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Abstract. Productivity-diversity relationships (P/D) are a vital theme in ecology, but productivity is

typically not measured directly in that research. Instead, biomass (B) is the most common proxy for

productivity, often as a 1:1 substitute. Unfortunately, this practice may cause error and uncertainty in P/D

research, due to the fundamental difference between B and P and variable P/B ratios among and within

systems. As a result, P/D research often measures a B/D relationship but interprets it as P/D. Fortunately,

plausible, statistically legitimate and predictive P/B relationships can be found with careful analyses based

on model selection of alternative allometric scaling equations and tests of model assumptions. Analyses are

presented here for P/B relationships of 19 data sets, ranging from plant and animal populations and

assemblages to ecosystems and biomes, representing over 2,300 analyzed P/B data. Models included

standardized major regression (SMA) and ordinary least squares (OLS) regressions. Simple linear 1:1 P/B

relationships are never supported. Instead, logP-logB transformed data, consistent with allometric scaling

approaches, are far more common as the most plausible, statistically legitimate and predictive models.

Given these relationships, many P/D studies with only B data may now better estimate P with SMA

models, while studies with P and B data in some plots may estimate P in parallel plots with B and D data

by using OLS models. Two grassland examples are re-analyzed to evaluate the importance of this approach

to P/D research when B was used as a proxy for P; in one case, P had been underestimated by 20%; in the

other case, P had been overestimated by 20%. The difference is related to underlying sampling methods

and obtained data. The approach presented here may help productivity-diversity research resolve some

uncertainty to better understand effects of ecological diversity on biomass production.
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INTRODUCTION

Biological diversity is valued for many reasons,

including the expectation that more diversity

increases and/or stabilizes productivity of an

ecosystem. That expectation has been actively

studied and debated (Huston 1997, Waide et al.

1999, Fridley 2001, Mittelbach et al. 2001,

Whittaker and Heegaard 2003, Hooper et al.

2005, Gillman and Wright 2006, Cardinale et al.

2007, Pärtel et al. 2007, Whittaker 2010). But

uncertainty remains because multiple natural

factors cause variance in observed productivity/

diversity (P/D) relationships, including: spatial

scale, history, evolution, species pool size, and

latitude (Chase and Leibold 2002, Fukami and

Morin 2003, Gillman and Wright 2006, Pärtel et

al. 2007, Whittaker 2010). In addition, methods of
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study contribute to the observed variance in P/D
(Newbould 1967, Vollenweider et al. 1974, Coup-
land 1979, Downing and Rigler 1984, Magurran
2004). Even different terms have been applied to
this subject, including species richness–produc-
tivity relationship (SRPR; Whittaker and Hee-
gaard 2003) and biodiversity and ecosystem
functioning (BEF; Cardinale et al. 2011). Here
the simple term P/D is used because it denotes
the basic goal to derive a predictable bivariate
relationship and is consistent with a long history
of highly relevant research on productivity/
biomass relationships already known as P/B.

How might clarity emerge in this important
subject? We might first address a common
methodological problem affecting P/D research
(Fig. 1). Among the 256 P/D relationship studies
described by Mittelbach et al. (2001), only 1 in 7
(14%) actually measured P. Biomass (B) was the
single most common proxy for P (34.4% of
studies; Mittelbach et al. 2001), including notable
studies of P/D relationships then and since (e.g.,
Hector et al. 1999, Loreau et al. 2001, Tilman et al.

2001, Cardinale et al. 2007, Adler et al. 2011,
Hooper et al. 2012). The bad news is that using B
as a simple proxy for P may cause error and
uncertainty in P/D research, due to the funda-
mental difference between B and P (Fig. 1). The
good news is that the bad news can be
addressed, with careful analysis.

Below is a brief summary of bad news
regarding P/B relationships in two regards:
fundamentals and history. That bad news is
followed by good news, in the form of a
summary of a way forward. The remainder of
this work is a statistical exploration of that good
news. To be clear, this paper reports statistical
analyses of P/B relationships. It uses model
selection (Burnham and Anderson 2002) to
identify regression models that most plausibly
represent P/B relationships among diverse data
sets, ranging from microbes to salamanders and
species to biomes. The work here is based on
empirical data collected by many others and
analytical approaches that have been widely
applied in other contexts (e.g., Jensen et al.
2005, Kerkhoff and Enquist 2006, Warton et al.
2006). This is not an effort to develop a
theoretical explanation of P/B, nor a study of
mechanistic processes causing production to
vary, nor a comparison of different methods to
estimate either production or biomass in partic-
ular study systems.

Bad news: fundamentals
Biomass is fundamentally different from pro-

duction (e.g., Odum 1971, O’Neill et al. 1986,
Jenkins and Buikema 1998). Biomass (B) mea-
sures standing stock, which is a static measure of
the quantity of living tissue in a place and time
(e.g., g�m�2), much like counting a warehouse’s
current inventory. It is a snapshot measure of
ecological structure, not a rate, and not necessar-
ily related to rate functions of energy or material
flow through a system (O’Neill et al. 1986).

In contrast, net production is a functional
measure of the rate that new biomass is generated
in a place over time (e.g., g�m�2�y�1), much like
calculating annual volume shipped from a
warehouse. Net production is the difference
between gross production and respiration; net
production (hereafter P) is the focus here.
Biomass need not equal P, just as current
inventory in a warehouse need not represent

Fig. 1. Many studies seek to evaluate the P-D

relationship (arrow 1) but do not directly measure P.

Instead, B is often used as a surrogate for P (arrow 2).

In that case, a strong 1:1 P/B relationship (Box i) is

assumed unless another relationship is explicit. If the

P/B fit is not linear, strongly predictive, or does not

meet regression assumptions (Box ii ), then P-D

inferences actually represent the unintended B-D

relationship (arrow 3). This study seeks predictive P-

B relationships (i ) in order to more accurately

represent P-D analyses (arrow 1) and avoid arrow 3.

v www.esajournals.org 2 April 2015 v Volume 6(4) v Article 49

JENKINS



annual volume shipped.
Why is this a problem for P/D research? At one

extreme, it is not, if P and B happen to be tightly
related in a 1:1 relationship (Fig. 1, box i). In this
case, a study of the P/D relationship (Fig. 1,
arrow 2) can reliably use B to indicate P, as is the
common assumption in much P/D research,
where the two are often discussed interchange-
ably. At the other extreme, B may badly represent
P because the P/B pattern is scattered, or the
slope is not 1, or both (Fig. 1, box ii ). In that case,
little will actually be learned about a real P/D
relationship by using B as a proxy for P. Instead,
a B/D relationship is mistakenly interpreted and
discussed as a P/D relationship (Fig. 1, arrow 3).
The truth likely lies between those two extremes,
and may be uncovered with allometric approach-
es that are common but not widely applied to P/
D research (e.g., Calder 1984, Brown et al. 2004,
Marquet et al. 2005, Kerkhoff and Enquist 2006).
Allometric scaling typically uses a power law
relationship for P/B rather than the 1:1 relation-
ship often assumed in P/D research (e.g., Niklas
and Enquist 2001, Ernest et al. 2003, Kerkhoff and
Enquist 2006). The use of allometric scaling for P/
B analyses is important here because:

1. Allometry is built to relate disparate metrics
(e.g., P and B); it should apply, though it has
been rarely used.

2. A linear model (e.g., P ¼ a þ bB) differs
greatly from a power law (e.g., P ¼ aBb, or
log(P) ¼ log(a) þ b(logB)) because the slope
term b is a multiplier of either B or log(B),
and because a also affects the shape of the
power law outcome when represented in
linear space (Lomolino 1989). Thus, finding
b¼ 1 in a power law model does not mean it
is safe to assume a 1:1 P/B relationship in
linear P/B data.

3. A linear model is likely to fail regression
assumptions if data resemble Fig. 1, panel
ii. In that case, a 1:1 assumption makes a
poor indicator and a worse estimator. In
contrast, log transforms often assist with
regression assumptions, making power law
or other models (e.g., P/logB) statistically
legitimate.

4. A linear P/B model assumes unsaturated
increase in P with B, whereas a power law
model can vary from linear to strongly

asymptotic, depending on a and b coeffi-
cients.

Assuming plausible, statistically legitimate,
and predictive models can be obtained with
allometric scaling, it is then appropriate to
compare different study systems (e.g., microbes,
fishes, forests) and hierarchical levels of organi-
zation (i.e., populations, assemblages, ecosys-
tems, and biomes). Without those models,
generality in P/B relationships has been elusive
(Mittelbach et al. 2001).

Bad news: history
Decades of research on P, B and P/B ratios have

not fully informed subsequent P/D research
(Mittelbach et al. 2001, Whittaker and Heegaard
2003, Gillman and Wright 2006). Beyond those
cited reviews, evidence for this problem itself has
three parts; two general problems from statistical
analyses and one stemming primarily from
sampling vegetation.

Regression modeling.—If allometric scaling (see
above) had percolated into P/D research, more P/
D analyses may have transcended the 1:1
equivalence assumption. Glimpses of this possi-
bility exist in rare logP/logB analyses (Webb et al.
1983, Duarte 1989, Downing and Plante 1993).
But power law relationships should not be
assumed by default, especially if assumptions
are not supported, and especially homoscedas-
ticity (Quinn and Keough 2002). Unfortunately,
regression assumptions have been rarely evalu-
ated in P/B models (Downing and Plante [1993] is
a singular example of reported careful practice),
and it may be expected that assumptions are
routinely violated with a 1:1 assumption, given
data often transcend multiple orders of magni-
tude.

Model selection.—Obtaining a valid P/B rela-
tionship is more complex than simply finding a
regression model with a greater R2 (Burnham
and Anderson 2002). Instead, careful decisions
are required to match regression methods to
goals and data, regression assumptions of ho-
moscedasticity and normal error variance need to
be evaluated, and then model selection based on
information theory should be applied (Burnham
and Anderson 2002, Warton et al. 2006, Smith
2009, Xiao et al. 2011). The vast majority of P/B
research simply reported values, but not all P and
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B were independently sampled (i.e., a P/B ratio
was often assumed to estimate either P or B).
Thus, thorough model selection has not been
widely applied to P/B data.

Sampling.—Much terrestrial P/D research has
been conducted with vegetation (Mittelbach et al.
2001), including grasslands (e.g., Briggs and
Knapp 1995, Hector et al. 1999, Gough et al.
2000, Gross et al. 2000, Tilman et al. 2001,
Scurlock et al. 2002, Butler et al. 2003, Knapp et
al. 2007, Adler et al. 2011). It is common practice
in such P/D studies to use peak, aboveground B
as a proxy for P, which assumes annual produc-
tion is adequately captured in the single sample
event, and is often asserted to indicate P without
citations or tests of the assumption. As an aside,
belowground B and P of vegetation are not often
measured in P/D research; the relative impor-
tance of above- vs. belowground P is a debate of
its own, and analyses here do not address that
separate question.

Unfortunately, peak B inadequately estimates P
in grasslands (Coupland 1979), with P/B ratios
varying widely and most in excess of the 1:1

value assumed by this practice (Fig. 2). Also,
peak B can be quantified based on either live
tissue or total tissue (i.e., the sum of live and
dead standing plant tissue), and may not be
restricted to peak samples (Singh et al. 1975,
Scurlock et al. 2002). To count only live tissue is
to ignore plant tissue that senesced between
sampling events, a common occurrence in her-
baceous plants. The choice between peak live vs.
peak total biomass in grasslands may be impor-
tant. For example, the use of peak live B as a
proxy for P was the basis for a paper entitled
‘‘productivity is a poor predictor of plant species
richness’’ (Adler et al. 2011), whereas peak total B
as a proxy for P generated various significant fits
with species richness among study sites (Hector
et al. 1999).

Peak B may very well indicate P for some
systems, though confidence in this potential
relationship requires that P be estimated sepa-
rately from peak B (Singh et al. 1975, Scurlock et
al. 2002) and P/B relationships need to be
developed. A major goal of this work is to help
P/D research be based on estimated P rather than
indicated P.

Good news
Time for some good news, in two sets. The

combination of the two sets of good news means
that past P/B research results can help estimate
reliable, general P/B relationships, which may
then be applied to better estimate P/D relation-
ships (Fig. 1).

First, decades of research offer a basis to
quantitatively evaluate the P/B relationship be-
cause P and B were (or can be) estimated
independently for many organisms, assemblages,
ecosystems, and biomes. Surprisingly, few such
efforts have statistically related P/B among
various systems, with recent work focused on a
different purpose (Kerkhoff and Enquist 2006).
Nor have alternative data transformations and
tests of regression assumptions been conducted.
The Bad News described above would not exist if
such an analysis existed.

Secondly, allometric scaling approaches can be
readily applied to the P/B relationship (Marquet
et al. 2005, Warton et al. 2006, Smith 2009, Xiao et
al. 2011). Allometric scaling typically uses stan-
dardized major axis regression (SMA; e.g., Niklas
and Enquist 2001, Ernest et al. 2003, Kerkhoff and

Fig. 2. Coupland (1979: Table 33.4) listed 40

grassland study sites in which maximum live-shoot

biomass (g�m�2) and net annual shoot production

(g�m�2�y�1) were reported. The use of peak B to

measure ANPP assumes a 1:1 relationship between the

two variables. In fact, the ratio of ANPP/peak B varied

almost four-fold among those globally-distributed

study sites, with most values .1. Assuming 1:1 would

often underestimate P. The largest value was from a

study that also accounted for mortality losses (Coup-

land 1979: Table 33.5). The variability among systems

and nonequivalence of ANPP and peak B are

inconsistent with the common use of peak B as a

measure of ANPP.
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Enquist 2006, Warton et al. 2006, Smith 2009),
which was formerly known as model II or
reduced major axis regression (see Warton et al.
[2006] for a comprehensive review). In contrast,
ordinary least squares (OLS) regression has
typically been applied in P/B research. With
model selection, alternative OLS and SMA
models can be compared to identify the most
defensible models that represent fundamental
and predictive relationships (Burnham and An-
derson 2002, Stephens et al. 2005). The analyses
must be conducted carefully to avoid errors of
method and interpretation, but comparison
methods are far more resolved and available
than when most P/B data were collected.

Goals and expectations.—Given wide variance in
both P and B (typically 3–4 orders of magnitude
range with triangular scatter) and prior work
(e.g., Webb et al. 1983, Duarte 1989), I expected
OLS and SMA regressions based on logP/logB
transformed data to most often be most plausi-
ble; a goal was to evaluate regressions based on
logP/logB transforms relative to other models. A
second goal was to compare OLS and SMA
regression model results as a way to examine the
potential effects on P/B research, where SMA P/B
scaling relationships should be more appropriate
for much of P/D research conducted to date
(explained further below). I expected models of
greater hierarchical levels of data (i.e., a popula-
tion of one species , an assemblage of multiple
species , ecosystems , biomes) to be weaker
(i.e., more often poor fits to assumptions, lower
R2) because I expected greater inherent measure-
ment error and accrued variance in unmeasured
covariates (e.g., elevation, precipitation, etc.) at
greater organizational levels.

METHODS

Data collection and selection
Paired and independently estimated P and B

data were obtained from journal publications
and books. I made multiple decisions regarding
consistency and reliability of data in subsequent
analyses. In all data sets used here, P and B were
verified to be independently estimated; data sets
were excluded if P was calculated with an
assumed or estimated P/B or ‘‘estimative ratio’’
(Whittaker and Marks 1975). Where a range was
reported, I recorded the midpoint for use in

regressions. With two exceptions, I selected
studies for which data were expressed in units
of dry mass, which were typically most common
(i.e., all analyzed data were expressed as
g�m�2�y�1 for P and g�m2 for B). The first
exception was zooplankton assemblages, for
which a substantial number of data sets were
compiled by Morgan et al. (1980) in energetic
units of J�m�2 and J�m�2 y�1. Not enough other
zooplankton studies expressed in units dry mass
could be found to replace this set; I chose to
analyze it rather than ignore it given the
importance of zooplankton in freshwater ecosys-
tems. I did not assume a conversion factor (J to
g). The second exception was soil microbes
(Persson et al. 1980), with P measured as mg
C�m�2�y�1 and P measured as mg C�m�2. Again,
conversion factors were avoided.

As a result of the important conditions above,
entire data sets or values within compilations
were excluded. I only computed P/B regressions
for data sets with sufficient data (;20 points;
Jolicoeur 1990), except for global biomes, for
which ,20 types exist. All possible studies may
not be included in any one group but analyses of
sufficient data points should represent a general
relationship. I could find too few data for some
groups (e.g., acari, echinoderms, bivalve mol-
luscs, worms) based on the above conditions,
despite their ecological importance. Analyses
were also organized as based on populations,
assemblages, ecosystems, and biomes, and by
obvious divisions within one of those categories
(e.g., fishes, terrestrial vegetation). Population-
level data were defined as those reporting
species-specific (or sometimes more coarse taxa,
e.g., genera) P and B data in a site. In contrast,
assemblage-level data refer to aggregates of such
taxa in a site (e.g., soil microbes). Ecosystem- and
biome-level analyses aggregate further, where
ecosystems include multiple possible assemblag-
es and biomes include multiple ecosystems.
Ecosystem- and biome-level data represent net
primary production, which comprises the major-
ity of true productivity at those levels.

Data were analyzed in reported units and as
logarithmic transforms. I used log10 because: (1)
ln and log10 are directly and linearly intercon-
vertable, (2) log10 units vary in 10-fold steps that
more readily convert among systems and scales,
and (3) log10 is commonly used in the scaling
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literature (e.g., Enquist et al. 1998, Niklas and
Enquist 2001, Warton et al. 2006, Hechinger et al.
2011).

Alternative regression models
OLS and SMA regressions of bivariate data (x

and y) differ in purpose. OLS regression is
designed to predict a specific dependent y from
an independent x variable and test for a
difference from zero for slope and intercept
(Warton et al. 2006). OLS regression assigns all
scatter to y, which it then minimizes to solve for a
line through the scatter (Smith 2009). As a result,
OLS regressions are asymmetric; the equation
changes when y is used to predict x. OLS
regression is recommended where x is thought
to cause, determine, or predict values of y, and
where one seeks to know if different x values
have different y values (Smith 2009). Parameters
of most interest for OLS regression are predicted
y values, a null hypothesis test of slope, and the
strength (R2) of the model (Warton et al. 2006).

By definition, production creates biomass and
so P should be the independent variable (x) in
OLS regressions (e.g., Keeling and Phillips 2007).
However, B has historically been used as x in P/B
research because it is easier to estimate and thus
used as a predictor for P. Thus, historical use of
OLS regression contradicts the logical assign-
ment of variables to independent and dependent
axes. This matters because OLS regressions are
not symmetric, and so a B/P equation (e.g.,
Keeling and Phillips 2007) is not the same as a
P/B equation (Warton et al. 2006, Smith 2009). In
addition, B is always an estimate with error, and
B of natural systems is a random factor. Though
not the major criterion for OLS vs. SMA
regression decisions (Warton et al. 2006), no
variation is assumed for x in OLS regressions,
which contradicts the nature of B estimates. In
sum, OLS regression is not the de facto method
for P/B research.

In contrast, the goal of SMA regression is to
identify a true relationship or biological ‘‘law’’
between x and y and is recommended where
designation of x or y as the independent variable
is not a matter of causation (Warton et al. 2006,
Smith 2009). SMA regression assumes variance in
both x and y, and seeks to reduce that combined
variance with a best line through the scatter
(Warton et al. 2006, Smith 2009). As a result,

SMA regression equations are symmetric. The
parameter of greatest interest is the slope of the
line that best fits the bivariate y/x pattern, and
both slope and intercept can be tested for fit to
hypothesized values (Warton et al. 2006). For the
same data set, OLS and SMA regressions yield an
identical strength (R2) of the y/x relationship,
though SMA regression typically yields a greater
slope than OLS.

Which regression method is most appropriate
for P/B research? OLS regression makes most
sense for interpolation within a study system
because OLS regression is designed to predict a
specific y value given an x. For example, a study
may establish that B is a good predictor of P by
estimating B and P independently and finding a
plausible, legitimate and strong P/B model.
Thereafter, B may be used as a predictor of P to
relate to D in other, simultaneously and identically
treated, randomly selected treatment plots, where
P could not be estimated without ruining the
ability to estimate D due to destructive sampling.
The range of P values should also encompass the
range in P/D plots to ensure valid interpolation.

In contrast, SMA regression finds general
scaling relationships that best describe P/B
patterns (Warton et al. 2006). Assuming suffi-
cient, representative data values are used, SMA
regression should approximate a ‘‘true’’ relation-
ship that enables comparisons of P/B relation-
ships among systems. If sufficiently plausible,
legitimate, and strong, a general SMA relation-
ship may be used to better estimate P where only
B was collected but a P/D relationship was
sought (Fig. 1).

Given the different roles of OLS and SMA
models for P/B research, OLS and SMA models
were compared separately by model selection
here, with the goal to identify a most plausible
version of each for a given data set. OLS
regression analyses here built on work by Xiao
et al. (2011), who compared two relevant models:
the OLS linear regression of logP/logB trans-
formed data (here log10P¼ aþ b(log10B)) and the
OLS power law (here P ¼ aBb) regression of
untransformed data. Xiao et al. (2011) used model
selection based on the Akaike Information Crite-
rion (AIC; Burnham and Anderson 2002) and
graphical evaluations of residual normality and
heteroscedasticity. Model selection identifies the
most parsimonious and plausible model in a set
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by penalizing explained variance for the number
of model parameters (Burnham and Anderson
2002). More complex models that may provide a
better fit by including more variables can then be
fairly compared to simpler models.

Unfortunately, model selection cannot compare
models with different response variables (Burn-
ham and Anderson 2002). Thus, models of log10P
must not be compared using model selection to
models of untransformed P (e.g., by the power
law; Xiao et al. 2011). As a result, an AIC-based
approach could not serve as a sole basis to select
models here. Instead, a more complex but better
informed analysis was required, in which model
selection for subsets of models with the same
response variable was accompanied by tests of
regression assumptions (homoscedasticity and
normal error variance). Model selection here used
AIC corrected for sample size (AICc) and model
weights (Burnham and Anderson 2002).

I added three additional OLS models to the
two OLS models compared by Xiao et al. (2011)
and compared the five models in two subsets:

1. OLS linear regression of untransformed data
(P¼ aþ bB) was compared to models based
on a semi-log transform (P ¼ a þ b(log10B))
and the power law (P ¼ aBb). This set of
models represented the historically common
assumption that B is a simple linear proxy
for P and two possible curvilinear relation-
ships.

2. A second semi-log transform (log10P ¼ a þ
bB) was compared to the logP/logB (i.e.,
log10P and log10B) transform. This set of
models represented a second curvilinear
relationship and a common method in
allometric scaling (e.g., Kerkhoff and En-
quist 2006).

SMA regression requires a bivariate, linear
model and cannot evaluate the nonlinear power
law. Thus, four SMA models were compared
with AICc weights in two further subsets, using
the reasoning above and including homoscedas-
ticity and error normality tests:

3. P¼ aþ bB was compared to P¼ aþ b(log10B)
4. log10P¼ aþ bB was compared to log10P¼ aþ

b(log10B).

SMA regression enables tests of slope and

intercept relative to designated values. Here,
slope¼ 1.0 and intercept¼ 0 were tested because
both hypothesis tests are important for the use of
B as a proxy for P. A slope of 1 indicates that the
measure of B directly relates to the correspond-
ing measure of P (e.g., log10B ; log10P), whereas
other slopes require explicit conversion. An
intercept of zero also supports simple use of B
as a P proxy; otherwise, an intercept term must
be used when estimating P from B.

All models were evaluated for homoscedastic-
ity based on graphical evaluation and Breusch-
Pagan tests. Normality of error was also evalu-
ated based on graphical evaluation and Shapiro-
Wilk tests. A slope significantly different from
zero was a final condition to consider a model as
best of a subset. In some cases, I judged that
support for homoscedasticity or normal error
was inappropriate and chose to think rather than
blindly follow a p value (Quinn and Keough
2002). For example, a Breusch-Pagan test may
indicate homoscedasticity despite a clear para-
bolic pattern of residuals, because the test merely
evaluates the slope of residuals as a function of
the predictor variable; a flat linear slope through
a parabola can pass the Breusch-Pagan test.
Conversely, both OLS and SMA regression are
robust to modest violation of homoscedasticity
and normality of error, and the ability of Shapiro-
Wilk and Breusch-Pagan tests to detect violations
of assumptions depends in part on sample size;
data sets with more values can be indicated as
heteroscedastic or non-normal for error variance
when graphical results indicate minor problems.
Thus some violation beyond strict statistical tests
was permissible, especially if AICc weight and
other indicators suggested a model potentially
useful for P/D research.

I prioritized homoscedasticity as more impor-
tant than normality of error variance for regres-
sion models (Quinn and Keough 2002). Of
course, full compliance with regression assump-
tions was preferable. As a result, OLS and SMA
models were reported if the AICc weight
indicated a plausible model in the analyzed
subset, and were judged to meet or nearly meet
homoscedasticity but failed normality of error.
Models with similar AICc weights, based on an
evidence ratio of 2 (i.e., wi/wj , 2) were reported;
those with an evidence ratio . 2 were considered
less plausible (Burnham and Anderson 2002) and
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not reported.
Analyses described so far exclude R2 and slope

significance. I considered R2 only when compar-
ing best models among different AIC-based
subsets because model selection was constrained
to subsets with the same response variable
(Burnham and Anderson 2002). For example,
AICc weights may indicate that models from two
subsets are plausible, but R2 values may differ
greatly. Based on the expectation that P/D
research needs strong P/B models, those with
greater R2 will be preferred. Of course, a useful
model will also have a slope that is different from
zero, but this test was trivial in most cases.

Modern nonlinear regression methods do not
report R2 because it is inadequate by itself to
compare models (Spiess and Neumeyer 2010).
For OLS power law results only, I computed R2

as [1� (variance of model residuals)/(variance of
raw P data)] (Motulsky and Ransnas 1987) so
that power law R2 values could be compared to
the other eight models.

In summary, the most plausible, legitimate,
and strong models were identified and reported
in a two-step process. Step one compared models
within a subset using criteria in the following
order; AICc weight (with a critical evidence ratio
¼ 2), homoscedasticity, normality of error, and
slope significance (for OLS models only). Step
two compared leading models among subsets for
R2. A slope of ;1 and an intercept of ;0 inform
subsequent thought but were not criteria for
selecting models to report.

The above analyses describe approaches ap-
plied to all data sets analyzed here. In addition,
alternative approaches to estimate P and B in
grasslands and forests were examined in greater
detail for subsidiary but important purposes.

Grassland and forest data
Grasslands.—Grasslands have been central to

P/D research, and studies have typically used
peak aboveground biomass as an indicator of P
(see Bad News: History, above). For example,
Scurlock et al. (2002) represented common
practices in grasslands and treated B as an
estimator of P. I used the same data sets as
Scurlock et al. (2002), but handled data differ-
ently, in three ways:

1. Scurlock et al. (2002) compared average

annual values among sites (appropriate for
their purpose), whereas I extracted annual
P and B values from Scurlock and Olson
(2002) for the purpose of P/B regressions.

2. I used method 1 of Scurlock et al. (2002; i.e.,
peak live biomass; B1) and method 2 (peak
aboveground live þ standing dead matter;
B2) as estimators of B. Those B estimators (B1

and B2) were then regressed separately
against data based on Scurlock et al.’s
(2002) recommended methods 5 and 6 to
estimate P. Method 5 (P5) is based on Singh
et al.’s (1975) trough-peak analysis 7, and
sums positive increments in live biomass
and standing dead matter, where only
positive increments in standing dead matter
that coincided with those in live biomass are
used. Without any coinciding increments in
standing dead matter, P5 represents only live
biomass. Method 6 (P6) of Scurlock et al.
(2002) is based on Singh et al.’s (1975)
trough-peak method 8. It matches P5 but
adds positive increments in fallen litter (i.e.,
such increments that coincide with matching
increments in live biomass are summed).
Coinciding positive increments estimate
production of live biomass during the
sampling interval plus newly produced
biomass that senesced (as standing or fallen
matter) during the sampling interval. Incre-
ments of zero were counted as positive,
which obviously did not change a summed
value but would enable a category (e.g.,
litter) to be evaluated relative to other
categories.

3. Scurlock et al. (2002) used calendar years to
define annual cycles, consistent with com-
mon practices and northern temperate
grasslands. Here trough-peak cycles were
data-driven, using biomass trends as a guide
(Singh et al. 1975). Decisions were required
because some data sets varied in temporal
extent and minimal live biomass did not
always occur in December or January. Both
P5 and P6 (described above) were based on
positive increments and a trough-peak
approach to detecting increments (Singh et
al. 1975, Scurlock et al. 2002). If data
extended continuously through multiple
years, then a minimal (trough) value (Singh
et al. 1975) marked the end of one annual
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cycle and the start of the next. In that case,
consecutive samples could be also be used to
calculate an increment for the start of the
next year. For data sets ,1 year, an initial
biomass value .0 suggested some earlier
and missed production; increments began as
the difference between the second and first
values, whatever it was. However, if live
biomass values did reach zero in the data,
then a zero was assumed to start a year.
Thus, some troughs may have been under-
estimated, and resulting P estimates here are
likely conservative (let alone matters related
to litter estimation and belowground P;
Singh et al. 1975, Scurlock et al. 2002). Some
of the 31 data sets (Scurlock and Olson 2002)
did not meet the above conditions, nor did
some partial years.

In P/D research, the choice between P5 and P6
will depend on how samples are collected; P5
requires live and standing dead samples are
processed separately, whereas samples unsorted
for live and dead tissue, including litter, can be
analyzed as P6. Method 4 (i.e., R(positive
increments in live biomass)) was not used here
because it underestimates P by omitting recently
dead tissue and was not recommended by
Scurlock et al. (2002). To be clear, four sets of
model comparisons (described above) were
conducted: P5/B1, P5/B2, P6/B1, P6/B2.

Forests.—The converse of relationships evalu-
ated here (i.e., the B/P relationship) was recently
evaluated among 191 forest sites, where P
estimates were standardized for losses due to
litterfall, tropical litterfall decomposition, volatile
organic compounds, and herbivory (Keeling and
Phillips 2007). Litterfall decomposition estimates
in the tropics (only) were often ;1/2 of litterfall. I
analyzed P/B relationships for the Keeling and
Phillips (2007) tropical forest data separately
from data for nontropical forests. As a secondary
goal, the effect of that standardization was
evaluated relative to the increment method,
which more closely corresponds to much P/D
research. In sum, P/B relationships were ana-
lyzed in tropical and non-tropical forests using
both increment and standardized P estimates.

Operational details.—All analyses were conduct-
ed using established packages in R v. 3.0.2 (R
Core Team 2014). The power law OLS regression

was computed using the self-starting iterative
option SSarrhenius in the nls command. The
linear OLS and SMA regressions were conducted
with the smatr package (Warton et al. 2012). OLS
regression results produced by smatr were
verified as identical to those produced by lm in
R. Homoscedasticity was evaluated graphically
and with Breusch-Pagan tests for OLS regres-
sions (in the lmtest package; Zeileis and Hothorn
2002), or the equivalent for power law and SMA
regression residuals (i.e., squared residuals re-
gressed using lm in R and plotted against
predictor values). Normality of residuals was
evaluated graphically and with a Shapiro-Wilk
test (Razali and Wah 2011). Model selection was
conducted using AICctab in the bbmle package
(Bolker 2014).

RESULTS

Annual P/B data representing 1,861 separate
systems were collected, distributed among 19
data sets (6 for populations, 9 for assemblages, 4
for ecosystems and biomes). Some systems (e.g.,
grasslands) included multiple versions of P or B
used in different regressions; in total, 2,320 P/B
data points were analyzed (all data are in the
Supplemental Materials). Five OLS models and 4
SMA models were compared in four subsets (171
models, 76 model comparisons). One model was
often identified by AICc weights as the most
plausible in a subset; 73% of comparisons yielded
an AICc weight . 0.90; Appendix). However,
consideration of regression assumptions modi-
fied inferences based on AICc weights alone. The
most plausible model of a set either met both (32,
or 42%) or one (22, or 29%) regression assump-
tion (in all but four cases it was homoscedastic-
ity), or may have met neither assumption (22, or
29%). As a result AICc-based model selection and
assumption tests, almost half of model compar-
isons (35/76; 46%) yielded a model that was
clearly most plausible and judged to comply with
regression assumptions (Appendix). Of those 35
models, 22 (63%) were logP/logB transforms,
followed by P/logB and power law (tied with 6
each, or 17%), and one linear model (3%). Please
note that R2 did not enter into this examination of
outcomes.

Overall, P/B regressions based on logP/logB
transforms were far more likely than a simple
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linear B-as-P proxy (or other models) to represent
a P/B relationship well and partially or fully meet
assumptions (Fig. 3). Among the 19 data sets,
OLS logP/logB models were plausible and
homoscedastic for 17 (89%), of which 10 (53%)
also had normal error variance. Likewise, 16
(84%) SMA logP/logB models were plausible and
homoscedastic; 12 (63%) also had normal error
variance. In contrast, power law models (compa-
rable in principle to a logP/logB model) were
often plausible by AICc weights (17 of 19
comparisons) but met one (5 of 19; 26%) or both
(6 of 19; 32%) regression assumptions less often
and rarely compared well with logP/logB models
for R2. Of the failed models (i.e., wi , 0.05,
heteroscedastic and/or non-normal errors), most
were logP/B (26 cases), linear (17 cases), or P/logB
(8 cases). Below is a summary per data set of
model comparisons; please see Table 1 and
Appendix for model equations and other details.

Terrestrial plant populations
This data set represented 125 P/B data values

for terrestrial plant species, many of which were
woody. The OLS logP/logB equation was clearly
most plausible (wi ¼ 1.00), homoscedastic, and
predicted log10P well (R2¼ 0.86; Fig. 4A; Table 1).
The intercept 95% confidence interval (hereafter
CI) did not include zero nor did the slope CI
include 1.0. The OLS logP/logB model could be
used advisedly (error variance was non-normal
and herbaceous plant species were underrepre-
sented) as a reference for comparable P/B
analyses within a P/D study. Though yielding
different coefficients, the SMA logP/logB model
was similar in statistics to the OLS logP/logB
model (Table 1). The SMA model should be
useful to estimate P from B for P/D research of
terrestrial plant species where only B is available.
The relatively high R2 for the OLS and SMA
models (Fig. 4A) suggests that additional covar-
iates (e.g., latitude, elevation) represent relatively
minor further variance.

Wetland plant populations
This data set represented 52 P/B data values for

wetland plant species collected across freshwater,
brackish, and estuarine systems. The OLS logP/
logB was quite plausible (wi¼ 0.99) and met both
regression assumptions but was not highly
predictive (R2¼ 0.22; Table 1, Fig. 4B), potentially
related to high and unaccounted litter production
or strong effects of environmental conditions
(e.g., hydrology). If available (I could find none),
studies that include litter production (and even
underground tissue) may be more predictive.
Covariates (e.g., tidal flux, latitude, salinity, etc.)
also may explain substantial variance among
study systems.

Two SMA models (logP/logB and P/logB) were
most plausible in their subsets and met regres-
sion assumptions (Appendix). However, R2 ¼
0.22 of the logP/logB was nearly twice that of the
P/logB model. The intercept CI did not include
zero nor did the slope CI include 1.0 but values
were not far off (Table 1, Fig. 4B). Again,
relatively low R2 (0.22) may be improved with
additional covariates (e.g., freshwater, brackish,
or saline wetlands) or better accounting for litter
production in further analyses.

Insect populations
This data set represented 911 P/B data values

for aquatic and terrestrial insect taxa (often

Fig. 3. Summary of (A) OLS and (B) SMA regression

results. Plausibility was based on AICc weights, where

a plausible model had an evidence ratio (i.e., wi/wj) .2.

Plausible models that were homoscedastic and had

normal error variance are tallied in gray. Plausible

models that were homoscedastic but did not have

normal error variance are tallied in white.
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Table 1. Recommended ordinary least square (OLS) and standardized major axis (SMA) regression models for

each data set by level. Listed models were selected based on the following sequence of decisions: (1) Does it

have the greatest AICc weight (wi ) of its comparison set? (2) Does it meet regression assumptions

(homogeneous and normal error)? (3) In case of a tie, which model has the greatest coefficient of determination

(R2)? All models listed here were judged to be homoscedastic; normal error variance differed among some

models. In columns, Y¼ yes, N¼ no. See Appendix A for the full set of all models compared and additional

details of model comparisons and model evaluation statistics.

Model
Normal
error? R2

Slope
; 1?

Intercept
; 0? Equation

Populations

Terrestrial plants (N ¼ 125)
OLS logP/logB N 0.86 N N log10P ¼ �0.40211 þ 0.84458(log10B)
SMA logP/logB N 0.86 N N log10P ¼ �0.68154 þ 0.926807(log10B)

Wetland plants (N ¼ 52)
OLS logP/logB Y 0.22 N N log10P ¼ 1.44787 þ 0.53893(log10B)
SMA logP/logB Y 0.22 Y Y log10P ¼ �0.12267 þ 1.12524(log10B)

Insects (N ¼ 911)
OLS logP/logB Y 0.77 Y N log10P ¼ 0.73422 þ 0.97750(log10B)
SMA logP/logB Y 0.77 N N log10P ¼ 0.84430 þ 1.04368(log10B)

Crustacea (N ¼ 29)
OLS logP/logB Y 0.82 N N log10P ¼ 0.41959 þ 0.80662(log10B)
SMA logP/logB Y 0.82 Y N log10P ¼ 0.51903 þ 0.89086(log10B)

Fishes (N ¼ 100)
OLS logP/logB Y 0.79 N N log10P ¼ �0.15664 þ 0.88798(log10B)
SMA logP/logB Y 0.79 Y N log10P ¼ �0.17455 þ 1.04766(log10B)

Salamanders (N ¼ 20)
OLS logP/logB Y 0.81 Y Y log10P ¼ �0.00608 þ 0.84385(log10B)
SMA logP/logB Y 0.81 Y Y log10P ¼ 0.16969 þ 0.95234(log10B)

Assemblages

Grassland P5/B1 (N ¼ 98)
OLS power law N 0.77 n/a n/a P ¼ 2.31463(B0.87174)
SMA logP/logB Y 0.63 N N log10P ¼ �0.44925 þ 1.19543(log10B)

Grassland P5/B2 (N ¼ 98)
OLS logP/logB N 0.58 Y Y log10P ¼ 0.041196 þ 0.910338(log10B)
SMA logP/logB Y 0.58 N N log10P ¼ �0.66194 þ 1.18379(log10B)

Grassland P6/B1 (N ¼ 98)
OLS power law N 0.67 n/a n/a P ¼ 5.60522(B0.76455)
SMA logP/logB Y 0.54 Y Y log10P ¼ �0.39972 þ 1.22598(log10B)

Grassland P6/B2 (N ¼ 98)
OLS P/B Y 0.69 N Y P ¼ 24.61292 þ 0.80389(B)
SMA logP/logB Y 0.66 N N log10P ¼ �0.78159 þ 1.26251(log10B)

Woody vegetation (N ¼ 91)
OLS logP/logB Y 0.86 N N log10P ¼ 0.27609 þ 0.64437(log10B)
SMA logP/logB Y 0.86 N Y log10P ¼ 0.22232 þ 0.66046(log10B)

Nontropical forests, increment method (N ¼ 95)
OLS P/logB Y 0.48 N N P ¼ �2387.8 þ 697.73(log10B)
SMA P/logB Y 0.48 N N P ¼ �4462.02 þ 1166.38(log10B)

Nontropical forests, standardized (N ¼ 95)
OLS P/logB Y 0.40 N N P ¼ �2063.61 þ 717.79(log10B)
SMA logP/logB Y 0.37 N Y log10P ¼ 0.47415 þ 0.57320(log10B)

Tropical forests, increment method (N ¼ 96)
OLS P/B Y 0.10 N N P ¼ 241.2 þ 0.00939(B)

Tropical forests, standardized (N ¼ 96)
OLS P/logB Y 0.27 N N P ¼ �3648.2 þ 1291.0(log10B)

Forest soil microbes (N ¼ 24)
OLS logP/logB Y 0.92 Y N log10P ¼ 0.55854 þ 0.93818(log10B)
SMA logP/logB Y 0.92 Y N log10P ¼ 0.68720 þ 1.00027(log10B)

Herbiv. zooplankton (N ¼ 33)
OLS logP/logB Y 0.83 N N log10P ¼ 0.78766 þ 1.28083(log10B)
SMA logP/logB Y 0.83 N N log10P ¼ 0.66820 þ 1.40235(log10B)

Carniv. zooplankton (N ¼ 26)
SMA logP/logB Y 0.10 N N log10P ¼ �1.66482 þ 2.99185(log10B)

Ecosystems

Terrestrial (108)
OLS logP/logB Y 0.69 N N log10P ¼ 0.35892 þ 0.67525(log10B)
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species, some as genera, or family). Among OLS
models, only the logP/logB model was very
plausible and met regression assumptions (Table
1). The slope term was not different from 1.0 and
R2 was strong (0.77; Fig. 4C). Investigators would
be well justified to compare their own OLS
regressions within a P/D research study to this
equation. The strong fit among so many data
points suggests a general relationship among
insects, with room for only modest improvement
by covariates (e.g., latitude, phylogeny, etc.).

Similarly, the SMA logP/logB model was very
plausible and met both regression assumptions
(Table 1). The slope differed from 1.0 despite a
near value, by virtue of the many data points
(Fig. 4C, Table 1). In the absence of independent
B and P data, P could be reliably estimated from
this relationship, and it could be used to
retrospectively adjust P/D estimates for studies
among insect species.

Crustacean populations
This data set represented 29 P/B data values for

species or genera, with only Ostracoda repre-
sented more coarsely. The OLS logP/logB model
was clearly most plausible in its subset, was fully
compliant with both regression assumptions, and
had a high R2 (Table 1, Fig. 4D). I considered that
model preferable to other models, which did not
meet all criteria as well (Appendix). Similar to the
case for insects above, investigators would be
well justified to compare their own equations to
this one. Again, the strong fit indicates little
additional benefit from exploring covariates (e.g.,
latitude, etc.).

The SMA logP/logB model was also very
plausible and met both regression assumptions
(Table 1, Appendix). The model shared the

strong R2 (0.82) with the OLS model. In the
absence of independent B and P data, P could be
reliably estimated from this relationship (Fig.
4D), and it could be used to retrospectively adjust
P/D estimates for studies among crustacean
species. Relatively little more explanatory power
is to be expected by exploring covariates (e.g.,
latitude, etc.).

Fish populations
One hundred P/B data values for fish species

were included in this data set, including fresh-
water, marine, estuarine, and anadromous/catad-
romous species. Only the OLS logP/logB model
was very plausible, met both regression assump-
tions, and had a strong R2 (Table 1, Fig. 4E). As
above, it would be fully defensible to compare a
study-specific model to this equation, given
appropriate use of log-transforms. Little addi-
tional advantage is apparent from a search for
covariates (e.g., latitude, etc.).

Among SMA models, only the SMA logP/logB
model was very plausible and met both regres-
sion assumptions (Table 1, Appendix). The
model had the same strong R2 as the OLS model
(Table 1, Fig. 4E). Given only B data (i.e., if P data
were not independently collected), log10B could
be reliably converted to log10P from this rela-
tionship, and it could be used to retrospectively
adjust P/D estimates for studies among fish
species.

Salamander populations
This data set included 20 P/B data points for

two genera (Eurycea and Desmognathus) in one
study area (North Carolina, USA; Cross et al.
2006). Though limited, the two genera represent-
ed an order of magnitude difference in biomass

Table 1. Continued.

Model
Normal
error? R2

Slope
; 1?

Intercept
; 0? Equation

SMA logP/logB Y 0.69 N Y log10P ¼ 0.23424 þ 0.71232(log10B)
Biomes

Terrestrial (N ¼ 37)
OLS logP/logB N 0.66 N Y log10P ¼ �0.26657 þ 0.76635(log10B)
SMA logP/logB N 0.66 Y Y log10P ¼ �0.96780 þ 0.92486(log10B)

Global terrestrial (N ¼ 12)
OLS power law Y 0.83 n/a n/a P ¼ 18.4638(B0.4223)

Global aquatic biomes (N ¼ 7)
OLS logP/logB Y 0.86 N N log10P ¼ 2.27542 þ 0.30078(log10B)
SMA P/logB Y 0.90 N Y P ¼ �255 þ 747(log10B)
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(g�m�2) and may bracket other salamanders in

the P/B relationship. The OLS logP/logB model
was very plausible, met both regression assump-

tions and had a strong R2 (Table 1, Fig. 4F).
Similar to patterns presented so far, the SMA

logP/logB model (Table 1, Fig. 4F) was most

plausible in its subset and met both regression
assumptions. Based on this result, log10P could

be reliably estimated from log10B in the absence

of independent P data, and estimated P values
could be used to retrospectively adjust P/D

estimates for studies of (or including) salamander
species. The veracity of either population-level

model would be best tested with more species
and study sites.

Grassland assemblages

This set of analyses was based on up to 98 data
points extracted from Scurlock and Olson (2002).

Four P/B methods from Scurlock and Olson
(2002) were used, where P methods denoted

here correspond to methods recommended by
Scurlock et al. (2002). Production was estimated
in two ways: as the sum of positive increments in

live and dead tissues (P5), or as the sum of
coinciding, positive increments in live and dead

Fig. 4. Population-level P/B relationships based on OLS and SMA logP/logB regressions. Axis scales necessarily

vary among data sets but all are logP/logB. SMA regressions (black lines) and OLS lines (gray) are shown relative

to a dashed 1:1 line.
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tissues (P6). Maximal annual B was used to
represent peak B, where peak B was estimated
two ways: based on live biomass (B1) or based on
(live þ standing dead) biomass (B2). Data points
for live biomass were more numerous (98) than
those for liveþ standing dead biomass (72).

The P5/B1 regressions (Fig. 5A) evaluated P
based on live þ standing matter as a function of
peak live B. Only the moderately predictive (R2¼
0.63) SMA logP5/logB1 model was plausible and
met both assumptions (Table 1, Appendix). The
OLS power law model was most plausible in its
subset and fit data well (R2¼ 0.77) but failed the
normality assumption (Table 1). All other mod-
els, including a linear P/B model, were relatively
implausible, failed assumptions, or both.

Some grassland P/D studies measure B as live
þ standing dead matter (B2). For cases where live
þ standing dead P is also measured, the OLS
logP5/logB2 model (Fig. 5B) was the only plausi-
ble and partially-legitimate OLS model (error
variance was not normal; Table 1). The SMA

logP5/logB2 model was plausible, legitimate and
moderately predictive (R2 ¼ 0.58). All other
models, including a linear P/B model, were
relatively implausible, failed assumptions, or
both (Appendix).

The P6/B1 regressions (Fig. 5C) represent P
based on live þ standing þ fallen litter as a
function of peak live B only; in principle, this
represents the most complete estimate of P with
the simplest estimate of B. Among OLS regres-
sions, only the moderately predictive (R2¼ 0.67)
power law model was plausible and met
regression assumptions (Table 1, Appendix).
The SMA model of logP6/logB1 (R2 ¼ 0.54) was
plausible and met regression assumptions.
Again, other models (including linear P/B), were
relatively implausible, failed assumptions, or
both (Appendix).

The P6/B2 regressions (Fig. 5D) estimate P
based on live þ standing þ fallen litter from B
based on live þ standing dead matter. The OLS
linear, power law, and logP6/logB2 models were

Fig. 5. Grassland assemblage P/B relationships, based on Scurlock et al. (2002). Note axes are log scaled. (A)

Production based on separate, coinciding incremental increases in live and dead matter (P5) as a function of

aboveground peak live B (B1). (B) P5 as a function of aboveground peak (liveþ standing dead) matter (B2). (C)

Production based on incremental increases in pooled liveþ dead matter, including fallen litter (P6) as a function

of B1. D. P6 as a function of B2. OLS (gray) and SMA (black) regression lines are shown relative to the 1:1 line

(dashed).

v www.esajournals.org 14 April 2015 v Volume 6(4) v Article 49

JENKINS



plausible, statistically legitimate, and fairly pre-
dictive, as was the SMA logP6/logB2 model (Table
1).

Overall, the use of B as a 1:1 proxy for P was
not well supported for grasslands. The OLS
linear model was implausible or failed regression
assumptions in 3 of 4 cases; for P6/B2 the OLS
linear model was plausible and legitimate but the
slope was significantly ,1. Moreover, B2 data
(live þ standing dead) are less often used in
grassland P/D studies than are B1 data. The
meaning of this result for P/D research in
grasslands is explored in more detail in Discus-
sion below.

Woody assemblages
This data set was comprised of 91 P/B data

points representing various coniferous and de-
ciduous woody vegetation, including scrub,
heath, and forests. None of the referenced
citations overlapped with those of Keeling and

Phillips (2007; analyzed below). The only OLS
model that was plausible and met assumptions
was the OLS logP/logB model. Given the strong
fit to data (Table 1, Fig. 6A) and assumptions, the
logP/logB model could be compared to study-
specific models, and it seems little additional
variance may be gained by additional covariates.

Similar to the OLS results, only the SMA logP/
logB model was plausible and met both regres-
sion assumptions (Table 1, Fig. 6A). Based on this
result, log10P could be reliably estimated from
log10B in the absence of independent P data
among various woody assemblages, and estimat-
ed P values could be used to retrospectively
adjust P/D estimates. Little added advantage
seems available from a search for additional
covariates.

Tropical forest assemblages
Keeling and Phillips (2007) analyzed and listed

P and B data from 96 tropical forest study sites,

Fig. 6. Forest assemblage P/B relationships. Axes necessarily vary among data sets, and note only (A) is logP/

logB scaled. (A) Woody vegetation, using data not in plots (B-D). OLS (gray) and SMA (black) logP/logB

regressions nearly coincide. (B) Tropical forests, using data from Keeling and Phillips (2007). Increment-based

data (white circles) are fit with an OLS linear regression (gray line). Standardized data (black circles) are fit with

an OLS logP/logB regression. For plots (C) and (D), legitimate models were P/logB. (C) Non-tropical forests,

increment-based data, where OLS (gray) and SMA (black) models are shown. (D) Non-tropical forests,

standardized data, lines same as (C). Dashed line is the 1:1 ratio in all plots.
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for which they reported traditional increment-
based P estimates and standardized estimates to
better account for losses of litterfall to decompo-
sition, etc. They used both kinds of data to model
B as a function of P (i.e., the inverse of
regressions here). I compared the increment and
standardized data sets by OLS and SMA regres-
sion models for P as a function of B.

Increment-based data.—For the increment-based
data, the OLS linear and power law models had
similar plausibility (wi ¼ 0.47 and 0.35, respec-
tively) and met both regression assumptions.
Models fit the data scatter rather poorly (both R2

¼ 0.10), but no other model performed better. The
OLS linear model (Fig. 6B) had a significant slope
( p , 0.01). Of all other models, including SMA,
only the OLS logP/B model was also plausible
(relative to logP/logB), and was homoscedastic
but did not have normal error variance. With the
same R2 as the linear model, it was less
satisfactory. Interestingly, SMA did not meet
model selection criteria.

Standardized data.—Standardization for litter
and losses (due to decomposition, volatilization,
and herbivory) generally improved model
strength but altered model comparison out-
comes. With standardizations, the OLS P/logB
model had the greatest wi (0.74) compared to
power law and linear models, but was not highly
predictive (R2 ¼ 0.27). The power law was ;3-
fold lower in wi and did not meet regression
assumptions. On the other hand, the OLS logP/
logB model was plausible (wi ¼ 1.0 relative to
logP/B) and homoscedastic, but did not have
normal error variance. The OLS logP/logB model
was moderately predictive (R2 ¼ 0.49; Fig. 6B).
Again, SMA regressions failed to meet model
selection criteria.

In summary, standardization for litter and
other losses mattered greatly for P/B regression
models of tropical forests by altering the plausi-
bility, strength, and terms of models. The OLS
logP/B model of standardized data was poten-
tially useful for estimating P in tropical forests,
though it should be used advisedly because fit
was less satisfactory than other models evaluated
here. Abundant variance remained unexplained
by even the best models to warrant exploration of
covariates to improve models (e.g., those consid-
ered by Keeling and Phillips 2007).

Non-tropical forest assemblages
Keeling and Phillips (2007) also included 95

nontropical (i.e., boreal, temperate, forest study
sites in their compiled data set. Losses in P were
the same as listed for tropical forests, but
excluded those due to litterfall decomposition.
As for tropical forests, P estimates used incre-
ment-based and standardized data.

Increment-based data.—Three OLS models for
increment data were plausible and met assump-
tions wholly or in part. The OLS P/logB model
was almost twice as plausible as the OLS power
law model; both met regression assumptions and
had similar R2 (0.48 vs. 0.47; Appendix). The P/
logB model was reported based on its wi. The
OLS logP/logB model was also plausible (wi¼ 1.0
relative to logP/B) and homoscedastic, but did
not have normal error variance, and strength (R2

¼ 0.39) was less than the P/logB model. Thus, for
increment-based data, the P/logB model (Fig. 6C)
was preferable as a reference for comparison to
OLS regressions in other studies.

SMA regressions of increment-based data
shadowed OLS patterns. The SMA P/logB model
was plausible (wi¼ 1.0 relative to P/B), met both
regression assumptions, and had the same R2

(0.48) as the OLS model. The SMA logP/logB was
also plausible relative to the logP/B model and
homoscedastic, but did not have normal error
variance and the R2 was a bit lower (0.39).

Standardized data.—Standardization for losses
did not greatly improve models for non-tropical
forests and choices among models remained
similar as those for tropical forests. The OLS P/
logB model was again most plausible and met
regression assumptions (Appendix). The P/logB
model fit data fairly well (R2 ¼ 0.40). The OLS
logP/logB was also plausible (wi ¼ 1.0 relative to
logP/B) and homoscedastic, but did not have
normal error variance, and its model strength (R2

¼ 0.37) was slightly lower. Thus, for increment-
based data, the P/logB model was most plausible
and best fit assumptions; investigators should
explore multiple OLS models for non-tropical
forest P/B relationships, but the OLS P/logB
model (Fig. 6D) may be best within P/B studies
of non-tropical forests with both B and P data.

Similar to OLS regressions, SMA P/logB and
logP/logB models were again plausible relative to
their respective competing models (Appendix).
This time, both models also met both regression
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assumptions, though P/logB did so more clearly.
The SMA P/logB model (Fig. 6D) fit data slightly
better than the SMA logP/logB model. For
standardized data, the SMA P/logB model was
again slightly better for estimating P when only B
data exist.

In summary, standardization increased esti-
mated P values but did not strongly alter P/B
regression models of non-tropical forests (com-
pare Fig. 6C and D and regression coefficients in
the Appendix). A greater difference exists be-
tween OLS and SMA models for each data set.
The same model choices rose to the top regard-
less of data type, and some models based on
standardized data had R2 values slightly lower
than comparable models based on increment
data (Appendix). In addition, sufficient variance
remains to be explained by covariates to improve
models (see Keeling and Phillips 2007).

Soil microbial assemblages
All 24 data values for this set of analyses were

obtained from a single study, which included
multiple assemblages ranging from fungi, bacte-
ria, and protists, to small metazoans with P and B
measured as mg C (Persson et al. 1980).
Additional studies would help to use relation-
ships here with more confidence. The only
plausible OLS regression to meet regression
assumptions was the OLS logP/logB model,
which had a slope not different from 1.0 and
the highest R2 (0.92; Fig. 7A) of any reported
here. Similar studies of soil microbes seeking to
predict specific P values from B should be able to
compare models to this one, though it would be
best validate it or modify it with other study
areas.

In parallel to OLS results, the only plausible
SMA regression to meet regression assumptions
was the logP/logB model. The slope coefficient
was not different from 1.0, though the intercept
was different from zero (Fig. 7A). Based on this
result, log10P could be reliably estimated from
log10B in the absence of independent P data, and
estimated P values for studies of soil microbe
assemblages. Again, the veracity of this model
would be best tested with more study sites.

Herbivorous zooplankton assemblages
This data set included 33 data points compiled

by Morgan et al. (1980) and analyzed apart from

carnivorous zooplankton (below); the two were

expressed as energetic units (J�m�2 and J�m�2y�1)
rather than dry mass like other studies analyzed

here. The OLS power law model was plausible

but failed to meet both regression assumptions.

In contrast, the OLS logP/logB model was

plausible (wi ¼ 1.0 relative to logP/B), met both

Fig. 7. Heterotrophic assemblage P/B relationships.

Note axes are log scaled but necessarily vary in extent

and units among data sets. (A) Soil microbes P (mg

C�m�2�y�1) and and B (mg C�m�2), data from Persson

et al. (1980). (B) Herbivorous zooplankton P

(J�m�2�y�1) and B (J�m�2), data from Morgan et al.

(1980). (C) Carnivorous zooplankton P (J�m�2�y�1) and
B (J�m�2), data from Morgan et al. (1980); no plausible,

legitimate regressions were obtained. OLS (gray) and

SMA (black) regressions, and the 1:1 ratio (dashed) are

shown.
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regression assumptions, and had a strong R2

(0.83; Fig. 7B). The logP/logB should serve well as
a reference for similar P/B regressions in P/D
studies that include herbivorous zooplankton.
Also, relatively little can be gained from explor-
ing additional covariates.

In parallel to OLS results, only the SMA logP/
logB model was plausible (wi ¼ 1.0 relative to
logP/B), met both regression assumptions, and
had the same strong R2 (0.83; Fig. 7B). The
intercept differed from zero and the slope
differed from 1, based on CIs, but the model
should be predictive of P when B is available,
keeping log-transforms in mind and the fact that
units are Joules. Again, covariates are unlikely to
improve the model greatly, given the already
high R2.

Carnivorous zooplankton assemblages
This data set included 26 data points compiled

by Morgan et al. (1980), also in units of Joules.
Interestingly, all OLS regressions were similarly
plausible within their subsets and homoscedas-
tic, but none had a significant slope (Fig. 7C).
Therefore, none of the OLS models are reported
for carnivorous zooplankton. The greatest R2

among OLS models was 0.10.
The SMA models served only a little better.

Only the SMA logP/logB model was plausible (wi

¼ 1.0 relative to logP/B), and met both regression
assumptions, but its R2 was also low (0.10). There
is clearly much room for improvement in the
modeling of P/B for carnivorous zooplankton.
More data sets and additional covariates may
help make these models more predictive; as they
stand now, they are not recommended.

Terrestrial ecosystems, by type
This data set included phytomass and above-

ground net production values for 106 ecosystem
types on land (e.g., tropical arid, boreal humid
and subhumid, etc.), compiled by Rodin et al.
(1975). Among OLS models, none met regression
assumptions except the logP/logB model, which
was plausible, met both regression assumptions,
and was quite strong (Table 1, Fig. 8A). This
model should serve as a reference for other
comparisons among ecosystems; for example, it
may be compared to efforts to better account for
litter losses and underground biomass produc-
tion.

Likewise among SMA models, only the logP/
logB model met regression assumptions and was
plausible and strong (Table 1). Though room for
improvement exists by the use of covariates (e.g.,
latitude, etc.), this model should help predict P
among ecosystems for which only B is available.
Moreover, it should serve as a point of reference
for estimates of P based on entirely different

Fig. 8. Ecosystem and biome P/B relationships,

where ANPP represents aboveground net primary

production and B represents aboveground phytomass.

Note axes are log scaled and share units but

necessarily vary in extent among data sets. (A)

Ecosystems by type (Rodin et al. 1975). (B) Terrestrial

biomes (Olson 1975). (C) Global biomes (Whittaker

and Likens 1975), where filled circles¼ aquatic biomes;

open circles¼ terrestrial biomes. OLS (gray) and SMA

(black) regressions, and the 1:1 ratio (dashed) are

shown.
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methods (e.g., satellite imagery, evapotranspira-
tion models).

Terrestrial biomes
Olson (1975) listed NPP and B for 36 terrestrial

biomes (e.g., northern taiga, warm wetland
swamp) with values estimated for pre-agricul-
tural conditions. Only the OLS logP/logB model
was plausible and met both regression assump-
tions (Table 1, Fig. 8B). The R2 ¼ 0.66 exceeded
that of other models (Appendix). Efforts to
improve P estimates based on covariates and
litter losses may improve the model. Among
SMA models, only the logP/logB model met a
regression assumption (homoscedasticity; error
variance was non-normal) and was plausible
(Fig. 8B). As above, improvements are possible,
but the model describes a fairly well-fit relation-
ship between terrestrial biome B and P.

Global biomes
This list of P and B for 19 global biomes has

been reproduced in many ecology texts and
included marine ecosystems (Whittaker and
Likens 1975). Analyzed values were reported
means for P and B, and data were divided into
aquatic (N¼ 7) and terrestrial (N¼ 12) sets (Fig.
8C). Though analyzed, SMA-based models are
less essential than for other systems because
extrapolation to other global biomes is moot. The
only model (OLS or SMA) for terrestrial biomes
that was plausible and met both regression
assumptions was the OLS power law (Table 1,
Fig. 8C).

Results for global aquatic biomes differed from
those for terrestrial biomes (Table 1, Appendix).
The most defensible OLS model was the logP/
logB model, which was plausible, statistically
legitimate, and strong (Fig. 8C, Table 1). Among
SMA models, both the P/logB and logP/logB
models were plausible, statistically legitimate,
and strong.

Conclusion
Overall, logP/logB models were most often the

most plausible, statistically defensible, and
strong models evaluated (62% of OLS models,
89% of SMA models in Table 1). Even among
those potentially symmetric logP/logB models,
slopes were often not ;1 (30% of OLS, 41% of
SMA); a 1:1 relationship is far less obvious in

other models (e.g., P/logB). Models that were
most plausible and statistically defensible often
obtained fairly strong fits to data, indicating
many models recommended here (Table 1)
represent P/B patterns well.

DISCUSSION

Much research on P/D relationships has taken
a risk when it assumed, without transformations
and without plausible and statistically-legitimate
regression modeling, that B is an adequate 1:1
indicator of P. As a result, much of P/D research
has too often evaluated a B/D relationship and
interpreted it as a P/D relationship (Fig. 1); a
practice that likely contributed to uncertainty in
P/D relationships (Mittelbach et al. 2001). Please
note that the mere presence of a P/B correlation is
not disputed here. The goal here was to find
more plausible, statistically legitimate, and pre-
dictive relationships where possible, so that B
may go beyond a questionable indicator to
become a reliable estimator of P. To that extent
that this goal was achieved, P/D research is
strengthened, and some confusion and debate
may be abated.

Plausible, legitimate, and predictive models do
exist for the P/B relationship among diverse taxa
and levels of ecological organization. Those
models are often in the form of a logP/logB
relationship, though not always. Depending on
the taxon, organizational level, and methods of
data collection, B may now be used to more
reliably estimate P and better evaluate a potential
P/D relationship. Two general regression models
were applied here and address two different
goals. Ordinary least squares (OLS) models are
best for interpolating specific P values within a
study where both B and P data have already been
collected, and where P is needed in other samples
with B and D data. That scenario is a relatively
rare event in P/D research, but could be a way
forward with careful experimental planning and
execution. More commonly, B data alone are
collected, but P is the variable of interest. For
those many cases, a standardized major axis
(SMA) regression model of other similar study
systems may offer an appropriate best fit
between P and B.

Each investigator must consider the relative
risks of assuming their study system is similar to
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others in a SMA regression. In the absence of P
measurements, does one simply assume B is a 1:1
proxy for P, or does one use a SMA-based
estimate of P? Results here do not indicate the
1:1 proxy often will serve well to indicate P. But
before using an SMA-based model, one should
think about how the plausibility, legitimacy, and
strength of the model, as well as how well a
study system is represented by other systems
used in a model listed here. Also, the decision
should not rest on hoping that analyses may
yield a greater P response to D treatments or
sampled conditions. The use of SMA models
presented here may affect P/D research in three
ways: (1) effects of D on P are greater than
thought, because the assumed 1:1 P/B relation-
ship was an underestimate; (2) no real difference
exists relative to a 1:1 P/B assumption; or (3) D
affects P less than already thought, because the
assumed 1:1 P/B relationship was an overesti-
mate. As an example of how better estimation of
P may affect studies, I analyzed two experimen-
tal data sets important to P/D research. In both
studies, the treatment variable was species
richness and the response variable was B, used
as a proxy for P.

Example 1: Cedar Creek
Readers who have made it this far are surely

familiar with the experiment conducted by Dr.
Tilman and colleagues at the Cedar Creek
Natural History Area (e.g., Tilman et al. 2001),
in which plots were inoculated with a range of
species (range ¼ 1-16), and later followed in
detail (1996–2001). Data from the E120 experi-
ment are provided at http://www.cedarcreek.
umn.edu/research/data.html. The analysis here
does not duplicate or replace the work by Dr.
Tilman and colleagues. Instead, it merely uses
data they kindly make available to evaluate the
importance of P/B relationships presented here.
The treatment factor analyzed here was the
number of planted species (SpNum). The re-
sponse variable was peak aboveground living
biomass (g�m�2), used by Tilman et al. (2001) as a
proxy for P. I analyzed the repeated measures
data using a generalized linear mixed model
(glmmadmb package in R [Fournier et al. 2012]),
with Gaussian distributions assumed and with-
out zero inflation, where study year and soil
nitrogen were random factors.

Aboveground biomass was highly significant-
ly affected ( p , 0.001) by SpNum, as reported by
Tilman et al. (2001). The coefficient for the effect
of SpNum on aboveground biomass was 10.24,
meaning that (on average) every new species
planted caused 10.24 additional g�m�2 biomass,
separate from interannual variation and soil N
effects.

Aboveground live biomass was converted to
estimated P using the grasslands P5/B1 SMA
regression equation (Fig. 5A, Appendix, de-
scribed above). The generalized linear mixed
model was repeated, but with estimated P now
as the response variable. The model was again
highly significant ( p , 0.001); fundamental
conclusions by Tilman et al. (2001) are not
disputed here. However, the coefficient for the
effect of SpNum on estimated P was now 12.36,
meaning the effect of planted species on produc-
tion was underestimated by 17% when biomass
was the proxy response. To put it another way,
the response of P to SpNum was 20.7% greater
than originally estimated using B.

Example 2: BIODEPTH
A related, even larger experiment was con-

ducted across Europe by a large team (Hector et
al. 1999, Spehn et al. 2005). Plots at eight sites
were seeded with a range of species richness (SR;
minimum¼ 1, maxima ranged 8–32 among sites).
The composition and functional groups of seeded
plants was also important. Aboveground bio-
mass (live and standing dead) was sampled once
(5 sites) or twice (3 sites) each of three years, and
plots were mowed after sampling. As before, this
B was a proxy for P. My goal here was to
compare two models that reasonably represented
the more complex and detailed analyses of Spehn
et al. (2005); one that evaluated aboveground B
as a response and the other that evaluated
estimated P as a response. Data kindly reported
in the Supplement (Ecological Archives M075-001-
S1) to Spehn et al. (2005) were analyzed here.

A generalized linear mixed model was used (as
described for the Cedar Creek data), where B was
a function of: SR, functional richness (FR; range¼
1-3), sites, blocks, and study year (as a random
factor). Modeled factors were selected to mimic
analyses of Spehn et al. (2005), and consistent
with their work, sites significantly and strongly
affected results ( p � 0.001). Beyond site effects, B
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was also significantly affected by SR and FR ( p ,

0.001 in both cases). With this model, the
coefficient for the simple B/SR relationship was
6.34, meaning that (on average) every species
planted caused 6.34 additional g�m�2 biomass,
apart from other factors. The matching coefficient
for FR was 84.6, meaning that adding one
functional group (often composed of multiple
species) had a large effect on B.

Given reported data, the SMA P5/B2 model
using logP/logB (Fig. 5B, Appendix, described
above), was most appropriate, plausible and
legitimate to estimate P. After substituting
estimated P for B in the model above, sites
remained significant and important ( p � 0.001;
same pattern among coefficients), as did both SR
and FR ( p � 0.001). But the SR coefficient was
now 5.04 and the FR coefficient was now 67.78.
Again, basic conclusions were not altered, but the
effects (coefficients) in the model were now
reduced 20%, meaning that effects had been
overestimated using B as a proxy for P. To put it
another way, the response of P to planted SR was
20.5% less than originally estimated using B.

Comparing Cedar Creek to BIODEPTH
Regression-based P estimation yielded opposite

effects for the Cedar Creek and BIODEPTH
experiments. Both SMA regressions used for these
data sets have slopes greater than the 1:1 slope
that is assumed when B is used as a proxy for P
(Fig. 5A, B). However, the elevations of the SMA
lines relative to the 1:1 line also mattered. The
model used for Cedar Creek (Fig. 5A) crosses over
the 1:1 line, while the model used for BIODEPTH
(Fig. 5B) is below the 1:1 line in the data range.
Thus, conversions of B to P for BIODEPTH
downgraded values to reduce estimated P relative
to the 1:1 assumption, while Cedar Creek tended
to be upgraded in estimated P. The relative
position of a study’s data in the appropriate data
cloud (Fig. 5) will affect the B-to-P conversion.

Please note the conclusions of the Cedar Creek
and BIODEPTH studies (Hector et al. 1999,
Tilman et al. 2001, Spehn et al. 2005) were
modified but not contradicted by analyses here,
as should be the case for well-conducted studies.
The intended role of analyses here is simply to
help P/D research turn from indication to
estimation of P. By doing so, we may more
confidently infer effects of D on P and help

resolve general P/D patterns among studies,
including but not limited to grasslands experi-
ments.

Grasslands relative to other systems
A quick inspection of Figs. 4–8 indicates that

estimation of P from B in other systems will often
make a greater difference than it did in the two
grassland data sets, in that other SMA regres-
sions are further displaced and/or have slopes
much different from the 1:1 line. For example,
best fits to the P/B data for woody plant species
(Fig. 4A) and assemblages (Fig. 6A) are generally
displaced below the 1:1 line. The consequent
reduction in P estimates is especially pronounced
for the tropical and non-tropical forest data
compiled by Keeling and Phillips (2007), where
the 1:1 line barely appears within the plots (Fig.
6B–D). This makes sense, given woody plants
accrue biomass over multiple years, so that B
should exceed annual P.

Wetland plants were too varied and regres-
sions too weak to treat them as strongly
predictive (Fig. 4B). A useful research direction
would be to compile more independent P and B
and develop better P/B models for wetland
vegetation, given the importance of wetlands in
landscapes for biological diversity and produc-
tivity (Mitsch and Gosselink 2011).

Among heterotrophs (Figs. 4C–F, 7), produc-
tion is generally estimated by methods based on
B increments or metabolic activity (microbes),
without risk of assuming a peak B indicates P.
There is little basis to expect certain slopes or
intercepts among these coarse taxa, nor was this
the intent of analyses here. However, model
terms varied among taxa and represent macro-
ecological differences among varied phylogenies
and life history strategies represented here.
Given that the analyses of species-level data
(Fig. 4) essentially represent an allometry of
populations, it may be useful to combine
phylogenetic constraints with allometric models
(Rall et al. 2011) to further resolve patterns. For
example, the insect data set (911 entries) encom-
passes 6 orders of magnitude in P, with variation
around regression lines ;2 orders of magnitude.
Phylogeny (e.g., Misof et al. 2014) likely accounts
for some of that 100-fold variation. At even
greater phylogenetic breadth, it would be inter-
esting to evaluate phylogenetic bases for varia-
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tion among taxa in the allometric scaling of
population biomass production.

Across the diverse systems and organizational
levels examined here for P/B relationships, there
is no evidence to suggest B should generally
serve as a simple 1:1 proxy for P. Specifically,
SMA logP/logB relationships reported here as
plausible, legitimate, and reasonably predictive
(R2 . 0.50) varied substantially. Seven of 11
(64%) had slopes different from a 1:1 line in log-
log space, and the intercept term varied by ;1
order of magnitude and also contributed to
variation among the relationships (Lomolino
1989). Essentially, a focus only on a P/B ratio
draws attention to the slope alone, whereas a full
regression equation, including intercept terms, is
required for logP/logB models. One should also
remember that a slope different from 1 in log-log
space can mean something quite different in
linear space, depending on coefficients.

Going forward
Research on P/D relationships will benefit from

better estimation of P, which represents one
important ecosystem property in the BEF context
and directly relates to SRPR (e.g., Mittelbach et
al. 2001, Whittaker and Heegaard 2003, Hooper
et al. 2005, Cardinale et al. 2011). The OLS and
SMA modeling approach and model selection
applied here should apply to other ecosystem
properties as well (Hooper et al. 2005). If so,
relationships between ecological structure and
function (O’Neill et al. 1986) may become clearer,
to the benefit of ecology and a scientific basis for
informed policy.

Earlier research seeking predictive P/B ratios
found ratios varied widely and scaled with adult
body mass (e.g., Coupland 1979, Banse and
Mosher 1980). The few P/B studies that used
logP/logB transforms (e.g., Webb et al. 1983,
Duarte 1989, Downing and Plante 1993) were on
the right track but rarely followed. Fortunately,
many past P/B studies now provide a substantial
basis to better estimate P from B. Model selection
(Burnham and Anderson 2002) is a recent
advance relative to most P/B research; it has not
been applied to P/B models until this work but
should be a common basis in future research on
the effects of biodiversity on ecosystem function-
ing. Likewise, SMA regression is common in
allometric scaling (Warton et al. 2006) and

should be expected in future research on allome-
tric relationships in ecosystem functioning. In
future P/D (or more general BEF) research, I
recommend the following:

1. Optimally, estimate P directly by well-
established empirical methods (e.g., New-
bould 1967, Vollenweider et al. 1974,
Downing and Rigler 1984) and relate those
P estimates to sampled D. Results here do
not replace that fundamental approach or
suggest it may be avoided.

2. If both P and B data in some study plots are
available and B and D data are available in
matched plots, obtain a P/B relationship
with OLS regression and use that model to
estimate P in the matched plots. Then relate
estimated P to sampled D.

3. If B and D data are available (but not P), use
SMA regressions here (or generated with
other data) to estimate P from B, and use
estimated P to relate to sampled D.

4. If other ecosystem properties are to be
estimated from B and then related to
sampled D, do not assume a 1:1 indication
of a property by B. Instead, use the general
approach here to: (a) avoid confounding a
structural measure with a functional one;
(b) use empirical evidence rather than a
simplistic assumption; (c) include standard-
ized major axis regression to best represent
the bivariate pattern; (d) use information
theoretic model selection to identify the
most plausible models among possible
choices; and (e) identify models that best
comply with regression assumptions.
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Pärtel, M., L. Laanisto, and M. Zobel. 2007. Contrasting
plant productivity-diversity relationships across
latitude: the role of evolutionary history. Ecology
88:1091–1097.
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SUPPLEMENTAL MATERIAL

APPENDIX

Table A1. Detailed results of P:B regression analyses by level and data set. OLS and SMA generate identical R2

values. Only OLS power law (P¼ aBb) is nonlinear. In columns, Y¼ yes, N¼ no. Entries generated advisedly

(see footnotes) are flagged with brackets (e.g., [Y]). A slope not different from 1 indicates that B can act as a

simple proxy for P, given transformations. OLS power law and SMA slopes were evaluated as significantly

different from zero with 95% confidence intervals ( p ¼ 0.05). Model selection was conducted for subsets as

follows: the first subset contained the first three models of each group; the following three subsets each

contained the next two subsets in the set, e.g., for terrestrial plants, the first subset contained the OLS power

law, OLS logB, and OLS linear models; the second subset contained OLS log-log and OLS logP models; the

third subset contained SMA logB and SMA linear models; the fourth subset contained SMA log-log and SMA

logP models. Regression models are listed only for most plausible models of a subset (evidence ratio [wi/wj] �
2) if models also have approximate homoscedastic error and a slope significantly different from zero. *p � 0.05;

**p � 0.01; ***p � 0.001.

Model wi

Homoscedastic?
(sig.)

Normal
error?
(sig.) R2 and sig.

Slope
; 1?

Intercept
; 0? Equation

Species
Terrestrial plants (N ¼
125)
OLS power law 0.97 N* N*** [0.41]***� n/a n/a
OLS logB 0.03 N* N*** 0.37*** N*** N***
OLS linear 0.00 N* N*** 0.30*** N*** N***
OLS log-log 1.00 Y (0.10) N*** 0.86*** N*** N*** log10P ¼ �0.40211 þ

0.84458(log10B)
OLS logP 0.00 N* N** 0.40*** N*** N***
SMA logB 1.00 [N (0.74)]� N*** 0.37* N*** N***
SMA linear 0.00 N*** N*** 0.30* N*** Y (0.38)
SMA log-log 1.00 Y (0.07) N*** 0.86* N* N*** log10P ¼ �0.68154 þ

0.926807(log10B)
SMA logP 0.00 N*** N** 0.40* N*** N***

Species
Wetland plants (N ¼ 52)
OLS logB 0.54 Y (0.20) N*** 0.12* N* Y (0.15) P ¼ �1580.2 þ

1039.4(log10B)
OLS power law 0.34 Y (0.57) N*** [0.11]*� n/a n/a P ¼ 165.975(B0.3169)
OLS linear 0.12 Y (0.69) N*** 0.07 N* N***
OLS log-log 0.99 Y (0.75) Y (0.43) 0.22*** N** N*** log10P ¼ 1.44787 þ

0.53893(log10B)
OLS logP 0.01 Y (0.69) Y (0.20) 0.08* N*** N***
SMA logB 1.00 Y (0.24) Y (0.08) 0.12* N*** N*** P ¼ �5249.1 þ

2352.7(log10B)
SMA linear 0.00 N*** N** 0.07* N*** Y (0.77)
SMA log-log 1.00 Y (0.84) Y (0.06) 0.22* Y (0.41) Y (0.78) log10P ¼ �0.12267 þ

1.12524(log10B)
SMA logP 0.00 N*** N*** 0.08* N*** N***

Species
Insects (N ¼ 911)
OLS linear 0.50 N*** N*** 0.41*** N*** Y (0.86)
OLS power law 0.50 N*** N*** [0.41]***� n/a n/a
OLS logB 0.00 N*** N*** 0.10*** Y (0.22) N***
OLS log-log 1.00 [Y]**§ [Y]***} 0.77*** Y (0.20) N*** log10P ¼ 0.73422 þ

0.97750(log10B)
OLS logP 0.00 N*** N*** 0.21*** N*** N***
SMA linear 1.00 N*** N*** 0.41* N*** Y (0.89)
SMA logB 0.00 N*** N*** 0.10* N*** N***
SMA log-log 1.00 Y (0.57) [Y]***} 0.77* N*** N*** log10P ¼ 0.84430 þ

1.04368(log10B)
SMA logP 0.00 N*** N*** 0.21* N*** N***
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Table A1. Continued.

Model wi

Homoscedastic?
(sig.)

Normal
error?
(sig.) R2 and sig.

Slope
; 1?

Intercept
; 0? Equation

Species
Crustacea (N ¼ 29)
OLS linear 0.54 Y (0.21) N*** 0.63*** N*** Y (0.34) P ¼ 0.568 þ 2.44762(B)
OLS power law 0.46 Y (0.15) N*** [0.63]***� n/a n/a P ¼ 3.265(B0.8427)
OLS logB 0.00 N (0.06) N*** 0.29** Y (0.12) N***
OLS log-log 1.00 Y (0.38) [Y]*} 0.82*** N** N*** log10P ¼ 0.41959 þ

0.80662(log10B)
OLS logP 0.00 [N (0.29)]� N** 0.29** N*** N**
SMA linear 1.00 [N (0.10)]� N*** 0.63* N*** Y (0.66)
SMA logB 0.00 Y (0.10) N*** 0.29* N** N***
SMA log-log 1.00 Y (0.70) [Y]**} 0.82* Y (0.21) N*** log10P ¼ 0.51903 þ

0.89086(log10B)
SMA logP 0.00 N*** N*** 0.29* Y (0.08) N***

Species
Fishes (N ¼ 100)
OLS power law 0.85 N*** N*** [0.74]***� n/a n/a
OLS linear 0.15 N*** N*** 0.73*** Y (0.16) Y (0.80)
OLS logB 0.00 N** N*** 0.30*** N*** N***
OLS log-log 1.00 Y (0.11) [Y]*} 0.79*** N* N*** log10P ¼ �0.15664 þ

0.88798(log10B)
OLS logP 0.00 N*** N** 0.38*** N*** N***
SMA logB 1.00 N*** N*** 0.30* N*** N***
SMA linear 0.00 N*** N** 0.73* N** Y (0.13)
SMA log-log 1.00 Y (0.23) [Y]**} 0.79* Y (0.37) N*** log10P ¼ �0.17455 þ

1.04766(log10B)
SMA logP 0.00 N*** N*** 0.38* N*** N***

Species
Salamanders (N ¼ 20)
OLS power law 0.49 Y (0.43) [Y]**} [0.63]**� n/a n/a P ¼ 0.744(B0.7266)
OLS linear 0.38 Y (0.44) N** 0.62*** Y (0.12) Y (0.37) P ¼ 0.01040 þ 1.42597(B)
OLS logB 0.13 Y (0.22) Y (0.14) 0.58*** N*** N***
OLS log-log 1.00 Y (0.15) Y (0.39) 0.81*** Y (0.12) Y (0.37) log10P ¼ �0.00608 þ

0.84385(log10B)
OLS logP 0.00 Y (0.07) Y (0.71) 0.66*** N*** N***
SMA linear 1.00 Y (0.07) N* 0.62* N*** Y (0.79) P ¼ 0.00214 þ 1.58195(B)
SMA logB 0.00 [N (0.45)]� Y (0.26) 0.58* N*** N***
SMA log-log 1.00 Y (0.45) Y (0.24) 0.81* Y (0.67) Y (0.38) log10P ¼ 0.16969 þ

0.95234(log10B)
SMA logP 0.00 [N (0.41)]� Y (0.26) 0.66* N*** N***

Assemblage
Forest soil microbes (N
¼ 24)
OLS power law 1.00 [N (0.23)]� N*** [0.69]***� n/a n/a
OLS linear 0.00 [N (0.21)]� N*** 0.44*** Y (0.82) Y (0.42)
OLS logB 0.00 N** N*** 0.41*** N** N***
OLS log-log 1.00 Y (0.38) Y (0.21) 0.92*** Y (0.31) N*** log10P ¼ 0.55854 þ

0.93818(log10B)
OLS logP 0.00 [N (0.88)]� Y (0.55) 0.25* N*** N***
SMA logB 1.00 N*** N** 0.41* N*** N***
SMA linear 0.00 N*** N*** 0.44* N*** Y (0.95)
SMA log-log 1.00 Y (0.35) Y (0.80) 0.92* Y (0.99) N*** log10P ¼ 0.68720 þ

1.00027(log10B)
SMA logP 0.00 N*** N*** 0.25* N*** N***

Assemblage
Grassland P5/B1 (N ¼
98)
OLS power law 0.77 Y (0.60) N** [0.77]***� n/a n/a P ¼ 2.31463(B0.87174)
OLS linear 0.23 Y (0.36) N** 0.76*** N* N**
OLS logB 0.00 N** N*** 0.60*** N*** N***
OLS log-log 1.00 Y (0.18) N*** 0.63*** Y (0.62) Y (0.58) log10P ¼ 0.098712 þ

0.96334(log10B)
OLS logP 0.00 Y (0.21) N*** 0.44*** N*** N***
SMA logB 1.00 N* N*** 0.60*** N*** N***
SMA linear 0.00 N*** N*** 0.76*** N*** Y (0.09)
SMA log-log 1.00 Y (0.07) [Y]*} 0.63*** N* N* log10P ¼ �0.44925 þ

1.19543(log10B)
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Table A1. Continued.

Model wi

Homoscedastic?
(sig.)

Normal
error?
(sig.) R2 and sig.

Slope
; 1?

Intercept
; 0? Equation

SMA logP 0.00 N*** N*** 0.44*** N*** N***
Assemblage

Grassland P5/B2 (N ¼
98)
OLS linear 0.52 N*** Y (0.69) 0.67*** N*** Y (0.64)
OLS power law 0.48 N*** Y (0.72) [0.67]***� n/a n/a
OLS logB 0.00 N*** N*** 0.49*** N*** N***
OLS log-log 1.00 Y (0.42) N** 0.58*** Y (0.25) Y (0.84) log10P ¼ 0.041196 þ

0.910338(log10B)
OLS logP 0.00 Y (0.37) N*** 0.48*** N*** N***
SMA logB 1.00 N** N*** 0.49*** N*** N***
SMA linear 0.00 N*** Y (0.07) 0.67*** N** Y (0.08)
SMA log-log 1.00 [Y]*§ Y (0.18) 0.58*** N* N** log10P ¼ �0.66194 þ

1.18379(log10B)
SMA logP 0.00 N*** N*** 0.48*** N*** N***

Assemblage
Grassland P6/B1 (N ¼
98)
OLS power law 0.83 Y (0.63) N** [0.67]***� n/a n/a P ¼ 5.60522(B0.76455)
OLS linear 0.17 Y (0.85) N** 0.66*** Y (0.49) N***
OLS logB 0.00 N* N*** 0.52*** N*** N***
OLS log-log 1.00 N** Y (0.06) 0.54*** Y (0.45) Y (0.20)
OLS logP 0.00 Y (0.92) N*** 0.32*** N*** N***
SMA logB 1.00 [N (0.88)]� N** 0.52*** N*** N***
SMA linear 0.00 N*** N*** 0.66*** N*** Y (0.11)
SMA log-log 1.00 [Y]*} [Y]*} 0.54*** Y (0.05) Y (0.19) log10P ¼ �0.39972 þ

1.22598(log10B)
SMA logP 0.00 N*** N*** 0.32*** N*** N***

Assemblage
Grassland P6/B2 (N ¼
72)
OLS linear 0.54 [Y]*§ Y (0.76) 0.69*** N** Y (0.48) P ¼ 24.61292 þ 0.80389(B)
OLS power law 0.46 [Y]*§ Y (0.85) [0.69]***� n/a n/a P ¼ 1.01972(B0.97114)
OLS logB 0.00 N** N*** 0.52*** N*** N***
OLS log-log 1.00 [Y]*§ Y (0.44) 0.66*** Y (0.97) Y (0.62) log10P ¼ �0.11084 þ

1.00365(log10B)
OLS logP 0.00 [N (0.82)]� N* 0.48*** N*** N***
SMA logB 1.00 [N (0.82)]� N* 0.52*** N*** N***
SMA linear 0.00 N** Y (0.90) 0.69*** Y (0.82) Y (0.07)
SMA log-log 1.00 [Y]*§ Y (0.98) 0.66*** N*** N*** log10P ¼ �0.78159 þ

1.26251(log10B)
SMA logP 0.00 N*** N*** 0.48*** N*** N***

Assemblage
Woody vegetation (N ¼
91)
OLS logB 0.75 [N (0.08)]� N*** 0.47*** N*** N***
OLS power law 0.25 N* N*** [0.46]***� n/a n/a
OLS linear 0.00 N* N*** 0.20*** N*** N***
OLS log-log 1.00 Y (0.05) Y (0.78) 0.86*** N*** N** log10P ¼ 0.27609 þ

0.64437(log10B)
OLS logP 0.00 [N (0.14)]� N*** 0.25*** N*** N***
SMA logB 1.00 [N (0.83)]� N*** 0.47*** N*** N***
SMA linear 0.00 N*** N*** 0.20*** N*** Y (0.12)
SMA log-log 1.00 Y (0.13) Y (0.64) 0.86*** N*** Y (0.11) log10P ¼ 0.22232 þ

0.66046(log10B)
SMA logP 0.00 N*** N*** 0.25*** N*** N***

Assemblage
Keeling and Phillips
2007 nontropical forests,
increment method (N ¼
95)
OLS logB 0.66 [Y]*§ Y (0.96) 0.48*** N*** N*** P ¼ �2387.8 þ

697.73(log10B)
OLS power law 0.34 Y (0.11) Y (0.23) [0.47]***� n/a n/a P ¼ 12.8732(B0.38605)
OLS linear 0.00 [Y]*§ N* 0.32*** N*** N***
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Table A1. Continued.

Model wi

Homoscedastic?
(sig.)

Normal
error?
(sig.) R2 and sig.

Slope
; 1?

Intercept
; 0? Equation

OLS log-log 1.00 Y (0.87) N*** 0.39*** N*** Y (0.08) log10P ¼ 0.51598 þ
0.50225(log10B)

OLS logP 0.00 [N (0.71)]� N*** 0.19*** N*** N***
SMA logB 1.00 Y (0.19) Y (0.96) 0.48* N*** N*** P ¼ �4462.02 þ

1166.38(log10B)
SMA linear 0.00 N*** N*** 0.32* N*** Y (0.36)
SMA log-log 1.00 [Y]**§ N*** 0.39* N* N*** log10P ¼ �0.78455 þ

0.80366(log10B)
SMA logP 0.00 N*** N*** 0.19* N*** N***

Assemblage
Keeling and Phillips
2007 nontropical forests,
standardized (N ¼ 95)
OLS logB 0.60 Y (0.37) Y (0.64) 0.40*** N*** N*** P ¼ �2063.61 þ

717.79(log10B)
OLS power law 0.40 Y (0.16) Y (0.45) [0.39]***� n/a n/a P ¼ 72.80411(B0.26458)
OLS linear 0.00 [N (0.12)]� Y (0.17) 0.22*** N*** N***
OLS log-log 1.00 [Y (0.02)]§ N** 0.37*** N*** N*** log10P ¼ 1.59331 þ

0.31732(log10B)
OLS logP 0.00 Y (0.69) N** 0.17*** N*** N***
SMA logB 1.00 Y (0.20) Y (0.53) 0.40* N*** N*** P ¼ �4919.0 þ

1363.142(log10B)
SMA linear 0.00 N*** N*** 0.22* N*** N***
SMA log-log 1.00 [Y (0.01)]§ Y (0.07) 0.37* N*** Y (0.05) log10P ¼ 0.47415 þ

0.57320(log10B)
SMA logP 0.00 N*** N*** 0.17* N*** N***

Keeling and Phillips
2007 tropical forests,
increment method (N ¼
96)
OLS linear 0.47 Y (0.11) Y (0.24) 0.10** N*** N*** P ¼ 241.2 þ 0.00939(B)
OLS power law 0.35 Y (0.10) Y (0.13) [0.10*]� n/a n/a P ¼ 7.8331(B0.4083)
OLS logB 0.18 Y (0.25) N** 0.08** N** Y (0.08)
OLS logP 0.70 N* N*** 0.10** N*** N***
OLS log-log 0.30 Y (0.28) N*** 0.09** N*** Y (0.27)
SMA logB 1.00 N*** N*** 0.08** N*** N***
SMA linear 0.00 Y (0.69) Y (0.30) 0.10** N*** N***
SMA log-log 1.00 N*** N*** 0.09** N*** N***
SMA logP 0.00 N*** Y (0.06) 0.10** N*** N***

Keeling and Phillips
2007 tropical forests,
standardized (N ¼ 96)
OLS logB 0.74 Y (0.31) Y (0.09) 0.27*** N*** N*** P ¼ �3648.2 þ

1291.0(log10B)
OLS power law 0.26 Y (0.58) N* 0.25*** n/a n/a
OLS linear 0.00 Y (0.98) N* 0.17*** N*** N***
OLS log-log 1.00 Y (0.62) N*** 0.49*** N*** N*** log10P ¼ 1.06225 þ

0.50280(log10B)
OLS logP 0.00 Y (0.19) N*** 0.26*** N*** N***
SMA logB 1.00 N*** N*** 0.27*** N*** N***
SMA linear 0.00 N*** Y (0.08) 0.17*** N*** Y (0.28)
SMA log-log 1.00 N*** N*** 0.49*** Y (0.34) N**
SMA logP 0.00 Y (0.94) N*** 0.26*** N*** N***

Assemblage
Herbivorous
zooplankton (N ¼ 33)
OLS power law 0.99 [N (0.16)]� N*** [0.74]***� n/a n/a
OLS linear 0.00 N* N*** 0.63*** N*** N*
OLS logB 0.00 N* N*** 0.53*** N*** Y (0.56)
OLS log-log 1.00 Y (0.22) Y (0.13) 0.83*** N** N*** log10P ¼ 0.78766 þ

1.28083(log10B)
OLS logP 0.00 [N (0.63)]� N*** 0.26** N*** N***
SMA logB 1.00 N* N*** 0.53* N*** Y (0.11)
SMA linear 0.00 N*** N*** 0.63* N*** Y (0.94)
SMA log-log 1.00 Y (0.83) Y (0.07) 0.83* N*** N*** log10P ¼ 0.66820 þ

1.40235(log10B)
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Table A1. Continued.

Model wi

Homoscedastic?
(sig.)

Normal
error?
(sig.) R2 and sig.

Slope
; 1?

Intercept
; 0? Equation

SMA logP 0.00 N*** N*** 0.26* N*** N***
Assemblage

Carnivorous
zooplankton (N ¼ 26)
OLS logB 0.36 Y (0.92) N*** 0.02 Y (0.52) Y (0.71) slope not significant
OLS power law 0.34 Y (0.69) N*** [0.01]� n/a n/a exponent not significant
OLS linear 0.30 Y (0.66) N*** 0.004 Y (0.95) Y (0.17) slope not significant
OLS log-log 0.56 Y (0.51) Y (0.19) 0.10 Y (0.74) Y (0.35) slope not significant
OLS logP 0.44 Y (0.44) Y (0.15) 0.08 N*** N** slope not significant
SMA logB 1.00 [N (0.54)]� N*** 0.02* N*** N**
SMA linear 0.00 N*** N*** 0.004* N*** N*
SMA log-log 1.00 [Y (0.02)]§ Y (0.60) 0.10* N*** N* log10P ¼ �1.66482 þ

2.99185(log10B)
SMA logP 0.00 Y (0.33) Y (0.12) 0.08* N*** Y (0.64)

Ecosystems
Terrestrial (106)
OLS logB 0.51 N* N*** 0.20*** N*** N***
OLS power law 0.47 [N (0.11)]� N*** [0.19]***� n/a n/a
OLS linear 0.02 [N (0.11)]� N*** 0.15*** N*** N**
OLS log-log 1.00 Y (0.73) Y (0.58) 0.69*** N*** N* log10P ¼ 0.35892 þ

0.67525(log10B)
OLS logP 0.00 [N (0.06)]� N*** 0.30*** N*** N***
SMA logB 1.00 N* N*** 0.20* N*** N***
SMA linear 0.00 N*** N*** 0.15* N*** N***
SMA log-log 1.00 Y (0.90) Y (0.32) 0.69* N*** Y (0.14) log10P ¼ 0.23424 þ

0.71232(log10B)
SMA logP 0.00 [N (0.07)]� N*** 0.30* N*** N***

Biome
Terrestrial (N ¼ 36)
OLS logB 0.39 [N (0.89)]� N*** 0.05 Y (0.17) Y (0.45) slope not significant
OLS power law 0.38 [N (0.83)]� N*** [0.05]� n/a n/a
OLS linear 0.23 [N (0.80)]� N*** 0.02 N*** Y (0.16) slope not significant
OLS log-log 1.00 Y (0.78) N*** 0.66*** N* Y (0.51) log10P ¼ �0.26657 þ

0.76635(log10B)
OLS logP 0.00 Y (0.25) N* 0.30*** N*** N***
SMA logB 1.00 [N (0.89)]� N*** 0.05* N*** N***
SMA linear 0.00 N*** N*** 0.02* N*** Y (0.98)
SMA log-log 1.00 Y (0.31) N** 0.66* Y (0.58) Y (0.09) log10P ¼ �0.96780 þ

0.92486(log10B)
SMA logP 0.00 [N (0.25)]� N* 0.30* N*** N***

Biome
Global terrestrial (N ¼
12)
OLS linear 0.50 Y (0.34) [N (0.10)]# 0.83*** N*** N*
OLS power law 0.48 Y (0.11) Y (0.83) 0.83** n/a n/a P ¼ 18.4638(B0.4223)
OLS logB 0.02 Y (0.53) Y (0.50) 0.72*** N*** N*
OLS log-log 1.00 N* Y (0.71) 0.84*** N* Y (0.87)
OLS logP 0.00 [N (0.19)]� N** 0.37* N*** N***
SMA logB 1.00 [N (0.46)]� Y (0.18) 0.72*** N*** N**
SMA linear 0.00 Y (0.53) [N (0.08)]# 0.83*** N*** N*
SMA log-log 1.00 N** Y (0.66) 0.84*** N* Y (0.34)
SMA logP 0.00 N** N*** 0.37* N*** N***

Biome
Global aquatic biomes
(N ¼ 7)
OLS power law 0.85 Y (0.98) N* 0.94** n/a n/a P ¼ 279.68(B0.25381)
OLS logB 0.15 Y (0.66) Y (0.54) 0.90** N** Y (0.57)
OLS linear 0.00 [N (0.71)]� N* 0.61* N*** Y (0.07)
OLS log-log 1.00 [Y (0.06)]§ Y (0.83) 0.86** N*** N*** log10P ¼ 2.27542 þ

0.30078(log10B)
OLS logP 0.00 Y (0.50) Y (0.54) 0.40 N*** N*** slope not significant
SMA logB 1.00 Y (0.47) Y (0.95) 0.90** N*** Y (0.36) P ¼ �255 þ 747(log10B)
SMA linear 0.00 N*** N*** 0.61* Y (0.55) N*
SMA log-log 1.00 Y (0.09) Y (0.94) 0.86** N*** N*** log10P ¼ 2.24088 þ

0.31866(log10B)
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SUPPLEMENT

Production and biomass data compiled from the literature (Ecological Archives http://dx.doi.org/10.
1890/ES14-00409.1.sm).

Table A1. Continued.

Model wi

Homoscedastic?
(sig.)

Normal
error?
(sig.) R2 and sig.

Slope
; 1?

Intercept
; 0? Equation

SMA logP 0.00 N*** N*** 0.40 N*** N***

� Computed for OLS power law results only as [1� (variance of model residuals)/(variance of raw P data)] (Motulsky and
Ransnas 1987). Slope significance here relates to coefficient b in P ¼ aBb, though a also contributes to curve shape (Lomolino
1989).

� Despite apparent homoscedasticity according to a Breusch-Pagan test or the equivalent regression of residuals2 as a
function of B (or log10B, as appropriate) visual examination of a residuals plot indicated strong data structure undetected by the
test (e.g., curvilinearity of residuals that indicates nonlinearity but has a flat linear regression slope through the points). This
was most likely with log-transformation of one axis.

§ Despite a significant Breusch-Pagan test ( p � 0.05) or equivalent regression of residuals2, visual examination of a residuals
plot indicated little data structure. Results were interpreted as indicating no more than modest violation of homoscedasticity.
Despite a nonsignificant Shapiro-Wilk statistics ( p � 0.05), a histogram of residuals was visually different from a normal
distribution, and points deviated substantially from a QQ normal line. Results were interpreted as indicating violation of
normal error distribution that was not detected (often due to relatively low N).

} Despite a significant Shapiro-Wilk statistics ( p � 0.05), a histogram of residuals was visually similar to a normal
distribution, and relatively few points deviated from a QQ normal line or did so with a limited extent. Results were interpreted
as indicating no more than modest violation of normal error distribution.

# Despite a nonsignificant Shapiro-Wilk statistics ( p � 0.05), a histogram of residuals was visually different from a normal
distribution, and points deviated substantially from a QQ normal line. Results were interpreted as indicating violation of
normal error distribution that was not detected (often due to relatively low N).
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