve the accuracy of these models. I found that both the accuracy of simulated season
lengths and the effectiveness of the correction factors to improve the model’s accuracy varied
geographically and across models. These results suggest that regional specific correction
factors do not always adequately remove potential discrepancies between simulated and
historically observed environmental parameters. As such, an explicit evaluation of the
correction factors’ effectiveness should be included in future studies of global climate change’s
impact on biological populations.

Key words: Allonemobius socius; AOGCM; climate change; model accuracy; season length.

INTRODUCTION

How global climate change will impact both wild and

domesticated biological populations is of interest to

evolutionary ecologists (Walther et al. 2002, Parmesan

and Yohe 2003), agriculturalists (Fuhrer 2003, Nardone

et al. 2010), conservationists (McCarty 2001, Thomas et

al. 2004), economists (Nordhaus 2001, Stern 2006),

policy makers (Jaffe et al. 2009, Ekholm et al. 2010), and

the general public (Reiner et al. 2006, Hamilton and

Keim 2009). Much of this work involves comparing the

environmental tolerances of a species to its predicted

future environmental conditions (i.e., projecting climate

envelopes; Pearson and Dawson 2003, Thomas et al.

2004). In these studies, local extinctions are expected

whenever future environmental conditions within the

focal organism’s current range fall outside its environ-

mental tolerances. Similarly, range expansions are

expected whenever future environmental conditions

outside the focal organism’s current range fall within

its environmental tolerances (assuming unlimited dis-

persal capability). Together, these local extinctions and

range expansions allow researchers to predict how

species distributions might shift over time as a result

of global climate change.

Although environmental tolerances are undoubtedly

an important mechanism through which global climate

change will impact biological populations, other mech-

anisms are likely to be important as well. One of

these ‘‘other mechanisms’’ involves changes in the length

of a population’s growing season (Linderholm

2006, Christidis et al. 2007). The general warming

trend predicted by most climate change scenarios

(Nakicenovic and Swart 2000), should increase the

amount of time many populations have to complete

growth and reproduction. Such increases could lead to

shifts in both evolutionary (Zani 2008, Kivela et al.

2009) and ecologically (White et al. 1999, Hudson and

Henry 2009) relevant parameters. These shifts are most

likely to occur in species with temperature dependent

physiologies (i.e., where growth and reproduction rates

are a function of external temperatures); and in

populations located in temperate regions (i.e., where

season lengths are relatively short).

For example, the striped ground crickets of the

Allonemobius socius species group (Traylor et al. 2008)

are small bodied terrestrial ectotherms found through-

out the continental United States and southern Canada.

Differences in the length of these crickets’ natal growing

seasons are closely associated with variation in several

crucial life-history traits, including nymphal develop-

ment time (Mousseau 1988), body size (Mousseau and

Roff 1989a), wing dimorphism (Mousseau and Roff

1989b), and diapause incidence (i.e., the proportion of

individuals that enter an arrested physiological state;

Mousseau and Roff 1989a, Winterhalter and Mousseau

2007). Determining how these life-history characters will

respond to increases in the length of the growing season

is a critical step toward our understanding how global
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climate change will impact this particular group, as well

as other temperate ectothermic species.

Climate models are an important tool for anticipating

the potential environmental changes that will occur over

the next century and beyond. One class of models that

are frequently used in these projections is called the

atmosphere and ocean general circulating models or

AOGCMs. AOGCMs divide the planet into a series of

grids, and then use previously established mathematical

descriptions of both the internal dynamics (e.g., ocean

currents and carbon cycles) and the external forcings

(e.g., solar radiance, CO2 emissions) that contribute to

climate in order to simulate historical and future

environmental conditions. These models are considered

one of the most sophisticated physical climate models

currently available, and are the primary models used in

international climate policy assessments (IPCC 2007).

One of the strengths of these models is that they are

capable of simulating historical environmental condi-

tions at the continental scale (Christensen et al. 2007).

These results suggest that the models’ mathematical

dynamics adequately approximate climatic processes,

and that they will be able to accurately simulate future

conditions at the continental scale as well.

However, the ability of AOGCMs to simulate

historical conditions at the scale of individual grids is

considerably lower (Giorgi 2005). This deficiency is

particularly significant to those interested in predicting

the response of biological populations to global climate

change for two reasons. First, the entire range of many

species is substantially less than a continent (Brown et

al. 1996). As such, applying broad-scale environmental

predictions to narrowly distributed species may not be

appropriate. And second, species that have relatively

broad ranges often exhibit geographic variation for a

number of phenotypes within their distributions (Endler

1977, Morrison and Hero 2003). How these regional

level differences might be affected by global climate

change cannot be adequately evaluated using continen-

tal-scale projections.

To compensate for these inaccuracies (i.e., model

biases), regional-scale correction factors are often

applied to a model’s raw output (Giorgi and Francisco

2000, Kearney and Porter 2004, Lawler et al. 2009).

These correction factors effectively compare the model’s

simulated historical conditions to the historically ob-

served conditions (usually obtained from weather

stations), and then apply the differences to the model’s

future predictions. In this manner, the magnitude of the

change predicted by the model is maintained, while the

discrepancies between the simulated and observed

environmental conditions (i.e., the model’s inaccuracies)

are reduced or eliminated. Although these correction

factors have been applied to a variety of environmental

parameters (e.g., average temperature, precipitation,

percent sunlight; Walther et al. 2002, Parmesan 2006),

they have not been made within the context of predicting

future season lengths of temperate ectotherms.

The purpose of this study was three-fold: (1) to

determine the ability of AOGCMs to simulate the
historical season lengths of a temperate ectotherm at the

regional geographic scale; (2) to generate regional level
correction factors for the environmental parameters that

contribute to season length; and (3) to evaluate the
ability of these correction factors to improve the
accuracy of the models. I chose the striped ground

crickets from the A. socius species group as my focal
organism because of their wide distribution (Howard

1983, Traylor et al. 2008), and the intimate relationship
between the length of their growing season and their life-

history characters (Mousseau and Roff 1989a,
Winterhalter and Mousseau 2007).

METHODS

Season length calculations

Because of their temperature dependent physiology,
the length of the growing season for temperate
ectotherms is typically measured in accumulated thermal

units or degree-days (Bonhomme 2000). Degree-days are
dependent on both the external environmental condi-

tions and the range of temperatures that permit the focal
organism to metabolize and grow. For example, the

upper and lower thermal thresholds for growth in the A.
socius species group are 358C and 138C, respectively

(Mousseau 1988). If these crickets were reared at a
constant temperature of 238C for 24 hours, then they

would accumulate 10 degree-days greater than 138C
(i.e., 238C–138C¼10 deg-days . 138C). Likewise, if they

were reared at 338C for 24 hours, they would accumulate
20 degree-days.

Unlike most laboratory conditions, temperatures in
the wild fluctuate both daily and seasonally. To

approximate the number of degree-days accumulated
by the A. socius species group in a given year (i.e., the

season length), I used Allen’s dual sine wave method-
ology (Allen 1976). Briefly, this method fits a series of

sine waves to the daily maximum and minimum
temperatures experienced in a given habitat over an
entire year. The number of degree-days accumulated

during this period is set equal to the area underneath
these sine wave curves that also fall within the

organism’s thermal limits for growth.
For this study, I assumed that the upper and lower

thermal limits for growth of the A. socius species group
were constant across their entire range (upper limit ¼
358C, lower limit ¼ 138C). The daily maximum and
minimum temperatures were obtained from either the

output files of an AOGCM in the case of the simulated
season lengths, or from weather stations in the case of

historical observations.

Simulated data

The primary climate model examined in this study

was the AOGCM produced by the Geophysical Fluid
Dynamics Laboratory (GFDL) designated cm2.0

(Delworth et al. 2006). I chose this particular model

WADE E. WINTERHALTER2314 Ecological Applications
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because the arrangement of its grids happened to

correspond to regional differences in the life-history

strategies of the A. socius species group (Mousseau and

Roff 1989a). Simulated daily maximum and minimum

temperatures (i.e., tasmax and tasmin) were obtained for

all grids within the continental United States. Only grids

that were composed of at least 50% land area, based on

visual inspection (number of grids ¼ 150). All available

records from 1 January 1961 to 31 December 2000 were

included in the analysis.

In addition to the GFDL model cm2.0, I also

examined 10 other AOGCMs: GFDL’s model cm2.1,

CCCMA’s model cgm3.1, CNRM’s model cm3,

CSIRO’s model mk3.0, GISS’s model e20, IAP’s model

cm4v1, MIRCO’s model v3.2, MPI’s model echam5,

and MRI’s model cgcm2.3.2a (see Table 2 for explana-

tion of model names). For each of these models, I

randomly selected 20 grids from within the continental

United States that were comprised of at least 50% land

area and obtained all of the simulated daily maximum

and minimum temperatures that were available from 1

January 1961 to 31 December 2000. The simulated

temperatures from all of the models examined in this

study represented environmental conditions two meters

from the surface (Meehl et al. 2007).

For each model, grid, and year; the length of the

growing season was estimated in terms of accumulated

degree-days . 138C using Allen’s dual sine wave method

(Allen 1976). Because I focused on the geographic scale

of individual grids, downscaling methods were not

employed. All of the simulated data were obtained with

permission from the World Climate Research

Programme’s Coupled Model Intercomparison Project

3 (i.e., WCRP-CMIP3; Meehl et al. 2007). In some

cases, the data files contained internal errors and could

not be accessed. These data were excluded from the

analysis.

Historical data

The historically observed daily maximum and mini-

mum temperature records from 1 January 1961 to 31

December 2000 were obtained from multiple weather

stations located within 18 latitude and 18 longitude of the

center of each grid at standard height (1.25 m). Within

the time frame, an average of 6.2 6 0.5 (6SD) stations

were available for each grid examined per year. Missing

data from the historical records were replaced by that

year’s monthly average minimum or maximum temper-

ature. Months in which records were missing for 15 or

more days were excluded from the analysis. Years in

which less than 12 months of records were available

were also removed. These decisions led to an average of

36.9 6 1.7 years being examined for each grid.

For each weather station and year, the length of the

growing season was estimated in terms of accumulated

degree-days . 138C using Allen’s dual sine wave method

(Allen 1976). Within each grid and year, these season

lengths were averaged across weather stations in order

to obtain estimates of both the mean season length and

its variation within a given grid. All of the historical data
were obtained with permission from the National

Climate Data Center (2009).

Season length analysis

For each grid and year, the simulated season length
produced by a given model was compared to the mean

(6SD) of the historically observed season lengths using
a one-sample t test. A total of 5089 of these one-sample t

tests were performed for the primary analysis (GFDL
model cm2.0) and 7364 one-sample t tests were

performed for the other models. The proportion of
years in which a significant difference between the

simulated and historical season lengths occurred was
noted. Based on an a¼ 0.05, I expected 5% of the years

examined would be significant due to chance alone.
Finally, the percentage difference between the simulated

and historical season lengths were estimated for each
grid, year, and model.

Correction factors and adjusted season lengths

The correction factors were estimated independently
for each model and grid. First, the simulated daily
maximum and minimum temperatures were subtracted

from the average historically observed daily maximum
and minimum temperatures respectively for each day in

which data were available. These differences were then
averaged within each year, and the results were finally

averaged across years. This procedure led to a single
correction factor for each of the temperature extremes

that represented the average difference between the
simulated and historical data across all years. Standard

deviations for these estimates were also calculated and
represent the across year variation in the correction

factor.
These model- and grid-specific correction factors were

then added to each of the simulated maximum and
minimum temperatures. The simulated season lengths

were recalculated, now using the adjusted maximum and
minimum temperatures, and analyzed in the same

manner as the unadjusted model estimations.
All statistics and calculations were performed using R

(R Development Core Team 2009).

RESULTS

Primary model

The AOGCM that was the primary focus of this study
(i.e., GFDL’s model cm2.0) consistently underestimated

the length of the growing season across the continental
United States. Across all grids and years, 0.91 6 0.13 of

the simulated season lengths were significantly different
from the historical records (Table 1). On average, the

simulated season lengths were 41.4% 6 18.2% less than
the historical records (Table 1). The largest discrepancies

between the simulated and historical season lengths were
found in western Montana, Idaho, and Wyoming (Fig.

1A). In this area, the simulated season lengths were as

September 2011 2315CLIMATE MODELS AND CORRECTION FACTORS



TABLE 1. Summary statistics for Geophysical Fluid Dynamics Laboratory (GFDL) cm2.0.

Longitude Latitude Yrs WS

Pr (Yrs sig) dd diff % diff

Raw Adj. Raw Adj. Raw Adj.

123.75 43 35 10 97.1 20.0 �411 6 121 �54 6 135 �46.9 6 12.0 �5.6 6 15.3
41 35 14 68.6 14.3 �304 6 113 70 6 125 �33.0 6 11.6 8.2 6 14.4

121.25 47 35 10 88.6 34.3 �382 6 137 64 6 165 �51.1 6 16.0 9.8 6 22.6
45 35 5 100.0 22.9 �524 6 115 �100 6 143 �62.2 6 11.7 �11.4 6 16.9
43 35 14 100.0 45.7 �324 6 117 �18 6 136 �45.0 6 14.0 �1.6 6 18.9
41 35 9 94.3 25.7 �323 6 109 65 6 128 �39.4 6 11.8 8.8 6 16.4
39 35 10 88.6 0.0 �629 6 147 1 6 168 �43.2 6 7.9 0.6 6 11.5
37 35 8 65.7 5.7 �488 6 198 60 6 210 �29.7 6 10.2 4.7 6 13.6

118.75 47 35 10 100.0 60.0 �779 6 126 �139 6 156 �68.2 6 9.8 �11.9 6 13.5
45 28 10 96.4 10.7 �669 6 115 �116 6 143 �70.0 6 9.3 �11.6 6 14.7
43 17 5 76.5 0.0 �535 6 82 �22 6 97 �61.3 6 6.8 �2.1 6 10.8
41 20 5 100.0 20.0 �761 6 123 �36 6 125 �64.8 6 6.6 �2.4 6 10.5
39 35 5 94.3 2.9 �796 6 182 �31 6 201 �62.6 6 7.6 �0.9 6 15.4
37 35 22 100.0 20.0 �957 6 202 �87 6 228 �56.9 6 7.1 �4.1 6 13.0
35 35 10 100.0 14.3 �867 6 220 33 6 238 �40.6 6 7.9 2.3 6 11.4

116.25 47 31 10 83.9 9.7 �532 6 83 �11 6 122 �67.1 6 11.3 �1.5 6 15.8
45 35 10 100.0 17.1 �601 6 109 �116 6 137 �71.7 6 9.8 �13.2 6 15.5
43 35 21 100.0 51.4 �829 6 125 �62 6 157 �71.0 6 7.8 �4.8 6 13.1
41 19 4 100.0 10.5 �652 6 119 15 6 123 �61.6 6 7.6 2.1 6 11.2
39 21 3 100.0 0.0 �657 6 127 84 6 152 �57.9 6 7.6 8.3 6 13.9
37 34 6 97.1 11.8 �1245 6 221 �62 6 243 �60.5 6 6.2 �2.1 6 11.8
35 31 5 45.2 0.0 �1057 6 305 �33 6 314 �42.7 6 8.2 �0.2 6 12.5
33 35 16 88.6 5.7 �760 6 277 �39 6 277 �28.6 6 8.5 �0.8 6 10.6

113.75 47 35 10 100.0 42.9 �511 6 92 �34 6 122 �76.2 6 10.3 �4.4 6 18.3
45 35 8 100.0 25.7 �537 6 96 �64 6 119 �78.1 6 9.0 �8.4 6 17.0
43 35 10 100.0 42.9 �615 6 130 10 6 155 �66.5 6 9.7 2.1 6 16.3
41 21 4 90.5 0.0 �803 6 155 �75 6 178 �63.8 6 8.9 �5.3 6 13.9
39 35 10 100.0 45.7 �683 6 138 45 6 162 �55.2 6 8.1 4.4 6 13.5
37 35 6 62.9 0.0 �725 6 175 13 6 193 �45.3 6 8.1 1.7 6 12.7
35 21 6 52.4 0.0 �1348 6 214 �156 6 203 �48.3 6 5.4 �5.4 6 6.8
33 34 5 100.0 26.5 �1452 6 216 �146 6 215 �40.3 6 4.8 �3.9 6 5.9

111.25 47 35 10 100.0 60.0 �641 6 97 �67 6 125 �78.5 6 8.1 �7.5 6 15.1
45 35 10 100.0 5.7 �547 6 139 �71 6 161 �78.3 6 9.3 �7.9 6 20.1
43 35 19 100.0 54.3 �413 6 110 23 6 132 �63.9 6 11.8 5.1 6 20.1
41 35 10 100.0 20.0 �647 6 132 70 6 161 �61.5 6 8.6 7.7 6 15.6
39 35 7 97.1 42.9 �534 6 131 148 6 152 �47.8 6 8.8 14.3 6 14.7
37 35 13 85.7 5.7 �604 6 180 81 6 202 �42.2 6 8.5 7.1 6 14.4
35 35 10 42.9 0.0 �467 6 168 87 6 177 �30.1 6 9.6 6.2 6 11.7
33 35 10 100.0 2.9 �1437 6 196 �122 6 200 �46.1 6 4.9 �3.7 6 6.3

108.75 47 35 6 100.0 34.3 �624 6 118 �86 6 140 �70.4 6 9.6 �8.9 6 15.4
45 35 10 100.0 51.4 �754 6 106 �98 6 135 �80.3 6 6.2 �9.7 6 13.4
43 35 6 100.0 31.4 �788 6 125 �104 6 156 �77.7 6 7.0 �9.4 6 14.2
41 34 4 100.0 5.9 �707 6 131 22 6 162 �65.5 6 8.4 2.9 6 14.8
39 35 6 94.3 2.9 �751 6 153 116 6 185 �58.1 6 8.2 10.0 6 15.3
37 35 21 100.0 48.6 �479 6 130 165 6 155 �41.6 6 9.4 15.2 6 14.3
35 35 15 68.6 77.1 �203 6 128 233 6 142 �18.9 6 11.5 22.8 6 14.5
33 35 10 45.7 8.6 �404 6 176 147 6 186 �25.2 6 10.0 9.8 6 12.1

106.25 47 35 8 100.0 82.9 �726 6 137 �189 6 160 �68.0 6 9.9 �17.1 6 13.9
45 35 10 100.0 82.9 �708 6 124 �126 6 148 �72.7 6 7.1 �11.9 6 14.2
43 29 4 100.0 27.6 �703 6 130 �60 6 171 �73.3 6 8.2 �5.2 6 17.0
41 35 10 97.1 40.0 �383 6 116 84 6 149 �58.3 6 13.7 14.6 6 23.4
39 35 10 51.4 40.0 �213 6 134 110 6 157 �36.8 6 20.8 22.5 6 29.8
37 35 10 71.4 42.9 �272 6 135 163 6 161 �33.8 6 15.7 21.5 6 21.2
35 35 10 74.3 34.3 �451 6 160 213 6 186 �34.5 6 11.4 17.0 6 15.3
33 35 10 60.0 8.6 �509 6 201 192 6 225 �28.4 6 10.8 11.2 6 13.2

103.75 47 35 10 100.0 71.4 �589 6 146 �165 6 165 �60.8 6 11.8 �16.3 6 16.1
45 35 10 100.0 54.3 �627 6 136 �120 6 159 �63.7 6 9.1 �11.0 6 16.3
43 35 10 100.0 48.6 �688 6 129 �110 6 160 �64.0 6 7.9 �9.5 6 14.3
41 35 10 100.0 40.0 �693 6 169 �21 6 207 �59.5 6 11.6 �0.8 6 18.2
39 35 8 100.0 31.4 �874 6 217 4 6 248 �59.3 6 12.9 0.9 6 16.5
37 35 7 45.7 54.3 �283 6 258 210 6 272 �25.1 6 22.5 20.2 6 25.4
35 33 10 75.8 48.5 �546 6 288 167 6 306 �30.4 6 14.8 10.1 6 17.1
33 33 9 66.7 33.3 �526 6 275 104 6 294 �23.7 6 11.9 5.1 6 13.5
31 23 8 65.2 21.7 �583 6 265 110 6 298 �23.7 6 10.2 4.9 6 12.2

101.25 47 34 10 91.1 61.8 �483 6 153 �175 6 167 �51.9 6 13.7 �18.2 6 16.8
45 35 9 91.4 54.3 �599 6 180 �195 6 197 �53.7 6 12.0 �16.5 6 16.4
43 35 10 100.0 71.4 �704 6 171 �164 6 193 �55.3 6 10.0 �12.0 6 14.6
41 35 10 100.0 51.4 �695 6 184 �76 6 208 �51.2 6 11.1 �4.8 6 15.3
39 35 10 94.3 65.7 �635 6 274 �41 6 284 �40.7 6 15.9 �1.8 6 18.0

WADE E. WINTERHALTER2316 Ecological Applications
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TABLE 1. Continued.

Longitude Latitude Yrs WS

Pr (Yrs sig) dd diff % diff

Raw Adj. Raw Adj. Raw Adj.

37 35 10 88.6 71.4 �622 6 349 �2 6 337 �33.4 6 17.6 0.6 6 17.9
35 35 10 80.0 60.0 �566 6 350 65 6 344 �26.3 6 15.4 3.5 6 15.8
33 35 9 65.7 34.3 �431 6 329 85 6 338 �18.2 6 13.3 4.1 6 14.2
31 35 6 80.0 42.9 �574 6 317 56 6 336 �20.9 6 11.1 2.4 6 12.4

98.75 47 35 10 100.0 74.3 �404 6 149 �124 6 160 �43.8 6 14.2 �12.7 6 17.1
45 35 10 100.0 80.0 �531 6 182 �162 6 193 �46.5 6 13.0 �13.4 6 16.3
43 35 10 100.0 77.1 �615 6 199 �121 6 215 �45.8 6 12.2 �8.0 6 16.3
41 35 10 97.1 77.1 �572 6 209 �80 6 225 �40.3 6 12.9 �4.7 6 16.2
39 35 10 97.1 71.4 �670 6 283 �47 6 285 �36.9 6 14.4 �2.1 6 15.5
37 35 10 94.3 71.4 �629 6 333 �5 6 313 �29.6 6 14.9 0.1 6 14.4
35 35 10 91.4 65.7 �490 6 328 37 6 317 �20.9 6 13.4 1.9 6 13.3
33 35 10 94.3 68.6 �494 6 326 65 6 329 �18.7 6 11.7 2.9 6 12.4
31 35 9 77.1 65.7 �411 6 311 95 6 319 �14.7 6 10.9 3.7 6 11.6
29 33 7 87.9 45.5 �669 6 324 66 6 336 �20.1 6 9.3 2.3 6 10.3
27 20 3 100.0 40.0 �986 6 278 6 6 281 �25.3 6 7.1 0.2 6 7.4

96.25 47 35 8 100.0 60.0 �392 6 152 �95 6 162 �41.3 6 14.0 �9.1 6 17.2
45 35 10 100.0 82.9 �417 6 172 �93 6 185 �39.2 6 14.1 �7.8 6 17.4
43 35 10 97.1 65.7 �499 6 203 �88 6 219 �39.3 6 13.7 �5.9 6 17.5
41 35 10 94.3 80.0 �517 6 226 �55 6 239 �35.0 6 14.1 �3.0 6 16.4
39 35 10 94.3 71.4 �544 6 281 �3 6 279 �30.0 6 14.4 0.4 6 15.2
37 35 10 94.3 74.3 �426 6 322 52 6 310 �21.0 6 15.1 3.2 6 15.1
35 35 8 88.6 68.6 �426 6 311 99 6 302 �18.0 6 12.6 4.6 6 12.6
33 35 10 91.4 57.1 �492 6 292 92 6 294 �17.9 6 10.1 3.8 6 10.9
31 34 10 91.2 58.8 �577 6 264 108 6 273 �19.2 6 8.4 3.9 6 9.2
29 32 10 90.6 46.9 �577 6 247 30 6 258 �17.8 6 7.4 1.1 6 8.1

93.75 47 29 9 96.6 51.7 �359 6 146 19 6 158 �42.5 6 15.0 3.6 6 19.8
45 35 10 97.1 60.0 �444 6 159 �27 6 174 �41.8 6 13.1 �1.5 6 17.2
43 34 10 94.1 64.7 �441 6 188 �30 6 203 �36.6 6 14.1 �1.6 6 17.3
41 35 10 91.4 57.1 �409 6 244 5 6 254 �28.9 6 16.1 1.3 6 18.3
39 35 7 91.4 71.4 �456 6 282 65 6 281 �26.3 6 15.2 4.4 6 16.1
37 35 10 82.9 71.4 �344 6 318 123 6 307 �17.9 6 16.1 7.1 6 16.2
35 35 8 71.4 60.0 �329 6 337 148 6 320 �14.5 6 14.5 7.1 6 14.3
33 35 10 82.9 62.9 �281 6 274 159 6 268 �11.0 6 10.6 6.7 6 10.8
31 35 5 91.4 62.9 �376 6 251 164 6 256 �13.1 6 8.7 6.0 6 9.3

91.25 45 35 10 97.1 48.6 �417 6 149 52 6 167 �42.0 6 13.1 6.4 6 18.3
43 35 10 94.3 54.3 �408 6 185 25 6 202 �35.3 6 14.6 3.3 6 18.4
41 35 21 100.0 80.0 �480 6 228 32 6 239 �32.9 6 14.3 2.9 6 16.5
39 35 10 97.1 60.0 �406 6 269 64 6 268 �24.5 6 15.5 4.5 6 16.3
37 35 10 77.1 62.9 �347 6 319 112 6 303 �18.2 6 16.6 6.4 6 16.3
35 35 23 88.6 80.0 �409 6 328 114 6 309 �17.8 6 14.1 5.4 6 13.8
33 35 10 88.6 62.9 �350 6 289 133 6 276 �13.6 6 11.2 5.5 6 11.1
31 35 10 88.6 71.4 �366 6 268 186 6 267 �12.7 6 9.3 6.7 6 9.6

88.75 45 35 10 94.3 45.7 �310 6 146 96 6 160 �35.0 6 14.8 12.4 6 19.8
43 35 10 100.0 65.7 �398 6 175 89 6 195 �35.7 6 14.5 9.1 6 18.6
41 35 10 97.1 68.6 �476 6 216 51 6 229 �33.9 6 13.9 4.5 6 16.6
39 35 10 88.6 65.7 �471 6 263 79 6 265 �28.2 6 15.0 5.4 6 16.2
37 35 9 88.6 80.0 �478 6 298 118 6 287 �24.7 6 15.0 6.5 6 15.1
35 35 10 88.6 85.7 �453 6 329 131 6 309 �20.8 6 15.0 6.4 6 14.6
33 35 10 77.1 68.6 �347 6 334 146 6 310 �14.2 6 13.8 6.4 6 13.2
31 35 10 88.6 71.4 �449 6 288 192 6 281 �16.1 6 10.2 7.3 6 10.5

86.25 41 35 10 97.1 71.4 �460 6 187 86 6 204 �35.6 6 13.3 7.4 6 16.5
39 35 10 88.6 57.1 �477 6 226 69 6 236 �31.2 6 13.9 5.2 6 15.9
37 35 10 94.3 80.0 �537 6 265 136 6 262 �29.3 6 14.0 7.7 6 14.5
35 35 10 88.6 77.1 �431 6 325 131 6 311 �22.3 6 16.5 7.3 6 16.6
33 35 10 88.6 62.9 �549 6 352 153 6 320 �22.9 6 14.4 6.8 6 13.7
31 35 9 68.6 65.7 �311 6 317 159 6 297 �11.5 6 11.7 6.3 6 11.4

83.75 45 35 10 97.1 71.4 �283 6 126 131 6 137 �34.7 6 14.0 17.5 6 18.8
43 35 10 100.0 68.6 �486 6 162 129 6 184 �43.8 6 12.5 12.9 6 18.1
41 35 10 97.1 65.7 �479 6 166 66 6 184 �39.4 6 12.0 6.3 6 15.8
39 35 10 100.0 60.0 �562 6 174 78 6 191 �38.1 6 10.7 5.7 6 13.3
37 35 10 100.0 74.3 �624 6 201 136 6 211 �38.0 6 11.7 8.5 6 13.0
35 35 10 77.1 48.6 �404 6 250 218 6 247 �24.4 6 14.8 13.4 6 15.1
33 35 10 94.3 57.1 �704 6 314 173 6 288 �29.2 6 12.6 7.5 6 12.3
31 35 10 91.4 65.7 �581 6 335 152 6 310 �20.2 6 11.4 5.5 6 11.0

81.25 41 35 9 100.0 48.6 �553 6 133 109 6 158 �47.4 6 9.5 10.1 6 14.4
39 35 9 100.0 42.9 �687 6 145 92 6 163 �47.9 6 8.4 6.9 6 11.8
37 35 10 91.4 37.1 �437 6 164 147 6 180 �33.2 6 11.7 11.6 6 14.0
35 35 9 97.1 37.1 �697 6 206 185 6 208 �36.3 6 10.2 9.9 6 11.1
33 35 10 100.0 62.9 �654 6 263 147 6 244 �26.0 6 10.1 6.1 6 10.0
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much as 80% less than the historical observations (see 458

N, 108.758 W; Table 1). The model performed best in the

deep south (Fig. 1A). But even in this region, the

simulated season lengths were at least 11% lower than

the historical observations (see 338 N, 91.258 W; Table 1).

Not surprisingly, the GFDL model cm2.0 also

underestimated both the daily maximum and minimum

temperatures. However, the magnitude of this underes-

timation was greater for the daily maximum tempera-

tures. When averaged across all grids, the maximum

temperatures were underestimated by 5.98C 6 1.98C,

while the daily minimum temperatures were underesti-

mated by only 2.68C 6 1.68C (Table 2). The largest

differences in daily maximum temperature estimates

were generally found in the northwestern quarter of the

country with the exception of a few regions along the

east coast (Fig. 2A). In contrast, the largest differences

for the minimum temperatures were found primarily in

the southwestern portion of the country (Fig. 2B).

After using the grid-specific correction factors (Table

1) to adjust the simulated daily maximum and minimum

temperatures (see Methods), the accuracy of the model’s

simulated season lengths improved. The proportion of

season lengths across all years and grids in which

significant differences were detected was cut nearly in

half from 0.91 before the adjustments to 0.47 after the

adjustments were applied (Table 1). In addition, the

average difference in season length estimates went from

an underestimation of 41.4% 6 18.2% to an overesti-

mation of 2.1% 6 8.2% (Table 1). The adjusted season

lengths were closest to the historical season lengths in

the central portion of the United States and along the

west coast (Fig. 1B). In addition to improving the

accuracy of the simulated season lengths, the correction

factors also significantly reduced the variation in

accuracy across grids (Fig. 3). The standard deviation

of the model’s accuracy was 18.2% before the adjust-

ment, but only 8.2% after the adjustment was applied

(F149, 149 ¼ 10.0, P , 0.0001).

Cross model comparisons.—Substantial variation in

the ability to accurately simulate season lengths was

observed across all of the AOGCMs examined in this

TABLE 1. Continued.

Longitude Latitude Yrs WS

Pr (Yrs sig) dd diff % diff

Raw Adj. Raw Adj. Raw Adj.

27 35 20 97.1 74.3 �568 6 190 26 6 190 �15.1 6 4.8 0.8 6 5.1
78.75 41 35 10 100.0 37.1 �472 6 111 78 6 134 �48.6 6 9.5 8.8 6 14.5

39 35 10 97.1 22.9 �544 6 137 119 6 155 �43.3 6 9.3 10.1 6 13.1
37 35 10 100.0 57.1 �754 6 153 147 6 171 �42.9 6 7.9 8.6 6 9.9
35 35 10 100.0 54.3 �797 6 191 160 6 192 �36.3 6 8.0 7.5 6 8.9

76.25 41 35 6 94.3 17.1 �554 6 132 74 6 159 �51.0 6 9.4 7.8 6 15.5
39 35 10 100.0 71.4 �821 6 143 153 6 168 �49.2 6 7.1 9.6 6 10.6
37 34 6 79.4 5.9 �822 6 230 58 6 231 �39.7 6 8.7 3.7 6 12.0

73.75 43 35 9 100.0 22.9 �552 6 113 �37 6 137 �61.1 6 8.8 �3.2 6 15.2
41 35 10 100.0 37.1 �643 6 138 �52 6 162 �52.4 6 8.8 �3.6 6 13.4

71.75 43 35 10 100.0 48.6 �573 6 111 �60 6 134 �61.3 6 8.6 �5.7 6 14.1
68.75 45 35 5 100.0 31.4 �553 6 88 �77 6 111 �72.2 6 7.0 �9.2 6 14.3

Mean 34 9.6 90.6 46.6 �569 6 207 32 6 103 �41.4 6 18.2 2.1 6 8.2

Notes: Grids are organized by longitude (8W) and latitude (8N). Sample sizes are broken down into the number of years (Yrs)
examined and the average number of weather stations per year (WS). Pr (Yrs sig) represents the proportion of years in which a
significant difference in season length was detected. Accuracy is represented by the difference between the model and historical
records in terms of degree-days (dd diff ) and percentages. These statistics were calculated using the model’s Raw and adjusted
(Adj.) output. Values shown are means 6 SD.

FIG. 1. The absolute percentage difference between the
simulated and historical season lengths averaged across all
years from 1961 to 2000 for the Geophysical Fluid Dynamics
Laboratory (GFDL) model cm2.0 using (A) raw model output
and (B) adjusted model output.
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study (Fig. 4). The GISS model was the least accurate,

and on average underestimated the season length by

44.3% 6 26.8%. The IAP and MIRCO models were the

most accurate, overestimating the season length by an

average of 1.2% 6 32.6% and 3.5% 6 29.4%,

respectively. These were the only two models in which

the simulated season lengths based on the models’ raw

data were not significantly different from the historical

observations (IAP, t19¼ 0.16, P¼ 0.8710; MIRCO, t19¼

TABLE 2. The summary statistics for 11 atmosphere and ocean general circulating models (AOGCMs) examined in this study.

Model

Sample size Pr (Yrs sig) Corr. factors (8C)

Gds Yrs/Gds WS/Yr Raw Adj. Tmax Tmin

GISS 20 38.5 6 3.4 6.8 6 3.6 0.84 6 0.21 0.59 6 0.30 �3.6 6 3.0 2.2 6 1.7
GFDL 2.0 150 33.6 6 4.1 6.4 6 2.7 0.91 6 0.13 0.47 6 0.25 �5.9 6 1.4 �2.6 6 1.0
GFDL 2.1 20 39.3 6 3.4 6.1 6 1.6 0.83 6 0.65 0.49 6 0.22 �5.3 6 1.8 �1.9 6 1.9
CSIRO 20 34.8 6 9.0 6.0 6 2.8 0.65 6 0.33 0.30 6 0.28 �4.2 6 2.6 0.1 6 2.3
IPSL 19 37.0 6 3.4 5.5 6 1.6 0.71 6 0.24 0.41 6 0.23 �4.6 6 2.3 0.7 6 2.0
MPI 20 36.9 6 7.8 6.3 6 2.7 0.67 6 0.28 0.34 6 0.27 �2.7 6 2.6 2.1 6 2.5
CCCMA 20 37.3 6 6.8 5.5 6 1.5 0.63 6 0.26 0.41 6 0.27 �1.7 6 2.8 �1.4 6 2.1
CNRM 20 38.1 6 4.0 5.7 6 1.6 0.65 6 0.34 0.38 6 0.30 �3.0 6 1.7 0.4 6 2.2
MRI 20 37.3 6 6.9 6.2 6 2.3 0.60 6 0.27 0.43 6 0.24 �1.5 6 1.9 0.1 6 1.5
IAP 20 37.1 6 8.6 6.5 6 1.9 0.59 6 0.31 0.33 6 0.28 �2.1 6 2.4 0.8 6 2.1
MIROC 19 35.5 6 9.4 7.0 6 3.5 0.68 6 0.32 0.39 6 0.26 �1.9 6 3.1 3.6 6 1.7

Overall 36.9 6 1.7 6.2 6 0.5 0.71 6 0.11 0.41 6 0.08 �3.3 6 1.5 0.4 6 1.9

Notes: Sample sizes are broken down into the number of grids examined (Gds), the average number of years available per grid
(Yrs/Gds), and the average number of weather stations per year within each grid (WS/Yr). The proportion of years in which the
simulated season length differed significantly from the historical observation, Pr (Yrs sig), is presented both before the correction
factors were included (Raw) and after (Adj.). Average correction factors (Corr. factors) for both maximum (Tmax) and minimum
(Tmin) temperatures are also reported. Values are means (6SD) across grids, with the exception of the overall row which is the
mean across all models (6SD). Models are GISS, Goddard Institute for Space Studies; GFDL, Geophysical Fluid Dynamics
Laboratory; CSIRO, Commonwealth Scientific and Industrial Research Organization; IPSL, Institut Pierre Simon Laplace; MPI,
Max Planck Institute for Meteorology; CCCMA, Canadian Centre for Climate Modeling and Analysis; CNRM, Centre National
de Recherches Meteorologiqye; MRI, Meterological Research Institute; IAP, Institute of Atmospheric Physics; MIRCO, Model for
Interdisciplinary Research on Climate.

FIG. 2. The absolute difference between the simulated and
historical daily (A) maximum and (B) minimum temperatures
for the GFDL model cm2.0 averaged across all days from 1
January 1961 to 31 December 2000.

FIG. 3. The percentage differences between the simulated
and historical season lengths across all grids examined in the
GFDL model cm2.0 using raw model output (dark bars) and
adjusted output (light bars).
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0.53, P ¼ 0.6006). All of the other models examined

significantly underestimated the historical season lengths

across grids (a ¼ 0.05).

Generally after the correction factors were added to

the models’ output, the accuracy of the simulated season

lengths was improved. For most models, the average

difference between the simulated and historical season

lengths decreased after the correction factors were

applied (Fig. 4). Across all models, the difference

between the simulated and historical season lengths

went from an underestimation of 18.6% 6 4.5% prior to

the correction factors being applied to an overestimation

of 1.2% 6 6.7% afterward. In addition, the proportion

of years in which a significant difference was detected

between the simulated and historical season lengths

decreased for all models (Table 2). Before the correction

factors were applied, 0.71 6 0.11 of the simulated season

lengths were significantly different from the historical

records (averaged across all models), but only 0.41 6

0.08 were significantly different afterward (Table 2).

This difference represented a significant improvement in

the models’ ability to simulate historical season lengths

(t20 ¼ 7.4, P , 0.0001).

Despite the fact that the adjusted season lengths were

generally more accurate than the unadjusted estimates,

significant differences between the adjusted and histor-

ical season lengths were still detected in four of the 11

models examined (Fig. 4). In two of these four models

(GFDL 2.0 and GFDL 2.1), the differences were

relatively small, and in the case of the GFDL 2.0

model’s the statistical power was quite large (number of

grids ¼ 150). The accuracy of the GISS model was

improved after the correction factors were applied (Fig.

4), although the simulated season lengths were still

19.3% 6 12.9% lower than the historical observations.

In contrast, the accuracy of the IAP model actually

decreased after the correction factors were applied (Fig.

4). Prior to the adjustment, the season length estimate in

the average grid of the IAP model was 1.2% greater than

the historical observation, while after the adjustment it

was 9.9% greater. However, the variation in accuracy of

this model across grids did decrease significantly after

the correction factors were applied. The standard

deviation before the adjustment was 32.6%, but only

11.4% afterward (F19,19 ¼ 2.86, P ¼ 0.0135).

DISCUSSION

Although the general inability of AOGCMs to

simulate historical season lengths at the regional

geographic scale was expected, the amount and levels

of variation were surprising. In this study, the accuracy

of the season length predictions varied both geograph-

ically (Fig. 1A), as well as across models (Fig. 4).

One potential explanation for the geographic varia-

tion observed in this study involves the number of

weather stations within each grid that were available for

FIG. 4. The percentage differences between the simulated and historical season lengths for all 11 atmosphere and ocean general
circulating models (AOGCMs) examined in this study using raw data (dark bars) and adjusted data (light bars). Each estimate is
the average across both grids and years (6SE). Significance tests based on a one-sample t test for each model are summarized below
the zero line for the raw output and above the zero line for the adjusted output.

* P � 0.05; ns, not significant.
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analysis. Of the 150 grids examined in the primary

model, 46 had fewer than 10 weather stations (Table 1).

Within this subgroup, sample size had a significant effect

on the accuracy of the simulated season length (F1,45 ¼
8.5, P ¼ 0.006, r2 ¼ 0.16). For each additional weather

station, the accuracy of the simulated season lengths

increased by an average of 4.2% 6 1.4% (mean 6 SE).

However, this sample size effect was not present for

grids that had 10 or more weather stations available

(F1, 101 , 0.1, P¼0.995, r2 , 0.01). In addition, the grids

that exhibited the greatest discrepancies between the

simulated and historical season lengths (i.e., Montana,

Wyoming, Idaho; Fig. 1A) had an average of 10.4 6 1.5

(mean 6 SE) weather stations. This relatively large

sample size in an area of low accuracy suggests that

sample size alone was not the sole cause of the

inaccuracies found in Montana, Wyoming, and Idaho.

The most likely explanation for these inaccuracies is the

low spatial resolution of AOGCMs at higher altitudes.

This lack of spatial resolution has been found to

underestimate albedo feedback and daily high temper-

atures (Christensen et al. 2007), which in turn would

lead to the large underestimation of season length found

in this study. Thus, geographic variation in the ability of

AOGCMs to simulate historical season lengths appears

to be due, in part, to their spatial resolutions. As such, I

would thus expect geographic variation to be lower for

climate models with higher spatial resolutions. These

mesoscale climate models may be better than AOGCMs

in predicting how biological populations will respond to

climate change, particularly if research interests are

confined to a specific area or region. Furthermore, as

AOGCMs are improved and refined, I expect the

geographic variation in their accuracy to decrease as

well.

Unlike the geographic variation observed within the

primary model, variation across AOGCMs did not

appear to be related to their spatial resolutions. The

relationship between grid size and the accuracy of the

simulated season length across models was not signifi-

cant (F1,9¼0.4, P¼ 0.536, r2¼0.04). This result was not

surprising given that the AOGCMs used in this study

had similar spatial resolutions. On average, grids were

2.68 6 0.38 in longitude and 2.38 6 0.38 in latitude (mean

6 SE). The inter-model variation observed in this study

is most likely caused by differences in the mathematical

composition of the AOGCMs, particularly how cloud

feedback is incorporated (Randall et al. 2007). This

inter-model variation is likely to persist as different

research groups employ alternate strategies to optimize

mathematical complexity, simulation run time and

parameterization.

The variation observed across both geographic areas

and separate AOGCMs emphasize the fact that no

universal set of correction factors will consistently

improve the predictions of all AOGCMs. As such, the

most appropriate set of correction factors for a given

study will be dependent on its specific goals, particularly

on the geographic areas of interest and the specific

AOGCM being used.

Despite the large amounts of variation observed in the

raw AOGCMs season length simulations, most models

consistently underestimated historical season lengths.

This underestimation of season length appears to be

driven primarily by the model’s underestimation of daily

maximum temperatures. The geographic distribution of

season length discrepancies (Fig. 1A) and daily maxi-

mum temperature correction factors (Fig. 2A) were not

only closely associated, but the correlation between

accuracy and the daily maximum correction factor

across models (Table 2) was also significantly positive

(r ¼ 0.811, t10 ¼ 4.2, P ¼ 0.0025). In contrast, the

distribution of daily minimum correction factors (Fig.

2B) and season lengths discrepancies (Fig. 1) did not

appear to be strongly associated, while the correlation of

accuracy and daily minimum correction factors across

models was positive, but not significant (Table 2; r ¼
0.458, t10¼ 1.5, P ¼ 0.1564).

The stronger association between daily maximum

temperatures and season length estimates should be

expected, given that for a large portion of the year, daily

minimum temperatures will fall below the lower thermal

threshold for development of the focal species (i.e.,

138C). As such, underestimations of the daily minimum

temperatures will not contribute to the accumulation of

degree-days during these portions of the year. In

contrast, daily maximum temperatures will frequently

be within the focal organism’s upper (358C) and lower

(138C) thermal thresholds for growth. Because of this

relationship, any consistent underestimation in simulat-

ed daily high temperatures will lead to an underestima-

tion of accumulated degree-days (i.e., season length).

Because the season length estimates of temperate

ectotherms are dependent on both the daily maximum

and minimum temperatures, and the upper and lower

thermal thresholds for development of the focal

organism; the accuracy of simulated season lengths

may vary across species. Organisms with a lower

thermal threshold substantially below 138C should be

more sensitive to underestimations of daily low temper-

atures than A. socius species group. This increased

sensitivity would be due to the fact that more of the

observed daily minimum temperatures would fall within

the organism’s usable thermal range. Likewise, organ-

isms with an upper thermal threshold substantially

higher than 358C should be more sensitive to underes-

timations of daily maximum temperatures than the A.

socius species group, because a higher proportion of the

daily maximum temperatures would fall within their

usable thermal range.

Interestingly, regardless of the upper and lower

thermal thresholds of a particular organism, the

correction factors used to improve the accuracy of the

simulated season lengths would be the same. Because the

estimation of the correction factors are based only on

the differences between the simulated and historical
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maximum and minimum temperatures, and do not take

into consideration the organism’s thermal thresholds,

the grid-specific correction factors estimated here (Table

1) could be used for any ectothermic organism residing

within the continental United States. However, because

the models simulated daily maximum and minimum

temperatures are ‘‘near surface,’’ meaning that they

approximate air temperatures 2 m above the ground

(Meehl et al. 2007), they do not necessarily represent the

range of temperature microhabitats available to organ-

isms within an area (Sinclair et al. 2003, Inouye 2008).

Organisms capable of selecting microhabitats within a

particular region may not respond as predicted by any

climate simulation. As such, population level predictions

based on either raw or corrected model data should be

interpreted with caution.

Perhaps the most interesting observation of this study

was the large amount of variation in the ability of the

correction factors to improve the accuracy of the

simulated season lengths. The average difference be-

tween the simulated season lengths after the correction

factors were applied and the historical observations

varied both geographically (Fig. 1B) and across models

(Fig. 4). Although this variation in the effectiveness of

region specific correction factors is likely to exist for all

environmental parameters; it has not been previously

reported, and it is not typically included in studies of the

impact of global climate change on biological popula-

tions. Usually in these studies, the manner in which

region specific correction factors were obtained is

outlined in the methods section without any evaluation

of their effectiveness. The implicit assumption of these

studies is that the correction factors adequately remove

potential discrepancies between the simulated and

historical environmental parameters. However, the

results of this study demonstrated that even after the

application of correction factors, average simulated

environmental parameters can still be off by as much

as 19.3% (GISS, Fig. 4). Therefore, the effectiveness of

region specific correction factors should be explicitly

considered and reported in future studies of global

climate change impacts on biological populations.
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