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Abstract
For domains in which fitness is subjective or difficult to express formally, interactive
evolutionary computation (IEC) is a natural choice. It is possible that a collaborative
process combining feedback from multiple users can improve the quality and quan-
tity of generated artifacts. Picbreeder, a large-scale online experiment in collaborative
interactive evolution (CIE), explores this potential. Picbreeder is an online community
in which users can evolve and share images, and most importantly, continue evolving
others’ images. Through this process of branching from other images, and through con-
tinually increasing image complexity made possible by the underlying neuroevolution
of augmenting topologies (NEAT) algorithm, evolved images proliferate unlike in any
other current IEC system. This paper discusses not only the strengths of the Picbreeder
approach, but its challenges and shortcomings as well, in the hope that lessons learned
will inform the design of future CIE systems.

Keywords
Interactive evolutionary computation, collaborative interactive evolution.

1 Introduction

The process of design often requires significant skill and domain knowledge (Graham,
2004; Brown and Birmingham, 1997). A major challenge is that designs are in effect
chosen from vast search spaces wherein the most appealing are difficult to find. If, for
instance, da Vinci had chosen a design for the Mona Lisa that lacked her enigmatic smile,
the painting might not have attained the same iconic status. Searching the vast design
space requires significant effort on the part of experts. Thus, making the design process
more efficient through automating or augmenting the capabilities of designers is an
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important research focus (Goldschmidt and Porter, 2004; Shneiderman, 2007). Interac-
tive evolutionary computation (IEC; Takagi, 2001), that is, artificial evolution guided
through human direction, is such a tool that can potentially assist the design process.
IEC applications generate an initial population of individuals from which the user se-
lects those that are most appealing. The selected individuals then become the parents of
the next generation. As this process iterates, the population evolves to satisfy the user’s
preferences. IEC is well suited to domains in which success and failure are subjective
and difficult to formalize. For example, traditional evolutionary algorithms struggle to
determine whether an image is “attractive" or not, yet humans can easily perform such
evaluations. IEC can thus generate a variety of digital artifacts including images (Sims,
1993, 1997; Rooke, 2002; Machado and Cardoso, 2002; World, 1996; Hart, 2007; Unemi,
1999), music (Johanson and Poli, 1998; Nelson, 1993; Biles, 1994; Collins, 2002; Hoover
and Stanley, 2009; Tokui and Iba, 2000), three dimensional models (Nishino et al., 2001;
Husbands et al., 1996), movies (Unemi, 1999), particle systems (Hastings et al., 2007),
dancing avatars (Balogh et al., 2007), and collages (Unemi, 1999), to name a few.

The field of collaborative interactive evolution (CIE) attempts to improve IEC
by involving multiple users in the evolutionary process (Sims, 1993, 1997; Langdon,
2005; Living Image Project, 2007). The hope is to increase the variety and quality
of solutions that can be evolved. Yet effectively combining the opinions of multiple
users is nontrivial because their preferences and goals are often in conflict. Picbreeder
(http://picbreeder.org), an online service where internet users collaborate to evolve pic-
tures, introduces a new approach to this challenge by allowing each user to guide a
branch of evolution on its own unique path.

Picbreeder users can begin evolving in one of two ways. In the traditional option,
users start from a random population of images and select those that they like, which
spawn a new generation. When the user is satisfied with an image, he or she publishes
the image, making it visible to others. The key idea in Picbreeder is that other users can
alternatively begin evolving from an already published image instead of from scratch by
branching the image, thereby continuing its evolution. Through the compounding effect
of branching, and the ability of the underlying neuroevolution of augmenting topolo-
gies (NEAT) algorithm (Stanley and Miikkulainen, 2002b, 2004a) to increase the images’
complexity, users succeed in collaboratively searching the space of possible images.

Picbreeder contributes a novel way to generate and maintain a large catalog of
user-created content by enabling collaborative search through a vast design space by
multiple users. It supports not only evolutionary optimization, but also evolutionary
exploration. That is, the goal of evolution is not necessarily to find a particular image,
but to accumulate images in the space of all images that are interesting to at least one
user. Picbreeder also empowers users of all experience levels to enjoy recognition for
their creative contributions by publishing them. Users thereby experience a new kind of
creative social recreation through playful collaborative exploration. While Picbreeder
focuses on generating images, it embodies a general framework that can harness the
power of a large group of users to search any large design space. Yet images are a
good starting point to effectively enable the study of collaborative evolutionary design
because they are easy to appreciate intuitively.

This paper comprehensively describes the Picbreeder system and its results, re-
viewing successes, surprises, and remaining challenges, significantly extending Sec-
retan et al. (2008a,b). In total, Picbreeder users have generated over 7,000 published
images from over 140,000 combined generations since opening to the public to become
among the largest online repositories of evolved and evolvable content. In part, this
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study shows how branching enables CIE applications to overcome the limitations of
user fatigue, and how several features of the Picbreeder website encourage users to
participate. Yet despite these successes, it is clear that Picbreeder specifically and IEC in
general are still no match for true expert practitioners. Furthermore, while Picbreeder
has received almost 90,000 visits and does have a dedicated core of users, most visitors
show little interest or dedication to evolving content. Thus, the results of the Picbreeder
experiment suggest that Picbreeder is a first step toward leveraging collaborative online
communities, but questions remain on how to fully realize the power of IEC. Neverthe-
less, as a milestone on the path to augmented and artificial creativity that can rival and
perhaps someday surpass traditional designers, Picbreeder reveals important lessons
with the potential to improve future IEC systems.

In the next section, background on groupware, IEC, and CIE are discussed. The
background also describes the NEAT algorithm and CPPNs, which underpin Picbreeder.
Next, the Picbreeder approach is discussed (Section 3). The Picbreeder online system
itself is described in detail in Section 4. In Section 5, details of the ongoing experiment
follow. Then, in Section 6, the successes of the experiment are described, as well as
the difficulties encountered and the challenges that remain. Future directions are then
explored (Section 7), followed by conclusions (Section 8).

2 Background

Picbreeder represents the confluence of several different fields. Research in Picbreeder
is broadly related to groupware and interactive evolutionary computation, as well as
collaborative interactive evolution, an area of research at the intersection of these two
fields. NEAT, the algorithm that powers the evolutionary process in Picbreeder, also
powers several other genetic art programs. In Picbreeder, the NEAT algorithm evolves
compositional pattern producing networks, which in turn render the images visible to
the user. These research areas and technologies are described in this section.

2.1 Groupware

Groupware, which enables computer supported cooperative work (CSCW; Grudin,
1994a; Carstensen and Schmidt, 1999), coordinates users interacting across a network
for a shared purpose. For example, Sourceforge (2008) hosts open source projects and
allows software and documentation to be written by loosely associated groups across
the internet. In the open source community itself, there is an implicit branching of
projects whereby many works influence spinoff projects, or enable others. Sourceforge
often serves as a hub for this branching process.

Another example, Wikipedia (2007), is a popular online encyclopedia that allows
numerous users across the internet to edit and add subjects about which they have some
expertise. Similarly, in IBM’s Many Eyes (Viégas et al., 2007), users can create and share
graphic visualizations of data, from which the internet community can draw and share
their interpretations. While such services encourage collaboration, they also require
specific talents or expertise, thereby limiting participation.

An early collaborative system based explicitly on branching was introduced by
Jorda to help musicians collectively produce compositions (Jorda, 1999). In Jorda’s
Faust system, users can branch from a previously saved song and edit it to create a
variant that is then saved back into the revision tree. Faust produced a collection of
appealing songs, providing precedent for the approach in Picbreeder. However, Faust
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did not employ an evolutionary algorithm; rather, users had to manipulate the notes of
the song directly and therefore needed some basic musical knowledge.

In contrast, Picbreeder enables all users, including nonexperts, to contribute
creatively.

2.2 Interactive Evolutionary Computation

In single-user interactive evolution (Takagi, 2001), the user is presented with a set of
alternatives generated by the system. This initial population is then evolved over gen-
erations through a process similar to domesticated animal and plant breeding. In each
generation, the user selects the most promising designs, which are then mated and mu-
tated to create the next generation. In effect, IEC assists the user in exploring a potentially
vast design space about which he or she may have little knowledge or expertise.

A prominent application of IEC is genetic art, in which evolution is driven by
subjective appreciation for the evolved digital artifacts (Smith, 1991; Sims, 1991; Todd
and Latham, 1992; Dawkins, 1989; Greenfield, 2000; McCormack, 1993; Lund et al.,
1995; Baluja et al., 1994). Many genetic art programs follow the original blind watch-
maker paradigm from Dawkins (1986), in which simple genetically encoded patterns are
evolved through an interactive interface. Genetic art can encompass a variety of digital
media (Romero and Machado, 2007), including images (Machado and Cardoso, 2002;
World, 1996; Hart, 2007), movies (Unemi, 1999), three-dimensional models (Nishino
et al., 2001), and music (Johanson and Poli, 1998; Nelson, 1993; Biles, 1994; Collins,
2002; Hoover and Stanley, 2009; Tokui and Iba, 2000). Notable examples include SBART
(Unemi, 1999, 1994), which is an IEC program that evolves color images rendered by
mathematical expression trees. Its capabilities have been extended to include generat-
ing movies and collages from source images. Another, GenJam, is an IEC system for
evolving improvisational jazz music (Biles, 1994). With rhythm and chord progressions
as inputs, the program generates melodies that the user can evaluate by song or mea-
sure. GenJam has been employed to produce a commercially available album, as well
as to play concerts with accompaniment (Biles, 2010). The art design system developed
by Nishino et al. (2001) supports art education by interactively evolving parameters of
a three-dimensional model. Evolved variations on a model’s motif not only help users
generate better art, but also help them hone artistic sensibilities (Nishino et al.).

Developments in genetic art have also influenced practical digital graphics tools,
such as Kai’s Power Tools Texture Explorer (Krause, 1996) and Apophysis (2007), which
interactively evolve image textures and digital flame designs, respectively. IEC has
been applied to a wide variety of other practical domains including industrial design
(Husbands et al., 1996), police face sketching (Caldwell and Johnston, 1991), correcting
speech distortion (Watanabe and Takagi, 1995), database retrieval (Lee and Cho, 1999),
and several others (Takagi, 2001).

While IEC is a powerful approach to helping users generate digital artifacts, results
are often limited by human fatigue (Takagi, 2001). According to Takagi (2001), a normal
IEC process lasts 10–20 generations for a single user. However, the problem is that it
may take more generations to produce notable results.

2.3 Collaborative Interactive Evolution (CIE)

CIE (Szumlanski et al., 2006) systems involve multiple users in one IEC application,
working to create products with broader appeal and greater significance. CIE systems
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can be physical installations or online services; each has unique methods through which
to merge input from multiple users.

Among the first CIE installations were two museum exhibits by Sims (1993, 1997).
The Genetic Images (Sims, 1993) exhibit let visitors stand in front of several displays to
select pictures to produce the next generation. Other users could select individuals at the
same time, or continue the evolutionary run where prior users left off. In the Galapagos
(Sims, 1997) exhibit, visitors evolved virtual three-dimensional creatures with a similar
interface.

While these exhibits were innovative, the museum environment does not encourage
users to frequently return to the installation. Electric Sheep (Draves, 2005), a distributed
internet application inspired by Sims’ work, enables users to evolve images over a
longer time period than is possible with a museum installation. The application runs as
a screen saver that renders fractal animations called sheep. The sheep are distributed
to users who can vote for the ones they like. Both in the museum exhibits of Sims and
in Electric Sheep, voting is the primary means of guiding evolution, and the ability of
users to choose a starting point for the process is limited.

Pfeiffer (Langdon, 2005) is another pioneering CIE system that allows users to
endorse candidates for further evolution in an online, multiuser environment aimed
exclusively at evolving snowflakes. Even with this limited scope, Pfeiffer processed
over 68,000 user inputs from every continent since 2001. While Pfeiffer demonstrates
that users are willing to participate in CIE, it raises the question of whether a broader
scope of images would be possible to evolve collaboratively.

Szumlanski et al. (2006) introduced a different CIE framework based on conflict
resolution. Users log into the system to vote on a particular individual selected by
the system. To overcome user fatigue, the system combines these inputs to form a
fitness function, that is, a measure of quality, for a traditional genetic algorithm. The
genetic algorithm then evolves an individual to meet the combined user requirements.
This approach evolved characters for an interactive story. While the system effectively
circumvents user fatigue, it does not encourage a proliferation of content because a
large collection of user input is combined to reach only a single objective.

Another system, Imagebreeder (Hammond, 2007) also offers an online community
coupled with an IEC client for evolving images. Users can save their creations to a
general pool to be viewed by the larger community. However, Imagebreeder does not
include the ability to continue evolving others’ images, which means that the complexity
of images evolved is limited to what a single user can evolve before fatiguing.

These systems highlight the intriguing potential for evolution to benefit from the col-
lective input of users across the world. However, they also signal a potential drawback.
Users’ preferences are often in conflict, resulting in mediocre results that cannot satisfy
divided opinions. Furthermore, genetic representations often limit genuine creativity
by constraining search to a predetermined set of possibilities (e.g., only snowflakes;
Langdon, 2005). To evolve a broad class of images, an open-ended representation is
needed that can potentially represent anything. Because of its ability to complexify,
the NEAT evolutionary algorithm satisfies this requirement, as explained in the next
section.

2.4 NeuroEvolution of Augmenting Topologies (NEAT)

The creative process can be constrained for novices by controlling the method through
which the space of images is searched. In Picbreeder, this constraint is provided
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by the evolutionary algorithm NEAT (Stanley and Miikkulainen, 2002b, 2004a),
which addresses several fundamental challenges in evolving complex structures. Al-
though NEAT was originally introduced as a method for evolving artificial neural
networks (ANNs), a major appeal of NEAT is its ability to evolve increasingly complex
structures of any type, so that evolutionary search is not limited to a fixed space of
possibilities.

A significant obstacle to evolving complex structures is that heuristically deter-
mining the appropriate number of genes, that is, the number of dimensions in the
solution space, is difficult for challenging problems. For example, how many nodes and
connections are necessary for an ANN that draws a picture of a face? The answers to
such questions cannot be based on empirical experience or analytic methods, because
little is known about the solutions. To address this problem, instead of trying to start
evolution in the space of the final solution, NEAT starts evolution with a population
of small, simple genomes and elaborates on them over generations by adding new
genes. Each new gene expands the search space, adding a new dimension of variation
that previously did not exist. That way, evolution begins searching in a small, easily-
optimized space, and adds new dimensions as necessary. This approach is more likely
to find high-dimensional solutions than an approach that begins searching directly in
the intractably large space of complete solutions. The process of complexification, that
is, incrementally adding new genes over generations, also occurs in some lineages in
nature, leading to increasing phenotypic complexity (Martin, 1999; Amores et al., 1998;
Carroll, 1995). By starting minimally and gradually complexifying over the course of
evolution, NEAT was able to solve several difficult control problems (Aaltonen et al.,
2009; Stanley, Bryant et al., 2005; Stanley, Kohl et al., 2005; Taylor et al., 2006; Risi et al.,
2009; Stanley and Miikkulainen, 2002a; Trujillo et al., 2008; Kohl et al., 2006; Stanley and
Miikkulainen, 2004b,a, 2002b).

It should be noted that IEC systems often rely on genetic programming and expres-
sion trees for image generation (Sims, 1993, 1997; Rooke, 2002; Machado and Cardoso,
2002; Unemi, 1999). While NEAT shares some features with these genetic program-
ming (GP) techniques, there are important differences that motivate the use of NEAT in
Picbreeder. While GP tree genomes are capable of variable-length representation, they
do not follow the same incremental approach to gradually increasing complexity as in
NEAT (Stanley and Miikkulainen, 2004a, 2002b). Some GP-based IEC systems (Sims,
1993, 1997; Rooke, 2002) employ complex functions (e.g., blurs and gradients) into their
basic function sets. These functions can introduce a significant bias into the search space
(further discussed in Section 2.7). While this bias can sometimes create appealing re-
sults, it can also limit the space of images through which the evolutionary algorithm
is likely to search. Picbreeder, in contrast, aims to keep its representation flexible by
forgoing such an aesthetic bias.

Although it was originally introduced to evolve ANNs, NEAT is sufficiently general
to evolve any variable-length genotype. Thus, complexification is now a general tool for
evolutionary computation. The next section introduces NEAT-based IEC for art, which
is the basis for Picbreeder.

2.5 NEAT-Based Genetic Art

Independent researchers have released several NEAT-based genetic art programs, be-
ginning with Mattias Fagerlund’s DelphiNEAT-based Genetic Art (DNGA) in 2003
(Fagerlund, 2006, 2005). DNGA was followed by Holger Ferstl’s SharpNEAT-based
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Genetic Art (SNGA) in 2006 (Ferstl, 2006). While realistic-looking objects have been
evolved with these applications (see Stanley, 2007, for examples), they still can require
a considerable number of generations to do so, and therefore can fatigue users.

The Living Image Project, which was introduced on the World Wide Web in Septem-
ber, 2006 and terminated in November, 2007, is another online collaborative NEAT-based
genetic art system (Living Image Project, 2007). Living Image displays a population of
color images generated by a NEAT-based genetic art program on a webpage where
users can vote for their favorite candidate. Each user is allowed to cast at most 25
votes in one day. After 300 votes, the next generation replaces the current generation
and the process begins again. The idea is to integrate the preferences of a broad user
population and thereby choose parent images more intelligently. Unfortunately, evolu-
tion is slow in such a system because many users must contribute to a single selection
event. For example, after 14 months and 8,346 votes, the project achieved only 25 gen-
erations of evolution. Furthermore, it is difficult for the system to evolve toward a
recognizable form because users have no way to coordinate their potentially conflicting
choices.

The main idea in DNGA, SNGA, and Living Image is to enable NEAT to evolve
a special kind of network that represents images. These evolved networks are called
compositional pattern producing networks (CPPNs) because they produce patterns in
space by composing functions (Stanley, 2006, 2007). The next section explains how
CPPNs represent arbitrary images.

2.6 Compositional Pattern Producing Networks (CPPNs)

A CPPN is a function of n Cartesian dimensions that outputs a pattern in n-dimensional
space. For example, a two-input CPPN produces a two-dimensional image (Stanley,
2007). For each (x, y) coordinate in that space, its color is output by the CPPN that
encodes the image. It is also possible to augment the (x, y) coordinate inputs with
additional (nonorthogonal) inputs that the CPPN can exploit. Figure 1 shows how a
two-dimensional image is generated by a function of x, y and the distance d of each
pixel from the center of the image.

Internally, a CPPN is represented as a connected graph (i.e., a network) of functions
chosen from a standard set including sine, Gaussian, and sigmoid. The structure and
connection weights of the graph represent how the functions are composed to process
each input coordinate. The output value of a function node is multiplied by the weight
connecting it to the input of the next function node. If multiple input connections
feed into the same function node, then that node takes the sum of its weighted input
values as its input. While the representation is intentionally biased toward exploiting
the geometric regularities (e.g., symmetry) that commonly occur in images through its
set of standard functions (Stanley, 2007), it can represent any function (Cybenko, 1989),
and therefore any image. In Picbreeder, three CPPN outputs represent colors in hue,
saturation, brightness (HSB) color space. The HSB color space was chosen over the more
common red, green, blue (RGB) color space because it allows the grayscale outline of the
image (i.e., brightness) to be evolved separately from the color (which is represented
in the hue and saturation channels). Picbreeder also provides the distance from the
current pixel to the image center as input to the CPPN, to help it further exploit image
regularity. Figure 2 illustrates an example image from Picbreeder and the underlying
CPPN that renders it.
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Figure 1: How CPPNs work. The diagram shows how CPPNs are internally repre-
sented and how a CPPN is converted to an image. (a) An example CPPN f takes
arguments x and y, which are coordinates in a two-dimensional space, and d (distance
from center). (b) When all the coordinates are drawn with the hue, saturation, and
brightness corresponding to the outputs of f , the result is (c) an image. The CPPN
network graph determines which functions connect to which. Note that the topology
is unconstrained and can represent any relationship. The depicted functions exemplify
the CPPN’s ability to compose functions chosen from a standard set. This structure
allows the CPPN to represent a large and diverse space of patterns, biased by the set of
standard functions.

Figure 2: Example CPPN and image. (a) The CPPN renders (b) alien face; triangles are
input nodes, ovals are hidden nodes, and rectangles are output nodes.
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While CPPNs are similar to ANNs, they differ in their set of activation functions and
how they are applied. While ANNs often contain only sigmoid and Gaussian functions,
CPPNs can include both types of functions and many others. The choice of functions
for the standard set creates a bias toward specific types of patterns and regularities.
Thus the architect of a CPPN-based genetic art system can bias the types of patterns it
generates by deciding the set of standard functions to include.

Furthermore, unlike typical ANNs, CPPNs are applied across the entire space of
possible inputs so that they can represent a complete image. Because they are compo-
sitions of functions, CPPNs in effect encode images at infinite resolution and can be
sampled for a particular display at whatever resolution is optimal. The next section
describes why CPPNs are well suited to represent images.

2.7 CPPN Image Representation

Representation is crucial in both evolutionary computation and artificial intelligence in
general. A good representation can both efficiently encode complex information and
also organize it effectively for search. This section suggests how the choice of CPPNs
for image representation can help evolutionary search.

McCormack (2008) points out that at 500 × 400 pixel resolution (200,000 total
pixels) and a color depth of 24 bits, the design space of images contains 9.5 × 101444943

candidates, a set he calls everyimage. Furthermore, within this space, McCormack shows
that meaningful designs are exceedingly rare needles in a haystack:

While it is difficult to pin down the exact number, it is clear that the fraction of interesting images
from the everyimage set is extremely Small.1 If you need proof, try randomly generating 500 × 400
pixel images for a few hours and see how many interesting ones you find.

To illustrate this point, the images in Figure 3(a) are all generated by randomly selecting
colors for each pixel. The implication is that the vast majority of this space is without
either structure or appeal.

Particularly in evolutionary computation, significant research in recent years has
sought to clarify how complex structures can be encoded most efficiently for evolution-
ary search (Bentley and Kumar, 1999; Hornby and Pollack, 2002; Stanley and Miikku-
lainen, 2004a, 2003; Angeline, 1995; Hart et al., 1994; Bongard and Pfeifer, 2001). It is
now widely recognized that a good encoding allows information in the genotype to be
reused in producing the phenotype (Gruau et al., 1996; Hart et al., 1994). Encodings with
this property are called indirect encodings (Stanley and Miikkulainen, 2003). Human
DNA, for instance, functions through an indirect encoding, mapping only about 30,000
genes to a body with trillions of cells and 100 trillion neural connections (Zigmond et al.,
1999).

It turns out that CPPNs are an indirect encoding with several powerful represen-
tational properties that make them particularly suited to encoding and searching for
spatial patterns. In particular, they are designed to efficiently encode repetition, repeti-
tion with variation, symmetry, and elaboration.

Repetition is essential to many common forms from fish scales to windows on
skyscrapers. It is naturally encoded by CPPNs that include periodic functions, such as

1The capitalization of Small by McCormack borrows Daniel Dennett’s notation of capitalizing (e.g.,
Vast) to emphasize the unfathomable scale of the spaces described.
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Figure 3: Exploring the space of images. (a) Images randomly generated pixel by pixel
exhibit no meaningful structure, exemplifying a vast and mostly unpromising search
space. (b) Images generated by random CPPNs demonstrate the structure afforded by
their representation, but do not resemble anything familiar.

sine and cosine. These functions generate repeating parts without the need to duplicate
the information that encodes each part. Repetition with variation is another fundamen-
tal motif evident in biology, for example, among fingers and vertebrae. Repetition with
variation means that a pattern is repeated while varying each repeated element a small
amount. It is accomplished in CPPNs by combining (i.e., summing) periodic functions
with other functions (e.g., sines and Gaussians).

Symmetry, which is fundamental to faces, animals, and vehicles, allows the same
information to encode both sides of an object. Symmetry is produced in CPPNs by
symmetric functions, such as a Gaussian. Furthermore, a Gaussian separated from the
x and y inputs by several nodes can yield a symmetric subset of the image, even if the
whole image is not symmetric.

Finally, the ability to gracefully elaborate is essential to image evolution. Elaboration
encourages increasing complexity by making each image a springboard to the next level
of complexity. The NEAT algorithm adds functions and connections to CPPNs as they
evolve, thereby elaborating the images they encode. A full review of the capabilities of
CPPN image representation can be found in Stanley (2007).

The set of functions used within CPPNs in Picbreeder are cosine, sine, Gaussian,
identity, and sigmoid. These functions are chosen to capture regularities that appear
frequently in nature (e.g., symmetry, repetition, and repetition with variation) without
intentional aesthetic bias.

Each of the images in Figure 3(b) is generated by a randomly evolved CPPN. That
is, each was evolved for a different number of generations with a random selection at
each iteration. The number of generations to evolve the image was chosen according
to a similar distribution as the images evolved in Picbreeder. Although these images
exhibit more structure than those in Figure 3(a), they still do not resemble anything
recognizable. Thus, while CPPNs do bias the search toward more structured geometry,
CPPNs do not automatically generate valuable designs.
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3 The Picbreeder Approach

Picbreeder aims to address the primary challenges facing CIE, as follows:

1. Empowering groups, regardless of skill, to collaboratively search a design
space. While groupware often coordinates users by sharing expertise (Source-
forge, 2008; Wikipedia, 2007), few such projects empower users who may lack
such expertise.

2. Overcoming user fatigue. In existing single-user IEC applications and CIE ser-
vices, most users succumb to fatigue before generating significant products (e.g.,
as in Hammond, 2007; Living Image Project, 2007; Ferstl, 2006; Fagerlund, 2005).

3. Proliferating content. Some CIE systems do not encourage a proliferation of
content, but instead concentrate the efforts of many users on single decisions
(Living Image Project, 2007).

4. Collaborating without diluting individual contribution. While existing CIE sys-
tems aim to produce more meaningful output by involving many users, they
frequently average the contributions of many users to generate an image that is
not necessarily pleasing to any (Living Image Project, 2007; Sims, 1993, 1997).

5. Encouraging participation. CIE systems need to encourage participation through
recognizing user achievements and through a flexible interface.

6. Balancing exploitation with exploration. Any method for searching design space
needs to balance exploitation with exploration; that is, users should be able to choose
to continue evolving less prominent designs in the hope that future generations
may improve.

This section describes the innovations designed to allow Picbreeder to address these
challenges.

3.1 Empowering Groups to Collaboratively Search Designs

Creating a large corpus of interesting designs can yield significant value, but often
requires users with substantial expertise and skill (e.g., Sourceforge, 2008). Therefore,
there is a strong motivation to automate or increase the efficiency of the design pro-
cess (Goldschmidt and Porter, 2004; Shneiderman, 2007). However, the design process
is difficult to automate, partly because it relies on subjective tasks that are difficult
for computers but relatively easy for humans, for example, visually parsing scenes,
understanding speech, and, significantly for Picbreeder, appreciating art. Importantly,
even users without special expertise can perform tasks that are too difficult or subjec-
tive for a computer. Picbreeder takes advantage of this fact, as well as the generative
capabilities of evolutionary algorithms, to tap into the creativity of large online user
communities.

By allowing the user to direct what types of artifacts should be proliferated,
Picbreeder empowers users, regardless of talent, to search a vast design space. Users
simply choose an image that will become the seed for a new evolutionary progres-
sion. Within the progression, users then select which of the generated images they
find more compelling. Through the evolutionary process, the images are mated and
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Figure 4: The Picbreeder client program. The interface can spawn or respawn a new
generation, move back and forth through the generations, and either publish the image
or save it for later editing.

mutated to produce a new generation. Because of the CPPN-NEAT algorithm, the im-
ages will gradually become more complex and reflect the selections of the user. Through
these mechanisms, users can evolve complex digital content irrespective of their level
of experience, unlike in most groupware systems.

The Picbreeder IEC client program that supports evolving images is shown in
Figure 4. The user breeds images by selecting between one and 14 images from the 15
displayed. The client can operate in either basic or advanced mode. The basic mode only
enables the Evolve and Publish buttons. The user can press Evolve to produce the next
generation of images from the current selections. When the user decides that an image
in the image panel is suitable, he or she selects that single image and presses Publish.
A publishing interface then allows the user to share it with the community through the
Picbreeder website. The advanced mode enables additional client functions. In case the
user does not find any images that are worth selecting, the Redo button respawns the
current generation. The Back button allows the user to return to a previous generation
and restart the evolutionary progression from there. The user can also navigate back
up to the current generation with the Forward button, much like in a web browser.
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The Save button stores the evolutionary progression of an image in the user’s account
as an unpublished image, so that the user can continue it later. A slider bar alters the
mutation rate, with the limits described to the user as Small Changes and Big Changes.
A checkbox allows the user to specify whether to evolve in color or in grayscale. If color
is enabled, a drop-down box allows the user to specify whether to evolve the structure
(only the parts of the CPPN connected to the brightness output), the color (only the
parts of the CPPN connected to the hue and saturation outputs), or both simultaneously.
By providing a simple interface to beginners and more options to advanced users, this
client design aims to appeal to the broad internet community so that everyone’s input
can be harnessed to create evolved art.

While some users may aim to evolve a particular image (e.g., an insect), others may
simply explore by selecting images that happen to appear compelling. A novel image
appearing in one generation may inspire the user to continue in a different direction
than initially expected. Even if the user has no concrete goal and is not familiar with
the IEC process, the images should become more compelling to the user through the
mechanics of the evolutionary process. In this way, the client supports the user’s creative
exploration of a design space, allowing any user to continually guide the computer in
directions of his or her own interest.

Thus, in contrast to expertise-based groupware (e.g., Sourceforge and Wikipedia),
users without specific expertise can contribute images to Picbreeder through the sim-
ple IEC client. Picbreeder’s easy access (requiring only a Java-enabled web browser)
encourages wide participation and the online format makes it possible for Picbreeder
to scale to larger communities than could be supported by a museum installation.

Picbreeder also recently introduced an Image DNA viewer. Through this interac-
tive client (Figure 5), users can manipulate an image’s underlying CPPN and observe
the consequences. Note in Figure 5 that each node displays the intermediate pattern
that is output at that node. Displaying these intermediate patterns as images helps
the user to understand how these patterns are fed into other nodes to compose the
final output image. For any node, users can modify the activation function, introduce
new connections to and from other nodes, and remove existing connections. Users
can also modify the weights of all connections to see their contribution to the overall
image.

The Image DNA viewer demonstrates the educational potential of Picbreeder. It
intuitively conveys the importance of indirect encodings to evolutionary computation
(Stanley and Miikkulainen, 2003) and provides a way to explore the internal dynam-
ics of neural-network-like structures (Stanley, 2007). Through observing the effect of
changes in network structure, activation functions, connection weights, and by observ-
ing intermediate patterns within the network, users gain greater understanding of how
images are rendered and how their underlying CPPNs are evolved, thereby enhancing
the expertise of Picbreeder users in general.

3.2 Overcoming User Fatigue

It can take many generations of evolution to find interesting designs within a large
search space. There is a significant chance that within the typical 10 to 20 generations of
IEC (Takagi, 2001), the user will not see anything significant, and may lose interest in
exploring further. Even if the user retains interest throughout many more generations,
and is willing to continue evolution over several sessions, there are fundamental limits
to the number of generations a person can evolve. Without a means to accumulate
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Figure 5: The image DNA viewer. The left panel illustrates the structure of the CPPN,
and the right panel renders the output of individual nodes. Also, a small version of the
intermediate pattern at each node is shown at the location of each such node in the left
panel. When the user selects a node, the viewer reveals a set of circular control buttons
that can modify the links and activation function. The viewer helps users understand
and appreciate what is being evolved.

many more generations of evolution, it is difficult for images to evolve into anything
significant. User fatigue is thus a fundamental problem in IEC (Takagi, 2001) that single-
user IEC systems often do not address (Fagerlund, 2005; Ferstl, 2006).

Picbreeder addresses user fatigue through a mechanism called branching. If the
user finds an interesting image on the Picbreeder website, he or she can then choose to
branch it, which means continue its evolution. As branches accumulate upon branches,
it becomes possible for the complexity of an image to compound for hundreds of
generations without fatiguing any single user. Because the user is likely to branch from
images that interest him or her and because the IEC process steers images closer to the
user’s preferences, conflict over evolving a single image is eliminated. The originating
image and the results of its new branches are all stored separately on the Picbreeder
website, allowing continued access to all of them.

A typical user session in Picbreeder begins with viewing published images (as seen
in Figure 6), which can be filtered by different criteria such as highest rated and newest.
Users can choose to branch any image they see, thereby entering the IEC client program
(Figure 4), which loads a copy of the root image’s CPPN. The user then continues the
image’s evolution through the IEC process, and publishes the branch when satisfied
with its appearance.

When the user branches, Picbreeder follows the process illustrated in Figure 7. The
collection of genomes evolved throughout the generations of a single evolution session,
along with their associated images, is a series. When a series is published, the last
individual selected is its representative. While Picbreeder retains every image in each
series for future analysis, users browsing the site only see representative images. When

386 Evolutionary Computation Volume 19, Number 3



Picbreeder: Collaborative Evolutionary Exploration

Figure 6: Example image view from the Picbreeder website. Any of these images can
be branched for further evolution by pressing Evolve. The DNA button displays the
Image DNA viewer (Figure 5) and allows the user to manipulate the image’s underlying
CPPN.

Figure 7: How branching works in Picbreeder. The server saves each sequence of gen-
erations in a series. The representative genome of series 0 seeds the initial generations
of other series branched from it.

branched, a representative’s genome spawns the first generation of the new branched
series. This design accommodates branching while keeping individual series in the
chain intact, thereby allowing long chains of content to grow while minimizing the
work of each individual user.
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Figure 8: Overcoming user fatigue through branching. (a) Example evolved from
scratch (i.e., from a random initial image) in 40 generations, beginning with the in-
dividual on the left and ending on the right. (b) The user branched from the individual
on the left to yield the individual on the right (another landscape) in only 14 generations
by reusing some of the existing image’s structure.

Because NEAT lets images complexify throughout evolution, images that have been
evolved through a chain from many other users may have already gained significant
complexity. Therefore, users can immediately begin with complex structures through
branching. Figure 8 illustrates the benefit of branching from an already complex image.
In Figure 8(a) the user required 40 generations to evolve the image from a random initial
starting point to a compelling image. In contrast, it took only 14 generations, as shown
in Figure 8(b), to evolve the final image as a branch from a prior image because the new
image borrows significant structure from its parent (i.e., a shoreline, a skyline, and the
general layout of the scene). In this way, user fatigue is mitigated.

3.3 Content Proliferation

Some CIE systems (Szumlanski et al., 2006; Living Image Project, 2007) combine user
input to generate only a few products, which means that the amount of content
generated per person in the system is less than in single-user IEC. In contrast, branching
in Picbreeder creates a new image with every branch. Importantly, an image may be
branched multiple times, and all images are preserved indefinitely. Thus, instead of
needing many users to generate few images (Living Image Project, 2007), Picbreeder
allows even a few users to generate many images.

Furthermore, content is not displayed on the website from every generation of
each series (as in Sims, 1993, 1997) but instead from images that users found worthy of
publishing. Thus, what results is a proliferation of meaningful content through ever-
expanding branches. Although all branches can be ultimately traced back to an initial
series that started from nothing but a completely random population, a diverse and
meaningful set of distinct styles and themes nevertheless proliferates.

3.4 Collaboration Without Diluting Individual Contribution

Although systems like the Living Image Project (2007) are seminal in promoting the
idea of CIE, their focus is to merge the artistic sensibilities of several individuals, which
can obfuscate the contributions of the individual user. It is possible for users to cancel
out each others’ contributions by pulling in opposite artistic directions. Furthermore,
in most CIE systems (Living Image Project, 2007; Sims, 1997, 1993; Szumlanski et al.,
2006), it is difficult to determine what contributions each user made to the evolution
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Figure 9: Browsing children and parents. This view shows both the children and the
parent of an image. Users can explore the tree by clicking on any image, showing which
users participated at every level.

of a particular image. If users are not recognized for their contributions, they may lack
motivation to participate in the system.

Picbreeder’s branching also addresses this problem. Each lineage is tracked such
that although a branched image is linked to its parent, the user can nevertheless continue
evolution in any way desired. Each chain of branches is influenced by every contributor
in the chain, yet each individual user takes it on a path chosen solely by that user.

Picbreeder provides a simple interface for browsing the images and users who have
contributed to a lineage tree. Recall that each image displayed on the site is a represen-
tative of a series that began with its parent series’ representative. The most proximate
series in an image’s lineage can be inspected in a detailed view panel (see Figure 9). In
this way, branching creates content that embodies the tastes and ideas of many different
users, all while maintaining individual ownership and creative autonomy.

3.5 Encouraging Participation

Without an active user base, images cannot branch and complexify. A major challenge
for any groupware is to assemble a critical mass of users to become productive (Grudin,
1994b). An effective method to entice users is to highlight the most appealing content
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from which to branch. Picbreeder therefore also motivates participation through image
ratings and user rankings, and enables users to find interesting images through tagging,
browsing, and searching mechanisms.

Users can rate interesting images and thereby credit other users for their creations.
The average rating is shown under the image. The front page of the site shows a
group of all-time top-rated images, the full set of which includes all images with three
or more ratings and an average rating of 3.0 or greater, sorted by average rating.
Furthermore, the Picbreeder front page shows the most branched, which are images
sorted by the number of times they have been branched to evolve new images. The front
page also includes a sampling of the best new images category, which includes any
image evolved with an average rating of 3.0 or greater, sorted by most recent first. This
view provides a vehicle for new images to accumulate enough votes to allow entrance
into the all-time top-rated images. All of these views aim to maximize participation by
immediately showing users’ images that have generated the most interest. They also
encourage users to publish interesting images, so that they too can be featured on the
front page. In addition, Picbreeder assesses overall rankings for each user, based on
the number of images published within the last 120 days that have entered the all-time
top-rated category. This ranking encourages users to continuously contribute popular
images.

Picbreeder further helps users find interesting images from which to branch through
tagging, browsing, and searching. Tags associated with an image during publishing let
users find images that match their interests. Users can search for tags with a search
engine style interface. In addition, tags are automatically grouped into browsable cat-
egories and subcategories. The text boxes in which tags are entered during publishing
suggest tags as the user types to reduce redundancy. The most frequent tags form
the top-level categories. Images with these tags are queried for their other associated
tags, which provide the next level of the categorical hierarchy. This approach creates
browsable hierarchies without administrative intervention (see Figure 10).

As noted above, the user can browse any of the front page categories, or follow an
image’s children or parents to find more interesting images. Picbreeder also features a
tree of life browser (pictured in Figure 11), a Java applet that allows users to visualize
the lineage tree from a high level. The user can interactively expand different branches
of the tree, thereby gaining a sense of the motifs through which parents and children
are related.

Through the encouragement provided by ratings, and through making images
available by tagging, browsing, and searching, Picbreeder makes participation easy
and fun, which is essential for CIE to succeed.

3.6 Balancing Exploitation with Exploration

Interactive evolution of digital artifacts, much like its biological analog, can make unex-
pected leaps. In Picbreeder, images that are not valued by the community may become
the roots for other images that are valuable. Therefore, in addition to encouraging users
to evolve from images that are popular (i.e., exploitation), Picbreeder also provides
several mechanisms that give less popular images the opportunity to evolve (i.e., ex-
ploration). For example, all published images are retained independently, providing
an opportunity for users to seek out less popular images. Tagging and searching helps
users find images that appeal more narrowly. Also, the Picbreeder front page contains a
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Figure 10: How the Picbreeder category hierarchy is automatically generated. (a) The
tags are extracted from the published images to find (b) the most frequent tags.
(c, d) For images with a particular frequent tag, the tags other than the one currently in
focus make the next level of the hierarchy, and so on.

random view that shows eight random images on every page load. This view increases
the odds that a user will choose to evolve a low-rated or unrated image.

4 System Architecture

Figure 12 illustrates the architecture of Picbreeder, which is a database-driven website.
The database stores metadata about the images including lineage, authorship, ratings,
and tags. Images and the CPPNs that generate them are stored on the server filesystem.

The basic functions of the website are implemented as Java web services using
Apache Tomcat and Axis. These services wrap interaction with both the relational
database and the genomes stored on the server filesystem. The interactive components
of the website are PHP scripts that consume SOAP-formatted object information re-
turned by Axis. The Java-based IEC client communicates to the server through web
service calls. Java was chosen in part because the client performs the IEC process, in-
cluding image rendering, on the user’s local machine, thereby reducing the load on
the server. When the user saves his or her image, the generating CPPN is transmitted
to the server in XML format, and saved in the user’s account. The user can then tag
and publish the image. Picbreeder’s service-oriented architecture has made it easy to
develop new applications such as the tree of life (see Figure 11) and image DNA (see
Figure 5) browsers and has facilitated quick, efficient online interaction and dynamic
storage.

5 The Picbreeder Online Experiment

The Picbreeder website opened to the public on August 1, 2007, and by August 1, 2010,
it had been visited over 85,000 times. The website catalogs over 7,500 publicly available
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Figure 11: Tree of life browser. Clicking on an image in the interface shown above
expands its children. Interactively browsing such a tree helps users to understand how
artistic motifs are carried throughout generations.

images resulting from over 155,000 user image selections. The images were contributed
both anonymously and by over 500 registered users. Statistics (that analyze user influ-
ence in the text that follows) concern registered users only; all other statistics refer to
all images on the site. While images evolved by the authors seeded the site, and are
therefore not possible to exclude from the reported statistics, they made up only 827 of
the over 7,500 images discussed, and are thus significantly outnumbered by nonauthor
contributions. The images published by all users are only the final products that are
willfully published by them; intermediate images in the evolutionary progression and
series abandoned by users (e.g., because they did not like the outcome) are not recorded
in these statistics. Picbreeder is driven by community interaction: Each active user in-
fluences an average of 2.30 other users (median = 0, SD = 7.45) through branching and
88.1% of the images are branched from another image.

Statistics collected from Picbreeder suggest that branching and showcasing im-
ages allowed the design space to be explored more effectively than a single user could
achieve on his or her own. While published images are evolved for an average of 20.31
generations (median = 11, SD = 29.94) during a single user session, each image has
an average of 151.16 cumulative generations (median = 135, SD = 108.77) from an
average of 9.75 ancestor series (median = 7, SD = 9.18). Because of NEAT’s complexifi-
cation, more cumulative generations yield more structure (i.e., nodes and connections,
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Figure 12: System architecture. The main site, including image views and lineage, is
viewed through a web browser. The user evolves images through a Java client that
sends the results back to the server to be stored on the filesystem and in the database.

with correlation coefficients of 0.9462 and 0.9664, respectively) and therefore a greater
potential complexity for the images that the evolved CPPNs can represent.

Recall that the top-rated category includes all images with three or more votes and
an average rating of 3.0 or higher. Of the 763 series in the top-rated category, only
1.97% of them were evolved within the 20 generation limit reported for single users in
Takagi (2001); the other 98.03% of the top-rated images in the system took many more
cumulative generations to evolve (an average of 153.92), and therefore were unlikely
to have resulted from a traditional single-user process. Thus branching is facilitating a
deeper exploration of the design space than would otherwise be possible.

Images in the top-rated category had an average of 0.37 children who were them-
selves in the top-rated category, compared to an average of 0.09 in the overall population.
This difference is significant at p < .001 according to Student’s t-test. This fact justifies
the promotion of promising designs. However, most images in the top-rated category
did not come from top-rated parents, meaning that all images should be retained for
the potential to yield highly rated children. In the Picbreeder community, there is also
a correlation between recognition and participation. The 10 users who published the
most images, while making up about 2% of the user population, published over half of
the top-rated images.

Ratings also helped encourage participation. While the average image in Picbreeder
is branched by 0.27 users (median = 0, SD = 0.78), images in the top-rated category were
branched by an average of 1.09 users (median = 1, SD = 1.81), which is significantly
more at p < .001 according to the Student’s t-test. The rating system is actively used by
the community; the average published image is rated 1.37 times (median = 1, SD = 1.60)
and the average top-rated image is rated 4.41 times (median = 4, SD = 2.43).

Tagging is also widely applied: The average published image is tagged 1.45 times
(median = 1, SD = 0.77). The 10 most frequent tags (“Face,” “Eye,” “Alien,” “Creature,”
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Figure 13: Example evolved designs. Example images created completely by
Picbreeder’s collaborative evolutionary process are shown with their associated num-
ber of nodes n, connections c, and cumulative generations g. These images embody a
variety of themes including mechanical (a), animal (c, d, f, h, i, j, p, x), humanoid (b, e,
l, m, o), landscape (r), astronomical (k, n, s), and surreal (q, v).

“Fish,” “Bird,” “Cool Pattern,” “Dog,” “Animal,” and “Ghost”) include 1,085 (14.2%)
of the published images, indicating that the Picbreeder tagging system effectively or-
ganizes frequent categories.

A varied sampling of the designs published by Picbreeder users is shown in
Figure 13. The images represent the gamut of subject matter: faces, animals, struc-
tures, landscapes, astronomical bodies, and many others that are familiar. While the
value of these images is subjective, it is clear that they are markedly different from the
random images from CPPNs of similar complexity in Figure 3(b). Thus, complex, rec-
ognizable, and, by the community’s judgment, valuable images can be evolved without
depending on explicit design but instead by leveraging the actions of the group.

Picbreeder’s CPPN representation and IEC client allow users to evolve a succession
of elaborations on the same theme, as shown in the sequence of faces (each one repre-
sentative of one series in the chain) in Figure 14. The images gradually become more
elaborate and recognizable as a face as evolution progresses. This sequence demon-
strates elaboration through complexification, acquiring new features while preserving
the properties of previous generations.
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Figure 14: Sequence of descendant face patterns. The chronological sequence (a–h)
displays successive progeny evolved in the Picbreeder client. The number of functions
and connections in the generating CPPN is shown below each pattern, followed by the
number of generations it took to evolve. The sequence exhibits a continual elaboration
of regular form.

Interestingly, despite there being no explicit design communication among users,
many synergistic progressions among users emerged. Figure 15 depicts a phylogenetic
tree created through the collaboration of 30 Picbreeder users. Each image represents a
unique published series, which is separated from its parent by one or more generations
of evolution. The tree reveals how the vast search space of images can be navigated
with the help of human guidance, without requiring human expertise. As in more
traditional design, new innovations are typically small modifications to the existing
structure that can change the design incrementally or effect a larger shift. Even though
users followed their individual interests when evolving this phylogeny, new interest-
ing directions emerged. Many users contributed repeatedly to an evolving lineage,
facilitating collaboration through the design itself.

6 Discussion

With over 7,500 published image series contributed to the site, Picbreeder is among
the largest online collections of evolved content. The collected statistics show that a
Picbreeder-style approach to interactive evolution can increase the number of gener-
ations that content is evolved. It also produces images that users perceive as high in
quality as shown through ratings. The images evolved through Picbreeder embody
a variety of styles and motifs, reaffirming the CPPN as a flexible representation and
NEAT as a capable evolutionary algorithm. Several users have evolved extensive col-
lections of images, and have thereby enjoyed a novel method of creative collabora-
tion. Finally, Picbreeder’s techniques for highlighting noteworthy images and users
have encouraged participation, while simultaneously promoting fruitful evolutionary
lineages. However, even with these successes, there are several remaining challenges
that the Picbreeder experiment uncovers. An analysis of its successes and failures re-
veals important lessons for the next generation of IEC systems.
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To begin, simply comparing the art from Picbreeder with well known classical art
suggests that the evolved art is still categorically different. It is an interesting question
whether such a difference signifies an artistic gap, or whether it introduces valuable
novelty in its own right. This question will likely be the subject of significant discussion
in the years to come. In addition, several existing interactive evolutionary systems,
most notably GP-based ones (Sims, 1993, 1997; Rooke, 2002), have already generated
images that may be considered as attractive or more attractive than the ones generated
in Picbreeder. By employing complex aesthetic functions (e.g., gradients, fractals, and
blurs) into their basic function sets, GP-based methods can accelerate the search for
appealing images by biasing the search space. Future Picbreeder-like systems may em-
ploy GP (e.g., Teller, 1999), expression trees, and complex base functions as well. How-
ever, while some IEC systems may achieve abstract beauty, many Picbreeder pictures
do still achieve the unusual distinction in IEC of resembling something recognizable
despite little bias in the CPPN representation. One possible reason that Picbreeder im-
ages have yet to express the complexity and variety of traditional art is that most of
the CPPNs evolved in Picbreeder still have a relatively simple structure; the average
published image is composed of 50.26 nodes and 146.70 connections. In principle, the
CPPNs in Picbreeder may need orders of magnitude more complexity to express the
nuance of traditional art.

Yet many generations and high CPPN complexity are not enough to ensure in-
teresting images. There is surprisingly little relationship between the total number of
generations evolved and how much the community appreciates the image: The cumu-
lative number of generations evolved and the average rating given to an image (only
for images which have been rated at least once) are correlated with a 0.088 coefficient.
Nor is the image structure a significant predictor of ratings: Nodes and connections are
correlated with ratings with coefficients of 0.12 and 0.11, respectively. Focusing instead
on the number of unique users branching an image does not tell a significantly different
story. Taking a sample of images published between July 1, 2009 and August 1, 2009 (to
control for older images having more time to be branched) the number of unique users
who branched the image by August 1, 2010 is correlated with cumulative generations
with a coefficient of –0.02 (and with nodes and connections both with coefficients of
–0.03). If one assumes that more generations should yield higher quality images, this
fact appears counterintuitive. However, analogies from the traditional art world may
aid in understanding the lack of correlation. Though the traditional arts can be thought
to evolve over time, numerous classics are still appreciated (e.g., the Mona Lisa) as
much or more than further evolved contemporary art (Mohen et al., 2006). Audiences
thus may appreciate the classics while at the same time looking for new and challenging
artistic directions.

A significant challenge that Picbreeder faced early on is that visitors spent too little
time on the site. Potential users were visiting the site in sufficient numbers, but were
not staying long enough to evolve anything (i.e., 30 or less). One possible explanation
is that visitors to the site could not understand what could be done on the site that
was interesting or valuable. To provide more immediate gratification for visitors, a
Quick Start function was enabled to allow the user to start evolving right away and
anonymously publish an image, thereby avoiding the sign-up process.

Of all of the published images, 84.5% were published by registered users and 15.5%
were contributed anonymously. It is better to receive anonymous contributions than
none at all. However, if users are hesitant to sign up, and choose to publish images
infrequently and anonymously to the site, it can undermine the community-based
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mechanisms designed to encourage collaboration and participation. Users who are not
registered and familiar with the community may not derive the same inspiration from
interest generated by their evolved images. Long-term user participation and a sense
of community remains a challenge: To date, slightly over 500 users have registered.
Yet online communities with “orders of magnitude” more users are not uncommon.
Unfortunately, most visitors to the site are merely spectators. It may be that a system
like Picbreeder would need a larger core of users to form a critical mass of collaborative
creativity.

For some users, Picbreeder is an enjoyable pastime. As an example, one user has
published over 2,500 images. By contrast, the average user published 26.52 images (17.47
images when excluding those of the most prolific user from the average). In the absence
of compensation, entertainment is clearly a vital aspect of the system. Exploring a design
space can be fun and rewarding. Picbreeder enables users who would traditionally be
left out of a creative process to become an active part of a design community. However,
to ensure continued and significant contributions, Picbreeder and similar systems must
prove their worth as a viable pastime to a larger audience. This challenge is essential
for CIE to grow in relevance.

7 Future Directions

In the short term, future work will focus on the challenges that remain in the field of IEC.
The mechanisms for community interaction should continue to improve to attract larger
audiences. For example, future such systems may allow users to “save individuals” to
their own computers and pass them through e-mail. Additional analysis can also help
to clarify further users’ preferences for complexity versus simplicity.

The over 7,500 image repository that has accumulated on Picbreeder presents inter-
esting future educational possibilities. In combination with the Image DNA viewer (see
Figure 5), the repository can become a unique teaching tool for students studying how
information is encoded in networks such as CPPNs or ANNs, and how such structures
evolve. It may even provide intuition to early students of biology by explicitly depicting
such concepts as gene conservation in some images and diversification in others.

More broadly, an important implication of the ability of Picbreeder users to collab-
oratively discover needles in the design space’s haystack is that other types of artifacts
may also be possible to evolve collaboratively through a system like Picbreeder. Any
digital artifact that can potentially be evolved through an IEC process, including mu-
sic, product designs, architectures, synthesized voices, and intelligent agents, can be
adapted within the Picbreeder framework. Furthermore, it is possible that designs cre-
ated by experts can be converted to an evolvable form and injected into the system
as a starting platform for evolution by an unskilled online community. Picbreeder-like
systems can also potentially augment creativity in a traditional design process by pro-
viding a starting point from which an expert designer can develop ideas. Picbreeder
provides the necessary precedent to show that such applications can actually work.

This technology also has commercial potential. In the future, a car, clothing, or
furniture company might deploy a Picbreeder-like system to evolve new designs, po-
tentially manufacturing the most popular ones. In the near term, Picbreeder could
realistically evolve patterns that could be painted onto any of the aforementioned ob-
jects. As the popularity of personal rapid prototyping machines increases (Lipson and
Pollack, 2000; Malone and Lipson, 2007), Picbreeder-like systems may evolve three-
dimensional objects that can be downloaded and automatically built. The potential for
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such commercial applications is an important real-world incentive for the field of CIE
as a whole. Yet for such applications to be realized, large numbers of users must be
attracted and rewarded for their contributions. It is possible that combining CIE with
online catalogs (e.g., clothing or furniture) will excite end users, but this effect remains
to be demonstrated commercially.

8 Conclusions

Picbreeder is an online system for collaborative interactive evolution. By allowing users
to save their evolved images back to the server for other users to branch and continue,
Picbreeder facilitated the creation of a large and diverse online repository of evolved
content. As a result of branching, images can evolve for several times more generations
than is possible through single-user IEC. Picbreeder also employs a number of mech-
anisms to encourage users to participate in the evolutionary process and contribute to
the creative community. Though there is a long way to go before IEC systems can rival
traditional design, Picbreeder shows that groups of users can evolve significant content,
and can creatively interact in a new way.
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